
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 5/9 (131) 2024

6

DEVELOPMENT OF A NEURAL
NETWORK WITH A LAYER

OF TRAINABLE ACTIVATION
FUNCTIONS FOR THE SECOND

STAGE OF THE ENSEMBLE
CLASSIFIER WITH STACKING

O l e g G a l c h o n k o v
Corresponding author

PhD,	Associate	Professor*
E-mail:	o.n.galchenkov@gmail.com

O l e k s i i B a r a n o v
Software	Engineer

Oracle	Corporation
Oracle	Way	2300,	Austin,	TX	78741,	United	States

S v e t l a n a A n t o s h c h u k
Doctor	of	Technical	Sciences,	Professor*

O l e h M a s l o v
Doctor	of	Technical	Sciences,	Associate	Professor

Department	of	Physics**
M y k o l a B a b y c h

PhD,	Associate	Professor*
*Department	of	Information	Systems**

**Institute	of	Computer	Systems
Odesа	Polytechnic	National	University

Shevchenka	ave.,	1,	Odesa,	Ukraine,	65044

One of the promising directions for improv-
ing the quality of object recognition in images and
parallelizing calculations is the use of ensemble
classifiers with stacking. A neural network at the
second level makes it possible to achieve the result-
ing quality of classification, which is significantly
higher than each of the networks of the first level
separately. The classification quality of the entire
ensemble classifier with stacking depends on the
efficiency of the neural networks at the first stage,
their number, and the quality of the classification
of the neural network of the second stage. This
paper proposes a neural network architecture for
the second stage of the ensemble classifier, which
combines the approximating properties of tradi-
tional neurons and learning activation functions.
Gaussian Radial Basis Functions (RBFs) were
chosen to implement the learned activation func-
tions, which are summed with the learned weights.
The experimental studies showed that when work-
ing with the CIFAR-10 data set, the best results
are obtained when six RBFs are used. A compar-
ison with the use of multilayer perceptron (MLP)
in the second stage showed a reduction in classi-
fication errors by 0.45–1.9 % depending on the
number of neural networks in the first stage. At
the same time, the proposed neural network archi-
tecture for the second degree had 1.69–3.7 times
less learning coefficients than MLP. This result is
explained by the fact that the use of an output layer
with ordinary neurons allowed us not to enter into
the architecture many learning activation func-
tions for each output signal of the first stage, but
to limit ourselves to only one. Since the results were
obtained on the CIFAR-10 universal data set, a
similar effect could be obtained on a large number
of similar practical data sets

Keywords: multilayer perceptron, neural net-
work, ensemble classifier, weighting coefficients,
classification of objects in images

UDC 681.3.07: 004.8
DOI: 10.15587/1729-4061.2024.311778

How to Cite: Galchonkov, O., Baranov, O., Antoshchuk, S., Maslov, O., Babych, M. (2024). Development of a neural network with

a layer of trainable activation functions for the second stage of the ensemble classifier with stacking. Eastern-European Journal of

Enterprise Technologies, 5 (9 (131)), 6–13. https://doi.org/10.15587/1729-4061.2024.311778

Received date 05.07.2024

Accepted date 17.09.2024

Published date 23.10.2024

1. Introduction

The accuracy of computer vision algorithms is en-
hanced by improving the architecture of neural networks,
increasing their depth and processing width. However,
very deep neural networks, due to the sequential process-
ing of input signals, encounter problems with the stability
of the learning process and low efficiency of parallelizing
computational processes. This leads to the need to use
supercomputers, which complicates the expansion of the
area of their practical use. One of the promising approach-
es to overcoming these problems is the development of
architectures with an increased processing width. This
is most fully and consistently incorporated into the ar-
chitecture of ensemble classifiers and, in particular, into
ensemble classifiers with stacking [1]. This architecture
assumes the presence of two processing stages. At the first
stage, a number of conventional classifiers operate in par-
allel, each of which processes the input signal according to

its own algorithm and produces a complete response on its
classification. At the second stage, a neural network also
operates, which accepts the output signals of the neural
networks of the first stage as input and forms the final
classification result. Such a construction of the classifi-
er architecture opens up wide possibilities for practical
implementation. Firstly, the first stage can use neural
networks that are acceptable for a specific application
in terms of classification quality, computation volume,
training speed, and available training data volume. These
networks can be trained independently of each other.
Secondly, such a construction of the first stage is easier to
implement on multiprocessor and multi-core computers,
as well as on computing nodes in the cloud.

Despite the specific classification quality of the neural
networks of the first stage, a further increase in the resulting
classification quality is ensured by increasing the number
of neural networks in the first stage. Naturally, the more
efficient the networks used in the first stage, the higher

Copyright © 2024, Authors. This is an open access article under the Creative Commons CC BY license

INFORMATION AND CONTROLLING SYSTEM

7

Information and controlling system

duced. It is shown that scaling convolutional networks in
width allows obtaining better results compared to scaling
in depth. All that made it possible to significantly improve
the quality of classifying objects in images with a smaller
number of training parameters. It should be noted that
the architecture proposed in [7] showed high results in
the problem of classifying objects in images, and the use
of an ensemble classifier with stacking at the second stage
requires additional research. A modification of the well-
known MLP-Mixer architecture [8] using the KAN ap-
proach is aimed at solving the same problem, resulting in
the KAN-Mixer architecture [9]. It shows higher results
than MLP-Mixer, but lower than in [7]. In [10], a study
was conducted on graph neural networks (GNNs), which
are used for feature extraction by capturing dependences
within graphs. MLPs and fixed activation functions were
completely removed from the neural network. Replacing
them with KANs showed a significant increase in clas-
sification quality. However, this was achieved only for a
small number of classes and the training time of such a
network increased by an order of magnitude compared
to a regular GNN. A similar problem, but in the area of
graph collaborative filtering (GCF), was studied in [11].
To speed up training, the Fourier transform was built into
the model architecture. However, the KAN in this model
is used as part of the feature transformation during mes-
sage passing to the graph convolution network (GCN).
This makes it difficult to determine the net contribution
of the KAN to the final result, since the model also uses
message dropout and node dropout strategies to improve
the representation power and robustness of the model.
Another area where KANs have shown both better quality
of predicting time-varying signals and less computational
effort is satellite traffic forecasting [12]. Trainable activa-
tion functions allow better prediction of complex signal
shapes, compared to MLP. It should be noted that in [12]
the pure KAN architecture was used, which does not add
new architectural approaches for using KAN in other
applications. In [13], the SigKAN architecture with train-
able path signatures was proposed for forecasting time
series using KAN. This improved the forecasting quality,
but the use of path signatures in image classification re-
quires additional research.

Thus, the use of trainable activation functions is
promising in terms of providing additional capabilities
of the neural network to improve the resulting quality
of processing with a smaller number of trainable param-
eters. However, the issues of practical implementation of
trainable activation functions and the efficiency of their
use in various neural network architectures remain open.
In the first work [3], which proposed the KAN architec-
ture, splines were used to implement trainable activation
functions. However, many subsequent studies propose
replacing splines with other systems of functions that
have proven efficient in various approximation problems
to improve the efficiency of neural networks. Radial ba-
sis functions (RBF) have found the widest use in neural
networks. In [14], universal approximation properties
of neural networks with RBF are considered. In [15], it
is shown that Gaussian RBFs approximate splines well.
However, the issue of joint use of trainable activation
functions and neurons remained unaddressed. In [16],
the use of RBF as an activation function in the hidden

the quality of the resulting classification at the output
of the second stage. The limitation of the number of net-
works in the first stage is the requirement for different
architectures for processing input signals, ensuring that
different networks make mistakes on different input sig-
nals. It should be noted that new processing architectures
are constantly being developed, but their number is not
very large at the moment. Therefore, it is also important
to increase the efficiency of the neural network in the
second stage. Due to the specificity of the input signals
of the second stage, some complex architectures have no
advantage over the multilayer perceptron (MLP), and it
is usually used in practice [2]. MLP consists of neurons,
which is a multi-input adder with adjustable weights for
each of the inputs, the output of which is transformed by
a constant activation function. In [3], it is proposed to
adjust the activation functions. This provides new oppor-
tunities and flexibility in processing input signals. There-
fore, the development of a neural network with trainable
activation functions for the second stage of an ensemble
classifier with stacking to improve the resulting classifi-
cation quality and reduce the amount of computation is a
relevant task.

2. Literature review and problem statement

The theoretical justification for the success of neural
networks in a wide range of application areas is the universal
approximation theorem [4]. The cited work strictly proves
that a multilayer perceptron with one hidden layer, using
an arbitrary nonlinear activation function in neurons, is a
universal approximator, provided that the number of neu-
rons in the hidden layer is large enough. However, the MLP
architecture is not the best in terms of the number of neu-
rons used. Numerous modern neural network architectures
demonstrate higher efficiency compared to MLP with the
same number of trainable coefficients.

In [3], it is proposed to replace the trainable weight
coefficients with trainable nonlinear one-dimensional
functions parameterized as a spline. This architecture
is called KAN (Kolmogorov-Arnold Networks). KAN
nodes use conventional adders, which are not followed by
a nonlinear activation function as in MLP. This architec-
ture, like MLP, is a universal approximator [5]. In [3], it
is shown that for some problems, for example, for solving
partial differential equations, such an architecture shows
two orders of magnitude higher accuracy with two orders
of magnitude fewer parameters. However, when construct-
ing complex composite architectures typical of modern
neural networks, the efficiency of using KAN requires
additional research. In [6], KANs were used directly as
surrogate models to replace the optimization function in a
surrogate evolutionary algorithm. That made it possible to
significantly reduce the dependence on optimization func-
tion estimates during the search process, thereby reducing
optimization costs. However, the use of evolutionary algo-
rithms for training neural networks is effective only for a
narrow class of problems, where the optimization function
can be described as a simple formula. Paper [7] describes
an improved architecture of a convolutional neural net-
work using KAN. New Bottleneck Convolutional Kolm-
ogorov-Arnold and Self KAGNtention layers are intro-

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 5/9 (131) 2024

8

layers of a neural network improved the interpretability
of internal processes. However, the work did not aim to
train activation functions. The influence of the width and
location of the RBF center on the characteristics of the
neural network was studied. In [17], it was proposed to
supplement a conventional neural network with RBF with
a feature extractor. This increased the classification accu-
racy. RBFs in this architecture did not directly solve the
problem of approximating activation functions. In [18],
the problem of approximating functions was solved using
neural networks using RBF. The architecture included a
clustering algorithm that was used to determine the num-
ber of nodes in the hidden layer, as well as the centers and
width of the RBF. That improved the quality of function
approximation; however, this is a significantly limited
solution compared to KAN. Transformation of input
data using exponential functions versus processing un-
modified data and then passing it to a conventional RBF
neural network was investigated in [19]. However, the
unmodified transformation was investigated, as opposed
to the learnable function in KAN. In [20], an algorithm
for training the RBF neural network architecture itself is
proposed. Hidden layer nodes can be added and removed
based on the nodes’ contributions to the resulting char-
acteristics. In addition, the width of the radial functions
is adjusted using a special calculation method. It should
be noted that such an architecture is mainly intended for
research purposes due to the complexity of implementing
the use of well-known high-level libraries for program-
ming neural networks.

The study of the efficiency of replacing splines in KAN with
various polynomial functions was reported in [21]. 18 different
polynomials were tested for recognizing handwritten digits
from the MNIST dataset. It should be noted that all polyno-
mials allowed obtaining high results, which, however, were
significantly lower than the best known results for MNIST. In
addition, the efficiency of using these polynomials in the KAN
architecture when processing more complex datasets remains
unexplored. In [22], the advantage of using Wav-KAN when
processing hyperspectral data is shown using satellite images
taken in an extended spectral range. However, the efficiency of
using wavelets to approximate activation functions in specific
applications requires further study. In order to ensure efficient
parallelization of processing on GPUs, the ReLU-KAN ar-
chitecture is proposed in [23]. Splines are replaced with an
approximation of activation functions using simple ReLU
functions. This replacement allowed to increase the compu-
tation speed by 20 times in the studied examples of approxi-
mation of complex functions. However, this architecture has
been studied only for the problem of approximation of non-
linear functions. In [7], the architecture of a convolutional
neural network using KAN was modernized by introducing
new layers Bottleneck Convolutional Kolmogorov-Arnold
and Self KAGNtention. Comparison of various functions
for approximation of activation functions in the problem of
recognition of objects in images showed the advantage of
Chebyshev polynomials. However, for use at the second stage
of the ensemble classifier, such an architecture is redundant.
Thus, the literature review showed the promise of using
trainable activation functions in neural networks. How-
ever, the KAN architecture in its pure form demonstrates
high results only in problems of approximation of complex
functions. Processing problems such as image classification
requires the introduction of additional elements into the

architecture. Despite the fact that in [3] it was proposed to
use splines to create trainable activation functions, the vast
majority of works with KAN use Gaussian RBF. This is ex-
plained by their proximity to splines and lower computational
costs. Therefore, it seems appropriate to first study the use of
Gaussian RBF at the second stage of the ensemble classifier.
It should be noted that both MLP and KAN are universal ap-
proximators, but their approximation mechanism is different.
Therefore, it seems promising to study the effectiveness of a
neural network for the second stage of the ensemble classifier
with stacking, using the capabilities of MLP and KAN simul-
taneously.

3. The aim and objectives of the study

The aim of our work is to develop and study a neural net-
work for the second stage of the ensemble classifier, contain-
ing a layer of trainable activation functions and MLP. This
will make it possible to reduce the volume of calculations and
improve the quality of classification by ensemble classifiers
with stacking.

To achieve the goal, the following tasks were set:
– to design the architecture of a neural network for the

second stage of the ensemble classifier with stacking, includ-
ing both trainable activation functions and MLP;

– to investigate the dependence of classification quality
on the number of Gaussian RBFs used to approximate one
activation function;

– to compare the efficiency of using trainable activation
functions in the neural network of the second stage of the
classifier compared to using only MLP in it.

4. The study materials and methods

The object of research in this paper is ensemble classi-
fiers with stacking. The subject of our research is a neural
network at the second stage of the classifier. The dataset for
research is CIFAR-10 [24]. This set contains color images,
32×32 pixels in size, 50,000 for training and 10,000 for test-
ing. The images belong to c=10 classes. Examples of images
are shown in Fig. 1 [24].

Fig.	1.	Examples	of	images	from	the	CIFAR-10	set

9

Information and controlling system

The first stage of the ensemble classifier used the same
neural networks as in [2]: CCT [25], EANet [26], MLP-Mix-
er [8], Fnet [27], gMLP [28], and SwinTr [29]. These
networks were trained for 50 epochs. The Xavier initializa-
tion [30] was used to initialize the weight coefficients. The
software implementation of these networks in Python using
the Keras library is given in [31]. The resulting classification
quality of these networks after training for the CIFAR10
dataset and the number of trainable coefficients are given
in Table 1 [2].

The neural network program with trainable activa-
tion functions is written in the Python programming lan-
guage using the Keras library. Training was performed over
200 epochs using the output signals of pre-trained first-
stage neural networks. Training was performed on training
data. Classification quality was assessed on the testing data
set and was defined as the ratio of the number of correctly
recognized objects to the total number of images (10,000).

Table	1

Parameters of the first stage classifiers after training

Neural
network

Quality of classification
Number of trainable

weights

CCT 0.8021 408139

EANet 0.6788 355530

FNet 0.7572 582410

SwinTr 0.7128 151386

MLP-Mixer 0.7674 219658

gMLP 0.7405 862218

5. Results of investigating the efficiency of using a layer
of trainable activation functions

5. 1. Construction of the neural network architec-
ture for the second stage of the ensemble classifier with
stacking

The KAN architecture proposed in paper [3] assumes
that, by analogy with MLP, each input signal is transformed
using q activation functions, the results are fed to q adders
of the hidden layer. Since the use of MLP is proposed after
the KAN layer in this paper, we shall adopt the following
simplification. Each input signal of the second stage is
transformed using m Gaussian RBF functions, the results
are weighted by trainable weight coefficients and fed to the
adder. Thus, only one trainable activation function is formed
for each of the input signals of the second stage. From the
outputs of the adders, the signals are fed to the output layer
of the neural network, consisting of ordinary neurons with
weight coefficients for the inputs, an adder and a softmax
activation function.

The Gaussian RBFs used take the following form:

() () ()()2 2
min / 2

,jk jx x i d s

ji jkx e
− − + × ×

ϕ = (1)

where i=0, …, (m–1) is the function number,
j=0, …, (l–1) is the number of the first-stage neural net-

work of the ensemble classifier,
xjk is the k-th output signal of the j-th first-stage neural

network,
l is the number of neural networks at the first stage of the

ensemble classifier,

m is the number of RBF functions used,
xjmin is the minimum value of the output signal of the j-th

first-stage neural network,
d=(xmax–xmin)/(m–1) is the distance between the centers

of adjacent RBFs,
xjmax is the maximum value of the output signal of the j-th

first-stage neural network,
s=(xjmax–xjmin)/8.45 is the coefficient that specifies the

RBF width.
Thus, for the outputs of each of the first-stage neural

networks, its own set of m RBFs is used, the centers of which
are uniformly distributed from xjmin to xjmax with interval d.
A typical view of the RBF set for m=6 is shown in Fig. 2.

Fig.	2.	Typical	view	of	RBF	set	for	m=6

The trainable activation function looks like this:

() ()
1

0
,

m

jk jk ji jk jki
i

F x x w
−

=

= ϕ ×∑ (2)

where Fjk is the activation function for the k-th output signal
of the j-th neural network of the first stage of the ensemble
classifier,

xjk is the k-th output signal of the j-th neural network of
the first stage of the ensemble classifier,

wjki is the i-th trainable weight coefficient for forming
the activation function for the k-th output signal of the j-th
neural network of the first stage of the ensemble classifier.

In accordance with formula (2), the element of the neural
network architecture of the second stage of the ensemble
classifier, which forms the trainable activation function,
takes the form shown in Fig. 3.

Fig.	3. Formation	of	a	trainable	activation	function	for	xjk

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 5/9 (131) 2024

10

The architecture of the neural network of the second
stage of the ensemble classifier is shown in Fig. 4.

The input signals are the output signals of the first neu-
ral network of the first stage x00, …, x09, the second neural
network x10, …, x19, and so on up to the output signals of
the l-th neural network of the first stage x(l–1)0, …, x(l–1)9.
Each of these signals is transformed by its own trainable
activation function and is fed to each of the 10 neurons of
the output layer n0, …, n9. In each of the neurons, all their
input signals are weighted by trainable weight coefficients,
summed up, transformed by the softmax activation func-
tion, and fed to the outputs. The bias value, weighted by
its trainable coefficient, is also fed to the summation in
the neurons. The output signal of the neurons, which has
the maximum value, is taken as the response of the neural
network of the second stage and, accordingly, as the output
signal of the entire ensemble classifier:

() ()(){ }arg max .pp
class s y s= (3)

The architecture of the entire ensemble classifier is
shown in Fig. 5. The input of the ensemble classifier is an
image s, and the output is scalar values y0, …, y9.

Fig.	5.	General	architecture	of	an	ensemble	classifier

The efficiency of using trainable activation functions
in the second-stage neural network was compared with the
results reported in [2].

In that work, the second-stage neural network contained
3 layers:

– input layer, dimensionality c×l (c is the number of class-
es in the data set, l is the number of neural networks at the
first stage of the classifier);

– hidden layer, dimensionality c×(l–1), activation func-
tion Relu;

– output layer, dimensionally c, activation function
softmax.

In our work, instead of the hidden layer of the
second-stage neural network, a layer of trainable ac-
tivation functions was used. The number of trainable
coefficients in this layer is l×с×m. A comparative table
for the number of trainable weight coefficients is given
in Table 2.

Table 1 demonstrates that the neural network ar-
chitecture developed in this subchapter for the second
stage of the ensemble classifier provides a reduction in
the number of trained coefficients at the second stage by
1.96–3.7 times, depending on the number of neural net-
works at the first stage.

Table	2

Number	of	adjustable	weights	in	the	second	stage		
neural	network

Number of classifiers in the
first stage of the ensemble

classifier l
2 3 4 5 6

Number of configurable
weights in MLP [2]

630 830 1,540 2,450 3,560

Number of configurable
weights in this work for m=6

321 481 641 801 961

Ratio of the number of
weights

1.96 1.73 2.4 3.06 3.7

5. 2. Studying the dependence of classification
quality on the number of Gaussian RBFs used for ap-
proximation

For the study, an ensemble classifier with three neural
networks at the first stage CCT, EANet, and MLP-Mixer
was used. The resulting classification quality for the entire
ensemble classifier after training is given in Table 3. The best
results were obtained for m=6, so this number of RBFs was
used for further studies.

Table	3

Dependence	of	classification	quality	on	the	number	of	
Gaussian	RBFs	used	for	approximation

Number of
Gaussian RBFs

used for
approximation (m)

4 5 6 7 8

Quality of
classification

0.8402 0.8423 0.8431 0.8430 0.8418

As an example, Fig. 6 shows the activation functions
for the output signals of the CCT neural network after
training the second stage of the ensemble classifier. The
first stage of the classifier used the CCT, EANet, and
MLP-Mixer neural networks. The number of RBFs used for
approximation is m=6.

From the shape of the trained activation curves, it is clear
that after training, only large positive values are fed to the
output layer of the second-stage neural network, while nega-
tive and small positive values are reset to zero.

Fig.	4.	Architecture	of	the	neural	network	at	the	second	
stage	of	the	ensemble	classifier

11

Information and controlling system

5. 3. Comparing the efficiency of using trainable acti-
vation functions and pure MLP

A comparison of the efficiency of replacing the hidden layer
of the MLP of the second stage of the classifier with a layer of
trainable activation functions was carried out for the number
of neural networks at the first stage from 3 to 6. The number
of RBFs used in all cases was m=6. The results are given in Ta-
ble 4. The indicators of MLP use are taken from paper [2].

The results in Table 4 show that replacing the hidden layer
in MLP with a layer of trainable activation functions led to a
slight decrease in classification errors from 0.45 % to 1.9 %.
At the same time, in the second-stage neural network, ac-
cording to Table 1, a significantly smaller number of trainable
coefficients was used, differing from 1.69 to 3.7 times.

6. Discussion of results of
the study on using a layer of

trainable activation functions
in an ensemble classifier

The distinctive features of
the proposed architecture of
the second-stage neural net-
work of the ensemble classifier
with stacking are as follows.
Replacing the hidden MLP
layer used in [4] with a layer of
trainable activation functions

a b c

d e f

g h i

j

Fig.	6.	Activation	functions	for	the	output	signals	of	the	CCT	neural	network	after	training	the	second	stage	of	the	ensemble	
classifier:	a	–	function	F00;	b	–	function	F01;	c	–	function	F02;	d	–	function	F03;	e	–	function	F04;	f	–	function	F05;		

g	–	function	F06;	h	–	function	F07;	i	–	function	F08;	j	–	function	F09

Table	4

Comparison	of	the	efficiency	of	using	trainable	activation	functions	and	pure	MLP

Classifiers of the first stage l
Classification
quality when
using MLP

Classification
quality when

using a layer of
trained activation

functions

Reducing errors
when using a

layer of trainable
activation
functions

CCT+EAT+MLP-Mixer 3 0.8401 0.8431 1.9 %

CCT+EAT+MLP-Mixer+FNet 4 0.8445 0.8452 0.45 %

CCT+EAT+MLP-Mixer+FNet+gMLP 5 0.8457 0.8467 0.65 %

CCT+EAT+MLP-Mixer+
+FNet+gMLP+SwinTr

6 0.8468 0.8477 0.59 %

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 5/9 (131) 2024

12

allowed us to reduce the number of errors by 0.45 %–1.9 %
for the same data set and neural networks at the first stage.
At the same time, the number of trainable weight coefficients
decreased by 1.69–3.7 times. Such a reduction in the num-
ber of trainable coefficients was achieved by the fact that,
unlike in [3, 6, 7, 9–13, 15, 22, 23], each output signal of the
first stage was processed by only one trainable activation
function. In addition, the second-stage neural network con-
tained not only trainable activation functions, but also an
output layer with ordinary neurons. It should also be noted
that the differences between the proposed architecture of
the second-stage neural network and the architectures with
trainable activation functions in the cited works made it
possible to use the widely used Keras software library [31],
rather than the specially developed Py Kan [3].

The positive result obtained in this work is a conse-
quence of the simultaneous presence in the proposed archi-
tecture of the second-stage neural network of two different
types of approximators that complement each other. This is a
layer with trainable activation functions and an output layer
with ordinary neurons.

The advantages of the proposed architecture of the
second-stage neural network are in improving the quality
of classification with a smaller number of trainable weight
coefficients. An additional advantage is the ability to use the
high-level Keras library.

The results given in Table 3 showed that for the used
CIFAR-10 dataset and the study of the architecture of only
the second stage of the classifier, the best results are provid-
ed by using 6 Gaussian RBFs for approximation. Obviously,
for other datasets and other uses of the trainable neural
network, it is necessary to conduct an additional study
on the most suitable type of approximating functions and
their number. The resulting activation functions shown in
Fig. 6 confirmed the general advantage of using trainable
activation functions – higher interpretability of the results
of neural network training [3]. Fig. 6 clearly shows that the
activation functions pass only significant output signals for
further processing and cut off negative and small values.
The results of Tables 1, 4 demonstrate that for all variants
of ensemble classifiers considered in [2], the proposed ar-
chitecture of the second-stage neural network provides
higher classification quality with a smaller number of weight
coefficients. It should be noted that positive results should
be expected from the joint use of approximators of different
types in other neural network architectures.

As limitations of our research, it can be noted that it was
conducted for a specific data set and a specific place of the
proposed architectural solutions in the general architecture
of the ensemble classifier.

A disadvantage of the proposed architecture is a small
increase in the quality of classification. However, overcoming
this disadvantage is associated, first of all, with the develop-
ment of more efficient architectures of neural networks that
perform processing at the first stage of the ensemble classifier.

One of the possible directions for advancing our research
is the construction of new architectures of neural networks

containing trainable activation functions for the first stage of
the ensemble classifier with stacking. This area is promising
for further reducing the volume of calculations and improving
the quality of classification for the entire ensemble classifier.

7. Conclusions

1. The architecture of the neural network for the second
stage of the ensemble classifier has been designed and inves-
tigated. The architecture uses two types of approximators:
trainable activation functions and regular neurons with
weight coefficients, an adder, and a fixed activation function.
Each output signal of the first stage of the classifier is pro-
cessed by only one trainable activation function. It has been
shown that such an architecture provides higher classifica-
tion quality with a smaller number of trainable coefficients
by 1.69–3.7 times, compared to MLP.

2. The study of the dependence of classification quality
on the number of Gaussian RBFs used to approximate one
activation function showed that for the CIFAR-10 dataset,
the best is to use 6 RBFs with uniformly distributed centers
in the range of input signal values. The study of the resulting
activation functions after training showed their high inter-
pretability, compared to MLP.

3. Comparison of the use of the proposed neural network
architecture in comparison with MLP at the second stage of
the ensemble classifier with the same classifiers at the first
stage revealed a decrease in classification error by 0.45–1.9 %.

Conflicts of interest

The authors declare that they have no conflicts of inter-
est in relation to the current study, including financial, per-
sonal, authorship, or any other, that could affect the study, as
well as the results reported in this paper.

Funding

The research was carried out with financial support
from the National Research Foundation of Ukraine, grant
No. 131/0161.

Data availability

The manuscript has associated data in the data ware-
house.

Use of artificial intelligence

The authors used artificial intelligence technologies
within acceptable limits to provide their own verified data,
which is described in the research methodology section.

References

1. Rokach, L. (2019). Ensemble Learning. Series in Machine Perception and Artificial Intelligence. https://doi.org/10.1142/11325

2. Galchonkov, O., Babych, M., Zasidko, A., Poberezhnyi, S. (2022). Using a neural network in the second stage of the ensemble

classifier to improve the quality of classification of objects in images. Eastern-European Journal of Enterprise Technologies,

3 (9 (117)), 15–21. https://doi.org/10.15587/1729-4061.2022.258187

13

Information and controlling system

3. Liu, Z., Wang, Y., Vaidya, S., Ruehle, F., Halverson, J., Soljačič, M. et al. (2024). KAN: Kolmogorov-Arnold Networks. arXiv. https://

doi.org/10.48550/arXiv.2404.19756

4. Hornik, K., Stinchcombe, M., White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks,

2 (5), 359–366. https://doi.org/10.1016/0893-6080(89)90020-8

5. Braun, J., Griebel, M. (2009). On a Constructive Proof of Kolmogorov’s Superposition Theorem. Constructive Approximation,

30 (3), 653–675. https://doi.org/10.1007/s00365-009-9054-2

6. Hao, H., Zhang, X., Li, B., Zhou, A. (2024). A First Look at Kolmogorov-Arnold Networks in Surrogate-assisted Evolutionary

Algorithms. arXiv. https://doi.org/10.48550/arXiv.2405.16494

7. Drokin, I. (2024). Kolmogorov-Arnold Convolutions: Design Principles and Empirical Studies. arXiv. https://doi.org/10.48550/

arXiv.2407.01092

8. Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner, T. et al. (2021). MLP-Mixer: An all-MLP Architecture

for Vision. arXiv. https://doi.org/10.48550/arXiv.2105.01601

9. Cheon, M. (2024). Demonstrating the efficacy of Kolmogorov-Arnold Networks in vision tasks. arXiv. https://doi.org/10.48550/

arXiv.2406.14916

10. Zhang, F., Zhang, X. (2024). GraphKAN: Enhancing Feature Extraction with Graph Kolmogorov Arnold Networks. arXiv. https://

doi.org/10.48550/arXiv.2406.13597

11. Xu, J., Chen, Z., Li, J., Yang, S., Wang, W., Hu, X. et al. (2024). FourierKAN-GCF: Fourier Kolmogorov-Arnold Network – An

Effective and Efficient Feature Transformation for Graph Collaborative Filtering. arXiv. https://doi.org/10.48550/arXiv.2406.01034

12. Vaca-Rubio, C. J., Blanco, L., Pereira, R., Caus, M. (2024). Kolmogorov-Arnold Networks (KANs) for Time Series Analysis. arXiv.

https://doi.org/10.48550/arXiv.2405.08790

13. Inzirillo, H., Genet, R. (2024). SigKAN: Signature-Weighted Kolmogorov-Arnold Networks for Time Series. arXiv. https://doi.org/

10.48550/arXiv.2406.17890

14. Ismayilova, A., Ismayilov, M. (2023). On the universal approximation property of radial basis function neural networks. Annals of

Mathematics and Artificial Intelligence, 92 (3), 691–701. https://doi.org/10.1007/s10472-023-09901-x

15. Li, Z. (2024). Kolmogorov-Arnold Networks are Radial Basis Function Networks. arXiv. https://doi.org/10.48550/arXiv.2405.06721

16. Bao, X., Liu, G., Yang, G., Wang, S. (2020). Multi-instance Multi-label Text Categorization Algorithm Based on Multi-quadric

Function Radial Basis Network Model. 2020 3rd International Conference on Artificial Intelligence and Big Data (ICAIBD), 1998,

133–136. https://doi.org/10.1109/icaibd49809.2020.9137478

17. Basha Kattubadi, I., Murthy Garimella, R. (2020). Novel Deep Learning Architectures: Feature Extractor and Radial Basis

Function Neural Network. 2020 International Conference on Computational Performance Evaluation (ComPE), 024–027. https://

doi.org/10.1109/compe49325.2020.9200146

18. He, Z.-R., Lin, Y.-T., Lee, S.-J., Wu, C.-H. (2018). A RBF Network Approach for Function Approximation. 2018 IEEE International

Conference on Information and Automation (ICIA), 9, 105–109. https://doi.org/10.1109/icinfa.2018.8812435

19. Panda, S., Panda, G. (2022). On the Development and Performance Evaluation of Improved Radial Basis Function Neural Networks.

IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52 (6), 3873–3884. https://doi.org/10.1109/tsmc.2021.3076747

20. Wu, C., Kong, X., Yang, Z. (2018). An Online Self-Adaption Learning Algorithm for Hyper Basis Function Neural Network.

2018 2nd IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference (IMCEC),

9, 215–220. https://doi.org/10.1109/imcec.2018.8469684

21. Seydi, S. T. (2024). Exploring the Potential of Polynomial Basis Functions in Kolmogorov-Arnold Networks: A Comparative Study

of Different Groups of Polynomials. arXiv. https://doi.org/10.48550/arXiv.2406.02583

22. Seydi, S. T. (2024). Unveiling the Power of Wavelets: A Wavelet-based Kolmogorov-Arnold Network for Hyperspectral Image

Classification. arXiv. https://doi.org/10.48550/arXiv.2406.07869

23. Qiu, Q., Zhu, T., Gong, H., Chen, L., Ning, H. (2024). ReLU-KAN: New Kolmogorov-Arnold Networks that Only Need Matrix

Addition, Dot Multiplication, and ReLU. arXiv. https://doi.org/10.48550/arXiv.2406.02075

24. Krizhevsky, A. The CIFAR-10 dataset. Available at: https://www.cs.toronto.edu/~kriz/cifar.html

25. Hassani, A., Walton, S., Shah, N., Abuduweili, A., Li, J., Shi, H. (2021). Escaping the Big Data Paradigm with Compact Transformers.

arXiv. https://doi.org/10.48550/arXiv.2104.05704

26. Guo, M.-H., Liu, Z.-N., Mu, T.-J., Hu, S.-M. (2022). Beyond Self-Attention: External Attention Using Two Linear Layers for Visual

Tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–13. https://doi.org/10.1109/tpami.2022.3211006

27. Lee-Thorp, J., Ainslie, J., Eckstein, I., Ontanon, S. (2022). FNet: Mixing Tokens with Fourier Transforms. Proceedings of the 2022

Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies.

https://doi.org/10.18653/v1/2022.naacl-main.319

28. Liu, H., Dai, Z., So, D. R., Le, Q. V. (2021). Pay Attention to MLPs. arXiv. https://doi.org/10.48550/arXiv.2105.08050

29. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z. et al. (2021). Swin Transformer: Hierarchical Vision Transformer using Shifted

Windows. 2021 IEEE/CVF International Conference on Computer Vision (ICCV). https://doi.org/10.1109/iccv48922.2021.00986

30. Brownlee, J. (2021). Weight Initialization for Deep Learning Neural Networks. Available at: https://machinelearningmastery.com/

weight-initialization-for-deep-learning-neural-networks/

31. Code examples. Computer vision. Keras. Available at: https://keras.io/examples/vision/

