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The object of the study is the quality of heli­
copter maintenance based on digital diagnostic 
tools. To ensure the required quality, quantita­
tive risk assessment models for the in-depth and 
express diagnostics system of helicopter gas tur­
bine engines in a neural network environment are 
proposed. The assessment of diagnostic efficiency 
is based on the analysis of probable control risks 
by standard deviations, which distinguishes the 
proposed approach from the traditional one. Two 
diagnostic modes are considered: rapid diagnostics 
exemplified by vibration diagnostics, and in-depth 
diagnostics, including both vibration diagnostics 
and pyrometric control. These diagnostic methods 
make it possible to implement a remote monitor­
ing system at aircraft repair facilities, which sig­
nificantly reduces maintenance labor intensity. As 
a  result, it was found that control risks depend not 
only on the metrological level of measuring instru­
ments but also on a combination of the statistical 
nature of control agents in their system compo­
sition according to the following characteristics: 
statistical parameters of the controlled indica­
tor, distribution laws, and values of uncertainty of 
measuring instruments, as well as the uncertainty 
of control standards (tolerances). In the modeling 
process, risks were assessed as a function of the 
ratio of uncertainties of measuring instruments to 
the uncertainty of the controlled parameter, with 
varying values of the standard (tolerance). This 
approach will allow, in practice, the creation of 
a  more effective system for monitoring and col­
lecting statistical information on the operational 
reliability of the Mi-8 helicopter engine, where the 
quality of control is predicted to a greater extent 
based on the metrological indicators of the measur­
ing instruments and methods
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1. Introduction

Based on the analysis of decisions made by government 
bodies in Kazakhstan and assessing the current state of the 
country’s technical policy and economy, it was concluded that 
one of the key factors in accelerating the development of the 
Republic of Kazakhstan and improving the quality of life of its 
population lies in transitioning the economy to a fundamentally 
new development trajectory – based on digital transformation, 
following the example of technologically successful countries.

In 2017, the "Digital Kazakhstan" State Program (No. 827) 
was developed, which was followed by a new Digital Transfor-
mation Program (No. 311) in 2022. Currently, several strategic 
documents, such as the National Development Plan of the 
Republic of Kazakhstan until 2025 and the Concept for Digital 
Transformation, outline tasks and measures that focus on arti-
ficial intelligence as a fundamental direction.

According to the 2023 Government artificial intelli-
gence (AI) Readiness Index by Oxford Insights, Kazakhstan 
ranks 72nd among 193 countries and 3rd in regional rankings 
for South and Central Asia, following India and Turkey [1]. 
Fig. 1 shows the percentage of readiness for the implementa-
tion of artificial intelligence in Republic of Kazakhstan.

An advantage of Republic of Kazakhstan is its high level 
of digitalization. According to the United Nations, Kazakh-
stan ranks 28th in the "E-Government Development Index" 
and 8th in the "Online Services Index". Kazakhstan ranks 
15th in the E-Participation Index (EPI), one of the highest 
positions globally [1]. Currently, the number of scientific 
publications in the field of AI is 1,016. The International 
Data Corporation estimates that by the end of 2023, global 
spending on AI systems, including software, hardware, and 
related services, will reach $154 billion with an average an-
nual growth rate of 42 % over the last decade.
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Fig. 1. Kazakhstan’s readiness to implement artificial 
intelligence [1]

All of these external factors, driven by the digital trans-
formation of the country’s socio-economic environment and 
competition within the aviation maintenance and repair 
services niche, create strong preconditions for innovative 
development in this field and among individual enterprises.

2. Literature review and problem statement

The paper [2] presents the results of studies on diagnostic 
methods for wind turbine gearboxes based on the vibration 
method. In this study, diagnostics were based on an intelligent 
approach for assessing gearbox faults. The value of dispersion 
entropy was chosen as the fault criterion. To establish a diag-
nosis in the empirical measurement results, the vibration spec-
trum was restructured, regression smoothing was performed, 
and a function was obtained for predicting the fault trend. 
The proposed method, as a general approach to diagnosing 
gearboxes, is applicable, but the quantitative results for heli-
copter gearboxes will differ significantly from those for wind 
equipment because they have completely different design 
solutions. The use of the "least squares method" in smoothing 
is not a new achievement to specifically note in the work, 
since all regressions use this method. The effectiveness of the 
diagnostic results in quantitative measurements was also not 
reported. Remote monitoring is a common advantage of the 
vibration methods.

The paper [3] presents a diagnostic method using a con-
trol quality assessment algorithm based on fuzzy logic. Fuzzy 
approaches in control processes are currently widely used 
by fuzzy chips, produced in a wide range by industry, which 
significantly reduces the labor intensity of the technical 
implementation of diagnostics and the cost of such systems. 
However, a significant drawback is the low accuracy of such 
control algorithms, as the basis of the fuzziness of any estimate 
is subjective. The basis of modeling and algorithmization of 
control processes of fuzzy systems is a linguistic approach, 
where already at the first stage of "fuzzification", the number 
of terms is determined subjectively, the purpose of the sig-
nificance of each term is also set subjectively, the parameters 
of the term in its mathematical interpretation are also deter-
mined by experts. Therefore, these systems are used for rough 
qualitative assessment and decision-making and are acceptable 
for some systems. In the subject area studied by the author of 
this work, a research system consisting of a personal computer 
and an external interface based on a microcontroller (Micro-
chip PIC16C73A) was proposed. The obtained data (stored 
in the *.dat files) is calculated and analyzed in the frequency 
domain of the signal by the SPTOOL processing tool of the 
Matlab5 package. Only system imbalance was diagnosed.

In [4], a systematic review of the current methods of using 
vibration for machine monitoring and diagnostics was presented.  
It includes data collection, applied tools such as analyzers and 
sensors, feature extraction, and fault-recognition methods. 
This study proposes the use of artificial intelligence (AI). This 
paper presents a forecast of future vibration level development. 
The author concludes that in the future, a combination of 
statistical functions in the time domain and deep learning 
approaches will be widely used for this purpose, where fault 
characteristics can be automatically extracted from raw vibra-
tion signals. This paper notes that the use of various sensors 
and communication devices in new intelligent machines will 
create a huge new problem in vibration monitoring and di-
agnostics. However, the author does not specifically consider 
future technical, metrological, and organizational problems in 
this study, which reduces the quality of recommendations for 
choosing directions in practical diagnostics.

The paper [5] presents a method for online diagnostics of 
faults in real time for a turbine gearbox. This paper presents 
data on the evolution of the vibration signal level using an 
example of a gearbox. The proposed method decomposes the 
signal spectrum into a Fourier series. In this case, the following 
operations are performed: extraction of time-domain charac-
teristics and frequency-domain characteristics, and extraction 
of nonlinear characteristics of the principal component from 
the time-domain and frequency-domain characteristics. This 
paper proposes the use of a neural network approach with 
training by using a pre-trained principal component analysis 
model of a neuron kernel, calculating the SPE statistics of the 
degree of deviation from the principal component model of the 
kernel based on the characteristics of the nonlinear principal 
components. In this case, a decision is made that the state of 
the gearbox is normal if the statistics of the degree of deviation 
from the principal component model of the kernel are less 
than a specified threshold; otherwise, a judgment is made that 
the state of the gearbox is abnormal. The advantages of the 
proposed method are the simplicity and ease of obtaining the 
required data, as well as the high efficiency of fault diagnostics 
and the smaller amount of required sample data of characteris-
tic data. The disadvantage of this work is the lack of informa-
tion about the type and number of sensors, the location of the 
sensors, the need for a reference working object for comparison 
and decision-making, and most importantly, the accuracy of 
the diagnosis. This approach for some procedures and solu-
tions has already been used and described in the literature [3].

The ISO 31000 standard regulates the mandatory quan-
titative assessment of the risk of any project or innovative 
work [6]. The main reason for risk is the parametric uncer-
tainty of management agents and statistical uncertainty of 
data. In many studies, the conditions of statistical uncertain-
ty are called risk conditions.

The paper [7] presented one of the first formulations, as 
well as the connection of risk categories with uncertainties. 
According to Knight’s concept, risk is a measurable uncertain-
ty: an entrepreneur can "foresee" or "guess" some basic para
meters (results, conditions) of his business in the future. The 
question arises: What is objective "measurability" if uncertain-
ty is assessed subjectively ("foresee" or "guess")? At present, 
for forecasting (foreseeing), many methods and mathematical 
tools have been developed [4, 5].

Recently, the concept of uncertainty has been studied 
from different points of view in many areas of science, tech-
nology, and economics. Thus, [8] proposed a structural model 
for classifying uncertainties "by the method of assessment  
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and the method of expression". Methodologically, the measure-
ment uncertainties in this case are divided into the uncertainty 
of category A and uncertainty of category B. Type A is based 
on statistical estimates. Using the expression method, a dis-
tinction is made between standard (mean square deviation), 
total, expanded, and relative uncertainties. In many countries, 
this approach has achieved the status of a generally accepted 
standard. When assessing uncertainty by type B, the only 
information available is often that the measured value lies in  
a certain interval, and information of this type can be forma
lized as a uniform probability distribution.

Uncertainty gives rise to risk. In 2016, the International Or-
ganization for Standardization (ISO) developed a special sec-
tion within the ISO 31000 standard called "Risk Management" 
where four new normative documents appeared: ISO Guide 73 
"Risk Management. Vocabulary: ISO 31000 "Risk Manage-
ment [6, 9]. Principles and Guidelines"; ISO/TR 31004 "Risk 
Management. Guide for the Implementation of ISO 31000"; 
IEC 31010 "Risk Management. Risk Assessment Practices".  
In these documents, an important fact and difference of the new 
edition is that the modified standard uses a requirement for risk 
assessment (risk-based thinking, ed.) for the entire risk-mana
gement process chain. This addition increases the importance 
of the risk control system, which makes quantitative risk mea-
surement mandatory.

The quantitative assessment and forecasting of risks in 
a control system were studied in [10]. This study presents 
analytical expressions for assessing and forecasting risks using 
nondeterministic standards. Normative restrictions are repre-
sented by lower and upper restrictions, respectively. The tole
rance limits were approximated using normal distribution laws. 
The controlled parameter has an equally probable distribution. 
The selected composition of statistical distribution laws is en-
countered in practice, as the author of the paper notes, when 
monitoring the parameters associated with flight hazards.

The paper [11] presents the results of the formalization 
of the robust control system of the VLC object under con-
ditions of statistical uncertainty of the parameters of the 
decision-making process. An agent-based nine-screen model 
of system dynamics is proposed for the system description of 
the subject of this study, which reduces risks. This paper also 
develops and proposes a new modified approach to expert 
integrated assessment of the result, which reduces the subjec-
tive component of this method. To move from a quantitative 
assessment of the result to a final qualitative assessment, the 
Harrington curve is proposed. The principle of VLC informa-
tion transmission in aircraft maintenance systems proposed 
in this study, along with high electromagnetic immunity, de-
pends on optical interference, which significantly reduces its 
applicability in practice. This paper proposes probabilistic es-
timates of the "producer risk" and "consumer risk". However, 
the proposed expressions can only be used with the "lower" 
limit standards, and in real diagnostic practice, "upper" limits 
and tolerance formats of standards are often used. Therefore, 
the proposed mathematical support has limited application.

Based on the literature review conducted, it can be 
concluded that modern control and diagnostic systems face 
issues related to low control efficiency, a lack of consistency, 
and insufficient integration in decision-making. Additionally, 
in the diagnostics of helicopter engine conditions, there is 
no integrated approach or criteria for assessing the techni-
cal condition of the engine, nor is there a methodology for 
quantitatively evaluating the quality of control and associa
ted risks-especially since control errors impact flight safety.  

Improving decision-making quality and risk reduction sys-
tems in the face of parametric uncertainty and fuzzy data 
necessitates a strong reliance on integrated multiparametric 
systems and neural network technologies.

3. The aim and objectives of the study

The aim of the study is to develop a neural network ap-
proach to risk management in a diagnostic system of the tech-
nical condition of helicopter equipment. This will significantly 
enhance the efficiency and reliability of the control process in 
the helicopter engine maintenance system.

To achieve this aim, it is necessary to solve the following 
objectives:

– to develop models for quantitative risk assessment of 
the express diagnostics system of helicopter gas turbine en-
gines in a neural network environment;

– to develop models for quantitative risk assessment of in-
depth diagnostics of helicopter gas turbine engines in a trained 
neural network environment;

– to implement a computer experiment, analyze the results 
of the experiment, and propose recommendations for effec-
tively maintaining the operational reliability of helicopters.

4. Materials and methods

The object of the study is the quality of technical mainte-
nance for helicopter equipment based on digital diagnostic tools 
for assessing helicopter components. The main hypothesis of 
the study is that the quality of helicopter maintenance, utilizing 
digital diagnostic tools, can be significantly enhanced through 
the quantitative assessment of diagnostic risks within a neural 
network environment. The study suggests that the quality of 
helicopter maintenance can be enhanced by utilizing digital 
diagnostic tools and risk assessment models. The effectiveness 
of these diagnostics is evaluated by analyzing potential control 
risks using standard deviations, which yields more accurate 
results than traditional methods. The study adopted the fol-
lowing simplifications: risk assessment models utilize standard 
deviations, enabling a simpler analysis and calculation of risks 
compared to more complex methods. It is assumed that the as-
sessment system can function at various levels of uncertainty in 
measurement instruments and controlled parameters, thereby 
reducing the complexity of accounting for all possible factors.

The methodological basis of this research was a systema
tic approach. The main idea of the systems approach is that 
the management and decision-making agents are statistical 
in nature and are integrated into the control process in the 
form of stochastic compositions that affect the quality of 
management. The quality of management is determined by 
the risks generated by parametric fuzziness and data uncer-
tainty. Uncertainty is estimated by the standard deviations of 
the statistical characteristics of the control and management 
agents. To study these theoretical assumptions, probabilistic 
models have been developed for assessing and forecasting con-
trol risks and modeling reliability. The quality of the modeling 
was checked using the well-known generally accepted F  
and t criteria using the "Statistica" statistical package. The 
compliance of the theoretical assumptions with practical 
data was assessed by means of a computer experiment and 
visualization of the results in a 2D graphical format. The final 
conclusions were based on the modeling results.
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The hardware used was a standard set of control and 
measuring equipment, including a programmable digital oscil-
loscope S2800 and special diagnostic equipment: a diagnostic 
stand FSA 560 from BOSCH, a piezoelectric vibration assess-
ment module, and pyrometric sensors of the MG30 type. The 
patent complex, "Software for instrumental quality control of 
VLC systems", was used to calculate errors and control risks. 
The neural principle of constructing a control system was used 
in the modeling process. Documents of the Aircraft Mainte-
nance Program of the JSC EURO-ASIA AIR were used as 
a regulatory framework. An MI-8 helicopter was used as the 
object of the study.

5. Results of the study on express diagnostics of 
helicopter equipment conditions

5. 1. Development of model express diagnostics for heli­
copter gas turbine engines

The proposed neural network in this study is constructed 
based on a system analysis of data that will be structured 
according to a mixed principle: using local onboard databases 
and "historical" information accumulated in Big Databases. 
Such data are accessed as needed, for example, when con-
structing a time trend of controlled diagnostic information and 
the results of periodic processing. In diagnostic systems, the 
data represent the current values of the controlled diagnostic 
parameter xi. In modern systems, information comes from the 
"Digital Twin" [12–16]. As a structural and functional idea 
of the neural network in this study, we propose the use of the 
Rosenblatt multi-layer perceptron (MLP) model with vari-
able weights at each of the inputs.

One of the problems in the use of neural network tech-
nologies is the parametric uncertainty of the parameters of 
the neural model agents. For this purpose, we consider an 
example of a typical structural-functional model, shown in 
Fig. 2, which was proposed in [7].

In this model, adder Σ receives a vector of weighted diag-
nostic information (from the control sensors) X1, X2 … Xm. The 
weight wkm of each signal Xm is interpreted as the information 
significance of the diagnostic signal. The adder generates 
a  quantitative value of the sum of the weighted signals and 
compares the resulting sum with the standard level – thresh-
old bk, and if the threshold is exceeded, a general conclusion 
is generated, for example, – "good" – "bad", and also starts the 
activation function j(.), which can estimate the integrated 
error (risk) of decision-making for each control channel and 

differentiated the same for each channel. In this paper, as in 
many similar ones, the question remains unanswered: how are 
the weights of the wkm signals found? If we assume that expert 
methods are used, an additional error appears, and what is 
its magnitude? Next, it would be necessary to imagine what 
a  "threshold" is. As a rule, in many studies, the hypothesis of 
a  deterministic threshold value – the standard – is accepted. 
However, in practice, its statistical nature is revealed, which 
leads to another error.

The weight variables are formed by considering new in-
formation that arises during the current diagnostic session, 
replenishing the local and large database, which allows for 
the implementation of the system training process. The num-
ber of hidden layers is assumed to be greater than two, which 
allows us to discuss "deep learning". The structural and func-
tional models of the first hidden layer are shown in Fig. 3.

Signals from the external sensors of the digital twin are 
fed to the inputs of the first hidden layer of the perceptron, 
which integrates all the diagnostic information, as shown in 
Fig. 3, in the format of the vectors X1, X2 … Xk. Fig. 3 shows:  
S1, S2 … Sk – vibration piezoelectric quartz sensors of the digital 
twin, installed in the engine’s-controlled Ki points; piezoelec-
tric sensor signal amplifiers; ADC – analog-to-digital conver-
sion unit of diagnostic parameters; evaluation of the "weight" of 
the diagnostic parameter – Wi and expression of the weighted  
value of the diagnostic parameter wkXk. Piezoelectric quartz 
sensors were used in a set with magnetic connections, supplied 
in a set with the device in industrial production.

Vibroacoustic monitoring can be performed using the sta-
tistical average value of the vibration signal and the maximum 
vibration signal level in the digital sample for a certain time 
interval, both in automatic and manual measurement modes.

The monitored time interval and selection of the monitor-
ing mode were performed by the diagnostic operator. The selec-
tion of the maximum value of the vibration signal in the time 
digital sample was performed using software. The first hidden 
layer comprises the instruments and software of the monitoring 

system. The control and measuring chan-
nels of the monitoring system must have 
an autonomous on-board computer.

Because the level of the useful signal 
of the piezoelectric sensor is extremely 
low, and the integration link at the input 
of the measuring channel additionally 
reduces the signal, the signal from the 
sensor output must be amplified. In this 
case, special requirements are imposed on 
the first amplifier cascade: ultra-high in-
put resistance, low level of intrinsic noise 
and high thermal stability. Ultra-high 
resistance in piezoelectric transducers in 
some cases is necessary to highlight the 
low-frequency trend that is present in the 
vibration information.

Regardless of the technical implementation of the hidden 
layer, the economic component of the diagnostic system 
was determined by measuring the entire set of diagnostic 
parameters. If a separate sensor is installed at each diagnostic 
vibration control point, in addition to financial costs, switch-
ing sensors with the measuring hardware arises. A branched 
switching cable network is required, which complicates the 
measuring system as a whole, increases the financial costs, 
complicates the circuitry of the system, and reduces the ma
nufacturability and reliability of the system.
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Fig. 2. Structural and functional model of a neuron [6]
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The express diagnostics system offers a single-channel 
system of measurement with one sensor, which is sequentially 
reinstalled by the operator, and the result with the code num-
ber of the control point in the form of a digital file is stored 
in the RAM of the device and subsequently uploaded to Big 
Data. In Big Data, the information in the coded file acts as 
a virtual sensor. In accordance with the adopted computing 
technology implemented in the software, this information 
was fed to the inputs of the first neural layer.

While the hidden neural layer performed technical and 
technological functions of collecting and primary processing of 
diagnostic information, the next first neural layer, according to 
the generally accepted methodology, performs computational 
functions. The signal at the output of a hidden (input) neuron 
is functionally related to the weighted sum of signals at its input.

The first neural layer is based on the model proposed in 
this study, as presented in Fig. 4 [15].
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Fig. 4. Neural model of object control [15]

The presented neuron model is considered as an adaptive 
adder, to the input of which information is received in the 
form of a data vector (or signals) X1…Xn. In this study, we 
propose to store these data in a local database for current 
diagnostics and duplicate them, as defined above, in big data. 
In big data, diagnostic information should be replenished and 
stored for each engine during operation throughout the life 
cycle of the object. This information should be differentiated 
into separate arrays for each checkpoint. In reality, the neuron 
under consideration, like all subsequent ones, is a software 
agent object, and in stochastically programmable systems it 
has the nature and characteristics of a precedent. The con-
nections between the virtual "inputs" X1…Xn and cell S are 
called the synapses. Each synapse has a certain "weight" Wi.  
Cell S is an adaptive adder of ΣwiXi, weighted inputs. The 

output of the adder is called an axon, which can 
be connected to the input of the next agent – 
a neuron or hidden layer. 

The weighted sum in the cell of the neuron (S) 
is subjected to a nonlinear transformation, which 
is "shortly called the functional" Y = F(S) or an 
algorithm.

The known basic model in this study was 
transformed in accordance with the task as follows.

In the applied version of the studied subject 
topic, the input vector X1…Xn (Fig. 4) will be phys-
ically represented by a set of sensors S1…Sk (Fig. 3), 
and quantitatively, by an informational virtual vec-
tor in a local database or Big Data, in the form des-
ignated as Y1…Yk. Core S (Fig. 4) forms a weighted 
sum ΣwiXi. In the expression of this sum, a serious 
scientific and technical problem is the definition of 
the "weight" quantitative values wi. 

At present, acceptable objectivity and statistical signif-
icance methods for the quantitative assessment of "weight" 
indicators have not been noted in the literature. In practice, the 
values of wi are presumably established by a group of experts 
during the first diagnostic session of a new engine, and are 
modified with each subsequent diagnostic session of the object.

This study proposes a new method for substantiating the 
standard (threshold) values of vibration signals – based on 
the statistical nature of the energy and operating processes 
in existing helicopter engines. The following criteria were 
used: arithmetic mean of the vibration signal in the control 
sample, standard deviation, maximum value of the vibration 
signal in the digital selective control and measuring quanti-
tative vector. It is assumed that the quantitative diagnostic 
parameters of engine performance have a statistical distribu-
tion approximated by Gaussian law. If the maximum value of  
Ymax is selected as the key diagnostic parameter, it can vary 
within the range of Yaverage ± 3 sigma. Subsequently, the permis-
sible level and threshold of the maximum value of the vibra-
tion signal are estimated based on the following calculation:

Y
Y

Yaverage
averagemax .= +

3
	 (1)

The value of wi is estimated using the Harrington curve 
from the following expression:

w
Y Y

Yi
measured==

−max

max

.	 (2)

Then, if Y = 0, then wi is equal to 1.
The second suggestion is to consider the importance of 

the operational reliability of the diagnosed unit according 
to technical and economic assessments – by introducing the 
coefficient Ke. This coefficient within the range of 0 to 1 is 
estimated expertly. Then, the working value of the synapse 
"weight" coefficient will be equal to:

Wi = wi · Ke.	 (3)

The functional Y = F(S) realizes the operation of compar-
ing the value of S with the norm (threshold) using the second 
neural layer.

The functionality of the second hidden layer involves 
two tasks. The first task involved calculating the statistical 
characteristics and distribution laws of the key diagnostic 
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Fig. 3. Structural and functional model of the first hidden layer
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parameter Ymax. The following statistical characteristics were 
calculated: arithmetic mean, standard deviation, regression 
model and distribution law. The Weibull law is studied as the 
distribution law, as it is the most acceptable for managing 
the reliability of objects. Statistical data are extracted from 
big data, since it is the use of the entire sample taking into 
account "historical" data that allows recalculating all statis-
tical characteristics and regression model coefficients, which 
increases the reliability of the forecast and the statistical re-
liability of conclusions and decision-making. This procedure 
of adapting formal tools to the current situation is called the 
"training" process in neural network technologies.

The second task consisted of threshold control of the  
Ymax value with an acceptable limit of Yaverage+Yaverage/3.  
If the threshold is exceeded, a warning is given in audio and 
visual form and saved as big data.

The task of the second neural layer is to formalize the 
process of managing the quality of diagnostics of helicop-
ter engines according to the criteria of the quantitative 
assessment of control errors in the conditions of statistical 
uncertainty of the agents of the entire system. The solution 
of the named problem is carried out on the example of vi-
broacoustic express diagnostics of the operational reliability 
of helicopter gas turbine engines. The diagnostic process is 
organized in the form of a digital twin on a neural network 
platform. The goal of formalizing the control process in the 
diagnostic system is achieved by constructing a probabilistic 
model consisting of two functionals: quantitative assessment 
and prediction of the error of a false failure and the error of 
an undetected failure. Previously, a similar problem was con-
sidered in the diagnostics of automobile engines, but in other 
systems, organizational, technical and information condi-
tions, as well as a different instrumental, measuring and tech-
nological environment. A significant difference between the 
known traditional organizational and technological solutions 
and the proposed solution is the absence of a learning process, 
which reduces the reliability of the diagnostic results.

The neural model of the functional for calculating the 
diagnosis error – false refusal PFR and normal refusal PNR  
is shown in Fig. 5.

For the integral assessment of the quality of the control 
and measuring system, an indicator of reliability is often used, 
which is the main characteristic of the quality of control.  
Control reliability is the degree of confidence that the mea-
sured values truly reflect the state of the object.

Because the measurement process is accompanied by er-
rors, control errors occur. There are three types of errors: sys-
tematic, random and gross errors, called blunders.

Systematic errors remain constant or change according to 
a certain law. They can be studied, and a correction is intro-
duced into the measurement result.

Random errors cannot be eliminated from the measure-
ment results by introducing corrections. However, by con-
ducting a series of repeated measurements, using mathemati-
cal statistics, it is possible to refine the measurement results.

The measurement results in the presence of misses are not 
considered in this case. In this paper, only random errors are 
considered. Analytically, the reliability is calculated using 
the formula:

D = 1–(sum of probable errors).	 (4)

In the process of diagnostics, there are control errors that 
occur, which are usually divided into errors called false and 
undetected faults. In reliability theory, the same errors are 
called false and undetected failures. Quantitatively, these 
errors are estimated by their respective probabilities, in this 
case, PFR is the probability of a false failure and PNR is the 
probability of an undetected failure.

Thus, initially there is a general task of developing new 
mathematical models, or using known acceptable models with 
necessary modification and adaptation to current conditions 
and requirements. The most acceptable variant among the 
known model analogs is the work [11]. In this work it was 
found that the reliability of control is not evaluated unam
biguously by the measurement error, but is a function depend-
ing on the system composition of statistical characteristics of 
all components of the multi-agent model: measurement error, 
norms and statistical laws of distribution of all control agents. 
In all known works it was considered that normative values 
are deterministic. This hypothesis is also accepted in the 
present research. Then formula (4) takes the following form:

D P PFR NR= − −( )1 .	 (5)

In the process of modeling the concept of full probabi
lity was used, where the calculation algorithm repeats the 
following events, for example, event A is the case when the 
current value of the controlled parameter is in some delta 
range Yi ÷Yi+1, and event B is the case when the measure-
ment result (instrument indications) turns out to be higher 

than the limit value of the parameter. Then the 
probability of event A will be determined by the 
following equation:

P A f Y Yi Y

Y

i

i( ) = ( )+∫ d .
1

	 (6)

The probability of event B is calculated by 
the formula:

P B Y Yi

Y YN( ) = −∞ ( )−

∫ µ d .	 (7)

The probability of error PiFR is the probability of simul-
taneous realization of events A and B, which is called the 
probability of false failure and is calculated by the formula:

P f Y Y Y YiFR Y

Y Y Y

i

Ni= ( ) ⋅ ( )+∫ ∫−∞

−
d d

1 µ .	 (8)

Considering these events over the whole field of random 
values of the controlled parameter and summarizing the 
products according to the formula of total probability we 
obtain the following formulas:

Big Data
(Y1 … Yk)

Y1

Yi

Yk

YB

Functional (PFR) 

Functional (PNR)
( ) ( ),μ ,  ∑ Bf y s Y

 

Fig. 5. Neural model of the second layer
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Similarly, we obtain an equation for PNR estimation, 
which will have the following form:
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In the expressions (9) and (10) there is a well-known 
transition to a new variable t, called centered and normalized 
random variable:

t
S Saverage

S

=
−

σ
.	 (11)

Centering and normalizing the variables allows further 
use of tabulated data of numerical values of the probability 
integral or use of programming languages such as Python.

The functionals (9), (10) allow for the quantitative assess-
ment of control errors (risks) only in cases of single-threshold 
limits. In [13], models for tolerance limits of the controlled 
parameter from below and above are proposed. It is suggested 
to use the Weibull distribution as the statistical law for the 
controlled parameter, which significantly expands the practi-
cal application of the developed model, as studies in reliability 
theory have found that approximately 60 % of all statistics are 
accounted for by the Weibull distribution [17]. The Weibull 
distribution also has the property of modeling other distribu-
tions at various values of the shape parameter.

For instance, with a value of β = 0.5, it approximates the 
exponential distribution, with β = 2.5, it approximates the 
Rayleigh distribution, and with β = 3.25, the shape of the 
Weibull distribution is close to the normal distribution. The 
probability density function of the Weibull distribution is 
given as follows:
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 S ≥ γ ,	 (12)

where α – scale parameter, β – shape parameter, γ – location 
parameter.

Unlike the normal distribution, the Weibull distribution 
has an analytical form of the cumulative distribution function:
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Using the cumulative function of the Weibull distribu-
tion F(S), the final expression for calculating the probabili-
ty  PFR is as follows:

P e e

e y

FR i

k
S S

y S

S y

y

i i
l

i y

= −










+

+
=

− −

−
−

∑
∫

+

1

3

2

1

2

1

2

1

2

β β

α α

σ

σ π

σ π

d

SS

S y

u

i y

e y
+

−

∫























3

2

2σ

d

.	 (14)

The expression for PNR will be represented by two com-
ponents [14]:
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To investigate the impact of statistical characteristics in 
the model parameters (9)–(15) on the values of probable er-
rors PFR and PNR, software was developed and integrated into 
the overall neural network algorithm.

The neural model can be further enhanced by calculating 
integrated diagnostic quality assessments, not only for the 
current session but also for building trends and forecasting 
the development of engine technical condition indicators.

The functionality of the third neural layer realizes the 
construction of predictive models by three indicators: validi
ty of control – D; control error – PFR; control error – PNR. 
Control errors are interpreted in the object management 
system as risks and have different social and economic sig-
nificance, which is determined at the first stage by a link of 
experts, and at the second stage by the modeling. In addition 
to making decisions based on the results of the current one-
time act of diagnostics, it is important to predict changes 
in individual indicators of engine operational reliability by 
statistical "history", which is formally expressed and built 
on the basis of large data in the form of regression models.

Then, if the regression functionals are denoted as F(D), 
Z(Ymax), Q1(PFR), Q2(PNR), then the neural network model 
for predicting the operational reliability of helicopter en-
gines as a function of control risks can be generally repre-
sented by Fig. 6.

F(D), Z(Yimax), Q1(PFR), Q2(PNR)

Di

Yimax

PFRi

PNRi

Functionalities

 

Fig. 6. Neural network model for predicting operational 
reliability of helicopter engines in control risks

To calculate empirical functions of reliability indicators 
of helicopter engines and quality of the diagnostics system, 
marked as F(D), Z(Ymax), Q1(PFR), Q2(PNR) (Fig. 6), it is 
recommended to use ready-made tools such as: Data Mining, 
Big Data, Data Science.

5. 2. Development of a model for the advanced diag­
nostics of gas turbine helicopter engines

After express diagnostics, if some of the control results 
exceed the established standard levels, there is a need to con-
duct a more in-depth diagnostics of both individual engine 
units and the entire facility as a whole [18]. In this paper, 
the following solution to this scientific and practical problem 
is proposed using a neural network approach and a digital 
transformation platform.

In order to implement the tasks of in-depth diagnostics 
of gas turbine engines, an analysis of the available works on 
this issue was preliminarily carried out. As the most accept-
able option for the operating conditions and tasks solved in 
this study, the work [19] should be noted. During in-depth 
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diagnostics in some cases there is a need to measure diagnos-
tic parameters at hard-to-reach control points (CP) of the 
engine, where it is impossible to install piezo or vibration 
sensors. In such a situation, two measuring channels are 
used. The first channel uses laser technology, in the form of 
a portable laser vibrometer of increased sensitivity. Laser 
vibrometry is a "modern, qualitatively new level of measur-
ing the parameters of mechanical vibrations of objects". The 
unique physical features of laser methods are that qualita-
tively new technological capabilities appear in diagnosing 
engines: the most important technological opportunity is 
remote contactless measurement of vibration parameters; 
there is no reaction to the resonance phenomena of objects; 
there is no need for preliminary preparation of the surface 
of the object; it has become possible to measure vibrations 
in hard-to-reach points of an object. In a laser vibrometer, 
the working technological distance from the device to the 
test object can be from 1.5 to 10 m. The supply voltage of 
the vibrometer is 12 V. DC from a portable battery or from 
a power source connected to a 220 V (50 Hz) AC network. 
Power consumption is 15–20 W (depending on the operat-
ing mode). The next advantage is that the microprocessors 
included in the laser vibrometer perform digital processing 
and analysis of vibration signals. The results in the form of 
spectrograms or oscillograms are displayed on the screen of 
an external computer connected via RS-232 or USB chan-
nels, the connectors of which are located on the control panel  
of the device. Measurement error is 10 %. The second mea-
suring channel of this system allows for temperature pyro 
control at any point of the engine. Temperature control is 
performed in the infrared range.Taking into account the 
listed control and measuring capabilities of existing devices, 
this complex is modified and adapted to the current operat-
ing conditions by means of additional functional-technical, 
mathematical and software-algorithmic solutions. The new 
solution is based on neural network technology and special 
technical, mathematical in combination with information 
and organizational-methodological system support.

The structural and functional model of neural in-depth 
diagnostics and training using helicopter engines as an exam-
ple is shown in Fig. 7.

In Fig. 7, the laser channel is represented by controlled 
points CPCL1–CPLCn. The infrared measurement channel is 
represented by pyrometric control points CPPN1–CPPNk. This 
block in the general system of in-depth diagnostics with training 
on the neural network principle is 
the first hidden layer. The mea-
surement results, as follows from 
Fig. 7, are duplicated in Big Data.

It is recommended to use  
the MG30 as a pyrometric sen-
sor, which has high sensitivity in 
the infrared region.

The functionality of the first 
neural layer in this system with 
training implements two tasks. 
The first task involves calculat-
ing the statistical characteristics 
and identifying the distribution 
laws of the following diagnostic 
parameters: f(x) and f(y) are 
the density functions of the dis-
tribution of the approximated 
laws; the maximum value of the 

diagnostic parameters Xmax and Ymax; the arithmetic mean 
Xavg and Yavg; the root mean square Sx and Sy; regression mo
dels for forecasting F(x) and F(y). The Gaussian and Weibull 
laws are studied as distribution laws, as the most suitable for 
the problems of managing the reliability of helicopter en-
gines and units. Statistical data are extracted from Big Data, 
since it is the use of the entire sample, taking into account 
the "historical" precedent data, that allows recalculating all 
statistical characteristics and coefficients of the regression 
model. This procedure for adapting the formal characteristics 
and control indicators to the current situation is called the 
"training" process in neural network technologies. 
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Fig. 7. Structural-functional model of the first hidden 	
neural layer of the in-depth diagnostics system 	

for gas turbine engines

The neural model of the first neural layer of the system 
with training is shown in Fig. 8.

In this layer, statistical processing and threshold con-
trol are performed, where the measured values are com-
pared with the threshold limits equal to: (Xaverage+Xaverage/3)  
and (Yaverage+Yaverage/3). This processing is carried out on 
a computer in the diagnostic system loop (Fig. 8). If the 
threshold is exceeded, a warning is issued in both audio and 
visual forms and stored in Big Data.

Big Data

Data processing

Data processing

X…Xn>Y…YnComputing machine
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{Yi}

Data Solution
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Fig. 8. Neural model of the first neural layer of the system with training
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The task of the second neural layer is to formalize the pro-
cess of quality control of diagnostics of helicopter engines ac-
cording to the criteria of quantitative assessment of errors of 
control in conditions of statistical uncertainty of agents of the 
entire system. The solution of the named task is carried out 
on the example of vibroacoustic and pyrometric diagnostics 
of the operational reliability of helicopter gas turbine engines.

The diagnostic process is organized in the form of a digi
tal twin on a neural network precedent platform. The goal 
of formalizing the control process in the diagnostic system 
is achieved by constructing a probabilistic model consisting 
of two functionals of quantitative assessment and prediction 
of the false failure error and the error of undetected failure. 
Previously, a similar problem was considered using examples of 
diagnosing automobile engines, but in other system organiza-
tional, technical and information conditions, as well as a diffe
rent instrumental, measuring and technological environment.

A significant difference between the known traditional 
organizational and technological solutions and the proposed 
solution was the absence of a learning process, which reduced 
the reliability of the diagnostic results. The neural model of 
the functional for calculating the diagnostic error – false and 
undetected failures is shown in Fig. 9. For an integral assess-
ment of the quality of the control and measuring system, the 
indicator – reliability is quite often used, which is the main 
characteristic of the quality of control. Reliability of control 
is the degree of confidence that the measured values truly 
reflect the state of the object.

During the diagnostics process in the advanced diagnos-
tics system of gas turbine engines, control errors occur in two 
channels of measurement – laser and pyrometric channels. The 
resulting control errors, which, as noted above, are usually di-
vided into errors of false and undetected failures in this system 
are estimated both separately for each channel and integrated – 
as a total error. Control errors can be considered as control un-
certainty [9]. Then the expression for the reliability of control 
in the laser and pyrometric channels takes the following form:

D Px Px

D Py Py
x FR NR

y FR NR

= − −( )
= − −( )







1

1

,

.
	 (16)

The two channels for data collection and processing, each 
associated with different diagnostic parameters are shown 
in Fig. 10. The visualization highlights the interaction of all 
elements aimed at improving the accuracy and reliability of 
the diagnostics.

The analytical probabilities of control errors for each chan-
nel will be quantitatively estimated using expressions (9),  
(10) and (14), (15). Software applications have been deve
loped for the quantitative estimation of these probabilities.

Dx

Dy

1 1+∑ x xw D w D

∑Exit

 
Fig. 10. Neural model of integrated expression of reliability 

of in-depth diagnostics of gas turbine engines 	
in a two-channel version

The process of training the neural network system con-
sists in the fact that the technology of decision-making and 
conclusions is based on a two-stage algorithm. The first 
stage uses current control data. Then the current data are 
"attached" to the historical Big Data, and the entire proce-
dure of neural network calculations, final conclusions and 
decision-making is repeated. In this case, not only integrated 
assessments of the diagnostic quality are calculated, but also 
formal constructions of trends and forecasts of the develop-
ment of indicators of the technical condition of the engine 
are carried out.

5. 3. Computer-aided study of statistical properties 
and assessment of control risks

In conclusion of the theoretical studies, a computer expe
riment was implemented. The purpose of the computer expe

riment was to study the influence of parametric 
uncertainties of control agents on the magnitude 
of management risks. The parametric agents of 
uncertainty were: Savg – arithmetic mean value 
of the controlled parameter; σS – standard devi-
ation of the controlled parameter; σµ – standard 
deviation of the error of the measuring channel;  
SP – threshold value of the controlled para
meter. In the process of modeling, the values of 
the probability of occurrence of a false failure 
РFR, and the values of the probability of an 
undetected failure РNR as a function of the ratio 
σµ/σS were calculated, with varying the value 
of the threshold SP (standard). 

The threshold value was changed in increments: SP = Savg+σS; 
SP = Savg+2σS; SP = Savg+3σS. Here: Savg – arithmetic mean 
value of the controlled parameter; σS – mean square devia-
tion of the distribution law of the controlled parameter. The 
simulation results are given in Tables 1, 2. The values of the 
probability of occurrence of a false failure РFR are given in 
Table 1 and the values of the probability of an undetected 
failure РNR are given in Table 2.

The calculated data are presented in Fig. 11, 12 in 2D gra
phical format.

Table 1

Values of the probability of false failure occurrence PFR

Probability of false 
failure (РFR)

Relative uncertainty (σΜ/σS)

0.2 0.4 0.6 0.8 1

SP = SAVG+3σS 0 0 0 0.0012 0.046

SP = SAVG+2σS 2.2 3.9 5.9 9.6 13.2

SP = SAVG+σS 4.1 9.2 14.1 20 24.9

Big Data
{Yi }{Xi}

YP

Functional (PFR) 

Functional (PNR)
( ) ( ), ( ),μ ,  ∑ pf y f x s Y

 

Fig. 9. Neural model of the second layer of the system of in-depth 
diagnostics of gas turbine engines
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Table 2

Values of the probability of undetected failure PNR

Probability of unde-
tected failure (РNR)

Relative uncertainty (σµ/σs)

0.2 0.4 0.6 0.8 1

SP = SAVG+3σS 0 0 0 0.00025 0.031

SP = SAVG+2σS 1.1 1.6 2 2.15 2.4

SP = SAVG+σS 3.3 6 7.8 9.1 10

Fig. 11. Graphical model of the probability of false failure 
occurrence PFR

Fig. 12. Graphical model of the probability of occurrence 	
of undetected failure PNR

Thus, having obtained graphical models of the proba-
bilities (risks) of false and undetected failures, it is possible 
to visually and quantitatively assess, as well as predict the 
reliability and probable risks of control when making tech-
nological diagnoses. Studying Fig. 11, 12, it can be concluded 
that the maximum risk is associated with a "false failure" and 
can reach 25 %.

6. Discussion of the results of the study on neural 
network quality control based on diagnostic risk criteria

In the organizational and technical plan for completing 
the research objectives presented above, the first stage of the 
work envisaged studying the current state of helicopter main-
tenance and repair systems in the Republic of Kazakhstan, 
identifying shortcomings, and proposing new technical solu-
tions based on government documents on the digital trans-

formation of the state. JSC Aircraft Repair Plant No. 405,  
a leading certified and licensed enterprise with a unique 
repair and technical base, a sufficiently high level of digitali-
zation, and personnel support, was selected as the base enter-
prise for solving the task set.

The second stage involved studying the statistical ma-
terial on this subject area available in the reporting ma-
terials of Aircraft Repair Plant No. 405. As a result of 
preliminary statistical processing of the material, using the  
STATISTICA* environment, it was found that in the sci-
entific practice of the enterprise, there is no factor and 
correlation analysis of statistical data, and there is a com-
plete absence of a prognostic methodology using historical 
data. The choice of instrumental diagnostic tools according 
to metrological criteria was carried out according to the 
price principle, without considering functional performance. 
At the same time, it was already revealed in previous 
works [14, 15] that the accuracy parameters of the devices 
have a close compositional analytical connection with the 
regulatory framework, and in conditions of parametric fuzz-
iness and uncertainty of data, they quantitatively determine 
the risks of control. The second significant drawback was 
that decision-making in the control system was carried 
out based only on the current measurement results with 
a complete lack of predictive analytics. Based on this, the 
tasks presented above were formed to improve the system 
for maintaining the reliability of helicopter equipment us-
ing the example of the JSC Aircraft Repair Plant No. 405. 
Formal support for the control system and practical imple-
mentation were based on neural network approaches that 
provide differentiated approaches to two measuring chan-
nels: a vibro-acoustic channel and a pyrometric channel. 
On this basis, two technologies were planned and imple-
mented: express diagnostics technology based on vibration 
control data, and in-depth diagnostics based on vibration 
and pyrometric control. In the case of in-depth diagnostics, 
the results of vibration and pyrometric monitoring were 
integrated in the form of a weighted sum, which was used 
to evaluate the quality level of the entire diagnostic system. 
In this express diagnostics solution, vibration diagnostics 
was chosen owing to its technological effectiveness and 
acceptable diagnostic accuracy, which was confirmed by 
the studies cited above. The neural model for the express 
diagnostics contained three hidden layers (Fig. 3, 4, 6), and 
two open layers for implementing the functionality of mo
nitoring, assessing, and predicting the quality of monitor-
ing, assessed by the risk level. The first hidden layer, which 
is the most complex, implements preliminary technical 
standardization of information from vibration sensors and 
statistical processing of this information.

The third stage involved statistical processing, including 
calculation of basic statistical characteristics, identification 
of distribution laws, and assessment of the statistical homo-
geneity of the data.

In the fourth stage, the second neural layer, based on the 
results of statistical processing, calculates the reliability of 
control, probable risks of false and undetected control, which 
are interpreted as the risk of the manufacturer (in this case, 
the manufacturer of control and measuring works), and the 
risk of the consumer of work (the customer of work). These 
risks determine the socio-economic losses of production and, 
ultimately, the safety of flights for air transport users.

The fifth stage provides a quantitative assessment of the 
risks of in-depth diagnostics of gas turbine helicopter engines 



Control processes

35

in a trained neural network environment. In-depth diagnos-
tics are solved by creating a second additional channel for the 
pyrometric control of the local thermal sections of the engine. 
Pyrometric control provides measurements in the infrared 
region. Technologically, this control is performed remotely, 
which greatly simplifies the diagnostic process. As a struc-
tural and functional idea of the neural network, this study 
suggests using the Rosenblatt multilayer perceptron mo
del (multilayer perceptron, MLP) with variable weights at 
each of the inputs. Variable weights are formed by consider-
ing new information that arises during the current diagnostic 
session, replenishing the local and large databases, which al-
lows the implementation of the system training process. The 
structural and functional model of the in-depth diagnostic 
process contained one hidden layer (Fig. 7) and three open 
layers (Fig. 8–10). The calculated analytical functionals of 
producer and consumer risks generated by the model (Fig. 9) 
are presented in (14), (15).

The methodology for substantiating normative (thresh-
old) values is an important agent and new scientific and 
practical result. The substantiation of standards is an ex-
tremely complex stage in any decision-making system. In this 
study, a similar methodology for substantiating the norma-
tive (threshold) values of the vibration signals was pro-
posed. The proposed methodology uses the statistical nature 
of the energy and operating processes in existing helicopter 
engines. The following were used as normative criteria: 
the arithmetic mean of the vibration signal in the control 
sample, the standard deviation, and the maximum value 
of the vibration signal in the digital selective control and 
measuring quantitative vector. It is assumed that the quan-
titative diagnostic parameters of engine performance have  
a statistical distribution approximated by Gaussian law.  
If the maximum value of Ymax is selected as the key diagnos-
tic parameter, it can vary within the range of Ymean ± 3 sigma. 
Then, the permissible level and threshold of the maximum 
value of the vibration signal should be estimated from 
Equation (1). The value of weight wi is estimated using 
the Harrington curve from equation (2). If Ymeasured = 0,  
wi is equal to one. The second proposal is to consider the 
importance of the technical and economic assessments of the 
operational reliability of the diagnosed unit by introducing 
the coefficient Ke. This coefficient was estimated expertly 
within the range of 0–1. Then, the working value of the 
synapse "weight" coefficient is estimated by (3). The func-
tional Y = F(S) was used to compare the value of S with the 
standard (threshold) of the second neural layer.

The structural and functional model of in-depth neural 
diagnostics and training using helicopter engines as an ex-
ample is shown in Fig. 7. The system was implemented in  
a two-layer format (Fig. 8, 9). The training process of the 
neural network system is that the technology of deci-
sion-making and conclusions is based on a two-stage algo-
rithm. The first stage uses the current control data. Then, the 
current data are "attached" to the historical big data, and the 
entire procedure of neural network calculations, final con-
clusions, and decision-making are repeated. In this case, not 
only are integrated assessments of the quality of diagnostics 
calculated, but formal constructions of trends and forecasts 
of the development of engine technical condition indicators 
are also carried out. A neural model of the integrated expres-
sion of the reliability of in-depth diagnostics of a gas turbine 
engine in a two-channel version (Fig. 10) was implemented 
to assess the overall reliability of a two-channel system in the 

form of a weighted sum of the reliability of the vibration and 
pyrometric channels.

The limitations of this study include the reliance on the 
accuracy of the initial data and the quality of the measure-
ment instruments used, which may restrict the applicability 
of the proposed models under conditions with an insuffi-
ciently high metrological level. Additionally, despite the use 
of a neural network environment, the influence of complex 
environmental factors and operating conditions is not fully 
accounted for, which may impact the applicability of the 
solutions in real-world situations. Future developments of 
this study could involve expanding the analysis by employing 
more complex models that consider nonlinear interactions 
and external factors, such as climatic conditions and oper-
ating modes. Furthermore, incorporating more advanced 
methods of machine learning and artificial intelligence could 
enhance the accuracy of forecasting and diagnostics. This 
advancement is crucial, as it will facilitate the creation of 
more adaptive and resilient control and monitoring systems 
that respond to changing conditions, ultimately increasing 
the reliability of helicopter maintenance and ensuring oper-
ational safety.

7. Conclusions

1. A neural model of risk assessment in the express diag-
nostics system of the technical condition of helicopter units 
was built. In the express diagnostics system for monitoring 
the operability of helicopter units, a vibroacoustic method is 
used, which physically involves installing vibration sensors 
at experimentally selected control points. Monitoring pro-
vides for a one-time assessment and a monitoring mode with 
multiple control and accumulation of information in a special 
database. Statistical processing of current and historical in-
formation makes it possible: to carry out control by average 
values of diagnostic parameters and by sharply distinguished 
values; to build regression models and automatically predict 
the dynamics of processes; to calculate control risks.

2. For in-depth diagnostics, the involvement of remote 
control of pyrometric information using laser technology 
is provided. The conclusion regarding the operability of 
the object is differentiated for each measurement channel  
as well as integrally for the weighted sum of the measure-
ment results. Risks were calculated separately for each 
control channel.

3. A combination of all statistical properties and the 
integral influence of these properties on the final result (i.e., 
control risks) was investigated using a computer experiment 
based on experimental data. The study revealed that the 
quality of control, as assessed by the level of risks, depends 
more on the standard for the controlled parameter than on 
the metrology, specifically the uncertainty of measuring in-
struments. Additionally, the computer experiment showed 
that the risk of false failure (enterprise risk) significantly 
exceeds consumer risk.
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