
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 4/9 (130) 2024

6

IMPROVING PROTECTION OF
FALCON ELECTRONIC SIGNATURE

SOFTWARE IMPLEMENTATIONS
AGAINST ATTACKS BASED ON

FLOATING POINT NOISE
O l e n a K a c h k o

PhD,	Head	of	Department
Department	of	Software	Engineering

Kharkiv	National	University	of	Radio	Electronics
Nauky	ave.,	14,	Kharkiv,	Ukraine,	61166

Programming	Department*
Y u r i i G o r b e n k o

PhD,	First	Deputy	Chief	Constructor*
S e r h i i K a n d i i

PhD	Student**
Research	Associate-Consultant*

Y e v h e n i i K a p t o l
Corresponding author

PhD	Student**
Information	Protection	Systems	Analyst*

*Institute	of	Information	Technologies	PrJSC
Profesora	Otamanovskoho	str.,	15,	Kharkiv,	Ukraine,	61166

**Department	of	Security	of	Information	Systems	and	Technologies
V.	N.	Karazin	Kharkiv	National	University
Svobody	sq.,	6,	Kharkiv,	Ukraine,	61022

The object of this study is digital signa-
tures. The Falcon digital signature scheme
is one of the finalists in the NIST post-quan-
tum cryptography competition. Its distinc-
tive feature is the use of floating-point arith-
metic, which leads to the possibility of a key
recovery attack with two non-matching sig-
natures formed under special conditions.
The work considers the task to improve the
Falcon in order to prevent such attacks, as
well as the use of fixed-point calculations
instead of floating-point calculations in the
Falcon scheme. The main results of the
work are proposals for methods on improv-
ing Falcon's security against attacks based
on the use of floating-point calculations.
These methods for improving security differ
from others in the use of fixed-point calcu-
lations with specific experimentally deter-
mined orders of magnitude in one case and
proposals for modifying procedures during
the execution of which the conditions for
performing an attack on implementation
level arise in the second case. As a result
of the analysis, the probability of a suc-
cessful attack on the recovery of the secret
key for the reference implementation of the
Falcon was clarified. Specific places in the
code that make the attack possible have
been localized and code modifications have
been suggested that make the attack impos-
sible. In addition, the necessary scale for
fixed-point calculations was determined,
at which it is possible to completely get rid
of floating-point calculations. The results
could be used to qualitatively improve the
security of existing digital signatures. This
will make it possible to design more reli-
able and secure information systems using
digital signatures. In addition, the results
could be implemented in existing systems
to ensure their resistance to modern threats

Keywords: quantum-resistant trans-
formations, Falcon, floating point, NIST
PQC, NTRU

UDC 004.056.5
DOI: 10.15587/1729-4061.2024.310521

How to Cite: Kachko, O., Gorbenko, Y., Kandii, S., Kaptol, Y. (2024). Improving protection of falcon electronic signature software

implementations against attacks based on floating point noise. Eastern-European Journal of Enterprise Technologies, 4 (9 (130)), 6–17.

https://doi.org/10.15587/1729-4061.2024.310521

Received date 30.05.2024

Accepted date 08.08.2024

Published date 30.08.2024

1. Introduction

Lattice-based cryptography has become one of the most
promising areas of research in modern cryptography. The
main advantage of lattice-based cryptography is its resis-
tance to attacks by quantum computers, which makes it
particularly relevant in the context of the development of
quantum technologies. Software implementations of such
transformations often use new, little-researched techniques
that can lead to vulnerabilities.

A typical example is the Falcon electronic signature
scheme [1], which is a finalist in the third stage of the NIST
PQC competition [2] and is based on problems in lattice the-
ory. There are draft standards for all finalists. However, the
Falcon is an exception. The problem of creating a standard
for the Falcon algorithm is the complexity of implementing
key generation and electronic signature (ES) algorithms.

One of the problems is related to the need to use floating
point. The use of floating point complicates the verification
of test vectors, makes it impossible to apply many protection

techniques against side-channel attacks, and negatively affects
performance on devices that do not support floating-point op-
erations. In addition to implementation complexity issues, the
use of floating-point calculations can lead to vulnerabilities.

In summary, research on methods for improving the securi-
ty of software implementations of quantum-resistant electronic
signatures is extremely important since these cryptographic
methods will be standardized in the near future and will ensure
the security of information and telecommunication systems.
In particular, Falcon’s electronic signature, as a finalist in the
NIST PQC competition, needs a detailed study. This is espe-
cially relevant due to its peculiarity – the use of floating-point
calculations, which remains underexplored.

2. Literature review and problem statement

The Falcon electronic signature was proposed in [1]. Its
feature is the use of floating-point calculations. However, at
the time of publication of the work, there was not enough

Copyright © 2024, Authors. This is an open access article under the Creative Commons CC BY license

INFORMATION AND CONTROLLING SYSTEM

7

Information and controlling system

make many attacks more difficult. Therefore, possible areas
of research are the use of a fixed point instead of a float-
ing point and modification of the order of calculations in
software implementations. Also, some attacks, such as [7],
require clarification of the conditions of the attack. Clarify-
ing the conditions under which attacks are carried out can
provide a better understanding of an attacker’s capabilities.

3. The aim and objectives of the study

The purpose of our study is to improve the security of
software implementations of the Falcon electronic signature
against attacks using the noise of floating-point calculations.
The research will make it possible to highlight the neces-
sary adjustments and methods for improving the security of
both the ES Falcon scheme and other electronic signature
schemes that use floating-point arithmetic.

To achieve the goal, the following tasks were set:
– to evaluate the influence of system-wide parameters on

the probability of an attack;
– to determine what changes must be made in the soft-

ware implementation so that the attack is impossible;
– to determine the possibility of using a fixed point in-

stead of a floating one at the stage of generating an electronic
signature to increase security.

4. The study materials and methods

The object of our research is the security of the ES Fal-
con scheme against attacks based on the use of features in
the application of floating-point arithmetic.

The main hypothesis of the study assumes the existence
of methods of protection against attacks using the influence
of floating-point computing noise on the Falcon ES.

For the study, the ES Falcon scheme [2] adopted for
standardization based on the results of the NIST PQC com-
petition and its reference implementation was used.

The Falcon electronic signature scheme is based on the
GPV framework, which was first proposed in [9] for the
construction of quantum-resistant electronic signatures on
lattices. The essence of the GPV framework is as follows:

– the public key is given by a matrix n m
qA ×∈ (where

m>n). This matrix defines the basis of the q-ary lattice Λ;
– the secret key is specified by the matrix .m m

qB ×∈ This
matrix specifies the basis of the dual lattice q

⊥Λ , which, ac-
cording to the definition, is orthogonal to Λ modulo q. That
is, for any vectors x∈Λ and qy ⊥∈Λ 〈x,y〉=0modq is fulfilled,
where 〈〈∙,∙〉 is a scalar product operation;

– for a given message m, the signature is a small (in
the sense of the Euclidean norm) vector ,m

qs ∈ for which
sAT=H(m) is fulfilled, where *: {0,1} n

qH → is a collision-re-
sistant hash function. To check the signature, it is enough to
check that the equation sAT=H(m) is fulfilled;

– to calculate the signature, an arbitrary random vector
,m

o qc ∈ is first calculated, for which c0AT=H(m) is per-
formed. Since no requirements are imposed on the vector c0
regarding the values of its Euclidean norm, it can be found by
standard means of linear algebra in polynomial time. Next,
the secret basis B is used to calculate a vector ,qz ⊥∈Λ which
is close to the vector c0. The difference of vectors s=c0–z is a
correct signature since sAT=c0AT−zAT=c−0=H(m). If c0 and
v are close enough, then s will be small.

analysis of the required accuracy of the operations because
at that time floating-point calculations were not common
in cryptography. At that time, there was simply no need for
such an analysis.

In work [3], Rényi divergence was used to justify the
security of using 53 bits of accuracy. However, the analysis
only considers attacks on the signature scheme itself, leav-
ing out attacks on implementation features. The authors
of the work were not interested in such an analysis since
it has a purely practical orientation, while they developed
theoretical models without reference to implementation. The
authors of the Falcon electronic signature recognize that the
use of floating-point calculations is problematic and creates
numerous implementation difficulties. Some devices do not
support floating point operations. Moreover, floating-point
calculations lead to the fact that two correct implementa-
tions can give different signatures. This complicates the
design of test vectors and makes possible attacks that cannot
be applied to other electronic signatures.

There are no known implementation options for the
Falcon algorithm without using a floating point. In [4], it is
proposed to use the standard for floating point IEEE-754,
which, as a rule, is implemented by modern compilers. The
emulation option is an option for computing devices that do
not support floating point but leaves all the disadvantages
of floating point associated with limiting the precision of
the task and calculation. This doesn’t solve all floating point
problems, but it does mitigate them.

In [5], an attack on the Falcon electronic signature
through external channels was proposed, which uses the
features of multiplying polynomials in the Fourier represen-
tation using a floating point. In the work, it is shown that it
is possible to protect against this attack with the help of the
correct implementation of calculations. But in work [6] a
new attack was proposed, which made it possible to recover
the secret key using power analysis, which again raised the
question about the security of software implementations.
Developing a software implementation that uses fixed-point
computations could make this kind of attack more difficult,
if not impossible.

Paper [7] shows a key recovery attack in the presence
of two non-matching signatures, which uses floating-point
calculations. But the probability of an attack was estimat-
ed roughly enough. The authors did not aim to find exact
estimates but limited themselves to approximate estimates.
Questions related to protection against the proposed attack
also remained unresolved. It was stated in the work that this
is the subject of further research.

Paper [8] proposes a method for generating keys without
using floating point, which are replaced by fixed-point oper-
ations. There is an agreement with NIST about the possibil-
ity of using this method instead of the generation methods
proposed in the reference implementation. However, the
possibility of using this method at the stage of generating
an electronic signature has not yet been investigated, since
the topic is relatively new. Although the use of a fixed point
does not completely solve the problem of floating point, it
can make it more difficult to conduct attacks on third-party
channels.

All this gives reason to assert that it is advisable to
perform research that would make it more difficult to carry
out attacks on the implementation of signatures that use
floating-point calculations. Creating an implementation of
Falcon that didn’t use floating-point arithmetic at all would

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 4/9 (130) 2024

8

The Falcon electronic signature uses the Λ NTRU lat-
tice [1, 10] as the lattice. The following notations have been
introduced. Let ϕ=xn+1 (n is the power of two) and q∈*.
The polynomials f,g,F,G∈[x]/(ϕ) define the NTRU lattice
if the NTRU equation is fulfilled:

()od .mfG gF q= φ− (1)

Explicitly, the basis of the NTRU lattice is given as fol-
lows:

.
f g

F G

 (2)

The polynomial h=g∙f−1modq also defines the basis of the
same lattice and explicitly the NTRU basis of the lattice is
given as follows:

1
.

0

h

q

 (3)

If the polynomials f, g have small coefficients, then the task
of restoring f, g from the polynomial h is considered difficult
(NTRU problem). By applying the lattice NTRU to the GPV
framework, Falcon makes the following changes to GPV:

– the public key is the polynomial h, which is used to
calculate the NTRU basis of the lattice Λ;

– the secret key is the polynomials f,g,F,G∈[x]/(ϕ),
which are used to calculate the basis of the dual lattice ;q

⊥Λ
– the signature for the message m consists of a pair of

polynomials (s1, s2) for which s1+s2h=H(r ||m), where r is salt,
is fulfilled. When calculating the signature, a secret key is
used to calculate a vector ,qz ⊥∈Λ which is close to the vector
t=(H(m||r),0). The difference of vectors t and z is the correct
signature.

To calculate the vector z=(z0,z1), the sampling algo-
rithm [11] is used, which returns a vector from a normal dis-
tribution. A feature of the Falcon sampling algorithm [12] is
the use of the algebraic structure of the cyclotomic field and
the Fourier transform to speed up operations. Falcon also
uses tree-like data structures – LDL trees. Details can be
found in the specification from [1].

In work [7], an attack on the implementation of ES Fal-
con was proposed. The attack is based on the use of two dif-
ferent implementations, which, due to rounding noise, give
different signatures for the same messages. The key equation
of the attack is:

1

0 1

0 ,
g G

h
f F

= δ
δ + δ

+δ (4)

where 1
0
0

0 0z zδ = − and 1
1
0

1 1z zδ = − (the superscript indicates
the serial number of the implementation).

The idea of the attack is to choose the message m in such
a way that δ1=0, and δ0 is some small enough to use the algo-
rithm for finding the greatest common divisor of a polynomi-
al (ideally – 0δ ∈). Then, it will be possible to calculate the
secret key ,f g as:

 () ()1 0 1 0 0 1
1 1 1 1 0 0/ gcd , ,f s s s s s s= − − −

 () ()0 1 1 0 0 1
0 0 1 1 0 0/ gcd , ,g s s s s s s= − − − (5)

where gcd is the greatest common divisor of the polynomials.

Since the attack is based on the use of floating-point
noise, one defense is to account for rounding errors, and
another is to use fixed-point operations instead of float-
ing-point.

This study was performed on the implementation exam-
ple [1], folder Extra. In the following, this implementation
is designated as the reference implementation. In the con-
sidered version of implementation, two options for calculat-
ing ES are given:

Option 1. Calculation based on the secret key – polyno-
mials f, g, F, G. In this case, the LDL tree and components
of the ES are calculated in parallel with the ES calculation
(sign_dyn function).

Option 2. All computations for the LDL tree depend
only on the secret key and are independent of the signature
message. They are performed in advance (expand_privkey
function). This significantly speeds up the formation of ES
if it is necessary to sign several documents using one secret
key, but significantly increases the size of the required mem-
ory (LDL tree must be stored. If the secret key carrier allows
for protected memory, these calculations can be performed
once after the generation of keys. In this case, the effect of
applying the second method will hold even in the case of
forming only one signature (function sign_tree).

The attack from [7] makes it possible to recover or
calculate new polynomials f, g, F, G, sign documents and
successfully verify the signature with a legal public key.
The attack provides these opportunities in the case of ob-
taining different signatures under the conditions of using
the same signature messages and random seed2 and nonce
data. Therefore, it is advisable to analyze in more detail the
conditions for calculating different signatures and the means
of preventing this.

The following statistical methods are used within this
study:

– the Chi-Square test [13]: this is a statistical test used
to test hypotheses about the independence or correspon-
dence of the observed frequency distribution to the theoreti-
cal frequencies. It is used for categorical data and is based on
a comparison of expected and actual frequencies;

– the Kolmogorov-Smirnov test [14]: this is a non-para-
metric test that is used to compare two samples or to check
whether the sample matches the theoretical distribution.
The test is based on the largest distance between the cumu-
lative functions of the sample distribution and the theoreti-
cal distribution;

– quantile-quantile graph (Q–Q graph) [15]: this is a
graphical tool for comparing two distributions by plotting
their quantiles against each other. If the points on the graph
form an approximately straight line, this means that the dis-
tributions are similar;

– Kruskal-Wallis test: this is a non-parametric method
for comparing the medians of several independent groups.
It is a generalization of the Mann-Whitney test and is used
when the normality assumption for the data is not met;

– Student’s t-test: this is a parametric test used to compare
the means of two samples or to test whether the mean of one
sample corresponds to a given value. It is used when the data
have a normal distribution and known or unknown variances;

– polynomial regression: this is a method of regression
analysis in which the relationship between the independent
variable and the dependent variable is modeled as a poly-
nomial. Polynomial regression allows taking into account
nonlinear dependences between variables.

9

Information and controlling system

5. Results of investigating methods for improving the
security of software implementations of the Falcon

electronic signature

5. 1. Assessment of the impact of system-wide param-
eters on the probability of an attack

The following statistics were collected to obtain the
required estimates: for 10 random keys for log2n=2, 3, 4, 5,
6, 7, 8, 9, 10, signatures were computed on random 33-byte
messages until 100 events were obtained:

– differences in signatures with identical messages
and seed;

– a successful key recovery attack.
Thus, two statistics were acquired. It was hypothesized

that for each key, for each log2n value, the statistic obeys
the exponential distribution. This hypothesis was tested at
the 0.01 level by the Chi-square and Kolmogorov-Smirnov
tests. For all keys, the null hypothesis of an exponential dis-
tribution was accepted. Fig. 1 shows an example of a typical
distribution and a Q-Q plot.

Although events are exponentially distributed for all
keys, the parameters of the distribution may differ for each
key. To test the hypothesis of equivalence of keys, the Krus-
kal-Wallis test (H-test) was applied to all keys for all values
of log2n. The corresponding data are entered in Table 1. If
the p-value is greater than the significance level, then it is
considered that there is no statistically significant difference
between the distributions.

For the completeness of the picture, the Kruskal-Wal-
lis test was also applied in pairs to each of the distribu-
tions. The results of the comparison are shown in Fig. 2, 3,
where the square with coordinates (i, j) visualizes the
p-value obtained by comparing the distributions of the
i-th and j-th keys. Green color corresponds to one, red
color to zero.

Table	1

Estimation	of	the	equality	of	distribution	medians	by	the	
Kruskal-Wallis	test

N

There is a difference in
signatures

Successful attack

Statistics p-value Statistics p-value

2 62.911 3.67e-10 131.961 4.68e-24

3 76.360 8.507e-13 45.352 7.93e-07

4 31.218 0.00027 53.805 2.05e-08

5 22.257 0.00809 26.346 0.00179

6 30.343 0.00038 28.641 0.00074

7 48.355 2.19e-07 33.766 9.81e-05

8 18.5688 0.029118 170.475 4.91e-32

9 27.565 0.001126 21.602 0.010226

10 17.2289 0.045249 21.298 0.01139

From Table 1 and Fig. 2, 3, it is possible to conclude that
for log2n=10 the distributions satisfy the Kruskal-Wallis
criterion for a significance level of 0.01. However, it should
be noted that in general the distributions for different keys
are different and the expected number of signatures depends
on the key.

To calculate the expected number of signatures for a
randomly selected key, it is possible to calculate the expect-
ed value for all keys and average it. The mean values of the
distributions are expected to be normally distributed, so it is
possible to apply the Student’s t-test to the obtained values
to estimate the most likely value of this parameter.

Confidence intervals for each of the keys were calculated
using the Student’s t-test. The expected average values are
listed in Table 2.

 Fig.	1.	Density	function	and	Q–Q	plot	for	log2n=9

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 4/9 (130) 2024

10

Fig. 4, 5 show 95 % confidence intervals for the expected
number of signatures of the corresponding statistics.

It is quite interesting that the dependence of the number of
signatures on log2n is not monotonic. However, this can be ex-
plained by an insufficiently large amount of statistical material.

Linear, quadratic, and cubic regression models were ap-
plied to the obtained estimates, and the coefficient of deter-
mination R2 was calculated to assess the quality of the mod-
els. Fig. 6, 7 show the corresponding models; Table 3 gives
the obtained estimate of the average number of signatures.

Fig.	2.	The	p-value	for	the	Kruskal-Wallis	pairwise	test	for	the	difference-in-signs	statistic

Fig.	3.	The	p-value	for	the	Kruskal-Wallis	pairwise	test	for	the	successful	attack	statistic

11

Information and controlling system

Table	2

Expected	average	number	of	signatures

Key log2n=2 log2n=3 log2n=4 log2n=5 log2n=6 log2n=7 log2n=8 log2n=9 log2n=10

Statistics of differences in signatures

1 40386 52424 25984 28728 27704 34612 34276 33828 33222

2 23202 31346 33877 46674 29318 26374 39661 28854 29877

3 47154 44637 37725 35368 29782 28839 34582 28055 22245

4 26125 47474 33517 25336 30066 26100 33067 25390 30593

5 39963 49803 34086 32891 31642 36444 24367 37016 28000

6 65627 22292 26366 29067 45190 34893 32164 35695 40353

7 33151 24164 27038 27029 45219 38335 25691 29825 30165

8 36703 32555 29579 34887 26207 30686 33477 36803 42870

9 48764 28125 46406 28709 29673 39975 38210 44872 31468

10 33968 42215 32540 32820 35353 65048 37617 44665 34608

Statistics of a successful attack

1 76945 109577 49630 48050 59888 55900 50185 47478 50286

2 183296 89302 55542 48871 52282 81730 175649 41240 54094

3 78895 86359 89954 51729 69551 43473 102241 57725 39488

4 135106 142008 56461 41662 58987 80722 40079 42062 35699

5 58165 84637 58854 54557 71641 51648 44177 43061 45783

6 45930 62435 74446 54927 68080 53771 42342 67335 46750

7 92645 113691 70199 43453 47131 48301 57978 54718 40465

8 44826 116400 52626 76233 44067 59914 75243 50474 47772

9 164514 100128 108978 55696 51824 53938 45177 55511 45871

10 86542 80268 54442 78320 51824 38122 34715 36177 62573

 Fig.	4.	The	95	%	confidence	intervals	for	the	expected	number	of	signatures	for	the	signature	difference	statistic

 Fig.	5.	The	95	%	confidence	intervals	for	the	expected	number	of	signatures	for	the	success	attack	statistics

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 4/9 (130) 2024

12

From Fig. 6, 7 and Table 3, it is possible to draw the fol-
lowing conclusions:

– statistics of differences in signatures are well de-
scribed only by the cubic model. The linear model has
a coefficient of determination of 0.3277, which shows a
poor fit to the data, the quadratic model has a coefficient

of determination of 0.5138, which, although considered
satisfactory, is at the very limit. The cubic model describes
the data well;

– it is worth noting that for cryptographically signif-
icant parameters (N=9, N=10) the estimates of all models
coincide, despite different coefficients of determination.

a b

c

Fig.	6.	Application	of	regression	models	to	statistics	of	differences	in	signatures:		
a	–	linear	model;	b	–	quadratic	model;	c	–	cubic	model

a b

c

Fig.	7.	Application	of	regression	models	to	the	statistics	of	a	successful	attack:		
a	–	linear	model;	b	–	quadratic	model;	c	–	cubic	model

13

Information and controlling system

For the statistics of a successful attack, all models show
high coefficients of determination, however, considering that
the peak for N=8 occurs for many keys independently, it is
advisable to use the cubic model.

5. 2. Investigating the reference software implemen-
tation of ES Falcon

Different signatures can be obtained for two variants
of ES calculation without recomputing the LDL tree and
recomputing if the reference implementation is used. The
reason for the appearance of different signatures is the use
of floating point when calculating ES. When performing
ES calculations for both options, mathematically equivalent
operations, but different in calculation accuracy, were used.

Analysis of the code revealed that there are discrepancies
in the order of execution of operations and replacement of op-
erations when implementing the functions ffSampling_fft_dy-
ntree and ffSampling_fft at logn=2. Namely, this happens when
the split (poly_split_fft function) and merge (poly_merge_fft
function) operations are implemented in the ffSampling_fft_dy-
ntree function and their sweep in the ffSampling_fft function.

When implementing the split operation in the function
ffSampling_fft_dyntree for logn=2, the operation of multi-
plying complex numbers is performed. This implementation
requires 4 multiplication operations and two addition opera-
tions, followed by a halving of the multiplication result. This
means that when multiplying the complex numbers x+iy
and z+iu we shall get the number v+iw, where v=x∙z−y∙u,
w=x∙u+y∙z, and after dividing in half v=v/2, w=w/2.

For logn=2 values are
1

,
2

z =
1

.
2

u = −

In the ffSampling_fft function, it is taken into account that
the second complex number z+iu for logn=2 is 1/ 2 / 2.i−
Then as a result of multiplication we get 2 / 2/v x y= +
and / 2,/ 2w y x−= and taking into account division in
half we get: () 8,/v x y= + () 8./w y x= − This means
that instead of 4 multiplication operations, two operations of
multiplication by a constant are used. In terms of the number
of operations, the second option is better because the 4 mul-
tiplication operations in the first option are replaced by two
multiplication operations.

Below, these options are considered from the point of view
of the accuracy of calculations on the example of calculating the
value of v for both options. It can be considered that the values
of x, y, and u=–z are the same for both options. The prediction is
based on the fact that the same algorithm for calculating x, y, u,
z values is used for previous iterations for both options.

According to the first option, v=x*z+y*z. When calculat-
ing the products x*z, y*z, rounding is performed, that is, an
addition operation is performed for rounded values, in this
case, the loss of a large number of correct digits of the result
is possible ([16], Catastrophic cancellation). This option is
used by the reference function poly_split_fft.

According to the second option, v=x*z+y*z=z (x+y). Ac-
cording to our prediction, the values of x, y for both options
are the same, so when calculating x+y, the error is minimal
and, after multiplication, we shall get an error that can be
neglected ([16], benign cancellation), that is, a reduction in
the calculation error. This option is used by the proposed
function poly_split1_fft, in which the branch at logn=2 is
processed separately.

Similarly, for the merge operation (which is implemented in
the reference function poly_merge_fft), instead of multiplying
two complex numbers, it is taken into account that the second
complex number is 1/ 2 / 2.i+ The result of multiplica-
tion in this case () 2,/v x y= − () 2,/w x y= + (function
poly_merge1_fft), instead of 4 multiplication operations,
two multiplication operations by a constant are used with
the same x, y values for both options.

The following are examples of obtaining different accu-
racy of calculations for logn=2:

Functions poly_split_fft and poly_split1_fft.
Input polynomial A:
2 .1043620407812096, 3.8282371709651688,

2.0947742733457018, 0.34234852196635635
Etalon function poly_split_fft
 Output polynomials:
 B: 2.9662996058731892, 1.2185613976560290
 C: 0.010094168927173075, 1.2290579633990930
Function poly_split1_fft
 Output polynomials:
 B: 2.9662996058731892, 1.2185613976560290
 С: 0.010094168927173020, 1.2290579633990930
In polynomial C for the first coefficient last 2 digits are

different!
Functions poly_merge_fft and poly_merge1_fft
Input polynomials:
A: -0.57360274860716420, 0.87702594501647990
B: 1.4920231256032801, 0.53999771191485768
Function poly_merge_fft
Output polynomial:
С: 0.099580877273847457, -1.2467863744881758,

2.3138816587379227, -0.55982976870496293

Table	3

Expected	number	of	signatures	according	to	regression	models

Statistics Statistics of differences in signatures Statistics of a successful attack

Model Linear Quadratic Cubic Linear Quadratic Cubic

R2 0.3277 0.5138 0.7980 0.6838 0.7909 0.8368

N=2 36740 38421 40158 89141 98523 103660

N=3 36199 36619 35750 83388 85733 83164

N=4 35657 35177 33563 77634 74953 70183

N=5 35116 34095 32978 71881 66184 62882

N=6 34574 33374 33374 66127 59426 59426

N=7 34033 33012 34129 60374 54677 57980

N=8 33491 33011 34625 54620 51940 56710

N=9 32950 33370 34239 48867 51212 53781

N=10 32408 34089 32351 43113 52495 47358

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 4/9 (130) 2024

14

Function poly_merge1_fft
Output polynomial:
 С: 0.099580877273847568, -1.2467863744881760,

2.3138816587379227, -0.55982976870496293.

Subsequently, this difference leads to obtaining different
signatures.

We have measured the performance of the reference and
proposed functions for logn=2. Results are as follows:

– reference functions poly_split_fft and poly_merge_fft
(logn=2): 20 and 22 cycles, respectively;

– functions poly_split1_fft and poly_merge1_fft
(logn=2): 15 and 15 cycles, respectively. For all other values
of logn, the functions are the same, so using the poly_split1_
fft and poly_merge1_fft functions instead of the reference
functions does not reduce performance.

After using the poly_split1_fft, poly_merge1_fft func-
tions instead of the reference poly_split_fft, poly_merge_fft
functions, the effect of obtaining different ESs disappeared,
which means that the attack on the recovery of secret keys
is impossible [7].

5. 3. Determining the possibility of using a fixed point
instead of a floating point at the stage of generating an
electronic signature

The use of floating point, as the previous point also
shows, leads to problems related to the fact that the preci-
sion changes dynamically due to the changed amount of the
non-integer part of the number. Also, floating precision is
not available on all computing systems. That is why in [8] it
is proposed to use a fixed point instead of a floating point,
it is described how to do it, and the possibility of using this
method is shown to calculate keys for the Falcon algorithm;
but only keys, the calculation of a digital signature for the
Falcon algorithm was not considered.

In this work, this method is applied to calculate a digital
signature, and it is verified that in the case of using a fixed
point with the scale proposed by the authors of [8], it is
impossible to calculate ES. Similarly to work [8], the fixed
point is implemented according to the IEEE Std 754TM-
2008 standard [17].

The idea of the method is that instead of the usual
floating point, a scaled number is set. Work [8] serves as a
starting point for research on the use of a fixed point. In [8],
it was proposed to use the value 232 as a scale (this scale
will be indicated by the number of bits for the non-integer
part SCALE=32). To convert to a scaled number, it is mul-
tiplied by 2SCALE. In the same work, a set of functions was
proposed for the simplest operations on real and complex
data for such numbers.

Thus, 32 bits are allocated for assigning a non-integer
part of a number, which determines the accuracy of assign-
ing a number. 31 bits are allocated for the task of the whole
part, one bit is allocated for the sign of the number. For the
successful application of such a task, a necessary condition
is the use of numerical values that do not exceed 231 in mod-
ulo, including all intermediate results that must satisfy this
condition. To generate ES, it is necessary to calculate the
LDL tree [1, 18]. Unfortunately, when calculating the LDL
tree, the intermediate results when working with complex
data exceed the permissible values. Because of this, the ap-
plication of this task method for the generation of ES is not
possible. Therefore, it is necessary to increase the length of
the whole part of the number, which is possible through:

– transformation of algorithms to reduce the maximum
number;

– decrease in number accuracy;
– increasing the total length of the number.
An increase in the total length of the number (more

than 64 bits) was not considered in the work, as it would
lead to a significant decrease in performance; further, the
solution to the problem was considered by transforming the
algorithms and reducing the length of the non-integer part
of the number.

Let’s transform the algorithm for dividing complex num-
bers, which is used in the reference implementation. Instead
of the formula:

()()
2 2

.
a bi c dia bi

c di c d

+ −+ =
+ +

 (6)

We use the following formula:

() 2 2 2 2
.

a bi c d
a bi i

c di c d c d
+ = + − + + +

 (7)

To calculate the new scale, we experimentally deter-
mined the maximum value by modulus for all floating-point
calculations when creating ESs, formed using the reference
implementation, taking into account the transformations
defined above. For the first 1000 keys of the reference imple-
mentation, the maximum value is less than 237, that is, the
length of the integer part is 37, the length of the non-integer
part is 64–38=26 bits, SCALE=26.

Due to the fact that different scales are used for key gen-
eration and ES generation, a library of functions for the sim-
plest operations on real and complex data for such numbers
has been designed. It is suitable for use for arbitrary scaling
under conditions where the total length of the number re-
mains 64 bits.

The most computationally intensive basic operations of
the library are the multiplication and division functions for
fixed-point numbers.

Multiplication.
c=a∙b, where a, b are fixed-point data, 64 bits long, spec-

ified with SCALE scale; c is the result of the multiplication,
fixed-point data, 64 bits long, specified with SCALE.

It is guaranteed that the input data and the output do not
exceed the permissible limits.

To multiply 64-bit x, y, 3 multiplication operations are
used (Karatsuba’s algorithm). The result is a 128-bit number.

The same algorithm is used to multiply complex numbers.
The number is shifted towards the least significant bits

by SCALE bits.
64 bits of the result remain.
Since SCALE<=32, the senior 32 bits of the 128-bit

result are not used, so you can ignore the carryover to the
last 32 bits.

When using floating point data, one floating point oper-
ation is used.

The multiplication operation does not increase the exe-
cution time compared to using floating point.

Division.
c=a/b, where a, b (b≠0) are fixed-point data, 64 bits

long, specified with the SCALE scale; c is the result of the di-
vision, fixed-point data, 64 bits long, specified with SCALE.

It is guaranteed that the input data and the output do not
exceed the permissible limits.

15

Information and controlling system

The whole part is if a≥b.
For the whole part:

while (a>=b) {
 uint64_t c1=1;
 b1=b;
 while (a>=b1)
 {
 b1=b1*2;
 c1=c1*2;
 }
 b1=b1/2;
 c1=c/2;
 c=c+c1;
 a=a–b1;
}
c=c<<SCALE.

For the fractional part:

uint64_t ost=a, drob_part=0;
for (int i=0; i<SCALE; ++i){
ost2=ost*2;
 d=~((int64_t)(ost2–b)>>63);
 drob_part=(drob_part<<1)–d;
 ost=ost2 (d & b);
}
с=с+drob_part.

To determine the effect of using a fixed point on the
performance of the ES calculation operation, the average
value of the complexity of the operations (in CPU cycles)
was calculated for 1000 operations with random arguments.
Standard multiplication and division operations for 64-bit
floating-point data were used for comparison. The results for
floating-point data and fixed-point data are given in Table 4:

Table	4

Calculation	results	for	floating-point	data	and	for	fixed-
point	data

Operation Floating-point data Fixed-point data

Multiplication 35.604 34.879

Division 24.68 24.309

For the calculations given in Table 4 we used an 11th
Gen Intel(R) Core (TM) i7-1165G7 @ 2.80 GHz processor.

The determined accuracy has made it possible to gen-
erate an electronic signature for 1000 random keys of the
reference implementation.

6. Discussion of results based on the study of methods for
countering the attack on the Falcon ES

The probability of an attack is inversely proportional to
the expected number of signatures. Table 3 demonstrates
that the expected number of signatures for a successful
attack is 51212-53781 for Falcon512 and 47358-52495 for
Falcon1024, which is one and a half times more than the esti-
mate of 30000 in paper [7]. This becomes possible thanks to
a larger statistical sample and taking into account the pecu-
liarities of probability distributions. Preliminary estimates
were obtained by simply averaging the required number of

signatures for different keys without considering probability
distributions.

As the logn parameter increases, the probability of an at-
tack increases. This is because the number of floating-point
calculations is increasing. From Fig. 4, 5 it follows that the
obtained dependence of the required number of signatures
on logn is not monotonically increasing. However, since
the difference between the quadratic and cubic regression
estimates falls within the 95 % confidence interval for the
mean values, we can neglect this effect and assume that the
probability increases monotonically.

The obtained estimate of the number of signatures can
be used as a limit on the number of signatures on one pair
of keys in a public key infrastructure to protect against an
attack. This will increase the security of the Falcon elec-
tronic signature in a qualitative sense – the attack from [7]
becomes impossible with restrictions on the number of gen-
erated signatures.

An attack on Falcon is possible because there are dis-
crepancies in the order of operations when implementing
the functions ffSampling_fft_dyntree and ffSampling_fft
at logn=2. In the ffSampling_fft_dyntree function, split
(poly_split_fft function) and merge (poly_merge_fft func-
tion) operations are applied to all logn values. In the function
ffSampling_fft for logn=2, the corresponding operations are
used instead of functions. If these operations are taken into
account when implementing the poly_split_fft and poly_
merge_fft functions for logn=2, then the attack becomes
impossible. In contrast to work [7], the place of occurrence
of discrepancies in the signatures is localized more precisely.
Applying the proposed changes to the reference implemen-
tation makes it possible to prevent the attack from being
implemented. This becomes possible due to the agreement of
the order of calculations at logn=2.

Moreover, the proposed changes to the implementation
make it possible to speed up the implementation. The ref-
erence functions run at 20–22 machine clocks on x86_64
processors, while the modified functions run at 15 clocks.

Since no differences between signatures are observed
when using the modified functions, the security of the Fal-
con electronic signature increases in a qualitative sense – the
attack from [7] becomes impossible in the modified imple-
mentation.

To increase the security of the implementation, a min-
imum scale for fixed-point calculations of 226 was also
found. This estimate was obtained experimentally. The
theoretical justification of the assessment is the subject of
further research. Previous works [8, 19] considered only the
application of fixed point to key generation. The scale found
in this study allows the use of fixed-point computations for
signature operations and not just for key generation, in con-
trast to work [8]. The application of fixed-point arithmetic to
signature verification operations was not considered because
the algorithm does not apply floating-point operations.

The scale found allows using fixed-point computations
not only for key generation but also for signature generation.
An implementation with fixed-point instead of floating-point
will not completely eliminate the problem. However, it will
reduce their manifestations. That is, in a qualitative sense,
it increases the security of the Falcon electronic signature.

As can be seen from Table 4, the average values of the
execution time of basic operations practically do not differ.
That is, using a fixed point instead of a floating point should
not affect the performance of the ES calculation operation.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 4/9 (130) 2024

16

The obtained estimates of the number of signatures for
an attack allow us to set limits for the reference implemen-
tation under which the probability of an attack will be arbi-
trarily small. The proposed changes in the implementation
code eliminate the possibility of an attack since differences
between signatures do not occur. At the same time, the ob-
tained estimates of the allowable scale factor for fixed-point
calculations allow protection against other attacks on float-
ing-point calculations.

A limitation of our results is that they are obtained for
one reference implementation of the Falcon ES. For other
implementations, research must be conducted separately.

The disadvantage of the results is the limitation of the
test sample to the set of keys of the reference implementa-
tion. A sample size that is too small can theoretically lead to
the possibility of an attack with a number of signatures that
differs from the obtained estimates.

For the further development of this direction, it is im-
portant to investigate the vectors of attacks on the Falcon
ES scheme updated after the implementation of counter-
measures.

7. Conclusions

1. The expected number of signatures for a successful
attack has been specified, which is one and a half times more
than the previous estimates in work [7] and is 51212-53781
for Falcon512 and 47358-52495 for Falcon1024. It was no-
ticed that the increase in the probability of an attack, which
is associated with an increase in the logn parameter, is not
monotonic. However, due to the entry of the difference be-
tween the quadratic and cubic regression estimates into the
confidence interval for the mean values (95 %), this effect
can be neglected and the increase in probability can be con-
sidered monotonic. The obtained estimate of the number of
signatures can be used as a limit on the number of signatures
on one pair of keys in the public key infrastructure.

2. An attack on the features of the floating point imple-
mentation becomes possible due to differences in the order
of operations when implementing the functions ffSampling_
fft_dyntree and ffSampling_fft at logn=2. The split (poly_
split_fft function) and merge (poly_merge_fft function)
operations in the ffSampling_fft_dyntree function and their
sweeps in the ffSampling_fft function are problematic from
this point of view. To prevent the attack, it is necessary to
eliminate this discrepancy. For this purpose, a modification
to the implementation was proposed, which also makes it
possible to accelerate the implementation. So, the modified

functions work in 15 cycles compared to 20–22 machine
cycles of the reference implementation on processors with
the x86_64 architecture. It was observed that the functions
modified in the proposed way eliminate the occurrence of
differences between signatures. Thus, the attack from [7]
becomes impossible in the modified implementation, which
increases the security of the Falcon ES in a qualitative sense.

3. A scale of 226 was derived experimentally, which
allows the application of fixed-point calculations for the for-
mation of ES and other transformations in the reference im-
plementation of the Falcon ES. Using fixed-point operations
does not change the time of using floating-point operations.
That is, replacing the floating point with a fixed one will not
greatly affect the performance. At the same time, the use of
fixed-point operations allows one to reduce the problems
associated with the use of floating-point, which qualitatively
increases the security of the software implementation.

Conflicts of interest

The authors declare that they have no conflicts of inter-
est in relation to the current study, including financial, per-
sonal, authorship, or any other, that could affect the study, as
well as the results reported in this paper.

Funding

The study was conducted without financial support.

Data availability

The data will be provided upon reasonable request.

Use of artificial intelligence

The authors confirm that they did not use artificial intel-
ligence technologies when creating the current work.

Acknowledgments

The authors express their gratitude for the support
provided in the preparation of this paper, as well as for
useful comments and suggestions, to the research team of
JSC “IIT”.

References

1. Fouque, P., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest, T. et al. (2020). Falcon: Fast-Fourier Lattice-based

Compact Signatures over NTRU. Available at: https://falcon-sign.info/falcon.pdf

2. Post-Quantum Cryptography PQC. NIST. Available at: https://csrc.nist.gov/projects/post-quantum-cryptography

3. Prest, T. (2017). Sharper Bounds in Lattice-Based Cryptography Using the Rényi Divergence. Advances in Cryptology –

ASIACRYPT 2017, 347–374. https://doi.org/10.1007/978-3-319-70694-8_13

4. Pornin, T. (2019). New Efficient, Constant-Time Implementations of Falcon. ePrint IACR. Available at: https://eprint.iacr.org/2019/893

5. Karabulut, E., Aysu, A. (2021). FALCON Down: Breaking FALCON Post-Quantum Signature Scheme through Side-Channel

Attacks. 2021 58th ACM/IEEE Design Automation Conference (DAC). https://doi.org/10.1109/dac18074.2021.9586131

6. Guerreau, M., Martinelli, A., Ricosset, T., Rossi, M. (2022). The Hidden Parallelepiped Is Back Again: Power Analysis Attacks on

Falcon. IACR Transactions on Cryptographic Hardware and Embedded Systems, 141–164. https://doi.org/10.46586/tches.v2022.

i3.141-164

17

Information and controlling system

7. Potii, O., Kachko, O., Kandii, S., Kaptol, Y. (2024). Determining the effect of a floating point on the Falcon digital signature

algorithm security. Eastern-European Journal of Enterprise Technologies, 1 (9 (127)), 52–59. https://doi.org/10.15587/

1729-4061.2024.295160

8. Pornin, T. (2023). Improved Key Pair Generation for Falcon, BAT and Hawk. Cryptology ePrint Archive. Available at: https://

eprint.iacr.org/2023/290

9. Gentry, C., Peikert, C., Vaikuntanathan, V. (2007). Trapdoors for Hard Lattices and New Cryptographic Constructions. Cryptology

ePrint Archive. Available at: https://eprint.iacr.org/2007/432

10. Albrecht, M., Ducas, L. (2021). Lattice Attacks on NTRU and LWE: A History of Refinements. Cryptology ePrint Archive.

Available at: https://eprint.iacr.org/2021/799

11. Prest, T. (2015). Gaussian Sampling in Lattice-Based Cryptography. THALES. Available at: https://tprest.github.io/pdf/pub/

thesis-thomas-prest.pdf

12. Ducas, L., Prest, T. (2016). Fast Fourier Orthogonalization. Proceedings of the ACM on International Symposium on Symbolic and

Algebraic Computation. https://doi.org/10.1145/2930889.2930923

13. Fisher, R. A. (1922). On the Interpretation of é 2 from Contingency Tables, and the Calculation of P. Journal of the Royal Statistical

Society, 85 (1), 87. https://doi.org/10.2307/2340521

14. Simard, R., L’Ecuyer, P. (2011). Computing the Two-Sided Kolmogorov-Smirnov Distribution. Journal of Statistical Software,

39 (11). https://doi.org/10.18637/jss.v039.i11

15. Wilk, M. B., Gnanadesikan, R. (1968). Probability plotting methods for the analysis for the analysis of data. Biometrika, 55 (1),

1–17. https://doi.org/10.1093/biomet/55.1.1

16. What Every Computer Scientist Should Know About Floating-Point Arithmetic. Available at: https://docs.oracle.com/cd/

E19957-01/806-3568/ncg_goldberg.html

17. IEEE Std 754TM-2008. IEEE Standard for Floating-Point Arithmetic. IEEE Computer Society. Available at: https://iremi.univ-

reunion.fr/IMG/pdf/ieee-754-2008.pdf

18. Pornin, T., Prest, T. (2019). More Efficient Algorithms for the NTRU Key Generation Using the Field Norm. Public-Key

Cryptography – PKC 2019, 504–533. https://doi.org/10.1007/978-3-030-17259-6_17

19. [FALCON OFFICIAL] Keygen implementation. Available at: https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/

bjVkrZmI9VM

