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One of the promising directions for improv-
ing the quality of object recognition in images and 
parallelizing calculations is the use of ensemble 
classifiers with stacking. A neural network at the 
second level makes it possible to achieve the result-
ing quality of classification, which is significantly 
higher than each of the networks of the first level 
separately. The classification quality of the entire 
ensemble classifier with stacking depends on the 
efficiency of the neural networks at the first stage, 
their number, and the quality of the classification 
of the neural network of the second stage. This 
paper proposes a neural network architecture for 
the second stage of the ensemble classifier, which 
combines the approximating properties of tradi-
tional neurons and learning activation functions. 
Gaussian Radial Basis Functions (RBFs) were 
chosen to implement the learned activation func-
tions, which are summed with the learned weights. 
The experimental studies showed that when work-
ing with the CIFAR-10 data set, the best results 
are obtained when six RBFs are used. A compar-
ison with the use of multilayer perceptron (MLP) 
in the second stage showed a reduction in classi-
fication errors by 0.45–1.9 % depending on the 
number of neural networks in the first stage. At 
the same time, the proposed neural network archi-
tecture for the second degree had 1.69–3.7 times 
less learning coefficients than MLP. This result is 
explained by the fact that the use of an output layer 
with ordinary neurons allowed us not to enter into 
the architecture many learning activation func-
tions for each output signal of the first stage, but 
to limit ourselves to only one. Since the results were 
obtained on the CIFAR-10 universal data set, a 
similar effect could be obtained on a large number 
of similar practical data sets
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1. Introduction

The accuracy of computer vision algorithms is en-
hanced by improving the architecture of neural networks, 
increasing their depth and processing width. However, 
very deep neural networks, due to the sequential process-
ing of input signals, encounter problems with the stability 
of the learning process and low efficiency of parallelizing 
computational processes. This leads to the need to use 
supercomputers, which complicates the expansion of the 
area of their practical use. One of the promising approach-
es to overcoming these problems is the development of 
architectures with an increased processing width. This 
is most fully and consistently incorporated into the ar-
chitecture of ensemble classifiers and, in particular, into 
ensemble classifiers with stacking [1]. This architecture 
assumes the presence of two processing stages. At the first 
stage, a number of conventional classifiers operate in par-
allel, each of which processes the input signal according to 

its own algorithm and produces a complete response on its 
classification. At the second stage, a neural network also 
operates, which accepts the output signals of the neural 
networks of the first stage as input and forms the final 
classification result. Such a construction of the classifi-
er architecture opens up wide possibilities for practical 
implementation. Firstly, the first stage can use neural 
networks that are acceptable for a specific application 
in terms of classification quality, computation volume, 
training speed, and available training data volume. These 
networks can be trained independently of each other. 
Secondly, such a construction of the first stage is easier to 
implement on multiprocessor and multi-core computers, 
as well as on computing nodes in the cloud.

Despite the specific classification quality of the neural 
networks of the first stage, a further increase in the resulting 
classification quality is ensured by increasing the number 
of neural networks in the first stage. Naturally, the more 
efficient the networks used in the first stage, the higher 

Copyright © 2024, Authors. This is an open access article under the Creative Commons CC BY license

INFORMATION AND CONTROLLING SYSTEM



7

Information and controlling system

duced. It is shown that scaling convolutional networks in 
width allows obtaining better results compared to scaling 
in depth. All that made it possible to significantly improve 
the quality of classifying objects in images with a smaller 
number of training parameters. It should be noted that 
the architecture proposed in [7] showed high results in 
the problem of classifying objects in images, and the use 
of an ensemble classifier with stacking at the second stage 
requires additional research. A modification of the well-
known MLP-Mixer architecture [8] using the KAN ap-
proach is aimed at solving the same problem, resulting in 
the KAN-Mixer architecture [9]. It shows higher results 
than MLP-Mixer, but lower than in [7]. In [10], a study 
was conducted on graph neural networks (GNNs), which 
are used for feature extraction by capturing dependences 
within graphs. MLPs and fixed activation functions were 
completely removed from the neural network. Replacing 
them with KANs showed a significant increase in clas-
sification quality. However, this was achieved only for a 
small number of classes and the training time of such a 
network increased by an order of magnitude compared 
to a regular GNN. A similar problem, but in the area of 
graph collaborative filtering (GCF), was studied in [11]. 
To speed up training, the Fourier transform was built into 
the model architecture. However, the KAN in this model 
is used as part of the feature transformation during mes-
sage passing to the graph convolution network (GCN). 
This makes it difficult to determine the net contribution 
of the KAN to the final result, since the model also uses 
message dropout and node dropout strategies to improve 
the representation power and robustness of the model. 
Another area where KANs have shown both better quality 
of predicting time-varying signals and less computational 
effort is satellite traffic forecasting [12]. Trainable activa-
tion functions allow better prediction of complex signal 
shapes, compared to MLP. It should be noted that in [12] 
the pure KAN architecture was used, which does not add 
new architectural approaches for using KAN in other 
applications. In [13], the SigKAN architecture with train-
able path signatures was proposed for forecasting time 
series using KAN. This improved the forecasting quality, 
but the use of path signatures in image classification re-
quires additional research.

Thus, the use of trainable activation functions is 
promising in terms of providing additional capabilities 
of the neural network to improve the resulting quality 
of processing with a smaller number of trainable param-
eters. However, the issues of practical implementation of 
trainable activation functions and the efficiency of their 
use in various neural network architectures remain open. 
In the first work [3], which proposed the KAN architec-
ture, splines were used to implement trainable activation 
functions. However, many subsequent studies propose 
replacing splines with other systems of functions that 
have proven efficient in various approximation problems 
to improve the efficiency of neural networks. Radial ba-
sis functions (RBF) have found the widest use in neural 
networks. In [14], universal approximation properties 
of neural networks with RBF are considered. In [15], it 
is shown that Gaussian RBFs approximate splines well. 
However, the issue of joint use of trainable activation 
functions and neurons remained unaddressed. In [16], 
the use of RBF as an activation function in the hidden 

the quality of the resulting classification at the output 
of the second stage. The limitation of the number of net-
works in the first stage is the requirement for different 
architectures for processing input signals, ensuring that 
different networks make mistakes on different input sig-
nals. It should be noted that new processing architectures 
are constantly being developed, but their number is not 
very large at the moment. Therefore, it is also important 
to increase the efficiency of the neural network in the 
second stage. Due to the specificity of the input signals 
of the second stage, some complex architectures have no 
advantage over the multilayer perceptron (MLP), and it 
is usually used in practice [2]. MLP consists of neurons, 
which is a multi-input adder with adjustable weights for 
each of the inputs, the output of which is transformed by 
a constant activation function. In [3], it is proposed to 
adjust the activation functions. This provides new oppor-
tunities and flexibility in processing input signals. There-
fore, the development of a neural network with trainable 
activation functions for the second stage of an ensemble 
classifier with stacking to improve the resulting classifi-
cation quality and reduce the amount of computation is a  
relevant task.

2. Literature review and problem statement

The theoretical justification for the success of neural 
networks in a wide range of application areas is the universal 
approximation theorem [4]. The cited work strictly proves 
that a multilayer perceptron with one hidden layer, using 
an arbitrary nonlinear activation function in neurons, is a 
universal approximator, provided that the number of neu-
rons in the hidden layer is large enough. However, the MLP 
architecture is not the best in terms of the number of neu-
rons used. Numerous modern neural network architectures 
demonstrate higher efficiency compared to MLP with the 
same number of trainable coefficients.

In [3], it is proposed to replace the trainable weight 
coefficients with trainable nonlinear one-dimensional 
functions parameterized as a spline. This architecture 
is called KAN (Kolmogorov-Arnold Networks). KAN 
nodes use conventional adders, which are not followed by 
a nonlinear activation function as in MLP. This architec-
ture, like MLP, is a universal approximator [5]. In [3], it 
is shown that for some problems, for example, for solving 
partial differential equations, such an architecture shows 
two orders of magnitude higher accuracy with two orders 
of magnitude fewer parameters. However, when construct-
ing complex composite architectures typical of modern 
neural networks, the efficiency of using KAN requires 
additional research. In [6], KANs were used directly as 
surrogate models to replace the optimization function in a 
surrogate evolutionary algorithm. That made it possible to 
significantly reduce the dependence on optimization func-
tion estimates during the search process, thereby reducing 
optimization costs. However, the use of evolutionary algo-
rithms for training neural networks is effective only for a 
narrow class of problems, where the optimization function 
can be described as a simple formula. Paper [7] describes 
an improved architecture of a convolutional neural net-
work using KAN. New Bottleneck Convolutional Kolm-
ogorov-Arnold and Self KAGNtention layers are intro-
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layers of a neural network improved the interpretability 
of internal processes. However, the work did not aim to 
train activation functions. The influence of the width and 
location of the RBF center on the characteristics of the 
neural network was studied. In [17], it was proposed to 
supplement a conventional neural network with RBF with 
a feature extractor. This increased the classification accu-
racy. RBFs in this architecture did not directly solve the 
problem of approximating activation functions. In [18], 
the problem of approximating functions was solved using 
neural networks using RBF. The architecture included a 
clustering algorithm that was used to determine the num-
ber of nodes in the hidden layer, as well as the centers and 
width of the RBF. That improved the quality of function 
approximation; however, this is a significantly limited 
solution compared to KAN. Transformation of input 
data using exponential functions versus processing un-
modified data and then passing it to a conventional RBF 
neural network was investigated in [19]. However, the 
unmodified transformation was investigated, as opposed 
to the learnable function in KAN. In [20], an algorithm 
for training the RBF neural network architecture itself is 
proposed. Hidden layer nodes can be added and removed 
based on the nodes’ contributions to the resulting char-
acteristics. In addition, the width of the radial functions 
is adjusted using a special calculation method. It should 
be noted that such an architecture is mainly intended for 
research purposes due to the complexity of implementing 
the use of well-known high-level libraries for program-
ming neural networks.

The study of the efficiency of replacing splines in KAN with 
various polynomial functions was reported in [21]. 18 different 
polynomials were tested for recognizing handwritten digits 
from the MNIST dataset. It should be noted that all polyno-
mials allowed obtaining high results, which, however, were 
significantly lower than the best known results for MNIST. In 
addition, the efficiency of using these polynomials in the KAN 
architecture when processing more complex datasets remains 
unexplored. In [22], the advantage of using Wav-KAN when 
processing hyperspectral data is shown using satellite images 
taken in an extended spectral range. However, the efficiency of 
using wavelets to approximate activation functions in specific 
applications requires further study. In order to ensure efficient 
parallelization of processing on GPUs, the ReLU-KAN ar-
chitecture is proposed in [23]. Splines are replaced with an 
approximation of activation functions using simple ReLU 
functions. This replacement allowed to increase the compu-
tation speed by 20 times in the studied examples of approxi-
mation of complex functions. However, this architecture has 
been studied only for the problem of approximation of non-
linear functions. In [7], the architecture of a convolutional 
neural network using KAN was modernized by introducing 
new layers Bottleneck Convolutional Kolmogorov-Arnold 
and Self KAGNtention. Comparison of various functions 
for approximation of activation functions in the problem of 
recognition of objects in images showed the advantage of 
Chebyshev polynomials. However, for use at the second stage 
of the ensemble classifier, such an architecture is redundant. 
Thus, the literature review showed the promise of using 
trainable activation functions in neural networks. How-
ever, the KAN architecture in its pure form demonstrates 
high results only in problems of approximation of complex 
functions. Processing problems such as image classification 
requires the introduction of additional elements into the 

architecture. Despite the fact that in [3] it was proposed to 
use splines to create trainable activation functions, the vast 
majority of works with KAN use Gaussian RBF. This is ex-
plained by their proximity to splines and lower computational 
costs. Therefore, it seems appropriate to first study the use of 
Gaussian RBF at the second stage of the ensemble classifier. 
It should be noted that both MLP and KAN are universal ap-
proximators, but their approximation mechanism is different. 
Therefore, it seems promising to study the effectiveness of a 
neural network for the second stage of the ensemble classifier 
with stacking, using the capabilities of MLP and KAN simul-
taneously.

3. The aim and objectives of the study

The aim of our work is to develop and study a neural net-
work for the second stage of the ensemble classifier, contain-
ing a layer of trainable activation functions and MLP. This 
will make it possible to reduce the volume of calculations and 
improve the quality of classification by ensemble classifiers 
with stacking.

To achieve the goal, the following tasks were set:
– to design the architecture of a neural network for the 

second stage of the ensemble classifier with stacking, includ-
ing both trainable activation functions and MLP;

– to investigate the dependence of classification quality 
on the number of Gaussian RBFs used to approximate one 
activation function;

– to compare the efficiency of using trainable activation 
functions in the neural network of the second stage of the 
classifier compared to using only MLP in it.

4. The study materials and methods

The object of research in this paper is ensemble classi-
fiers with stacking. The subject of our research is a neural 
network at the second stage of the classifier. The dataset for 
research is CIFAR-10 [24]. This set contains color images, 
32×32 pixels in size, 50,000 for training and 10,000 for test-
ing. The images belong to c=10 classes. Examples of images 
are shown in Fig. 1 [24].

 

 
 
  

Fig.	1.	Examples	of	images	from	the	CIFAR-10	set
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The first stage of the ensemble classifier used the same 
neural networks as in [2]: CCT [25], EANet [26], MLP-Mix-
er [8], Fnet [27], gMLP [28], and SwinTr [29]. These 
networks were trained for 50 epochs. The Xavier initializa-
tion [30] was used to initialize the weight coefficients. The 
software implementation of these networks in Python using 
the Keras library is given in [31]. The resulting classification 
quality of these networks after training for the CIFAR10 
dataset and the number of trainable coefficients are given 
in Table 1 [2].

The neural network program with trainable activa-
tion functions is written in the Python programming lan-
guage using the Keras library. Training was performed over 
200 epochs using the output signals of pre-trained first-
stage neural networks. Training was performed on training 
data. Classification quality was assessed on the testing data 
set and was defined as the ratio of the number of correctly 
recognized objects to the total number of images (10,000).

Table	1

Parameters of the first stage classifiers after training

Neural  
network

Quality of classification
Number of trainable  

weights

CCT 0.8021 408139

EANet 0.6788 355530

FNet 0.7572 582410

SwinTr 0.7128 151386

MLP-Mixer 0.7674 219658

gMLP 0.7405 862218

5. Results of investigating the efficiency of using a layer 
of trainable activation functions

5. 1. Construction of the neural network architec-
ture for the second stage of the ensemble classifier with 
stacking

The KAN architecture proposed in paper [3] assumes 
that, by analogy with MLP, each input signal is transformed 
using q activation functions, the results are fed to q adders 
of the hidden layer. Since the use of MLP is proposed after 
the KAN layer in this paper, we shall adopt the following 
simplification. Each input signal of the second stage is 
transformed using m Gaussian RBF functions, the results 
are weighted by trainable weight coefficients and fed to the 
adder. Thus, only one trainable activation function is formed 
for each of the input signals of the second stage. From the 
outputs of the adders, the signals are fed to the output layer 
of the neural network, consisting of ordinary neurons with 
weight coefficients for the inputs, an adder and a softmax 
activation function.

The Gaussian RBFs used take the following form:

( ) ( ) ( )( )2 2
min / 2

,jk jx x i d s

ji jkx e
− − + × ×

ϕ =     (1)

where i=0, …, (m–1) is the function number,
j=0, …, (l–1) is the number of the first-stage neural net-

work of the ensemble classifier,
xjk is the k-th output signal of the j-th first-stage neural 

network,
l is the number of neural networks at the first stage of the 

ensemble classifier,

m is the number of RBF functions used,
xjmin is the minimum value of the output signal of the j-th 

first-stage neural network,
d=(xmax–xmin)/(m–1) is the distance between the centers 

of adjacent RBFs,
xjmax is the maximum value of the output signal of the j-th 

first-stage neural network,
s=(xjmax–xjmin)/8.45 is the coefficient that specifies the 

RBF width.
Thus, for the outputs of each of the first-stage neural 

networks, its own set of m RBFs is used, the centers of which 
are uniformly distributed from xjmin to xjmax with interval d. 
A typical view of the RBF set for m=6 is shown in Fig. 2.

Fig.	2.	Typical	view	of	RBF	set	for	m=6

The trainable activation function looks like this:

( ) ( )
1

0
,

m

jk jk ji jk jki
i

F x x w
−

=

= ϕ ×∑   (2)

where Fjk is the activation function for the k-th output signal 
of the j-th neural network of the first stage of the ensemble 
classifier,

xjk is the k-th output signal of the j-th neural network of 
the first stage of the ensemble classifier,

wjki is the i-th trainable weight coefficient for forming 
the activation function for the k-th output signal of the j-th 
neural network of the first stage of the ensemble classifier.

In accordance with formula (2), the element of the neural 
network architecture of the second stage of the ensemble 
classifier, which forms the trainable activation function, 
takes the form shown in Fig. 3.

Fig.	3. Formation	of	a	trainable	activation	function	for	xjk
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The architecture of the neural network of the second 
stage of the ensemble classifier is shown in Fig. 4. 

The input signals are the output signals of the first neu-
ral network of the first stage x00, …, x09, the second neural 
network x10, …, x19, and so on up to the output signals of 
the l-th neural network of the first stage x(l–1)0, …, x(l–1)9. 
Each of these signals is transformed by its own trainable 
activation function and is fed to each of the 10 neurons of 
the output layer n0, …, n9. In each of the neurons, all their 
input signals are weighted by trainable weight coefficients, 
summed up, transformed by the softmax activation func-
tion, and fed to the outputs. The bias value, weighted by 
its trainable coefficient, is also fed to the summation in 
the neurons. The output signal of the neurons, which has 
the maximum value, is taken as the response of the neural 
network of the second stage and, accordingly, as the output 
signal of the entire ensemble classifier:

( ) ( )( ){ }arg max .pp
class s y s=   (3) 

The architecture of the entire ensemble classifier is 
shown in Fig. 5. The input of the ensemble classifier is an 
image s, and the output is scalar values y0, …, y9.

Fig.	5.	General	architecture	of	an	ensemble	classifier

The efficiency of using trainable activation functions 
in the second-stage neural network was compared with the 
results reported in [2].

In that work, the second-stage neural network contained 
3 layers:

– input layer, dimensionality c×l (c is the number of class-
es in the data set, l is the number of neural networks at the 
first stage of the classifier);

– hidden layer, dimensionality c×(l–1), activation func-
tion Relu;

– output layer, dimensionally c, activation function 
softmax.

In our work, instead of the hidden layer of the 
second-stage neural network, a layer of trainable ac-
tivation functions was used. The number of trainable 
coefficients in this layer is l×с×m. A comparative table 
for the number of trainable weight coefficients is given  
in Table 2.

Table 1 demonstrates that the neural network ar-
chitecture developed in this subchapter for the second 
stage of the ensemble classifier provides a reduction in 
the number of trained coefficients at the second stage by 
1.96–3.7 times, depending on the number of neural net-
works at the first stage.

Table	2

Number	of	adjustable	weights	in	the	second	stage		
neural	network

Number of classifiers in the 
first stage of the ensemble 

classifier l
2 3 4 5 6

Number of configurable 
weights in MLP [2]

630 830 1,540 2,450 3,560

Number of configurable 
weights in this work for m=6

321 481 641 801 961

Ratio of the number of 
weights

1.96 1.73 2.4 3.06 3.7

5. 2. Studying the dependence of classification 
quality on the number of Gaussian RBFs used for ap-
proximation

For the study, an ensemble classifier with three neural 
networks at the first stage CCT, EANet, and MLP-Mixer 
was used. The resulting classification quality for the entire 
ensemble classifier after training is given in Table 3. The best 
results were obtained for m=6, so this number of RBFs was 
used for further studies.

Table	3

Dependence	of	classification	quality	on	the	number	of	
Gaussian	RBFs	used	for	approximation

Number of  
Gaussian RBFs 

used for  
approximation (m)

4 5 6 7 8

Quality of  
classification

0.8402 0.8423 0.8431 0.8430 0.8418

As an example, Fig. 6 shows the activation functions 
for the output signals of the CCT neural network after 
training the second stage of the ensemble classifier. The 
first stage of the classifier used the CCT, EANet, and 
MLP-Mixer neural networks. The number of RBFs used for 
approximation is m=6.

From the shape of the trained activation curves, it is clear 
that after training, only large positive values are fed to the 
output layer of the second-stage neural network, while nega-
tive and small positive values are reset to zero.

Fig.	4.	Architecture	of	the	neural	network	at	the	second	
stage	of	the	ensemble	classifier
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5. 3. Comparing the efficiency of using trainable acti-
vation functions and pure MLP

A comparison of the efficiency of replacing the hidden layer 
of the MLP of the second stage of the classifier with a layer of 
trainable activation functions was carried out for the number 
of neural networks at the first stage from 3 to 6. The number 
of RBFs used in all cases was m=6. The results are given in Ta-
ble 4. The indicators of MLP use are taken from paper [2].

The results in Table 4 show that replacing the hidden layer 
in MLP with a layer of trainable activation functions led to a 
slight decrease in classification errors from 0.45 % to 1.9 %. 
At the same time, in the second-stage neural network, ac-
cording to Table 1, a significantly smaller number of trainable 
coefficients was used, differing from 1.69 to 3.7 times.

6. Discussion of results of 
the study on using a layer of 

trainable activation functions 
in an ensemble classifier

The distinctive features of 
the proposed architecture of 
the second-stage neural net-
work of the ensemble classifier 
with stacking are as follows. 
Replacing the hidden MLP 
layer used in [4] with a layer of 
trainable activation functions 

 

 

a                                        b                                         c

d                                        e                                        f

g                                        h                                        i

j 

Fig.	6.	Activation	functions	for	the	output	signals	of	the	CCT	neural	network	after	training	the	second	stage	of	the	ensemble	
classifier:	a	–	function	F00;	b	–	function	F01;	c	–	function	F02;	d	–	function	F03;	e	–	function	F04;	f	–	function	F05;		

g	–	function	F06;	h	–	function	F07;	i	–	function	F08;	j	–	function	F09

Table	4

Comparison	of	the	efficiency	of	using	trainable	activation	functions	and	pure	MLP

Classifiers of the first stage l
Classification  
quality when  
using MLP

Classification 
quality when 

using a layer of 
trained activation 

functions

Reducing errors 
when using a 

layer of trainable  
activation  
functions

CCT+EAT+MLP-Mixer 3 0.8401 0.8431 1.9 %

CCT+EAT+MLP-Mixer+FNet 4 0.8445 0.8452 0.45 %

CCT+EAT+MLP-Mixer+FNet+gMLP 5 0.8457 0.8467 0.65 %

CCT+EAT+MLP-Mixer+ 
+FNet+gMLP+SwinTr

6 0.8468 0.8477 0.59 %
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allowed us to reduce the number of errors by 0.45 %–1.9 % 
for the same data set and neural networks at the first stage. 
At the same time, the number of trainable weight coefficients 
decreased by 1.69–3.7 times. Such a reduction in the num-
ber of trainable coefficients was achieved by the fact that, 
unlike in [3, 6, 7, 9–13, 15, 22, 23], each output signal of the 
first stage was processed by only one trainable activation 
function. In addition, the second-stage neural network con-
tained not only trainable activation functions, but also an 
output layer with ordinary neurons. It should also be noted 
that the differences between the proposed architecture of 
the second-stage neural network and the architectures with 
trainable activation functions in the cited works made it 
possible to use the widely used Keras software library [31], 
rather than the specially developed Py Kan [3].

The positive result obtained in this work is a conse-
quence of the simultaneous presence in the proposed archi-
tecture of the second-stage neural network of two different 
types of approximators that complement each other. This is a 
layer with trainable activation functions and an output layer 
with ordinary neurons.

The advantages of the proposed architecture of the 
second-stage neural network are in improving the quality 
of classification with a smaller number of trainable weight 
coefficients. An additional advantage is the ability to use the 
high-level Keras library.

The results given in Table 3 showed that for the used 
CIFAR-10 dataset and the study of the architecture of only 
the second stage of the classifier, the best results are provid-
ed by using 6 Gaussian RBFs for approximation. Obviously, 
for other datasets and other uses of the trainable neural 
network, it is necessary to conduct an additional study 
on the most suitable type of approximating functions and 
their number. The resulting activation functions shown in 
Fig. 6 confirmed the general advantage of using trainable 
activation functions – higher interpretability of the results 
of neural network training [3]. Fig. 6 clearly shows that the 
activation functions pass only significant output signals for 
further processing and cut off negative and small values. 
The results of Tables 1, 4 demonstrate that for all variants 
of ensemble classifiers considered in [2], the proposed ar-
chitecture of the second-stage neural network provides 
higher classification quality with a smaller number of weight 
coefficients. It should be noted that positive results should 
be expected from the joint use of approximators of different 
types in other neural network architectures.

As limitations of our research, it can be noted that it was 
conducted for a specific data set and a specific place of the 
proposed architectural solutions in the general architecture 
of the ensemble classifier.

A disadvantage of the proposed architecture is a small 
increase in the quality of classification. However, overcoming 
this disadvantage is associated, first of all, with the develop-
ment of more efficient architectures of neural networks that 
perform processing at the first stage of the ensemble classifier.

One of the possible directions for advancing our research 
is the construction of new architectures of neural networks 

containing trainable activation functions for the first stage of 
the ensemble classifier with stacking. This area is promising 
for further reducing the volume of calculations and improving 
the quality of classification for the entire ensemble classifier.

7. Conclusions 

1. The architecture of the neural network for the second 
stage of the ensemble classifier has been designed and inves-
tigated. The architecture uses two types of approximators: 
trainable activation functions and regular neurons with 
weight coefficients, an adder, and a fixed activation function. 
Each output signal of the first stage of the classifier is pro-
cessed by only one trainable activation function. It has been 
shown that such an architecture provides higher classifica-
tion quality with a smaller number of trainable coefficients 
by 1.69–3.7 times, compared to MLP.

2. The study of the dependence of classification quality 
on the number of Gaussian RBFs used to approximate one 
activation function showed that for the CIFAR-10 dataset, 
the best is to use 6 RBFs with uniformly distributed centers 
in the range of input signal values. The study of the resulting 
activation functions after training showed their high inter-
pretability, compared to MLP. 

3. Comparison of the use of the proposed neural network 
architecture in comparison with MLP at the second stage of 
the ensemble classifier with the same classifiers at the first 
stage revealed a decrease in classification error by 0.45–1.9 %.
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