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The object of this study is the effectiveness of using three-di-
mensional printing to train computer vision models for landmine 
detection. The ongoing war in Ukraine has resulted in significant 
landmine contamination, particularly after russia’s full-scale 
invasion in 2022. Given the enormous amount of potentially land-
mine-contaminated land, fast and efficient demining techniques 
are required, as human probing and metal detectors are labor-in-
tensive and slow-moving. Machine learning offers promising 
solutions to speed up the landmine detection process by deploy-
ing recognition models on robots and unmanned aerial vehicles. 
However, training such systems faces certain challenges. Firstly, 
the number of annotated data available for training is limited, 
which can hinder the model’s ability to generalize to real-world 
scenarios. Secondly, the use of real or even defused landmines is 
dangerous due to the potential for accidental detonation.

This study aims to overcome the problem of limited data and 
the risk of using real landmines. Three-dimensional printing 
makes it possible to create safe and diverse training data, which 
is essential for model performance. The model trained on replicas, 
achieved 98 % and 91 % precision on printed and actual landmi-
nes, respectively. This high precision is attributed to the realism 
of copies and the use of advanced machine learning algorithms. 
This approach successfully addressed the research problem due 
to the safety, accessibility and diversity of copies. The models 
trained on copies of landmines could be used in humanitarian 
demining ope rations. These operations often employ unmanned 
aerial vehicles or robots to identify landmines that are thrown 
remotely, exposed on the surface, or partially hidden
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1. Introduction

Landmines continue to pose a significant threat to ci-
vilians not only during armed conflicts, but also for decades 
afterward. They cause thousands of casualties and have 
a lasting impact on society long after hostilities have ceased. 
Thus, according to the Landmine Monitor, 608 people were 
injured by explosives in Ukraine in 2022. After russia’s full-
scale invasion, the number of civilian casualties from land-
mines increased tenfold compared to 2021 (58 casualties) [1]. 
A particular concern is the risk to children who might be 
drawn to these dangerous objects due to their often decep-
tively harmless appearance. The detection and clearance of 
landmines is an extremely important process for the revival 
of war-torn regions. The destructive impact of landmines also 
affects agriculture and infrastructure, rendering large areas of 
land unsafe for use.

Existing methods for detecting landmines are diverse but 
often have limitations. Metal detectors and manual probing 
are labor-intensive and dangerous methods of demining.  
While promising, cutting-edge technologies like infrared imag-
ing and ground-penetrating radar (GPR) can be costly and 
produce false positives. Canine units have limitations due to 
factors such as fatigue and environmental considerations and 
require a great deal of training.

Computer vision can significantly speed up and make the 
landmine detection process safer. Recognition algorithms 
can be applied not only to regular images, but also to GPR 
and infrared images. It is also worth highlighting that some 
landmines are plastic, posing a challenge for traditional dem-
ining methods such as metal detection, but detectable with 
computer vision. A significant obstacle to building machine 
learning models is the lack of data available for algorithmic 
training and testing. Obtaining real landmine data to train 
models involves ethical and security concerns. Even defused 
landmines may be hazardous and obtaining real samples for 
research is a dangerous process [2].

Given the hazardous nature of handling real landmines 
and the lack of data to train machine learning models, there 
is a need to find alternative research approaches. Using 
3D printed landmine models enables safe experimentation 
and diverse data collection. Furthermore, landmines may 
be resized or modified via 3D printing technology, which 
also makes it possible to create more durable and adaptable 
testing models. With the development of 3D printing being 
used to create landmines for UAV drops, training models on 
printed copies can also help with detection of improvised 
explosive devices. (Fig. 1).

Thus, research on the effectiveness of using 3D printed 
copies to develop methods for detecting landmines is relevant  
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and has significant potential to improve safety and accelerate 
the demining process in Ukraine.

 
Fig.	1.	Printed	combat	landmines:	in	the	central	part		

of	the	landmine	is	an	explosive	substance,	the	interlayer	
between	the	outer	casing	is	filled	with	bolts	as	fragments

2. Literature review and problem statement

Convolutional neural networks and other machine learn-
ing approaches have been the subject of several studies. 
Convolutional neural networks (CNN) are a type of artificial 
neural network that specialize in processing images and other 
data with spatial structure, using convolutional layers to de-
tect local features. Paper [3] uses CNN to recognize landmines 
from magnetometer images. The above research results show 
the high accuracy of landmine detection from UAVs. The sys-
tem was trained on an artificial dataset. Additionally, it was 
not tested on real data, so it is unclear whether it can be ap-
plied in real life. The authors rely on generated images, high-
lighting the security issues associated with data collection 
and the lack of publicly available data. Another drawback is 
the inability to recognize plastic landmines using the system 
presented in the study. In other words, the paper does not ful-
fill the fundamental requirement of having good quality data 
for the study, but instead uses the empirical observation that 
the generated data is close to the real thing. Additionally, the 
system has not been tested on real data.

Using machine learning algorithms on GPR pictures is 
a common method of landmine detection. GPR operates by 
using a ground-based antenna to send short electromagnetic 
wave pulses into the soil. The waves are reflected back when 
they encounter an underground object. An image or profile 
of subterranean structures can be obtained by examining 
these return signals. GPR is used in many recent studies for 
more precise and effective detection. In [4], GPR data was 
analyzed using CNN, achieving over 93 % precision in the 
detection of buried objects, including landmines. However, 
there is still a problem with the system’s actual use in land-
mine detection. The reason for this may be the nature of the 
study – it was conducted in a laboratory, and it is not clear 

how the approaches proposed by the authors will work in real 
life. However, the methodology was not tested on landmines 
in real conditions, in different types of soil.

Study [5] conducted in Ukraine used CNN to classify ex-
plosive objects, achieving a precision of 97.8 %. However, the 
study was theoretical in nature and used data from previous 
work [4], including a dataset.

Article [6] provides a comprehensive overview of ma-
chine and deep learning algorithms used in GPR data 
processing. The authors emphasize the importance of the 
problem of limited data for training. The main drawback of 
the study is the absence of any prospects for overcoming the 
problem of limited data. The authors believe that the creation 
of synthetic images together with augmentation methods can 
solve the problem. However, this is only an assumption, and 
no research has been conducted in this area.

The study [7] proposes a pipeline based on an artificial 
neural network for detecting buried landmines, which allows 
to achieve 95 % detection precision. In this study, 9 objects 
were used to acquire GPR images, but the process of testing 
and setting up the experiment is cumbersome, so no real ap-
plication is evident from the study. The data for the study was 
generated using gpr-max software [8], which allows creating 
GPR images. The authors plan further experiments with an-
tennas, but as in [6], it is unclear whether the images generated 
by gpr-max can be used in real-world conditions.

Study [9] demonstrates the potential of using GPR in 
combination with CNN to detect underground objects. The 
results of the research demonstrate that it is possible to find 
improvised explosive devices buried under a road. The main 
drawback of the study is the insufficient amount of test data. 
Extending the dataset may improve the research and get it 
closer to practical implementation.

In [10], a robotic platform is used to detect landmines. The 
results of the study indicate that it is possible to detect land-
mines using GPR, but the complexity of the experiment calls 
into question the practical application of the system. The main 
problems are the limited dataset (only two types of landmines) 
and the lack of verification on an independent dataset, which 
raises questions about its applicability in real conditions.

The problem of limited data can be partially overcome by 
augmentation. A study [11] showed that data augmentation 
methods increase the efficiency of deep learning models for land-
mine detection, reaching 97.4 % precision and 92.6 % recall. The 
main drawback of the study is the small amount of data collected 
from the internet. Such a dataset does not have a large variety 
of data, so more images need to be added to solve this problem.

Other recent studies also examine different methods of 
landmine detection, for example, [12] examines the use of UAVs 
with multispectral and thermal sensors. The main drawback of 
the study is that only one type of landmine is investigated, the 
dataset has a small number of images (165 images taken from 
6 orthophotos), and few types of environments are used. A way 
to overcome these difficulties could be to increase the data in 
the dataset, as well as to create more diverse testing conditions.

In [13], landmine installation patterns are analyzed. The 
possibility of detecting landmines based on a map with other 
detected ones nearby is studied, for which an artificial dataset 
with patterns is generated. However, the problems of apply-
ing this method in practice remain unresolved, as there is no 
single rule for laying landmines – they are set depending on 
the terrain, situation and problem to be solved. As in previous 
works, artificially generated data does not provide grounds 
for the practical application of the results of the work.
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Study [14] analyzes modern demining methods. It is shown 
that there is a wide range of methods for landmine detection, 
but the study does not address the problem of insufficient 
data for experiments. Also, the issues of practical application 
of the studied methods remain unresolved. The reason for 
this may be the slow speed and complexity of setting up the 
landmine detection systems considered in the study, as they 
were all conducted in laboratory conditions with a small 
amount of experimental data.

To summarize, most landmine detection studies have 
been affected by a lack of data. Many surveys have resorted 
to creating synthetic imagery [3, 7, 13], using small data-
sets [6, 10, 12], or even reusing datasets from other studies [5]. 
Alternatively, 3D computer modeling can be used to over-
come the problem of insufficient data, as in the study of 
car traffic [15], but such data suffers from a lack of realism. 
Augmentation can also be used, which was studied in [11], 
but generating images or increasing the amount of data in 
the dataset does not solve the problem of lack of diverse data.

All of this suggests that it is advisable to conduct a study 
to identify methods to overcome the problem of limited data 
for training machine learning systems. An analysis of the lite-
rature shows that this is a key obstacle to the development of 
effective detection systems. Therefore, research aimed at ad-
dressing this issue by using 3D printed landmine replicas to 
generate data for model training is appropriate. Additionally, 
this approach would make the testing process completely 
safe, eliminating the possibility of accidental explosion of the 
experimental material.

3. The aim and objectives of the study

The aim of the study is to determine the effectiveness of 
using 3D printed landmine replicas for training computer 
vision models to overcome the problem of data scarcity. 
This will make it possible to develop a methodology for 
obtaining machine learning models based on 3D printed 
copies. The resulting models can be used to identify real 
landmines, with applications in UAV-based or robotic de-
tection systems.

To achieve this goal, the following objectives were set:
– to develop a dataset for training computer vision 

models, including images of 3D printed copies of the most 
common anti-personnel landmines in Ukraine, obtained in 
different weather conditions (clear, cloudy, rain, snow);

– to train and optimise YOLOv8 computer vision models 
on the created dataset by increasing the number of images, 
applying augmentation methods, adjusting hyperparameters;

– to evaluate the effectiveness of the trained models on 
real landmine images from a separate dataset obtained from 
professionals.

4. The study materials and methods

4. 1. Object and main hypothesis of the study
The object of the study is the effectiveness of using 3D 

printed landmine replicas to train computer vision models for 
landmine detection.

The main hypotheses of the study:
1) 3D printed replicas can be used to train computer 

vision models that are effective for landmine detection in 
real-world conditions;

2) models initially trained on 3D printed replicas can 
be further refined using real-world data through techniques 
such as adding new data to the dataset, increasing the num-
ber of training epochs, and adjusting model hyperparameters.

Assumptions made in this paper:
– 3D printed replicas reproduce the shape, texture and 

visual characteristics of real landmines in a realistic manner;
– a variety of survey conditions (lighting, background, 

angle) for 3D printed copies will provide sufficient data vari-
ability for effective model training.

Simplifications used in the work:
– some landmine models were scaled down for printing, 

which may slightly affect the detection precision;
– only visual data (images) were used to train the mo-

dels, without considering other characteristics (e.g. magne-
tic properties);

– the results may be worse for metal landmines than if 
the landmines were printed using metal (due to the lack of 
metallic shine and texture);

– the study uses images taken in different weather condi-
tions, from different angles. However, this does not cover all 
possible variations. Recognition efficiency may increase with 
a larger and more diverse dataset.

As part of the research, some of the landmines commonly 
used in Ukraine were printed, and a dataset consisting of 
images of landmine replicas was created. These copies were 
used to train a computer vision model, using their different 
appearances and conditions to reflect real-world scenarios.

4. 2. Rationale for choosing landmines
Russian forces are using at least 13 types of anti-person-

nel mines in the war in Ukraine. They are laid on the ground, 
sometimes camouflaged, but in many cases, the landmines 
can be seen at least partially. It is because of their widespread 
presence, surface placement and danger to civi lians that the 
following types of landmines were selected for this study: 
PMN, PMN-2, OZM-72, MON-50, PFM-1 [16]. It should be 
added that all anti-personnel landmines are prohibited by in-
ternational agreements, such as the Ottawa Convention [17].

4. 3. Characteristics of selected landmines
Among the many explosive remnants found in the war-af-

fected areas of Ukraine, the following landmines are particu-
larly common and pose a significant threat to human safety:

– PMN: this landmine is commonly known as a "Wi-
dow" (Fig. 2, a) due to its high trinitrotoluene con-
tent (200 grams), which usually results in fatalities when 
detonated;

– PMN-2: although it contains half the amount of trini-
trotoluene as the PMN, this landmine (Fig. 2, b) is widely 
used and produced in various countries;

– OZM-72: this landmine (Fig. 2, c), often referred to 
as the "Jumping Witch" or "Frog". After the activation, 
the OZM-72 jumps to a height of 60–80 cm, detonating at 
body level, which increases the potential damage to any-
one nearby;

– MON-50: with its unique design (Fig. 3, a), this land-
mine is often hidden under grass or trees. The landmine has  
a large radius of damage (50 meters);

– PFM-1 (Fig. 3, b): very common, usually affecting the 
feet or hands. Scattered from helicopters or rockets, this 
landmine can cover large areas, including tree canopy, shrub-
bery, roofs or building facades. The different colours of the 
landmine can attract the attention of children.
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a b c

Fig.	2.	Printed	landmines:	a –	PMN;	b	–	PMN-2;	c	–	OZM-72

   
a b

Fig.	3.	Printed	landmines:	a	–	MON-50;	b	–	PFM-1

4. 4. 3D printing process and tools
3D printing technology allows to produce detailed repli-

cas of selected landmines, which facilitates research. The fol-
lowing process and tools were used for this study:

Software:
– Blender (The Netherlands) [18]: an open-

source software for creating 3D models, Blender 
was used to design and modify 3D models of the 
selected landmines;

– GIMP (USA) [19]: this free and open-
source graphics editor was used for post-process-
ing and fine-tuning of the images of the land- 
mine models.

Equipment: the Prusa i3 MK3S+ (Czech Re-
public) [20] 3D printer was chosen for its accu-
racy, reliability and ability to reproduce complex 
components. This printer also comes with all the 
necessary software.

Printing specifications:
– infill: the models were printed with a mini-

mum infill of 5–10 %, but this did not affect their 
strength;

– size adjustment: some models, such as the 
OZM-72 and MON-50, were reduced to better fit 
the printing capabilities. The assumption that the 
quality of recognition would not be affected by 
the scale reduction was tested on these landmines.

Table 1 lists the publicly available models 
that were used as a basis for the study.

Table 1 specifies the authors, the license as well as the 
percentage of infill when printing the model.

4. 5. The dataset
The dataset consisting of 1438 images (Fig. 4) covers  

a wide range of environments such as sunny day, cloudy day, 
morning, evening, rain, fog, snow, etc. This study involved 
the creation of a dataset for five different types of land-
mines (PMN, PMN-2, OZM-72, MON-50 and PFM-1) 
taken under different conditions to reflect potential real- 
world scenarios.

Key details of the photo collection process include:
– the images were taken using a camera with a 64-mega-

pixel matrix. Standard settings included ISO 50, 24 mm, 
F1.8, and shutter speed of 1/60. Various resolutions were 
used (3468 × 4624, 3000 × 4000, 3456 × 3456), with a standard 
square resolution of 3456 × 3456;

– the initial image resolution was standardized to 
640 × 640 pixels. The final model was then trained on both 
640 × 640 and higher resolution images of 1280 × 1280 pixels 
for testing on real landmines;

– the images were taken in natural landscapes, near 
water bodies, under different lighting conditions, among dis-
tracting factors (apples, garbage, etc.), in foliage, grass, near 
buildings, etc.;

– black and white images were added to reduce the im-
pact of color variations, as landmines can come in a variety of 
colors and shades.

4. 6. Image annotation and data processing
The collected images underwent the process of annota-

tion (marking landmines on the image). Several platforms 
were considered for creating an-
notations.

Comparison of platforms’ ca-
pabilities for generating landmine 
detection datasets:

– LabelImg is a simple and 
free tool, ideal for small projects 
or the initial stage of annotation. 
However, it has limited capabi-
lities and does not support auto-
mation;

Table	1
Examples	of	printed	models

ID Qty Color Infill License Author Source

PMN 1 Green 5 % CC BY-NC-ND mussy [21]

PMN-2 2 Green 5 % CC BY, BY-NC-SA H kon Benjaminsen, Jonathan Lavoie [22, 23]

OZM-72 1 Gray 5 % CC Attribution valterjherson1 [24]

MON-50 1 Green 5 % CC BY-NC-ND mussy [25]

PFM-1 3 Gray 15 % CC BY-NC-ND mussy [26]

   
 

   

a

d

b

e

c

f
Fig.	4.	Examples	of	images	from	the	dataset:	a	–	OZM-72	on	snow;		
b	–	PMN-2	on	snow;	c –	PMN-2	on	leaves	on	asphalt;	d	–	PFM-1,	

painted	to	match	the	tone	of	the	stones;	e	–	MON-50	on	a	tree	(common	
installation)	in	black	and	white;	f	–	black	and	white	image	of	a	PMN	

landmine	nestled	amongst	foliage	near	a	fallen	tree	trunk
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– CVAT is a powerful tool with extensive functionality, 
including automatic annotation and tracking of moving ob-
jects, making it suitable for large projects and landmine video 
annotation. However, the annotation process is not easy due 
to the complex interface;

– makesense.ai is an online tool for marking up datasets.  
It offers an intuitive interface and support for different types 
of annotations, making it convenient for medium-sized pro-
jects. However, it does not save the results of work;

– TORAS (Toronto Annotation Suite) is  
a web-based image annotation platform. It com-
bines tools for interactive segmentation and also 
integrates modern artificial intelligence models, 
such as SAM (Segment Anything Model), to 
speed up the annotation process;

– Roboflow is an end-to-end solution that 
covers the process from image acquisition and 
annotation to training and deployment of mo-
dels on devices. Offers Automatic annotation;

– Google Cloud Platform allows to create 
models and has tools for annotation. However, 
it provides limited control over the training 
process, for example, it limits the choice of 
model, the training process, and the setting of 
hyperparameters;

– Microsoft Azure allows to create models 
using pre-trained models, which speeds up the 
development process. However, it has fewer 
customization options compared to other plat-
forms, such as a simplified training process and 
hyperparameter settings;

– Amazon SageMaker provides workflow management 
and automated annotation. But it requires the use of Amazon 
Web Services, which can be difficult to use.

None of the platforms fully satisfied the requirements of 
this study. For example, TORAS has convenient annotation 
tools, but at the time of the study’s launch it had a 1GB data 
size limit, while the data volume exceeded 3 GB. Roboflow 
has excellent augmentation tools, but the web interface for 
annotation is very slow. Thus, it was decided to annotate 
in a self-developed program that imported data to Google  
Cloud Storage, where images were stored in 640 × 640 
and 1280 × 1280 sizes. Then the images were uploaded to 
the Roboflow platform, where the augmentations from  
Table 2 (from the study [11]) were applied to them.

Table	2
Roboflow	augmentations

Augmentation name Purpose of use

Flip: Horizontal, Vertical
To prevent memorizing the 
positions of objects

90° Rotate: Clockwise, 
Counter-Clockwise, Upside Down

To prevent memorizing the 
positions of objects

Grayscale: Apply to 45 % of 
images

To address varying object 
scales and challenging recog-
nition conditions

Noise: Up to 5 % pixels
To address occlusion of small 
objects

Mosaic
To enhance data variety via 
combining

Table 2 explains the purpose of each augmentation tech-
nique in the "Purpose of use" column.

4. 7. Model training
To fully control the process, the training was performed 

on a Tesla T4 GPU with 15102 MiB available in the Google 
Colab service. At this stage, the YOLOv8 algorithm is used, in 
which augmentations from Table 3 are additionally applied.

Table 3 shows all possible augmentations of YOLOv8, in-
cluding those that were not used in this study. The characteris-
tic of the value type is given in parentheses – percentage, frac-
tion, degree (+/– degree means that the value can be negative).

4. 8. Model selection rationale
Computer vision landmine detection is a complex task 

that requires great precision and reliability. To determine if 
the current computer vision models for object detection are 
appropriate for landmine detection, a review of these models 
was conducted out.

Overview of the models:
– R-CNN and its variants (Fast R-CNN, Faster R-CNN, 

Mask R-CNN): these models operate slowly but can attain 
great accuracy;

– SSD (Single Shot MultiBox Detector): this model is 
faster than R-CNN and predicts item positions and classes 
at the same time. However, its accuracy may be less precise, 
especially for small items;

– YOLO (You Only Look Once): fast and accurate object 
detection system. It processes images in a single pass, making 
it ideal for real-time applications.

Model selection.
For this study, the YOLOv8 model was chosen because it 

has several advantages that make it particularly suitable for 
landmine detection:

– high accuracy: YOLOv8 demonstrates high object de-
tection accuracy, which is critical for landmine detection, 
where errors can have fatal consequences;

– speed: YOLOv8 operates in real time, allowing for fast 
processing of images from UAVs and other automated systems;

– flexibility: YOLOv8 can be easily adapted to detect 
different types of objects different shapes and sizes, including 
landmines.

The YOLO algorithm was introduced in 2015 [27]. The 
algorithm determines the bounding boxes and associated class 
probabilities directly from the full images in one pass. The al-
gorithm processes images in real time at 45 frames per second.  

Table	3
YOLOv8	augmentations	(0.0	–	not	applied)

Key Value Description 

hsv_h 0.015 Image HSV-Hue augmentation (fraction)

hsv_s 0.7 Image HSV-Saturation augmentation (fraction)

hsv_v 0.4 Image HSV-Value augmentation (fraction)

degrees 0.0 Image rotation (+/– degree)

translate 0.1 Image translation (+/–fraction)

scale 0.5 Image scale (+/– gain)

shear 0.0 Image shear (+/– degree)

perspective 0.0 Image perspective (+/– fraction), range 0 – 0.001

flipud 0.0 Flip image up-down (probability)

fliplr 0.5 Flip image left-right (probability)

mosaic 1.0 Image mosaic (probability)

mixup 0.0 Image mixup (probability)

copy_paste 0.0 Copying part of images one to one (probability)
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A smaller version, Fast YOLO, processes 155 frames per se-
cond, achieving twice the average accuracy of other real-time 
detectors. Despite the higher number of localization errors, 
YOLO is much less likely to predict false positives where there 
is nothing. This makes it a reliable choice for applications 
such as landmine detection. One of the most recent versions, 
YOLOv8 [28], has been applied in various fields. These include 
real-time flying object detection [29], tracking people who 
shoot [30], and high-resolution aerial photography [31]. The 
algorithm has also shown promise in medical applications, 
such as brain tumor detection [32] and real-time arrhythmia 
monitoring [33]. Additionally, it has been used in vehicle secu-
rity through license plate and face recognition [34].

Once the model was trained, new photographs of the 
same landmines, but taken in different locations and under 
different conditions, were used for testing. The goal was to 
find out if additional images were needed to further improve 
the model. Additionally, the model was tested on a separate 
dataset created from images of real landmines obtained from 
professional deminers. This cross-comparison was intended 
to assess how well the model learned on replicas and whether 
it could generalize its learning to real images. 

5. Results of research on the use of 3D printing to create 
computer vision models for landmine recognition

5. 1. Development of a dataset for training computer 
vision models

After selecting the landmine types and finding their mo- 
dels in the public domain, 3D copies were printed, with multiple 
copies printed for some. During the experiments, the landmi-
nes were painted in different colors, placed at different angles, 
partially overlapped, and photographed next to other objects.

The process of creating a dataset was carried out itera-
tively by conducting a series of surveys (100–200 new images 
each), experiments and model training, including the use of 

augmentation methods, evaluation of results, and setting 
goals for the next iteration. Table 4 summarizes the results of 
various experiments that show the influence of the number 
of images, various augmentations, and settings on the perfor-
mance of the model.

From Table 4, one can see that during the experiments, 
the performance of the model gradually increased, but the 
image processing time per second, and, accordingly, the total 
time also increased.

5. 2. Model training and optimization, statistical metrics
The YOLOv8 algorithm was trained on a dataset of 

1438 photographs. The application of augmentation methods 
increased the number of images to 3452. These images were 
divided into training (3021, or 89 %), validation (287, or 8 %), 
and test (144, or 4 %) sets. In the process of testing, the pro-
posed approaches to augmentation from [11] were modified 
for a better model performance. The model demonstrated 
98.0 % precision and 98.2 % recall, which indicates a positive 
result of the use of 3D printed models for landmines detection.

The model training process was carried out iteratively, 
by changing the size of the batch of images processed in one  
epoch (a full pass through the training dataset) and experi-
menting with different data augmentation methods. For images 
of 640 × 640 pixels, a batch size of 32 was used. However, for 
higher resolution images (1280 × 1280), the maximum batch 
size was reduced to 8 due to limited computing resour-
ces, which led to a decrease in the learning speed by about 
four times (Table 4: pairs of experiments 7 and 7.1, 8 and 9). 
When testing additional augmentations, such as Mixup and 
Copy-paste, it was found that they increase precision but 
decrease model recall (Table 4: Experiments 8 and 8.1). Given 
the greater importance of recall for the landmine detection 
task, these augmentations have not been included in the final 
model. Adding mosaic augmentation, which combines multi-
ple images into one, significantly improved the model’s perfor-
mance, achieving high precision (98.0 %) and recall (98.2 %).

Table	4
Comparison	of	the	results	of	different	experiments

No. Qty Size1 Precision Recall mAP2 Speed3 Note

1 195 640 74.9 71.2 80.8 2

From [11]: Preprocessing: Auto-Orient, Resize (to 640 × 640), Auto-Adjust 
Contrast (Using contrast stretching). Augmentations: Flip (Horizontal, 
Vertical), Rotate 90° (Clockwise, Counter-Clockwise, Upside Down), Gray-
scale (30 % of images), Noise (15 % of pixels), Augmentations from Table 3

2 130 640 72.5 64.9 66.7 4 Same as 1

3 250 640 89.4 84.9 94.5 14 Same as 1

3. 1 250 640 90.8 84.3 91.5 14 Same as 1, but Grayscale 100 %

4 400 640 74.9 71.2 80.5 20 Same as 1

4. 1 400 640 95.0 91.9 93.4 25 As before, but Grayscale increased to 60 % and Noise decreased to 2 %

5 500 640 93.8 89.8 94.1 28 Same as 1

6 500 640 92.9 86.6 92.8 48 Same as 1, but Noise decreased to 5 %

6. 1 500 640 95.2 94.6 97.6 48 After a series in the set of experiments as in 6, Shades of gray: 45 %, Mosaic

7 800 640 91.9 88.6 94.1 45 Same as 1

7. 1 800 1280 96.5 91.6 96.4 170 Same as 1, but Resize up to 1280 × 1280

8 1000 640 96.8 96.4 97.8 59 Same as 6.1

8. 1 1000 640 97.3 94.8 98.4 65 Same as 6.1, but YOLOv8 Augmentations, Copy-Paste (0.5)

9 1000 1280 98.5 97.7 98.9 240 Same as 6.1, but Resize to1280 × 1280

10 1438 640 97.9 96.7 98.7 120 Same as 6.1

11 1438 1280 98.0 98.2 99.3 240 Same as 6.1, but Resize to 1280 × 1280

Note: 1 – resolution of the side of the square image in pixels; 2 – mAP: mean average precision (4); 3 – average image processing 
speed per second.
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To evaluate the performance of the model, this work uses 
such metrics as precision and recall. Additionally, the paper pre-
sents metrics based on the concept of Average Precision (AP).

Precision (1) measures the ability of the model to correct-
ly identify landmines among all detected ones and is calcula-
ted according to the following formula (1):

Precision
True Positives

True Positives False Positives
=

+
, (1)

where True Positives are the number of correctly detected 
landmines, False Positives are the number of falsely detected 
landmines. High precision means that the model minimizes 
the number of false positives (the proportion of falsely de-
tected landmines is minimal), which is very important in the 
context of landmine detection, where false detections can 
waste demining resources.

Recall (2) measures the ability of the model to detect all re-
levant cases of landmines in the dataset and uses False Negatives 
instead of False Positives – the number of undetected landmines:

Recall
True Positives

True Positives False Negatives
=

+
. (2)

High recall means that the model can find the majority of 
landmines, which is critical in the landmine detection process.

The choice of precision and recall for evaluating the per-
formance of the landmine detection model is determined by 
the specificity of the task, where:

– False Positives are undesirable but less critical than 
False Negatives. False detection will lead to additional checks 
and is time-consuming, but will not endanger life. On the 
other hand, not detecting a landmine is undesirable;

– the balance between precision and recall is important. 
An ideal model would have high values for both metrics.  
In practice, however, it is often necessary to find a compro-
mise between the two, tuning the model in such a way as to 
minimize the risks associated with false negatives while main-
taining an acceptable level of false positives.

Precision and recall are more clearly characterized using 
a confusion matrix (Fig. 5).
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Fig.	5.	Confusion	matrix	for	binary	classification:		
True	Positives	–	the	number	of	objects	of	the	positive		

class	that	the	model	correctly	classified	as	positive;		
False	Positives	–	the	number	of	objects	of	the	negative	
class,	which	the	model	incorrectly	classified	as	positive;	
False	Negatives	–	the	number	of	objects	of	the	positive	
class,	which	the	model	incorrectly	classified	as	negative;		

True	Negatives	–	the	number	of	objects	of	the	negative	class	
that	the	model	correctly	classified	as	negative

Explanation:
– a confusion matrix is a table that shows how the model 

classifies objects. It has two axes: one axis represents the 
actual classes of objects, and the other represents the classes 
predicted by the model;

– in the context of landmine detection, a "positive" class 
means a landmine, and a "negative" class means no landmine.

Average Precision (3) (AP) is a metric used to measure 
precision in relation to recall. It is the average precision value 
calculated for different recall thresholds, usually expressed 
through the "precision-recall" curve. AP is quantified as the 
area under this curve, which is calculated by integrating pre-
cision over recall over the corresponding interval:

AP p r r= ( )∫ d ,
0

1
 (3)

where p and r are precision and recall, which are calculated 
according to formulas (1) and (2).

Mean Average Precision (mAP) is calculated as follows:

mAP
n

APk
k

n

=
=

∑1

1

, (4)

where APk is the average precision of class k, where k is 
from 1 to n.

Intersection over Union (5) (IoU), or Jaccard index, 
measures the ratio of the area of intersection and the area 
of union of two bounding boxes – the one that outlines the 
object (Ground-truth), and the one predicted by the model:

IoU

True Positives
True Positives False Negatives False Po

=

=
+ + ssitives

. (5)

The closer the value of the coefficient is to one, the closer 
the predicted frame is to the true boundary.

mAP50 is the value of the mean average precision (4) at 
an IoU of 0.5 (or 50 %).

mAP50-95 is the value of the mean average precision (4), 
calculated for different IoU thresholds from 0.5 to 0.95 (or 
from 50 % to 95 %). This is a more stringent metric than 
mAP50 because it averages the mAP values over a range of 
IoU values.

Using both mAP50 and mAP50-95 together provides 
a deeper understanding of model performance. mAP50 shows 
that the model generally recognizes the object, but the frame 
may be inaccurate, while mAP50-95 focuses on the accuracy 
of object location recognition. This approach makes it pos-
sible to compare the results with other studies, as well as to 
determine directions for improving the model. For example, 
if a high mAP50 is combined with a low mAP50-95, this 
indicates the need to improve the detection boundary of the 
identified landmines.

The above metrics make it possible to evaluate the perfor-
mance of different models on the same data. It is important 
to note that model performance can vary significantly across 
different datasets, so model evaluation should be conducted 
on data that is as representative as possible of the actual 
application.

Fig. 6 shows plots demonstrating the change in precision, 
recall, mAP50, and mAP50-95 during model training over 
100 epochs (experiment 8.1, Table 4).
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Another tool for analyzing the model’s performance is the 
confusion matrix (Fig. 7), which has real values for one of the 
coordinates, and predicted values on the other. For example, 
for the first column, of all values, 6 percent were recognized 
as background, 94 % were recognized correctly.

The normalized confusion ma- 
trix (Fig. 7) allows a detailed 
analysis of the model’s perfor-
mance and reveals its strengths 
and weaknesses. As can be seen 
from the matrix, the model de-
monstrates high precision for most 
classes of landmines, especially 
for MON-50 (100 %, class 14)  
and PMN-2 (98 %, class 16). 
However, the model has difficul-
ties in distinguishing the PFM-1 
landmine (class 0) and the back-
ground, which leads to false posi-
tives (6 %). This may be because 
PFM-1 has a small size and has  
a variety of colors, which makes 
it difficult to detect it against 
the background of the natural 
environment (see the intersec-
tion of the last column and the 
first row). On the other hand, the 
model rarely misses landmines, 
which is confirmed by the high 
recall for all classes. Even in cases 
where a landmine is misclassified, 
it still appears as an object re-
quiring attention (for example, 
OZM-72 is sometimes categori-
zed as MON-50).

Fig. 8 shows the results of recognition of some printed land-
mines that have not been included in the dataset for training 
the model. The model demonstrates high efficiency in detecting 
printed landmines, which confirms its ability to generalize and 
recognize key characteristics, such as shape, size and texture.

 
Fig.	6.	Plot	of	changes	in	precision,	recall,	mAP50,	and	mAP50-95	during	training	over	100	epochs

 
Fig.	7.	The	normalized	confusion	matrix	for	the	training	dataset	of	printed	landmines:		

0	–	class	for	PFM-1;	14	–	MON-50;	16	–	PMN-2;	19	–	OZM-72;	2	–	PMN
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Fig.	8.	Examples	of	successful	recognition	of	3D	printed	copies	of	landmines	that	have	not	been	included	in	the	training	
dataset:	a	–	PFM-1	of	gray	color	on	the	background	of	foliage;	b	–	PMN-2,	partially	hidden	behind	leaves	among	the	grass;		

c	–	MON-50	in	the	sunlight	on	a	tree;	d	–	OZM-72	in	the	sunlight	among	leaves	and	grass;	e	–	PMN	in	the	sun	among		
the	grass;	f	–	PFM-1	on	the	leaves
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The images for verification in Fig. 8 are made in such a way 
as to confuse the model. Percentage values show the recogni-
tion probability.

5. 3. Evaluation of model performance us
ing an independent dataset collected from real 
landmines

Fig. 9 shows examples of the model recog-
nizing real landmines, albeit with slightly lower 
precision compared to 3D printed copies.

Fig.	9.	Examples	of	recognition	on	images	of	real		
landmines	taken	by	deminers:	a	–	accurately	recognized	
PMN-2;	b,	c	–	accurately	recognized	PMNs;	d	–	POM-3,	

misclassified	as	OZM-72;	e	–	PMN-4,	misclassified	as	PMN;	
f	–	POM-3	parachute	cap,	misclassified	as	PMN
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The top row of the figure shows 
examples of accurate recognition, 
while the bottom row illustrates 
cases where landmines were de-
tected but misclassified. The model 
incorrectly recognized some land-
mines that had not been included 
in the training dataset. These land-
mines were visually similar to the 
ones the model was trained on.

Table 5 presents the results 
of testing model from Experi-
ment 11 (Table 4) on data inde-
pendent of training – printed and 
real landmines.

From the results, it can be con-
cluded that the model obtained by 
using 3D printed copies of land-
mines shows good results, which 
can be considered as a starting 
point for further improvement. 
However, to deploy this model in 
real-world scenarios, a significantly 
larger dataset is needed (approxi-
mately 5–7 times the size used in 
this study. For example, for just one 
type of object, according to Google 
Cloud Platform recommendations, 
at least 1,000 images are needed, 
while training the model requires 
more than a thousand epochs.

Table 6 presents the statistical indicators for each land-
mine type in the dataset.

Table	6
Results	of	testing	the	model	on	real	landmines

ID Precision % Recall % mAP50 % mAP50-95 %

PFM-1 78.0 84.2 89.1 61.2

MON-50 94.3 60.0 77.1 57.9

PMN-2 93.2 90.5 94.1 73.9

OZM-72 92.4 81.0 87.8 63.4

PMN 97.2 79.5 89.4 71.2

Mean 91.0 79.1 87.5 65.5

Fig. 10 shows the normalized confusion matrix, which 
corresponds to Table 6.

In the matrix from Fig. 10, it is possible to examine the re-
sult of the detection of each of the types of landmines. Atten-
tion is drawn to the large number of incorrectly recognized 
class 14 (MON-50) objects. This may be due to the fact that 
visually this copy is the least similar to the real landmine.  
To improve the results, one can add more images of this land-
mine, design a more realistic model of the landmine, print this 
model in full size, or try different colors.

Table	5
Results	of	model	testing	with	new	data

Type of new images Qty Precision % Recall % mAP50 % mAP50-95 %

3D printed landmines 402 98.4 98.6 99.1 85.1

Real landmines 254 91.0 79.1 87.5 65.5

 
Fig.	10.	Normalized	confusion	matrix	for	the	dataset	from	real	landmines:		
0	–	class	for	PFM-1;	14	–	MON-50;	16	–	PMN-2;	19	–	OZM-72;	2	–	PMN
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6. Discussion of the results of the study on the use  
of 3D printing to create computer vision models  

for landmine recognition

To create a dataset, 3D models of five types of anti- 
personnel landmines, the most common in Ukraine, were 
found (Table 1). Landmine copies were printed on a Pru-
sa i3 MK3S+ 3D printer using PLA plastic with a minimum 
infill of 5–10 % (Fig. 2, 3). To ensure diversity of data, 
1438 photographs were taken under different environmental 
conditions (clear, cloudy, rain, snow, etc.) and from different 
angles (Fig. 4). The obtained dataset contains images of 
landmines in different types of terrain, with different light-
ing and degree of visibility, which allows training computer 
vision models on more realistic data.

The YOLOv8 model [28] was chosen to solve the problem 
of landmine recognition due to its high precision and speed. 
The created dataset of 3D printed copies of landmines was 
used to train the model. The learning process was carried out 
iteratively, with gradual adjustment of the hyperparameters 
of the model and the use of various methods of data aug-
mentation, in particular those proposed in [11] (Tables 2, 3).  
As a result, high precision (98.0 %) and recall (98.2 %) were 
achieved on the test dataset (Table 4), which confirms the 
effectiveness of using 3D printed models.

For further analysis of the model’s performance, testing was 
conducted on an independent validation dataset from 3D prin-
ted landmines, on which the model also demonstrated high 
performance (Fig. 8, Table 5). This shows that the model is able 
to generalize and successfully detect landmines in new images.

At the final stage of the research, the obtained model was 
tested on an independent dataset consisting of 254 images 
of real landmines (Fig. 9). The test results given in Table 5 
showed that the model achieved an average precision of 91.0 % 
and recall of 79.1 %. These results are attributed to the high 
similarity of printed landmines to real ones, as well as the high 
learning and generalization ability of the YOLO algorithm.

However, for some types of landmines, including  
MON-50 and PMN, precision and recall were lower than for 
others (Table 6). Note that these results may be due to se-
veral factors. Firstly, the images in the training dataset were 
taken from a greater distance (1–1.6 meters) than the images 
in the test dataset, which were taken up close. Secondly, the 
3D printed copy of the MON-50 landmine did not fully re-
produce the complex shape and texture of the real landmine, 
which could affect the accuracy of its recognition.

The matrix in Fig. 10 shows that the low recall for 
MON-50 in Table 6 is due to the fact that not all landmines 
were recognized. Also, for OZM-72 (class 19), the number 
of unidentified landmines is slightly higher (17 %). Overall, 
however, the model demonstrated its capability to detect 
landmines with high accuracy.

This study confirms that 3D printed landmine replicas are 
an effective tool for data-poor demining research. They are com-
pletely safe and allow a wider range of scientists to conduct re-
search and implement new ideas. 3D replicas can serve as an ex-
cellent starting point for training machine learning algorithms, 
which can later be fine-tuned on real data. This opens new 
opportunities for the development of more effective and afford-
able landmine detection methods, which is essential for huma-
nitarian demining and the restoration of safety in war-torn areas.

One of the main advantages of this research is the ability 
to conduct experiments under real conditions. For example, 
unlike [3, 4], which conducted experiments on a sandy site 

with buried landmines, this study conducted experiments 
in several locations (parks). Furthermore, unlike [5], which 
utilized the dataset from [4], this study used its own dataset. 
Another advantage is the variety of landmines used in this 
research (chosen as the most common in the war in Ukraine), 
unlike [12], which only used one type, the PFM-1. In con-
trast to [15], in which to detect landmines from a UAV, the 
data was transferred to a computer for further processing, 
in this study the YOLO framework allows for real-time ob-
ject recognition. Unlike studies [3–5, 7], in which limited 
or synthetic data were used, this study included testing the 
model on real landmines, which makes it possible to assess its 
practical suitability. It is the lack of a large amount of data 
for analysis, as well as the lack of comparison of results on 
real landmines, that can lead to the fact that the resulting 
methodology will not work in real life.

This study demonstrates that when data is scarce, 3D print-
ing can successfully enrich the training and testing datasets 
for models designed to recognize real landmines. Models 
trained on printed landmines can be used as a starting point 
for testing under real conditions. In this case, when testing, 
it is necessary to find cases when the model incorrectly rec-
ognizes the object and add new data to the training process. 
Studies like [3–5, 7] could potentially achieve better results 
by incorporating 3D printing for dataset creation. The high 
performance of the models obtained in this study is attribu-
ted to the systematic approach to creating a dataset, the 
visual similarity of the models to real landmines, and the 
reliability of modern computer vision algorithms.

Among the limitations in the current study, attention should 
be paid to the importance of reducing the size of the object. Per-
haps the reduced size of the MON-50 model contributed to its 
lower recognition accuracy. Another potential limitation is the 
camera distance of 1–2 meters used in data collection. Adapting 
the model’s architecture or exploring alternative computer 
vision algorithms may be necessary for effective UAV image 
analysis, as demonstrated in [35] for aircraft recognition.

Another constraint of the study is the limited number of 
landmine types represented in the dataset. Although the most 
common types of landmines used in the war in Ukraine were 
chosen, inclusion of a greater variety of landmines would 
have allowed for a more versatile model. This task is planned 
to be solved in the next stage of research aimed at developing 
a software for detecting a wide range of landmines.

Another drawback is the insufficient realism of some 
3D models of landmines, including OZM-72 and MON-50. 
During the course of the study, many more high-quality 
models of landmines appeared in volunteer projects that 
print landmines for the military (training and combat), so it 
is planned to take them as a basis for future research.

To improve the model, it is possible to investigate the 
use of more modern feature extraction methods, such as 
ORB [36] or AKAZE [37], which are more robust to changes 
in lighting and perspective than the classic SIFT and SURF 
methods. In addition, the application of other modern neural 
network architectures could be considered to improve the 
results. For example, EfficientDet [38] is known for its high 
accuracy and computational efficiency, which can be espe-
cially important when deploying the model on mobile devices 
or resource-constrained UAVs. Models based on transfor-
mers (DETR [39], Deformable DETR [40]) are characterized 
by high precision on complex data and efficient processing 
of high-resolution images. This could be useful for detect-
ing landmines in aerial or UAV images. These approaches  
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could improve the model’s ability to discriminate between 
landmines and background, especially for classes with high 
mismatches, and provide higher detection accuracy and 
speed. However, it is worth considering that some of these 
methods may require more data for training or have a higher 
computational complexity. To increase the accuracy of detect-
ing real landmines, it is necessary to expand the dataset and 
improve the realism of 3D models or add more of their vari-
eties. It is also worth investigating the possibility of using ad-
ditional methods, such as data augmentation and tuning the 
hyperparameters of the model, to improve its generalizability.

In further research, attention should be focused on the 
creation of a landmine detection system that can be used un-
der real conditions in Ukraine, as well as in other countries.  
To achieve this goal, the dataset needs to be expanded to 
include more types of landmines and images obtained under 
different conditions. 3D printed models could be used as 
a starting point, followed by testing on more real-world data 
with professional deminers. This could improve the precision 
and generalizability of the model. In addition to using the 
visual spectrum, it is possible to integrate data from other 
sensors, such as magnetometers and GPR. This could improve 
the accuracy of landmine detection, especially those that are 
difficult to identify by visual features alone. 3D replicas of 
landmines could be used to collect and analyze data from 
these sensors. Having achieved some results in the construc-
tion of the dataset, it is possible to explore the use of more 
complex neural network architectures and learning methods, 
which can improve the precision and speed of landmine de-
tection. Computer vision models obtained in this way could 
be used in other applied aspects of demining – UAV terrain 
scanning, robots, etc. Another potential area of application for 
3D printed landmine replicas could be to overcome the diffi-
culties associated with remote or camouflaged installations.

7. Conclusions

1. The created dataset containing about 1500 images 
of 3D printed replicas of landmines in various conditions 
has demonstrated its effectiveness in training the YOLOv8 
model, which achieved high precision and recall. This result 
confirms that 3D printed replicas could be used to create 
diverse and representative datasets for training computer 
vision models. Due to its safety and low cost, this approach 
could be used both for research purposes and practical ap-
plications, for example, for initial training of models or for 
supplementing datasets with real landmines.

2. Training of the YOLOv8 model on the created dataset 
of 3D printed copies of landmines, using data augmenta-
tion methods, has made it possible to achieve high preci-
sion (98.0 %) and recall (98.2 %). These results confirm the 
effectiveness of using 3D printed replicas to train computer 
vision models for landmine detection. The high rates of 
precision and recall are explained both by the quality and 
diversity of the dataset, and by the efficiency of the YOLOv8 

algorithm, as well as the applied augmentation methods. 
Analysis of the confusion matrix revealed that the model has 
potential for further improvement, by studying the reasons 
for recognizing the background as a landmine and by investi-
gating other neural network architectures.

3. Testing the YOLOv8 model on an independent dataset 
of real landmine images showed that it achieved high preci-
sion of 90.1 % and recall of 79.1 %. However, precision and 
recall varied considerably for different types of landmines. 
For example, for the PFM-1 the precision was 78 %, while 
for PMN – 97.2 %. The same applies to recall – from 60 % 
for MON-50 to 90.5 % for PMN-2. This may be due to the 
fact that some 3D printed replicas do not fully reproduce the 
features of real landmines, as well as the limited number of 
images of real landmines in the testing dataset. This study 
showed that 3D printed copies of landmines can be effective-
ly used for pre-training computer vision models.

Conflicts of interest

The authors declare that they have no conflicts of interest 
in relation to the current study, including financial, personal, 
authorship, or any other, that could affect the study, as well 
as the results reported in this paper.

Funding

The study was conducted without financial support.

Data availability

The manuscript has associated data in the data ware-
house (public datasets on printed and real landmines – 
https://universe.roboflow.com/oleksandr-kunichik-sugbr).

The data will be provided upon reasonable request.

Use of artificial intelligence

The authors confirm that they did not use artificial intel-
ligence technologies when creating the current work.

Acknowledgments

The authors would like to thank Nina Liu of the Toronto 
Public Library for her invaluable assistance with the 3D 
printing technique, as well as Forester and S.T.A.L.K.E.R., 
whose valuable advice, photographs, and insights contribu-
ted to model validation, project advancement, and provided 
a fundamental understanding of the future implications of 
this study’s results. The authors also thank Yaroslav Teresh-
chenko for consultations at the start of the research.

References

1. Landmine Monitor 2023. Available at: https://backend.icblcmc.org/assets/reports/Landmine-Monitors/LMM2023/Downloads/

Landmine-Monitor-2023_web.pdf

2. Two SES cadets killed in an explosion in Kharkiv region: what is known. Available at: https://suspilne.media/kharkiv/493801-

dvoe-kursantiv-dsns-zaginuli-pid-cas-vibuhu-na-harkivsini-so-vidomo



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 5/1 ( 131 ) 2024

28

3. Barnawi, A., Kumar, K., Kumar, N., Alzahrani, B., Almansour, A. (2024). A Deep Learning Approach for Landmines Detection Based 

on Airborne Magnetometry Imaging and Edge Computing. Computer Modeling in Engineering & Sciences, 139 (2), 2117–2137. 

https://doi.org/10.32604/cmes.2023.044184 

4. Bestagini, P., Lombardi, F., Lualdi, M., Picetti, F., Tubaro, S. (2021). Landmine Detection Using Autoencoders on Multipolariza-

tion GPR Volumetric Data. IEEE Transactions on Geoscience and Remote Sensing, 59 (1), 182–195. https://doi.org/10.1109/

tgrs.2020.2984951 

5. Mochurad, L., Savchyn, V., Kravchenko, O. (2023). Recognition of Explosive Devices Based on the Detectors Signal Using Machine 

Learning Methods. Proceedings of the 4th International Workshop on Intelligent Information Technologies & Systems of Informa-

tion Security. https://ceur-ws.org/Vol-3373/paper14.pdf

6. Bai, X., Yang, Y., Wei, S., Chen, G., Li, H., Li, Y. et al. (2023). A Comprehensive Review of Conventional and Deep Learning 

Approaches for Ground-Penetrating Radar Detection of Raw Data. Applied Sciences, 13 (13), 7992. https://doi.org/10.3390/

app13137992 

7. Lameri, S., Lombardi, F., Bestagini, P., Lualdi, M., Tubaro, S. (2017). Landmine detection from GPR data using convolutional neural 

networks. 2017 25th European Signal Processing Conference (EUSIPCO). https://doi.org/10.23919/eusipco.2017.8081259 

8. gprMax. Available at: https://www.gprmax.com

9. Srimuk, P., Boonpoonga, A., Kaemarungsi, K., Athikulwongse, K., Dentri, S. (2022). Implementation of and Experimentation with 

Ground-Penetrating Radar for Real-Time Automatic Detection of Buried Improvised Explosive Devices. Sensors, 22 (22), 8710. 

https://doi.org/10.3390/s22228710 

10. Pryshchenko, O. A., Plakhtii, V., Dumin, O. M., Pochanin, G. P., Ruban, V. P., Capineri, L., Crawford, F. (2022). Implementation of an 

Artificial Intelligence Approach to GPR Systems for Landmine Detection. Remote Sensing, 14 (17), 4421. https://doi.org/10.3390/

rs14174421 

11. Kunichik, O., Tereshchenko, V. (2023). Improving the accuracy of landmine detection using data augmentation: a comprehensive 

study. Artificial Intelligence, 28 (AI.2023.28 (2))), 42–54. https://doi.org/10.15407/jai2023.02.042 

12. Baur, J., Steinberg, G., Nikulin, A., Chiu, K., de Smet, T. S. (2020). Applying Deep Learning to Automate UAV-Based Detection of 

Scatterable Landmines. Remote Sensing, 12 (5), 859. https://doi.org/10.3390/rs12050859 

13. Barnawi, A., Kumar, krishan, Kumar, N., al zahrani, B., Almansour, A. (2023). A Graph Learning Framework for Prediction of Miss-

ing Landmines Using Airborne Magnetometry in Iot Environment. https://doi.org/10.2139/ssrn.4526746 

14. Kunichik, O., Tereshchenko, V. (2022). Analysis of modern methods of search and classification of explosive objects. Artificial Intel-

ligence, 27 (AI.2022.27 (2)), 52–59. https://doi.org/10.15407/jai2022.02.052 

15. Pahadia, H., Lu, D., Chakravarthi, B., Yang, Y. (2023). SKoPe3D: A Synthetic Dataset for Vehicle Keypoint Perception in 3D 

from Traffic Monitoring Cameras. 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 28, 

4367–4372. https://doi.org/10.1109/itsc57777.2023.10422667 

16. Didur, O. L., Shevchenko, M. S. (2023). MINY: yaki vykorystovuiutsia abo mozhut vykorystovuvatysia viyskamy rosiis-

kykh zaharbnykiv na sukhoputnomu teatri boiovykh diy. Konsultant: Hlokoza V. H. Aktualizovano – Lisnyk. Available at:  

https://shron1.chtyvo.org.ua/Didur_Oleksandr/Miny_iaki_vykorystovuiutsia_abo_mozhut_vykorystovuvatysia_viiskamy_

rosiiskykh_zaharbnykiv_na_sukhopu.pdf?PHPSESSID=7r7ecak3135fa9kap9uoqltok6

17. Anti-Personnel Landmines Convention. Available at: https://disarmament.unoda.org/anti-personnel-landmines-convention

18. Community, B. O. (2018). Blender – a 3D modelling and rendering package, Stichting Blender Foundation, Amsterdam. Available 

at: http://www.blender.org

19. GNU Image Manipulation Program. Available at: https://www.gimp.org/about

20. Prusa Research. Available at: https://www.prusa3d.com/page/about-us_77

21. PMN AP MINE (Historical Prop) by mussy is licensed under the Creative Commons – Attribution – Non-Commercial – No De-

rivatives license. Available at: https://www.thingiverse.com/thing:3157971

22. PMN-2. by _-HB-_ is licensed under the Creative Commons – Attribution license. Available at: https://www.thingiverse.com/

thing:5777217

23. PMN-2 Landmine. Available at: https://mmf.io/o/98395

24. OZM-72 Anti-Personnel Mine Gameready Lowpoly. Available at: https://sketchfab.com/3d-models/ozm-72-anti-personnel- 

mine-gameready-lowpoly-9226037a15ab47bd9fb08ed434ea1ae8

25. MON-50. МОН-50. Soviet claymore shaped AP-mine. Available at: https://sketchfab.com/3d-models/mon-50-50-soviet-clay-

more-shaped-ap-mine-5a5da292827f41278df15e4fcee85807

26. PFM-1 AP MINE (Historical Prop). Available at: https://www.thingiverse.com/thing:3660586

27. Redmon, J., Divvala, S., Girshick, R., Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. 2016 IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr.2016.91 

28. Jocher, G., Qiu, J., Chaurasia, A. (2023). Ultralytics YOLO (Version 8.0.0) [Computer software]. Available at: https://github.com/

ultralytics/ultralytics

29. Reis, D., Kupec, J., Hong, J., Daoudi, A. (2023). Real-Time Flying Object Detection with YOLOv8. arXiv. Available at:  

https://doi.org/10.48550/arXiv.2305.09972



Engineering technological systems: Reference for Chief Designer at an industrial enterprise

29

30. Waite, J. R., Feng, J., Tavassoli, R., Harris, L., Tan, S. Y., Chakraborty, S., Sarkar, S. (2023). Active shooter detection and robust 

tracking utilizing supplemental synthetic data. arXiv. https://doi.org/10.48550/arXiv.2309.03381

31. Lou, H., Liu, H., Bi, L., Liu, L., Guo, J., Gu, J. (2023). Bd-Yolo: Detection Algorithm for High-Resolution Remote Sensing Images. 

https://doi.org/10.2139/ssrn.4542996 

32. Kang, M., Ting, C.-M., Ting, F. F., Phan, R. C.-W. (2023). RCS-YOLO: A Fast and High-Accuracy Object Detector 

for Brain Tumor Detection. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, 600–610.  

https://doi.org/10.1007/978-3-031-43901-8_57 

33. Ang, G. J. N., Goil, A. K., Chan, H., Lew, J. J., Lee, X. C., Mustaff, R. B. A. et al. (2023). A Novel real-time arrhythmia detection 

model using YOLOv8. arXiv. https://doi.org/10.48550/arXiv.2305.16727

34. Agarwal, V., Pichappa, A. G., Ramisetty, M., Murugan, B., Rajagopal, M. K. (2023). Suspicious Vehicle Detection Using Licence 

Plate Detection And Facial Feature Recognition. arXiv. https://doi.org/10.48550/arXiv.2304.14507

35. Zhou, F., Deng, H., Xu, Q., Lan, X. (2023). CNTR-YOLO: Improved YOLOv5 Based on ConvNext and Transformer for Aircraft 

Detection in Remote Sensing Images. Electronics, 12 (12), 2671. https://doi.org/10.3390/electronics12122671

36. Rublee, E., Rabaud, V., Konolige, K., Bradski, G. (2011). ORB: An efficient alternative to SIFT or SURF. 2011 International Con-

ference on Computer Vision. https://doi.org/10.1109/iccv.2011.6126544 

37. Alcantarilla, P., Nuevo, J., Bartoli, A. (2013). Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces. Proceed-

ings of the British Machine Vision Conference 2013, 13.1-13.11. Available at: https://projet.liris.cnrs.fr/imagine/pub/proceedings/

BMVC-2013/Papers/paper0013/paper0013.pdf

38. Tan, M., Pang, R., Le, Q. V. (2020). EfficientDet: Scalable and Efficient Object Detection. 2020 IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr42600.2020.01079 

39. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S. (2020). End-to-End Object Detection with Transformers. 

Computer Vision – ECCV 2020, 213–229. https://doi.org/10.1007/978-3-030-58452-8_13 

40. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J. (2020). Deformable DETR: Deformable Transformers for End-to-End Object De-

tection. arXiv. https://doi.org/10.48550/arXiv.2010.04159


