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The object of research is a three-phase electricity metering unit, 
which includes a digital meter and measuring current transformers.  
The reduction of non-technological energy losses is restrained due 
to the insufficient accuracy of the accounting of electric energy in 
distribution power networks under a reduced load current of the 
metering unit. The possibility of representing the dependence of 
the relative error of electricity measurement on current values by  
a fuzzy function at reduced load has been confirmed. The boundar­
ies of such a function are approximated with sufficient accuracy by 
the sum of two exponents, which is explained by its significant non­
linearity in the range of reduced current. The proposed EMRL soft­
ware allows to estimate the real consumption and the most possible  
level of underaccounting based on the array of electricity meter 
readings. The accuracy of estimating by the EMRL the amount of 
electricity consumed with a probability of 0.7 can be estimated with 
a relative error not exceeding 2 %. The probability of psychophysi­
cal assessments of the accuracy of EMRL «very good» and «good» 
is at least 0.833. The trend of a significant decrease in the relative 
value of underaccounting with an increase in the level of electri­
city consumption was revealed. With a daily consumption of up to 
10 kW·h, the amount of underaccounting can reach 18 %, and with 
a consumption of more than 20 kW·h, it does not exceed 6 %. The 
adequacy of the results of estimating the amount of consumed elec­
tricity at reduced load using the EMRL was confirmed by experi­
mental data at a significance level of 0.05. The software capabilities 
allow to increase the accuracy of the accounting of electrical energy 
in distribution networks with a reduced load current of the meter­
ing  unit. The program can be used as part of automated systems of 
commercial electricity metering or advanced metering infrastructure 
to determine the most possible underaccounting due to the operation 
of metering units at a reduced load
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1. Introduction

The plan for the transformation of the energy system of 
the European Union REPowerEU [1] envisages a reduction 
in the consumption of energy from fossil fuels, instead – an 
increase in the use of electricity in industry and in transport. 
In order to improve the efficiency of the European energy 
system, it is planned to create a European energy data space 
based on intelligent energy infrastructure [2]. Total invest-
ments in the electric power system for the period 2020–2030 
are estimated at 584 billion EUR, including about 400 bil-
lion EUR in the development of distribution grids. About 
170 billion EUR of the latter amount is expected to be 
invested in grids digitalization. One of the important di-
rections in this context is the introduction of intelligent 
electricity metering, which will allow to increase accuracy. 
The global smart electricity meter market was estimated 
at 10.4 billion USD in 2020. Its volume is expected to be 
13.5 billion USD for 2024 [3]. Such meters are operated as 
part of metering units in distribution grids. Their current 
circuits are connected to the network using measuring cur-
rent transformers, most often – of the electromagnetic type. 
The global market for such devices was estimated at 7.46 bil-
lion USD in 2021. It is expected to grow from 7.94 billion 

in 2022 to 13.14 billion USD in 2030 at a compound annual 
growth rate of 6.5 % [4].

Electricity metering units are installed at industrial en-
terprises, charging stations for electric vehicles, renewable 
sources (solar, wind stations), accumulators, at household 
consumers etc. More than 186 million smart electricity me-
ters were in use in the European Union by the end of 2023, 
which is 4 % more than in 2022. With an annual growth 
rate of 6 %, it is predicted that such measuring equipment 
will be equipped at the level of 78 % by 2028 [5]. The dis-
advantages of such measuring equipment include a decrease 
in the accuracy of accounting in non-standard modes, in 
particular – in an incomplete phase mode [6] or at a reduced 
load. In particular, in the latter case, accounting errors can 
reach – 90 % [7]. Electricity, that is not accounted due to 
the shortcomings of measuring equipment, is the main com-
ponent of non-technological losses [8], which also include 
cases of theft, fraud, non-payment of bills etc. The level of 
non-technological losses in the power system of Albania is 
approaching 7 %, in Portugal – up to 9.8 % [9]. Electricity 
losses in most countries of Latin America and the Caribbean 
exceed 17 % [10]. Reducing electricity losses will expand 
access to modern energy sources, reduce greenhouse gas 
emissions, and lower tariffs for end users [11].
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Thus, the need to reduce non-technological losses of elec-
tricity in distribution networks determines the relevance of 
the disclosed scientific issues.

2. Literature review and problem statement

To detect non-technological losses of electricity, a number 
of technical solutions based on the use of machine learning and 
neural networks have been proposed. Such methods involve 
estimating losses by comparing actual consumption with  
a typical profile that has been identified based on the analysis 
of large data sets. In particular, based on the monthly con-
sumption records of 37,814 consumers during the year using 
the k-fold cross-validation algorithm training and testing data 
sets, used for model training, were obtained [12]. The latter 
allows to assign the consumer to the «normal» or «abnormal» 
categories. Disadvantages of this approach include the failure 
to take into account the features of the measuring equipment 
used by each consumer, especially the accuracy class. Also, the 
method is characterized by significant errors with unbalanced 
data sets. It is known about the use of a decision tree combined 
K-nearest neighbor and support vector machine to detect 
unaccounted electricity consumption [13]. Problem consu
mers are identified using a combination of supervised and 
unsupervised machine learning. Drawbacks of this approach 
include complex technical implementation and focus on peak 
electricity consumption, the probability of which may be 
negligible in the case of a long-term reduced load regime. The 
use of a deep convolutional neural network makes it possible 
to distinguish between periodic and aperiodic changes in elec-
tricity consumption, which is proposed to be used to detect 
unauthorized consumption [14]. However, this approach may 
turn out to be wrong in the event of a change in the rhythm of 
the enterprise’s production activity, implementation of energy 
efficiency measures etc. Detection of non-technological losses 
of electricity in distribution grids with an accuracy of about 
0.7 is possible on the basis of long-term consumption models 
known as detection contrastive predictive coding [15]. How-
ever, this approach is focused on detecting abnormally large 
levels of consumption compared to the base level, which makes 
it difficult to detect the reduced load mode.

There are also methods that involve estimating errors and 
calibrating individual electricity meters. Such operations can 
be carried out remotely based on the comparison of readings 
of different levels meter and taking into account the losses in 
the lines as part of the advanced measuring infrastructure [16]. 
Remote accuracy control of smart meters can be performed 
using a modified back-propagation neural network [17]. How-
ever, with such approaches, the output of the accounting error 
beyond the normalized limits due to a decrease in the current 
of consumers cannot be detected. To detect smart meter errors, 
it is proposed to use a high-frequency signal processed using  
a fast Fourier transform in a discrete form [18]. However, the 
lack of current control makes it difficult to detect a significant 
decrease in the load level. The meter error can be estimated 
based on its readings and correction factors using the method 
of least squares [19]. Incorrect selection of the values of the 
correction coefficients, especially for the reduced load mode, 
lowers the effectiveness of the method.

There are known methods of taking into account the er-
rors of measuring current transformers as an integral part of 
the metering unit. In particular, it is proposed to improve the 
design of such a device by placing an additional winding [20]. 

Signals from such a winding should be analyzed by a self-cor-
recting algorithm that detects errors and corrects the measure-
ment results. There is also a well-known proposal to increase 
the accuracy of the current transformer by using a composite 
axial magnetic conductor, which is made using permalloy [21]. 
However, the wide distribution of electromagnetic measuring 
transformers of classical design complicates the implementa-
tion of such methods.

The analysis of the literature [12–21] allows to establish 
the existing problem: insufficient accuracy of electric energy 
accounting in distribution power grids with reduced load 
current of the metering unit. Inconsistency of the actual value 
of the current with the permissible range according to the 
accuracy class of the measuring equipment leads to an increase 
in power losses. This, in turn, is the cause of financial losses of 
energy supply companies. At the same time, such companies 
do not have enough evidence of unaccounted energy consump-
tion, which makes it difficult to update the measuring current 
transformers in the metering unit.

3. The aim and objectives of the study

The aim of the study is to increase the accuracy of the 
accounting of electric energy by digital meters of the trans-
former connection in the distribution 0.38 kV grid by taking 
into account the characteristics of the measuring equipment at  
a reduced load current. This will make it possible to reduce the 
level of non-technological losses of electricity. Accordingly, to 
increase the profitability of energy supply companies. And also, 
to stimulate consumers to bring the parameters of measuring 
equipment (in particular, the rated current of measuring trans-
formers) into compliance with actual operating conditions.

To achieve the aim, the following objectives must be solved:
– to identify the characteristics of the measuring equip-

ment of a specific electricity metering unit at a reduced load;
– to estimate consumption and the most possible under-

accounting based on the set of experimental data;
– to assess the accuracy and adequacy of determining the 

amount of consumed electricity at reduced load.

4. Materials and methods

4. 1. Object and research hypothesis
The object of the study is a three-phase electricity me-

tering unit, which includes a digital meter and measuring 
current transformers, Fig. 1. This unit is intended for com-
mercial metering in 380 V power distribution grids.

The subject of the study is the uncertainty of electrici
ty measurement at reduced current through the primary 
windings of measuring transformers. At the same time, the 
root-mean-square value of such a current is smaller than twice 
the smallest current, at which the relative error is normalized 
according to [22]. In particular, for the accuracy class of 0.5 S, 
this smallest current is 1 %. Uncertainty is supposed to be 
estimated by a L-R fuzzy interval, the boundaries of which 
depend on the type of membership function, the accepted 
level of significance, and the values of the phase currents.

The main hypothesis of the study is the possibility of 
electricity measurement at a reduced load of the metering 
unit, when the currents through the measuring equipment 
are smaller than the lower limit of the class-standardized 
accuracy range.
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Fig. 1. Schematic diagram of a three-phase 	

electricity metering unit: PI1 – meter; TA1–TA3 – measuring 
current transformers; L1, L2, L3 – generator terminals; 	

T1, T2, T3 – terminals for connecting the load; 	
N – neutral

Research is conducted under the following assumptions:
1. The currents of each of the phases of the consumer at  

a reduced load are considered as implementations of a random 
stationary process. Such currents are uniformly discretized 
in time with an interval Δt. During each of these intervals, it is 
considered that the current remains unchanged and is equal to 
the mean of the realization of a random process. Direct current 
measurement may not be possible for technical or organiza-
tional reasons. If there is information about the actual amount 
of consumed energy ΔW, kW∙h, for the interval Δt, hour, the 
average value of the current I p  of each phase during the  
specified interval can be calculated as:

I
W

U t
p

r

=
⋅

⋅ ⋅
1 000

3

,

cos
,

Δ
Δ j

	 (1)

where Ur – rated voltage, V; cosj – power factor, p.u.
2. The voltage Uζ(t) of each phase, ζ = {A, B, C}, corresponds 

to realizations of a random stationary process. The relative 
values of the phase voltages with a probability of 0.95 belong  
to the permissible interval according to [23]:

P U t0 9 1 1 0 95. . . .*≤ ( ) ≤  ≈ζ 	 (2)

3. It is assumed that during the reduced load mode, the 
power factor of each phase with a probability of 0.95 lies 
within the interval:

P 0 995 1 0 95. cos . .≤ ≤  ≈jζ 	 (3)

This corresponds to the active nature of the consumer 
during the reduced load.

4. The positive direction of power is assumed: from the 
source to the consumer.

5. Changes in conductor resistance and metrological 
characteristics of measuring equipment due to ambient tem-
perature fluctuations are not taken into account.

4. 2. Mathematical modeling of the metering unit at 
reduced load

The method [24] of presenting the static characteristics 
of the measuring current transformer at a reduced current 
through the primary winding with a statistical model was 
used in the study:

I I Is
  

* * *,( ) = ¢ + ⋅µ β 	 (4)

where I* and I s


*
 – the primary winding current and the es-

timate of the secondary winding current of the measuring 
transformer, p.u.; µ� ′ , β  – estimates of linear regression pa-
rameters, p.u.

Covariance analysis methods are used to estimate the 
parameters values of characteristic (4).

A mathematical model of the uncertainty of electricity 
measurement at reduced load is also used [25]. The latter 
involves the use of fuzzy functions to estimate the mea-
surement uncertainty. For the ζ measuring channel, the 
boundaries of the fuzzy function, which evaluates the rel-
ative deviation of the meter readings in the metering unit 
from the actual value of the consumed energy, correspond to  
the expression:

δ δ δζ ζ ζ ζ λ ζ ζ λ
W I W I W IL R

j j

 ( ) = ( ) ( )



* *

; ,	 (5)

where λ j
* – confidence level, which is an element of the set 

{λ*} at j = 1, ,Λ  λ λj j
* * .> +1  

In addition, the left and right limits of (5) are obtained 
by approximating the experimental points with the func-
tions  F, namely:

δ ζ ζ λ ζ ζW I F I LL j
j

( ) = { } *
, ,	 (6)

δ ζ ζ λ ζ ζW I F I RR j
j

( ) = { } *
, ,	 (7)

where {Lζj}, {Rζj} – sets of parameters of functions F.
The fuzzy function that describes the measurement un-

certainty by the three-phase metering unit at the phase’s 
currents IА, IB, IC, is:
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and the boundaries of such a function for the confidence level 
λ j

* are equal to:
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Estimation of boundaries (9) for a set of confidence levels 
makes it possible to obtain a sample. It is provided that the 
sample values are approximated, it is possible to obtain the 
membership function:
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where δWυ – the closest quantity to the true value of δW.
In order to determine, in accordance with the member-

ship function (10), the limits of δW change, which can be 
used to calculate underaccounting, the marginal confidence 
level λb

* should be estimated. Such an indicator is defined for 
measuring equipment of a specific accuracy class and type as:

λ λ λb e em s* * * ,=   − ⋅  2 	 (11)

where λe
* – the sample values of the confidence level obtained 

in a series of experiments to identify the characteristics of  
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the metering unit; m – the sample mean; s – the sample stan-
dard deviation.

The calculation of the marginal confidence level (11) 
makes it possible to estimate the interval of belonging of the 
value δW at the determined values of the phase currents:

δ
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The obtained interval (12) characterizes the uncertainty 
of electricity measurement in the reduced load mode. Based 
on its boundaries, it is possible to estimate the lowest and 
highest possible levels of underaccounting.

4. 3. General algorithm for estimating electricity con-
sumption and the most possible underaccounting

The general algorithm for estimating the accuracy of the 
electricity metering unit at reduced load (Fig. 2) involves 
two procedures. Metrological characteristics are identified 
once for specific equipment. The subsystem that implements 
such a procedure is marked I and includes blocks 1–11. For 
specific operating conditions, which are determined by the 
values of the consumer phases currents, the actual amount of 
energy consumed during the studied time is estimated based 
on the obtained characteristics. Such an estimate is given by 
a fuzzy number W W WL R

 = [ ]; .

 
Fig. 2. Structural diagram of the general algorithm 	

for assessing the accuracy of the electricity metering unit 	
at reduced load

Identification of the metrological characteristics of the 
metering unit is based on the load currents values IA, IB, IC. 
The parameters evaluation of the static characteristics of the 
measuring current transformers is carried out in accordance 
with dependence (4) by blocks 1, 2, 3. The evaluation of 

the parameter’s values of the fuzzy functions (5) for each 
of the measuring channels is carried out by blocks 4–6.  
In blocks 7–9, a nonlinear approximation of the boundaries  
of such functions is carried out at given levels of significance 
in accordance with (6), (7). Such dependencies make it pos-
sible to establish the relationship between the boundaries (9) 
of the fuzzy function (8) for the metering unit with current 
values, block 10. The last function is used to determine, 
according to (11), the marginal confidence level, block 11. 
The output values of subsystem I are the array of parameters 
values of the fuzzy function (8) and the value λb

*. On the 
basis of such data, the uncertainty of electricity measure-
ment is evaluated in subsystem II for specific values of the 
secondary currents IsA, IsB, IsC of the measuring transformers. 
These values are measured by a digital meter as part of the 
metering unit and can be read by software. The primary cur-
rents evaluation is carried out by blocks 12–14 according to 
dependencies that are inverse to those defined in blocks 1–3. 
The key operation of the subsystem II is the determination by 
polynomial approximation of the membership function (10), 
block 15, taking into account the marginal confidence level. 
As a result, the boundaries of the fuzzy number are calculated:

δ δ δW W WL R
 = [ ]; ,	 (13)

which evaluates the relative deviation of meter readings as 
part of the metering unit from the actual amount of con-
sumed energy during the reduced load period. The specified 
real value is characterized by fuzzy number:

W
W

W
PI�

�=
+
1

1δ
.	 (14)

The output values of subsystem II are the boundaries of 
the number (14), which estimate the actual consumption of 
electricity and are calculated in block 16 as:

W W W
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W
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L
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+ +


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




; ; ,1 1

1 1δ δ
	 (15)

where WPI1 – the electricity consumed during the reduced 
load mode according to the readings of the PI1 meter in the 
metering unit.

For the most unfavorable conditions for the consumer, 
the right boundary of the interval (15) can be considered as 
the amount of electricity WEMRL consumed during reduced 
load: WEMRL = WR.

4. 4. The procedure for identifying the characteristics 
of the metering unit at reduced load

To perform calculations in accordance with blocks 4–9 
(Fig. 2), the GS software was developed in the MATLAB 
environment (The MathWorks company, USA). The program 
calculates the sets of parameters {L}, {R} of the F curves, ap-
proximating the fuzzy functions (6), (7), Fig. 3. The input 
data (block 2) are sample test values of currents I iζγ

*  and values 
of δWζγi, and γ = 1,M  is the number of the test current interval. 
For all phases and current intervals, block 3, the average cur-
rent values Iζγ

*  of the interval are calculated, block 4. A set {λ} 
of confidence levels is specified, block 5. For all phases, current 
intervals and confidence levels, block 6, using the ‘f_interv’ sub-
program, the boundaries of the fuzzy interval [δWLζγi; δWRζγi]  
are calculated, block 7. The measurement result δWυζγ, which 
is the closest to the true value, is also determined.
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Fig. 3. Block diagram of the GS software 	
algorithm for calculating the sets {L}, {R} of the curves 

parameters that approximate the fuzzy 	
functions (6), (7)

For all phases, block 8, and confidence levels, block 9, the 
values of parameters {L}, {R} sets are calculated, block 10. 
boundaries (6) and (7) are approximated by the sum of ex-
ponents:

F x K K x K

K x K K

, exp /

exp / ,

( ) ( )

( ) ( ) ( )

{ }( ) = ⋅ −  +

+ ⋅ −  +

1 3

2 4 5 	 (16)

where {K} = {K(1),…,K(5)} is a set of parameters.
Estimation of {K} is carried out by the least squares 

method. The minimization of the squares sum of the resi
duals is performed by the built-in ‘fminsearch’ function of 
the MATLAB environment, which implements the simplex 
Nelder-Mead method of minimization of a function with 
several variables. The custom function ‘exp2_func’ calculates 
the residuals. Similarly, the value of the parameters {ϒ} of the 
dependence, which approximates the values of the deviations 
closest to the true value, is estimated, block 11.

Algorithm of the ‘f_interv’ subprogram, Fig. 4, imple-
ments the method proposed in [26]. The input values are the 
vector of measured values δWi, the degree L of polynomials 
approximating the branches of the membership function of 
the measured value, and the confidence level λ*.

The measured values are sorted in ascending order, block 1. 
The intervals Δk between adjacent sorted values and their 
extreme values Δmax, Δmin, block 2 are calculated. For all 
intervals, block 3, the frequency mk of the measured val-
ues is calculated, block 4. In block 5, the number υ of the 
measured value with the smallest interval width is deter-
mined. With the help of blocks 6, 7 and 8, 9, sample values 
μ1 of the left and μ2 of the right, respectively, branches 
of the membership function of the measured quantity are 
calculated. Moreover, the relative values of this quanti-
ty for the specified branches are τ1 and τ2, respectively.  

The mentioned branches are approximated by polynomials  
of L degree, the arrays of coefficients of which are calcu-
lated according to the criterion of the minimum of the 
Chebyshev norm adjustment, block 10. The components ξ1 
and ξ2 of the fuzzy interval at a given confidence level are 
determined using the built-in MATLAB ‘roots’ function 
for finding the roots of a polynomial, block 11. This allows 
the width and bounds of the fuzzy interval to be calcula
ted, block 12.

 
Fig. 4. Block diagram of the ‘f_interv’ subprogram 	

algorithm for determining the boundaries 	
of a fuzzy interval that estimates 	

the measured quantity

4. 5. Software for estimating underaccounting and ac-
tual electricity consumption

Procedures for estimating the uncertainty of electricity 
measurement for specific conditions, corresponding to sub-
system II of the general algorithm, Fig. 2, implemented as 
EMRL software, Fig. 5.

The EMRL software provides, based on the data re-
ceived from the digital meter at certain time intervals, an 
estimate of the most likely underaccounting and the actual 
consumption of electricity. It is developed in Microsoft Vi-
sual Studio Professional 2022 Version 17.10.0 (Microsoft 
Corporation, USA). The data necessary for the program to 
work are contained in files of the *.xml type. The electricity 
metering unit characteristics file (metering_unitObj1.xml)  
includes the values of the meter parameters, current 
measuring transformers and dependencies characterizing 
the metering unit in reduced load mode. The file with 
meter readings (dataObj1.xml) is generated during the 
reduced load mode. After reading the input data, the main 
window of the program displays: duration of reduced 
load; consumption according to readings; estimation of 
real consumption; the most possible underaccounting.  
Such data are summarized for a day and throughout the 
studied time period.
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4. 6. Experimental data
The accuracy of electricity metering is assessed using 

the results of the PJSC ‘Rivneoblenergo’ experiment [27] for 
consumer No. 1. The experiment was conducted for a  pri-
vate enterprise (Rivne), whose electricity metering unit is 
equipped with a PI1 meter No. 10149202 type NIK2307 ART  
T.1600.M2.21 (accuracy class 0.5 S, manufactured by ‘NIK’ LLC,  
Ukraine). The meter was connected to the line using three 
measuring current transformers of type T-0.66-200/5 (accu-
racy class 0.5 S, manufactured by PJSC ‘Uman Zavod  
‘Megommeter’, Ukraine). In addition, the metering unit was 
equipped with a PI2 directly connected meter No. 10011723, 
type NIK2307 ARP3 T.1600.M2.21 (accuracy class 0.5 S, 
manufactured by ‘NIK’ LLC, Ukraine). The duration of the  
experiment is from September 1 to 30, 2020. Every 15 minu
tes, the following data were automatically recorded for each 
of the meters: positive active energy A+ (OBIS 1.8.0, kW∙h); 
negative active energy A– (OBIS 2.8.0, kW∙h); positive 
reactive energy R+ (OBIS 3.8.0, kVAr∙h); negative reactive 
energy R– (OBIS 4.8.0, kVAr∙h). According to the calcula-
tions in [27], the load power factor was 0.997, which confirms 
the correctness of the assumption about the active nature  
of the load.

4. 7. Procedure for assessing the accuracy and check-
ing the adequacy of the results

To assess the accuracy of determining the amount of 
electricity consumed during the reduced load mode, it is 
suggested to use the following indicator:

γ =
−

⋅
W W

W
PI EMRL

PI

2

2

100 %,	 (17)

where WEMRL – the amount of electricity consumed during 
the period of reduced load, estimated using the EMRL, kW∙h; 
WPI2 – valid amount of energy for the same period, measured 
by a direct-on meter, kW∙h.

To estimate the value of the indicator γ and, accordingly, 
the accuracy of the EMRL software, the modified Harrington 
scale can be used, which is given by the equation (Table 1):

d γ γ( ) = − −[ ]{ }exp exp .4 	 (18)

The adequacy of the WEMRL estimates to the actual WPI2 
energy consumption during reduced load is supposed to be 
checked by examining the absolute residuals:

ε = −W WPI EMRL2 .	 (19)

The results obtained using the EMRL are considered 
adequate to the actual energy consumption if the residuals ε 
satisfy the following requirements [28]:

1) are independent normally distributed random variables;
2) are characterized by zero mean;
3) there is no autocorrelation of the first order between 

sample residual values.

Table 1

Evaluating the EMRL accuracy on a desirability scale

EMRL accuracy Desirability value d

Very good 1.00…0.80

Good 0.80…0.63

Satisfactory 0.63…0.37

Bad 0.37…0.20

Very bad 0.20…0.00

The Kolmogorov-Smirnov test is supposed to be used to 
test the sample of residuals ε for normality of distribution. 
Checking the mean for a zero value is carried out according 
to Student’s t-test. The absence of autocorrelation of the 
first order between the residuals ε can be detected using the 
Durbin-Watson statistic.

 
Fig. 5. EMRL software
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5. Results of the study of accuracy of electrical energy 
metering at reduced load

5. 1. Identification of characteristics of measuring de-
vices at reduced load

As a result of the characteristics identification of cur-
rent transformers T-0.66-200/5, estimates of the parameter 
values of the statistical model (4) were obtained, namely:  
µ� ′ ,µ ¢ = − ⋅ −1 369 10 4.  p.u.; β = ⋅ −9 932 10 1.  p.u.

For a set of confidence levels λ = 0.80, 0.75, …, 0.20, using 
the developed GS software, the characteristics of the coun- 
ter PI1 No. 10149202 type NIK2307 ART T.1600.M2.21 were 
identified in the reduced load mode. The results are presented 
in the form of estimations of the approximation coefficients of 
parameters sets of the fuzzy function (5) boundaries, Table 2. 
The sum of exponents (16) was used for approximation.

The received characteristics of the measuring equipment 
are recorded in the metering_unitObj1.xml file. Parameter 
values from such a file are read by the EMRL when click-
ing on the «Metering unit characteristics...» button. Based 

on the test measurements, the marginal confidence level 
λb

* .= 0 66 was established, which is entered in the «Confident 
level threshold» field, Fig. 5.

5. 2. Estimation of electricity consumption and the 
most possible underaccounting based on the array of ex-
perimental data

The experimental data used to evaluate the accuracy of elec-
tricity metering contain 2,880 time intervals. Such a data array 
was saved in the dataObj1.xml file and uploaded to the EMRL 
program using the «Meter readings...» button. The results of 
calculations of real consumption and the most possible under-
accounting for each of the time intervals, each day and monthly 
indicators were displayed in the program window, Fig. 5. The 
results summarized for every 5 days are shown in the Table 3.

The results of the comparison of the absolute underac-
counting values ΔWEMRL, estimated by the EMRL, and ΔWPI2, 
which are calculated based on the readings of the PI2 directly 
connected meter, are illustrated by the diagram in Fig. 6. Such 
a comparison is made for each day of the month.

Table 2

Estimates of approximation coefficients of parameter sets for fuzzy function boundaries (5) by the sum 	
of exponents (16) for selected confidence levels

A set of 
parameters

Phase
Confidence level number j 

(confidence level λ)
Value of approximation coefficients

K(1) K(2) K(3) K(4) K(5)

{L}

А

1 (0.80) –8.41·102 1.58 5.82·10–2 2.24 –2.48

… … … … … …

13 (0.20) –3.35·102 8.09 1.05·10–1 3.42∙10–1 –3.03

B

1 (0.80) –1.78∙104 –1.00·102 2.49·10–2 9.73∙103 9.87∙101

… … … … … …

13 (0.20) –5.17·102 –3.53·101 6.65·10–2 3.06·10–1 –2.48

C

1 (0.80) –3.92·104 –2.08·103 2.29·10–2 6.76∙104 2.08∙103

… … … … … …

13 (0.20) –6.28·102 –3.09·107 7.35·10–2 2.96∙108 3.09∙107

{R}

A

1 (0.80) –6.61·103 7.61 2.97·10–2 1.58∙101 –7.37

… … … … … …

13 (0.20) –2.31·103 5.57·101 3.99·10–2 8.62∙101 –5.28∙101

B

1 (0.80) –2.56·104 –9.84·101 2.33·10–2 –1.09∙104 9.91∙101

… … … … … …

13 (0.20) –2.60·104 1.01·102 2.33·10–2 –6.02∙103 –9.88∙101

C

1 (0.80) –4.91·104 –3.90·102 2.21·10–2 –2.92∙104 –3.90∙102

… … … … … …

13 (0.20) –6.02·104 –2.29·102 2.16·10–2 –2.49∙104 2.34∙102

{ϒ}

A × –1.19·104 –8.52·102 2.59·10–2 6.03∙103 8.51∙102

B × –2.34·104 –1.01·102 2.37·10–2 4.67∙104 1.01∙103

C × –5.87·102 –2.57·103 2.15·10–2 3.71∙104 2.57∙103

Table 3
EMRL estimates of actual consumption and the most likely underaccount for five-day time intervals

Time interval
Energy consumption 

by readings of the me-
tering unit WPI1, kW·h

Estimating energy con-
sumption by the EMRL 
software WEMRL, kW·h

Energy consumption by 
readings of the directly con-

nected meter WPI2, kW·h

Evaluation of the most possible under-
account by the EMRL software 

ΔWEMRL, kW·h δWEMRL, %

01–05.09.2020 123.040 126.117 125.706 3.077 2.4

06–10.09.2020 108.000 112.029 111.381 4.029 3.6

11–15.09.2020 91.160 96.895 95.725 5.735 5.9

16–20.09.2020 88.160 92.957 94.664 4.797 5.2

21–25.09.2020 87.800 94.679 94.216 6.879 7.3

26–30.09.2020 83.040 90.258 90.007 7.218 8.0

 Total 581.200 612.935 611.699 31.735 5.2
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The comparison results of the relative values of underac-
counting δWEMRL, estimated by the EMRL software, and δWPI2,  
calculated from the readings of the PI2 meter, are shown  
in Fig. 7. Moreover, such a comparison is made depending on 
the actual electricity consumption of WPI2, which is determined 
by the directly connected meter.

Underaccounting values, which are plotted on the graph, 
Fig. 7, calculated relative to the real levels of electricity con-
sumption for each day during the month under research.

5. 3. Evaluation of accuracy and adequacy verification 
of the results of the consumed electricity amount assess-
ment at a reduced load

For the daily amount of electricity, the value of the indi-
cator γ was calculated according to (17), as a result of which 
a histogram was plotted, Fig. 8. 

The number of bins was determined by Sturges’s rule:

n N= +   = +   =1 1 30 52 2log log .	 (20)

The results of evaluating the EMRL software accura-
cy using the modified desirability function (18) are shown 
in Fig. 9. The d(γ) values were estimated for a sample of 
γ estimated by daily amount of energy during the month 

under study. The probability of an accuracy rating of «very 
good» is 7/10 = 0.700, «good» – 4/30 = 0.133, «satisfactory» – 
3/30 = 0.100, «bad» – 1/30 = 0.033, «very bad» – 1 /30 = 0.033.

 
Fig. 8. Histogram of indicator γ, %, 	

sample values frequencies f hits 	
to the corresponding bin

 
Fig. 9. Experimental points γ, %, 	

on the curve of the modified desirability 
function d (γ), p.u.

The results of adequacy verification of 
the consumed electricity amount assessment 
are as follows. Regarding the absolute resi
duals ε (Fig. 10), calculated according to de-
pendence (19) for each day of the studied 
month (sample size N = 30), statistical hypothe-
ses are put forward. The null hypothesis assumes 
that the sample conforms to the normal distri-
bution law, the alternative hypothesis does not 
conform. The experimental value of the Kolmo
gorov-Smirnov statistic is K0 = 0.1285. The cri
tical value of the criterion equals Kc = 0.2417 at 
the significance level α = 0.05. The fulfillment 
of the inequality K0 < Kс does not give grounds 
to reject the null hypothesis, which indicates 
a normal distribution of the absolute residuals ε.

 
Fig. 10. Residues ε, kW∙h, 	

for each day q during the studied month

The second condition of adequacy is checked according 
to the Student’s t-test. The following hypotheses are put 
forward. H0: m[ε] = 0. H1: m[ε] ≠ 0. The empirical value of 
the criterion t0 = 1.6537. The critical value tc = t(1–α; N–1) = 
= t(0.95; 29) = 1.70 at 1–α = 0.95. This does not give grounds 
to reject the null hypothesis and indicates the zero value of 
the residuals mean.

 
Fig. 6. Comparison of the daily absolute values of the underaccounting 

ΔWEMRL, kW·h, estimated by the EMRL software, and ΔWPI2, kW·h, 	
which are calculated from the readings of the directly connected 	

meter, on q days during September 2020

 
Fig. 7. Daily relative values of underaccounting δWEMRL, %, estimated 	

by the EMRL, and δWPI2, %, calculated from the readings of the directly 
connected meter depending on the actual consumption 	

of electricity WPI2, kW·h
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The Durbin-Watson test was used to check the third 
adequacy condition. The null hypothesis indicates the inde-
pendence of the random deviations of the residuals ε, Fig. 11. 
An alternative hypothesis lies in autocorrelation between 
sample values of ε.

 
Fig. 11. Residues ε, kW∙h, depending on actual energy 

consumption WPI 2, kW∙h

The empirical value of the criterion D0 = 1.5526. The 
critical value belongs to the interval [dL; dU] = [1.352; 1.489] 
at α = 0.05. Since the condition D > dU is fulfilled, there are no 
grounds for rejecting the null hypothesis. This indicates the 
statistical insignificance of the first-order autocorrelation 
between the residuals ε.

6. Discussion of the results of the accuracy assessment  
of electrical energy metering at reduced load

The received estimates of parameters µ� ′ ,, β  of static cha
racteristics (4), which describes the current transformers, are 
explained by the deviation of the transformation coefficient 
from the rated value in the area of low primary currents. The 
rated transformation ratio when measuring currents in rela-
tive units is equal to 1. At the same time, this ratio with the 
obtained parameter estimates in the area of low loads is 1.007, 
which explains the deviation of the actual secondary current 
from the expected one. The selection for the boundaries (6) 
and (7) approximation of the sum of two exponents (16), the 
estimates of whose parameters K(1),…, K(5) for each phase and 
confidence level are obtained in the Table 2, is explained by 
the significant nonlinearity of the δW(I) dependence. Such 
nonlinearity takes place in the area of reduced loads, when 
the means of measuring equipment in the metering unit 
function in the non-class-standardized accuracy of the cur-
rent area. Using the sum of exponents (16) with coefficient 
estimates (Table 2) makes it possible to use one function to 
describe the δW(I) dependence without using the piecewise 
linear approximation method.

For five-day time intervals, the most possible underac-
counting, estimated by the EMRL software, ranges from 
2.4 % to 8.0 %, Table 3. In absolute terms – from 3.077 kW·h 
to 7.218 kW·h. The monthly level of underaccounting is 
5.2 %, which corresponds to 31.735 kW·h. For every 5 days, 
the deviation of the WEMRL estimate of the energy consump-
tion obtained using the software from the WPI2 consumption 
according to the readings of the PI2 meter did not exceed 
1.7 kW·h, which corresponds to 1.8 %. The monthly esti-
mate of consumption by the EMRL differs from the actual 
level by 1.2 kW·h (0.2 %). Similar deviations of daily con-
sumption volumes, Fig. 6, are in the range from 0.009 kW·h  
to 1.231 kW·h. Analyzing the change in the relative values 
of underaccounts δWEMRL and δWPI2 when the WPI2 level of 
electricity consumption increases, it is possible to establish  

a trend of their significant decrease, Fig. 7. With a daily con-
sumption of up to 10 kW·h, the level of underaccounting can 
reach 18 %, with consumption from 10 kW·h to 20 kW·h – 
from 4 % to 16 %. If the daily consumption exceeds 20 kW·h, 
the underaccounting is not more than 6 %. This is explained 
by the significantly non-linear nature of the dependence (12).  
The average monthly level of underaccounting according 
to the readings of the direct connection meter is 4.5 %, the 
estimate calculated by the EMRL is 5.2 %.

The absolute value of the relative deviation γ, the depen-
dence (17), of the estimated amount of electricity consump-
tion from the actual with the highest probability 12/30 = 0.4 
lies in the range from 0 % to 1 %, Fig. 8. The probability 
of finding such an indicator in the range from 1 % to 2 %  
is 9/30 = 0.3. Deviation γ > 2 % with a probability of 0.3. That 
is, with a probability of 0.7, the accuracy of estimating by the 
EMRL the amount of electricity consumed can be estima
ted with a relative error not exceeding 2 %. When applying 
the psychophysical scale of desirability (18), the proba-
bility of accuracy ratings of «very good» and «good» is at  
least 0.833, Fig. 9. The probability of «bad» and «very bad» 
ratings does not exceed 0.066. The analysis of the adequacy 
verification results in accordance with the three require-
ments formulated in section 4.7 allowed to establish the 
following. The conclusion made according to the Kolmo
gorov-Smirnov criterion about not rejecting the hypothesis 
about normal distribution of residuals ε, Fig. 10, confirms the 
fulfillment of the first adequacy requirement. Not rejecting 
the hypothesis about the zero value of the residuals mean, for 
which the Student’s criterion was used, allows to talk about 
the fulfillment of the second requirement of adequacy. Since, 
according to the Durbin-Watson criterion, the hypothesis 
about the independence of random deviations ε, Fig. 11, was 
not rejected, then there are grounds to talk about the fulfill-
ment of the third requirement of adequacy. Since all three 
requirements are satisfied at the significance level of 0.05,  
it is possible to talk about the adequacy of the consumed elec-
tricity estimation results at reduced load using the EMRL 
software with experimental data. This confirms the main 
hypothesis of the research about the possibility of electricity 
measurement at a reduced load of the metering unit.

The use of a fuzzy function, the boundaries of which are 
described by deterministic dependencies, to describe the 
uncertainty of electricity measurement in the reduced load 
mode, compared to the machine learning algorithm [13], 
has the following advantage. The proposed approach can 
be applied in existing systems of commercial electricity 
accounting without updating the hardware. Also, unlike 
the method [20], which involves equipping the measuring 
current transformer with an additional winding, the de-
veloped method uses the indications of existing measuring 
equipment. This reduces the costs of implementing the 
proposed solution. In contrast to the method [12], which 
is characterized by significant errors with unbalanced data 
arrays, the proposed approach is suitable for estimating 
underaccounting with asymmetric phase currents of the 
load. This advantage is explained by the fact that the fuzzy 
function (8) underlying the operation of the EMRL depends 
on each of the phase currents. The advantages should also 
include the simplification of the assessment of real consump-
tion and the level of underaccounting of electricity due to 
the use of the continuous function (16) with coefficient 
estimates (Table 2). In contrast to the method of piecewise 
linear approximation [29], with this approach, there are no 
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difficulties in combining the approximating lines at the dis-
continuity points. This reduces the volume of calculations, 
accordingly – the software algorithm for estimating the level 
of underaccounting of electricity is simplified.

The capabilities of the EMRL software allow to solve the 
existing problem, namely, to increase the accuracy of electric 
energy accounting in distribution power grids with a reduced 
load current of the metering unit. The solution to the prob-
lem is achieved by the following. The software can be used as 
part of automated systems of commercial electricity metering 
or advanced metering infrastructure to determine the most 
possible underaccounting due to the operation of metering 
units at a reduced load. Also, EMRL is suitable for control 
verification of the electricity metering units of industrial 
consumers for the significance of the duration of the reduced 
load regime. The use of such software will give energy supply 
organizations the opportunity to assess the operating condi-
tions of a specific non-household consumer’s metering unit 
and formulate recommendations for improving electricity 
metering and, accordingly, clarifying financial calculations. 
For example, based on the data obtained from the EMRL, 
a significant, from the point of view of the energy supply 
company, level of underaccounting of electric energy was re-
vealed. Then recommendations can be made to the consumer 
regarding the reconstruction or technical reequipment of the 
metering unit, taking into account the actual level of currents 
when choosing measuring equipment. Technical reequipment 
of the metering unit should provide for the selection of mea-
suring current transformers in accordance with the actual 
power of the consumer. Also, current transformers can be 
selected of a higher accuracy class. The use of the software 
provides a reasonable assessment of the level of underac-
counting of electricity based on the actual operating modes 
of the metering unit. Also, EMRL can be used by consumers 
for technical accounting of electricity at the enterprise and 
self-monitoring of the operation mode of the metering unit. 
The scope of EMRL can be extended to renewable sources of 
electricity, in particular to solar power plants.

Limitations of the proposed approach to increasing the 
accuracy of electricity metering include the possibility of 
application only for metering units equipped with electro-
magnetic current transformers.

The disadvantages of the proposed EMRL software 
include the lack of direct integration with existing commer-
cial electricity accounting systems, in particular: NovaSyS, 
ASKUE.net etc. In addition, the evaluation of the charac-
teristics of measuring equipment of a specific type in the 
reduced load mode requires special experiments. This com-
plicates the implementation of the proposed approach.

In the course of further research, it is planned to simplify 
the procedure for identifying the characteristics of the meter-
ing unit. This can be achieved by avoiding conducting special 
experiments to estimate the values of the fuzzy function (8)  
parameters. Instead, the values of the currents flowing through 
the metering unit in the operating mode can be used. This will 
reduce the time of implementation of the proposed solution 
for various types of measuring equipment.

7. Conclusions 

1. As a result of the identification of the measuring equip-
ment characteristics of the specific electricity metering unit at 
a reduced load, the possibility of representing the dependence 
of the relative measurement error on the current values by  
a fuzzy function has been confirmed. The boundaries of such  
a characteristic are approximated with an error of no more 
than 3 % by the sum of two exponents, which is explained by 
their significant nonlinearity in the area of reduced current.

2. Based on the array of experimental data, reflecting the 
monthly consumption of electricity by an industrial consumer 
at 15-minute intervals, the following estimates were obtained 
using the proposed EMRL software. The most possible under-
accounting of electricity is from 2.4 % to 8.0 %. The average 
monthly level of underaccounting is 5.2 %. The monthly 
estimate of consumption by the EMRL software differs from 
the actual value by 0.2 %. The trend of a significant decrease 
in the relative value of underaccounting with an increase in 
the level of electricity consumption was revealed. With a dai-
ly consumption of up to 10 kW·h, the underaccounting can 
reach 18 %, and with a consumption of more than 20 kW·h, 
the underaccounting does not exceed 6 %. This trend is ex-
plained by the non-linearity of the metrological characteris-
tics of measuring equipment in the area of low currents.

3. The accuracy of estimating by the EMRL software 
the consumed amount of electricity with a probability  
of 0.7 can be estimated with a relative error not exceeding 2 %. 
The probability of psychophysical accuracy assessments of 
EMRL «very good» and «good» is at least 0.833. The ade-
quacy of the results of estimating the amount of consumed 
electricity at reduced load using the EMRL software was 
confirmed by experimental data at a significance level of 0.05. 
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