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ing heart structures and diagnosing ASDs in pediatric 
patients [3]. Transthoracic echocardiography (TTE), in 
particular, is preferred for its safety and comprehensive 
diagnostic capabilities [4]. Echocardiography is indis-
pensable not only for initial diagnosis but also for the 
ongoing management and post-treatment monitoring of 
these patients, ensuring that complications are promptly 
detected and treated [5].

However, the effectiveness of echocardiography is highly 
dependent on the expertise of the clinician performing the 
examination. Research consistently shows [6, 7] that the 
accuracy of echocardiographic assessments is heavily influ-
enced by the clinician’s expertise, with studies indicating 
that diagnostic variability can lead to errors in up to 20 % 
of cases, depending on the complexity of the defect [8]. This 
variability underscores the critical need for specialized 
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The object of this research is to 
develop a data-efficient pipeline for the 
detection of atrial septal defects (ASDs) 
using echocardiographic images. ASDs 
are common congenital heart defects that 
can lead to serious health issues if not 
diagnosed early. Rising mortality rates due 
to undetected ASDs highlight the urgent 
need for improved diagnostic methods. To 
address the problem of limited annotated 
medical data hindering accurate detection 
models, this study fine-tuned the SegFormer 
model for precise segmentation of cardiac 
structures in echocardiography images, 
focusing on the four-chamber heart view 
essential for ASD detection. By integrating 
SegFormer with the YOLOv7 detection 
model, known for real-time object detection, 
the ASD regions within the segmented heart 
structures were accurately identified. This 
cross-referencing ensures anatomically 
accurate diagnoses and reduces false 
positives. The study results demonstrate 
that despite limited data, the integrated 
method achieves high accuracy and speed, 
outperforming traditional models. This 
improvement is explained by the synergy 
between SegFormer’s transformer-based 
segmentation and YOLOv7’s efficient 
detection capabilities. The distinctive 
feature of our approach is the successful 
integration of these models in a data-
efficient manner, enabling effective ASD 
detection even with scarce data. The scope 
of practical use includes deployment in 
clinical settings with limited resources, 
requiring only echocardiographic 
equipment and basic computational 
resources. By providing clinicians with a 
reliable tool for ASD detection, the study 
supports timely interventions in pediatric 
cardiology, ultimately improving patient 
outcomes and enhancing care consistency
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1. Introduction

Atrial septal defects (ASDs) are one of the most prev-
alent congenital heart defects, affecting approximately 
1–2 kids per 1 000 live births and having a profound impact 
on children’s health during critical early developmental 
stages, and represent approximately 10–15 % of all congen-
ital heart diseases [1]. If left undiagnosed, these defects can 
lead to severe complications such as heart failure, pulmonary 
hypertension, and stroke, underscoring the necessity of early 
detection and accurate diagnosis to mitigate these risks and 
improve long-term health outcomes [2].

Due to its non-invasive nature and ability to pro-
vide detailed anatomical and hemodynamic information, 
echocardiography (echo-CG) is widely recognized as the 
primary and most effective diagnostic tool for visualiz-
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The EchoNet-Dynamic model introduced by [14] seg-
ments echocardiography images into structural parts and 
predicts ejection fraction and cardiomyopathy through vid-
eo-based echocardiograms. Although this model advanced the 
integration of segmentation and diagnosis tasks, it still relied 
heavily on CNN architectures. The inherent limitations of 
CNNs in capturing global dependencies may affect the model’s 
ability to generalize across diverse patient populations.

Despite these advancements, there are still unresolved 
questions related to the limitations of CNN-based approach-
es in echocardiography image segmentation. One significant 
challenge is the need for extensive preprocessing [15], which 
can be both time-consuming and prone to variability due to 
differences in imaging protocols and equipment. Addition-
ally, these models often struggle with generalization in het-
erogeneous clinical environments, as documented in studies 
showing decreased performance on diverse datasets [16]. 
This lack of robustness hampers the widespread adoption of 
CNN-based models in clinical practice.

The reasons for these limitations can be attributed to 
the intrinsic design of CNNs. While they are adept at cap-
turing local features through convolutional operations, they 
may not effectively capture global context and long-range 
dependencies across the image [17]. This limitation makes 
it difficult for CNN-based models to generalize well to new, 
unseen data, especially in complex medical imaging tasks 
where global context is crucial for accurate interpretation.

An option to overcome these relevant difficulties is to 
leverage transformer architectures, which offer superior ca-
pability in capturing global context and dependencies. The 
SegFormer model, introduced by [18], combines transformer 
architectures with multilayer perceptron (MLP) decoders 
to address the generalization and preprocessing challenges 
faced by CNNs. SegFormer does not require complex pre-
processing steps and has demonstrated strong performance 
on standard segmentation benchmarks without the need for 
positional embeddings, making it more adaptable to various 
image types.

All this allows to argue that it is appropriate to conduct 
a study devoted to the application of transformer-based mod-
els like SegFormer in echocardiography image segmentation. 
By exploring this avenue, let’s aim to address the limitations 
of CNN-based approaches and improve the accuracy and 
generalization of echocardiography image analysis. Such a 
study could pave the way for more robust and efficient diag-
nostic tools in cardiology.

3. The aim and objectives of the study

The aim of this study is to integrate a machine learn-
ing-based solution into the diagnostic process, providing 
medical professionals with a tool to improve the detection 
and diagnosis of atrial septal defects (ASD) using echocar-
diographic images. This approach is designed to enhance 
early diagnosis and mitigate the severe health risks associat-
ed with undiagnosed ASDs in pediatric patients.

To achieve this aim, the following objectives are pursued:
– to develop an efficient segmentation model using the 

SegFormer architecture, optimized for identifying key car-
diac structures in echocardiography images;

– to implement and integrate the YOLOv7 detection 
model to identify ASD regions within the segmented heart 
structures.

training and highlights the potential role of artificial intelli-
gence (AI) and computer vision (CV) methods in providing 
more consistent and objective assessments. Although AI has 
demonstrated promise in assisting the clinicians in decision 
making, expert oversight remains essential to ensure the 
reliability of diagnoses.

Therefore, studies that are devoted to enhancing the 
diagnostic accuracy of echocardiography in ASDs through 
the integration of artificial intelligence and computer vi-
sion methods while ensuring expert clinical oversight are 
of significant scientific relevance. These studies not only 
aim to reduce diagnostic variability but also strive to im-
prove early detection and treatment outcomes for pediatric 
patients with ASDs. By combining advanced technological 
tools with clinical expertise, it is possible to move toward 
more consistent, objective, and reliable assessments, ul-
timately improving patient care and long-term health 
outcomes.

2. Literature review and problem statement

Echocardiography (echo-CG) imaging is commonly repre-
sented as two-dimensional images, allowing for the application 
of extensive computer vision and image processing techniques.

In [9], a UNet model was employed to segment echocar-
diography images into four critical views – A4c, A2c, PLAX, 
and PSAX – facilitating the identification of weak areas 
and aiding in the detection of diseases such as hypertrophic 
cardiomyopathy and cardiac amyloidosis. While this study 
showcased the potential of CNNs in echo-CG segmentation, 
it primarily focused on a limited set of views and did not 
address generalization to more diverse datasets.

In a subsequent study, [10] applied CNNs to short video 
clips recorded during echocardiography to determine which 
parts of the heart were being diagnosed, such as the subcostal 
four-chamber or subcostal inferior vena cava views. This ap-
proach improved automation in view classification of echocar-
diography videos. However, the study faced challenges in ac-
curately capturing global contextual information, a common 
limitation of CNN architectures that focus on local features.

In the paper [11] proposed ResNet, introducing residual 
learning to ease the training of deeper networks. While 
ResNet has achieved remarkable success in various image 
recognition tasks, its application in echocardiography has 
been limited by the complex and variable nature of medical 
images, which require models to capture both local and 
global features. The inability to effectively capture global 
context can hinder the model’s performance in accurately 
interpreting echo-CG images.

Study [12] developed the R-CNN architecture for object 
detection, which has been adapted for detecting specif-
ic structures in medical images. Despite its effectiveness, 
R-CNN-based approaches in echocardiography have been 
hindered by the need for extensive labeled data and signifi-
cant computational resources, making them less practical in 
clinical settings.

In [13], a deep regression neural network was proposed to 
identify heart anomalies from echocardiography images. While 
the model showed promising results in anomaly detection, it re-
quired extensive preprocessing and manual annotation, which 
can be time-consuming and introduce variability in clinical 
environments. This reliance on preprocessing steps limits the 
scalability and robustness of the model.
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handling variable resolutions and complexities typical of 
echocardiographic imaging [21].

Unlike conventional convolutional neural net-
works (CNNs), SegFormer does not rely on positional en-
codings, allowing it to adapt to fluctuations in image quality 
caused by patient movement, equipment variation, or opera-
tor expertise [18]. The model’s architecture divides the input 
echocardiographic image into overlapping patches using a 
hierarchical transformer encoder, as illustrated in Fig. 1. 
This enables local self-attention mechanisms to capture im-
portant features across multiple scales.

Key components of the SegFormer architecture include:
– Hierarchical Feature Aggregation: Combines informa-

tion from various levels of the image for accurate segmentation.
– Multiscale Feature Extraction: Operates at different 

resolutions to enhance feature representation.
– MLP Decoder: Fuses multiscale features and performs 

efficient upsampling to generate detailed segmentation maps 
representing distinct anatomical structures within the echo-
cardiographic image.

For experiments, it is possible to consider multiple 
SegFormer variants (B0 to B5), each differing in complex-
ity and capacity. The models were implemented using the 
NVIDIA/mit framework and fine-tuned on our echocardi-
ography dataset.

4. 3. YOLOv7
Complementing the SegFormer model, let’s incorpo-

rate YOLOv7, the latest iteration in the YOLO (You Only 
Look Once) series, known for its real-time object detection 
capabilities. YOLOv7 introduces advanced features such 
as trainable bag-of-freebies and re-parameterization tech-
niques, which enhance detection speed and accuracy – crit-
ical factors for identifying subtle ASD-related anomalies in 
high-resolution echocardiographic images.

YOLOv7 employs a Cross-Stage Partial Net-
work (CSPNet) strategy to partition the feature map of the 
base layer into two parts and then merges them through a 
cross-stage hierarchy. This split-and-merge approach allows 
for more efficient gradient flow through the network, im-
proving learning efficiency and detection performance.

In this study, let’s incorporate the YOLOv7 model due 
to its state-of-the-art object detection capabilities, par-
ticularly in real-time applications. Although ASDs can be 
subtle and challenging to detect on echocardiographic im-
ages, YOLOv7 has proven to be efficient in detecting small 
and difficult-to-distinguish features. However, by itself, 
YOLOv7 may not capture the fine details required for ASD 

4. Materials and methods of research

4. 1. Object and hypothesis of the study
The object of this study is the detection of atrial septal 

defects (ASDs) in echocardiographic images. The subject of 
this study is to develop and validate a data-efficient diagnos-
tic pipeline for the detection of atrial septal defects (ASDs) 
in echocardiographic images. This pipeline integrates the 
SegFormer transformer-based segmentation model with the 
YOLOv7 object detection model to enhance the accuracy 
and efficiency of ASD diagnosis in resource-constrained 
clinical settings.

The main hypothesis of the study is that 
combining the SegFormer model for precise 
segmentation of cardiac structures with the 
YOLOv7 model for efficient ASD detec-
tion will significantly improve the accuracy 
and speed of ASD diagnosis in echocar-
diographic images, even when trained on a 
limited dataset. This integrated approach 
is expected to outperform traditional con-
volutional neural network (CNN)-based 
models in both segmentation and detec-
tion tasks.

In conducting this research, it is pos-
sible to assume that the limited dataset of 
331 echocardiographic images, enhanced 
through data augmentation techniques, is sufficiently repre-
sentative to train models that generalize well to new, unseen 
data. Let’s also presume that the echocardiographic images 
are of adequate quality and consistency, allowing the models 
to effectively perform segmentation and detection tasks. The 
accuracy and reliability of the expert annotations provided 
by cardiologists and cardiac surgeons are taken as a given, 
providing a solid foundation for supervised learning. Fur-
thermore, it is possible to assume that integrating the Seg-
Former and YOLOv7 models will leverage their individual 
strengths synergistically, resulting in improved performance 
over existing methods.

To focus on the core objectives, several simplifications 
were adopted in this study. Standardized imaging conditions 
and equipment settings across all echocardiographic images 
were assumed, which may not fully reflect the variability 
present in different clinical environments. Collecting the 
dataset from a single medical center simplified the variabili-
ty that might arise from multi-center data but may limit the 
generalizability of the findings. Let’s use data augmentation 
as a substitute for diversity in the dataset, acknowledging 
that it might not entirely capture the full range of real-world 
clinical data variability. Additionally, it is possible to eval-
uate the models using splits from the same dataset for both 
training and validation, which simplifies the evaluation 
process but may not account for variations across different 
patient populations or imaging devices.

4. 2. SegFormer model for echocardiographic image 
segmentation

In this study, let’s utilize SegFormer, a transform-
er-based model designed for semantic segmentation tasks, 
to segment echocardiographic images focusing on the 
four-chamber view of the heart, which is crucial for de-
tecting atrial septal defects (ASDs) [19, 20]. SegFormer 
integrates hierarchical transformers with lightweight mul-
tilayer perceptron (MLP) decoders, making it suitable for 

 
 
  Fig.	1.	SegFormer	model	scheme



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 5/2 ( 131 ) 2024

16

detection, as its primary strength lies in detecting larger and 
more prominent objects. Therefore, it is possible to integrate 
YOLOv7 with the SegFormer model, which provides precise 
segmentation of heart structures. YOLOv7 is applied to the 
segmented images to focus its detection capabilities on po-
tential ASD regions, improving its ability to localize subtle 
defects. This combination ensures a more reliable identifica-
tion of ASDs by narrowing the detection to anatomically rel-
evant areas within the segmented heart structures (Fig. 2). 
The integration between SegFormer and YOLOv7 involved:

Segmentation Stage: Using SegFormer to generate pre-
cise segmentation masks of the heart’s anatomical structures 
from echocardiographic images:

– detection stage: applying YOLOv7 to identify poten-
tial ASD regions within the segmented images;

– cross-referencing: aligning detected ASD regions with 
the segmented heart chambers to ensure anatomical rele-
vance.

This integrated pipeline was designed to enhance the 
overall diagnostic process by combining the strengths of 
both models.

4. 4. Dataset and preprocessing
The dataset used in this study consists of 331 echocar-

diographic images collected using a portable ultrasound 
device. All patients were examined by echocardiography 
on M5 Diagnostics ultrasound systems from MindRay at 
the Center for Perinatology and 
Pediatric Cardiac Surgery in Al-
maty, Kazakhstan. Each echocar-
diographic study was performed 
following standard techniques 
outlined in the American Society 
of Echocardiography (ASE) guide-
lines [22, 23].

The study was approved by the 
Republican State Enterprise on the 
right of economic management “In-
stitute of Genetics and Physiology” 
of the Committee of Science of the 
Ministry of Education and Science 
of the Republic of Kazakhstan (ap-

proval number #13-364 from 17.11.2023). An exemption 
from mandatory patient consent was applied due to the 
de-identified nature of the data.

The images were labeled by cardiologists and cardiac 
surgeons into nine classes:

– Left Ventricle (LV);
– Right Ventricle (RV);
– Right Atrium (RA);
– Left Atrium (LA);
– Atrial Septal Defect (ASD);
– Ventricular Septal Defect (VSD);
– Mitral Valve (MK);
– Tricuspid Valve (TK);
– Aortic Stenosis (AS).
To prepare the dataset for training the models, several 

preprocessing steps were applied:
– data anonymization: all data were strictly de-identified 

to protect patient confidentiality;
– image resizing: all images 

were resized to a consistent size 
of 256×256 pixels to standard-
ize the input for the models, en-
suring uniformity throughout 
the training process;

– pixel normalization: pix-
el values were normalized to a 
range of 0 to 1 by dividing by 
the maximum pixel value (255). 
This standardization helps the 
models learn more effectively by 
keeping input values within a 
consistent range.

To enhance the dataset 
and improve model robust-
ness, various data augmenta-
tion techniques were emplo- 
yed (Fig. 3):

– color jittering: random 
adjustments to brightness, con-
trast, saturation, and hue to help 

the models generalize to different lighting conditions and 
color variations [24];

– image rotation and flipping: random rotations between 
–45 to +45 degrees and horizontal flipping to make the models 
invariant to the orientation of the heart in echocardiographic 
images;

– scaling: random scaling within a range of 0.8 to 1.2 of 
the original size to handle variations in image size and reso-
lution from different ultrasound devices.

 
  

Fig.	2.	YOLOv7	model	scheme

 

Fig.	3.	Sample	of	image	preprocessing	steps:  
a	–	original;	b	–	color	jittering;	c	–	rotated	45°;	d	–	scaled	0,5x

а b c d
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4. 5. Software and hardware resources
The implementation of the SegFormer and YOLOv7 

models was carried out using specific software and hardware 
resources to ensure efficient development and execution. For 
programming frameworks, let’s utilize PyTorch for model 
development and training due to its dynamic computa-
tional graph and widespread use in deep learning research. 
OpenCV and Pillow (PIL) were employed for image pro-
cessing and augmentation tasks, providing a comprehensive 
suite of tools for handling image data.

Our hardware setup included an NVIDIA GeForce 
RTX 3080 TI GPU, which provided accelerated training ca-
pabilities essential for handling the computational demands of 
transformer-based models like SegFormer and real-time object 
detection models like YOLOv7. The system was also equipped 
with 32 GB of RAM to manage data loading and preprocessing 
efficiently, preventing bottlenecks during training.

4. 6. Experimental procedure
The experimental procedure was meticulously designed 

to develop and validate the integrated diagnostic pipeline 
comprising SegFormer and YOLOv7 models. The process 
began with data preparation, where it is possible to collect 
and anonymize echocardiographic images to protect patient 
confidentiality. Expert cardiologists provided annotations 
for the images, labeling key cardiac structures and anom-
alies, which were crucial for supervised learning. Let’s 
apply preprocessing techniques such as resizing images to 
256×256 pixels and normalizing pixel values to a range  
of 0 to 1. Data augmentation methods, including color jitter-
ing, rotation, flipping, and scaling, were employed to enhance 
the dataset’s diversity and help the models generalize better.

In the model configuration phase, it is possible to ini-
tialize the SegFormer models (B0 to B5) with pre-trained 
weights, adapting them for our specific segmentation task 
involving echocardiographic images. The YOLOv7 model 
was configured with default settings optimized for small ob-
ject detection, which is particularly suitable for identifying 
subtle anomalies like atrial septal defects.

During the training setup, let’s split the dataset into train-
ing (80 %) and validation (20 %) subsets to facilitate unbiased 
evaluation of model performance. It is possible to define appro-
priate loss functions for both segmentation (e.g., cross-entropy 
loss) and detection tasks and selected optimization algorithms 
like AdamW for efficient training. Hyperparameters such as 
learning rate, batch size, and the number of epochs were set 
based on preliminary experiments and existing literature, 
aiming to optimize model convergence and prevent overfitting.

The model training phase involved training the Seg-
Former models on the segmentation task using the prepared 
dataset. The models learned to generate precise segmentation 
masks of cardiac structures, which are essential for accu-
rate ASD detection. Subsequently, the YOLOv7 model was 
trained on the detection task, utilizing the segmented images 
from SegFormer to focus on potential ASD regions. This se-
quential training ensured that the detection model benefited 
from the enhanced input provided by the segmentation model.

Following training, it is possible to proceed with the 
integration of models to form the complete diagnostic pipe-
line. Let’s combine the outputs of SegFormer and YOLOv7 
by overlaying the detection results onto the segmentation 
masks. Cross-referencing mechanisms were implemented to 
align detected ASD regions with the corresponding anatom-
ical structures identified by the segmentation model. This 

integration ensured that the detected anomalies were ana-
tomically relevant, reducing the likelihood of false positives.

Finally, in the validation of proposed solutions, it is possible 
to evaluate the performance of the integrated pipeline on the 
held-out validation dataset. Let’s use evaluation metrics such as 
Intersection over Union (IoU) to assess segmentation accuracy 
and precision-recall curves to evaluate detection performance. 
These metrics provided quantitative measures of the models’ 
effectiveness and adequacy for the intended diagnostic appli-
cation. The validation process helped fine-tune the models and 
confirmed the viability of our approach in a clinical context.

5. Segmentation and classification models development 
results 

5. 1. Development of an efficient segmentation model 
using SegFormer

5. 1. 1. Model setup and training
SegFormer models (B0 to B5) pre-trained on the NVID-

IA/mit framework were fine-tuned for this task. The exper-
iments were conducted on an NVIDIA GeForce RTX 3080 
TI with 32 GB of RAM, and wandb.ai was used to store and 
visualize experiment results. Each configuration was tested 
with multiple random seeds to ensure consistency and robust-
ness. To ensure the consistency and robustness of the results, 
each configuration was tested using multiple random seeds.

The fine-tuning of the models involved varying several 
key parameters, including the number of epochs, which ranged 
from 25 to 150, and the batch size, which was tested with values 
of 8 and 16. Additionally, the learning rate was fine-tuned with 
values of 1e-6, 1e-5, 1e-4, and 1e-3, to determine the optimal 
setting for each model configuration. Through this process, 
let’s aim to identify the most effective setup for fine-tuning the 
SegFormer models in this specific task.

The dataset was split into training (80 %) and test-
ing (20 %) sets, ensuring representative samples from each 
class. The training process involved evaluating the models 
at regular intervals and saving the best- performing models 
based on validation metrics. The following metrics were used 
to evaluate model performance:

– mean intersection over union (IoU): measures the 
average overlap between predicted and true segmentations. 
the values of the of the overlap could vary from 0 % to 100 %;

– accuracy: overall and per-category accuracy. In the 
given context, the categories are segmentations from b0 
to b5. The average accuracy per category varies from;

– standard deviation: measures the variation in accuracy 
and IoU across different runs.

5. 1. 2. Performance comparison of other architectures
A series of experiments with different configurations were 

conducted, and the key results are summarized in Table 1.
The graph in Fig. 4 illustrates the generally positive 

relationship between Mean IoU and Accuracy across the 
SegFormer models: as accuracy increases, Mean IoU tends 
to increase as well. For instance, Model B1, with the highest 
accuracy, also has the highest IoU, indicating that better 
overall classification leads to better segmentation. However, 
exceptions like B3, which has a higher IoU but lower accura-
cy, suggest that a model can perform well in segmenting re-
gions (IoU) but still struggle with overall pixel classification.

The graph in Fig. 5 graph compares all metrics for dif-
ferent SegFormer models. Model B1 achieves the highest 
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accuracy and IoU, but with higher variability in predictions, 
while B5 shows a good balance between IoU and accuracy 
with moderate consistency. B3, despite being the most con-
sistent, performs poorly in both accuracy and IoU, making 
it less effective. Overall, B1 seems to be the best-performing 
model, offering superior segmentation performance at the 
cost of some prediction variability.

The Fig. 6 illustrates examples of segmented images for 
models. These visualizations highlight the strengths and 
weaknesses of each model in segmenting echocardiography 
images.

Table	1

Performance	of	SegFormer	models

Model Epochs
Batch 
Size

Learning 
Rate

Mean 
IoU

Accuracy Std Dev

B0 150 8 1e-6 60.13 64.93 8.04
B1 150 8 1e-5 72.72 77.93 7.78
B2 50 8 1e-5 64.62 68.71 4.84
B3 50 16 1e-3 66.66 59.99 4.36
B4 50 8 1e-6 57.79 63.30 5.72
B5 50 16 1e-3 65.05 67.37 3.83 

 
 

  
Fig.	4.	Mean	IoU	and	accuracy	of	SegFormer	models 

 
  Fig.	5.	Comparison	of	accuracy,	mean	IoU,	and	standard	deviation	for	SegFormer	models
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The Fig. 6 illustrates the quality of segmentation across the 
SegFormer models B0 to B5. Each row corresponds to a differ-
ent model, with improvements in segmentation quality general-
ly observed as to move from B0 to B5. The segmentation maps 
highlight how effectively each model identifies and separates 
different regions within the echocardiographic images.

Model B0 shows the lowest quality segmentation, with 
many regions poorly defined and a significant amount of over-
lap or misclassification of anatomical areas. As it is possible to 
progress to Model B1, there is a noticeable improvement in seg-
mentation clarity, with structures like the left ventricle (LV) 
and right atrium (RA) becoming more distinctly outlined.

Models B2 and B3 further enhance this segmentation qual-
ity, with better delineation of cardiac structures and less ambi-
guity in the regions identified. However, Model B3, despite its 
improved segmentation, occasionally misclassified smaller struc-
tures, indicating that while it can capture the general shape of the 
regions well, it may lack precision in differentiating finer details.

Models B4 and B5 demonstrate the most refined seg-
mentation performance, with clearly separated regions and 
accurate boundaries for even the smaller anatomical features. 
These models consistently highlight structures such as the 
left atrium (LA) and ventricular septal defect (VSD) with 

greater precision, indicating a higher capability in 
distinguishing between different areas within the 
echocardiographic images.

5. 2. Implementation and integration of 
the YOLOv7 detection model

The main goal of this experiment is to train 
YoloV7 models for the task of binary classifi-
cation of cardiac pathology (ASD – negative,  
AS – positive) in echocardiography images.

5 2. 1. Model setup for ASD detection
The YoloV7 experiments were conducted on 

an NVIDIA GeForce RTX 3060 with 6GB of 
RAM, and wandb.ai was used to store and visu-
alize experiment results. The training configura-
tions included the number of epochs of 500 and 
batch size of 32. The dataset was split into train-
ing (66 %), testing (10 %) and validation (34 %), 
ensuring representative samples from each class.

5. 2. 2. Classification results
The output is represented as rectangles of regina detection 

superimposed on the original medical image in grayscale. 
As shown in Fig. 7, each rectangle in the map corre-

sponds to one of the two classes (ASD, AS) and is their 
region of interest that was identified by the model.

The images were generated using Weights&Biases (wandb), 
which doesn’t currently allow changing text parameters like 
font size in diagrams. This limitation is due to the tool’s focus on 
experiment tracking and data visualization, and it doesn’t offer 
advanced options for customizing graphic elements.

The left part of Fig. 8 shows the precision-confidence 
relationship for two classes, along with overall performance 
across all classes. The class AS demonstrates higher and 
more stable precision across different confidence levels, 
while ASD struggles with lower precision, especially at 
higher confidence thresholds, indicating more challenges in 
accurately predicting this class. The overall model reaches 
perfect precision at a confidence level of 0.934, but signif-
icant variability, especially for ASD, suggests potential 
issues with class imbalance or feature variability affecting 
performance.

 
  

Fig.	6.	Sample	segmented	images	for	Model	B0–B5

 

 
  

Fig.	7.	Atrial	septal	defects	and	aortic	stenosis	classification	samples
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The right part of Fig. 8 depicts how recall changes 
with confidence for ASD, AS, and overall. ASD starts 
with moderate recall, which declines steadily as confi-
dence increases, showing that higher confidence levels 
lead to fewer true positives being detected. AS maintains 
higher recall initially but also drops sharply at higher 

confidence, indicating a similar trend. The combined 
curve shows that while recall decreases with increasing 
confidence, the optimal trade-off zones occur at lower to 
mid-confidence levels.

The Fig. 9 shows the F1 score against varying confidence 
levels, which balances precision and recall for each class.  

 
a

b 

Fig.	8.	Precision	and	recall	analysis	for	ASD	and	AS	detection:	a	–	precision	vs.	confidence	curve;	b	–	recall	vs.	confidence	curve
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The ASD curve fluctuates with lower F1 scores, sug-
gesting instability in the model’s predictions, particularly 
for ASD. The AS curve performs significantly better, with 
smoother and higher F1 peaks, indicating a stable balance 
between precision and recall. The combined performance of 
all classes (bold blue) highlights a more balanced F1 score, 
peaking around moderate confidence levels, which are the 
optimal points for the model’s operation.

6. Discussion: efficacy and implications of the 
SegFormer-YOLOv7 pipeline for ASD detection

In this paper, let’s propose a novel approach for assisting 
in the detection of ASD. To achieve efficient detection, let’s 
employ a combination of methods: a recently introduced 
transformer-based segmentation network (SegFormer) is 
used to identify cardiac structures, which are then cross-ref-
erenced with a detection network (YOLOv7) that has been 
trained independently. This dual scheme allows to leverage 
the strengths of both models: the consistent, high-accuracy 
segmentation provided by SegFormer is complemented by 
the fast and precise detection capabilities of YOLOv7, effec-
tively mitigating the limitations of each approach. In sum-
mary, let’s make the following contributions:

– rigorously evaluate the SegFormer model, both pre-
trained and trained from scratch, emphasizing its seg-
mentation accuracy and computational efficiency when 
applied to echocardiography images;

– reveal that SegFormer, when combined with 
YOLOv7, not only matches but, in key aspects, surpasses 
existing CNN-based models in medical image segmen-
tation and object detection, thereby establishing its po-
tential as a robust alternative for clinical deployment in 
pediatric cardiology.

Our results demonstrate that the SegFormer models 
with higher complexity, such as B4 and B5, achieved superi-
or accuracy and mean Intersection over Union (IoU) metrics 
compared to simpler models (Table 1). These models were 
more effective at precisely segmenting echocardiographic 
images, as evidenced by the improvement in segmentation 
quality shown in Fig. 6. The segmentation maps illustrate 
the ability of models B4 and B5 to clearly delineate cardiac 
structures, such as the left atrium (LA) and ventricular 
septal defect (VSD), making them more suitable for ASD 
detection. However, this improvement comes at the cost of 
longer training times and higher computational demands, as 
seen in Fig. 5, where these models demonstrate higher accu-
racy but also greater variability in predictions.

In terms of the detection model, YOLOv7 showed strong 
performance in identifying small and subtle anomalies char-
acteristic of ASD, particularly when integrated with Seg-
Former. This is highlighted in the results depicted in Fig. 7, 
where the precision-confidence relationship for ASD de-
tection reveals challenges in maintaining high precision at 
higher confidence levels, as reflected in the precision-con-
fidence curve (Fig. 8, a). This issue, along with a decline 
in recall for both ASD and AS classes at higher confidence 
thresholds (Fig. 8, b), indicates the need for balancing confi-
dence thresholds to optimize the model’s performance. 

YOLOv7’s performance in detecting small objects is 
further emphasized by the comparison of F1 scores across 
different confidence levels in Fig. 9, where the model strug-
gles with lower precision and recall for ASD compared to 
other classes. This highlights the sensitivity of the model to 
parameter adjustments, and further refinement is necessary 
to improve the balance between precision and recall for ASD 
detection.

The integration of SegFormer and YOLOv7 models al-
lowed for cross-referencing the detected ASD regions with 

 

 
  Fig.	9.	F1	vs.	confidence	curve
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the segmented heart chambers, improving diagnostic accuracy. 
This is evident in the enhanced identification of ASD regions 
with fewer false positives, as demonstrated in the performance 
metrics presented in Table 1 and the visual examples in Fig. 6. 
The cross-referencing mechanism ensured anatomical rele-
vance, which is crucial for reducing diagnostic errors.

Overall, all results show that the SegFormer-YOLOv7 
pipeline offers a balanced approach for ASD detection, le-
veraging the segmentation accuracy of SegFormer and the 
detection capabilities of YOLOv7. However, the variability 
in the model’s predictions, particularly for ASD detection, 
indicates that further improvements are needed in handling 
diverse image quality and patient variability.

7. Conclusions

1.  An efficient segmentation model utilizing the SegForm-
er architecture, optimized for identifying key cardiac struc-
tures in echocardiography images was successfully developed. 
Specifically, the SegFormer-B1 and B2 models achieved high 
segmentation accuracy (77,93 %+/–7.78, 68.71 %+/–4.84 re-
spectively). These models maintained lower computational 
demands compared to their more complex counterparts, mak-
ing them suitable for practical deployment. The peculiarity 
of this result lies in the ability of SegFormer to capture both 
local and global features without extensive preprocessing, 
which differs from traditional CNN-based models that often 
require larger datasets and more computational resources. 
This effectiveness is explained by SegFormer’s transform-
er-based architecture, which enhances generalization and 
efficiency even with limited data. The practical impact of this 
model’s efficiency is reflected in a reduced inference time on 
hardware typical of resource-constrained environments.

2. YOLOv7 detection model was implemented and inte-
grated to identify ASD regions within the segmented heart 
structures. YOLOv7 demonstrated strong performance in 
detecting small and subtle anomalies characteristic of ASDs. 
The model achieved high precision for aortic stenosis (AS) 
detection, reaching peak performance at a confidence level 
of 0.934. However, it faced challenges with ASD detection, 
showing lower precision and fluctuating F1 scores, indicat-
ing the need for further optimization in detecting smaller 
anomalies. This result differs from earlier object detection 
models that struggled with small defect detection, and it 

is explained by YOLOv7’s advanced features like trainable 
bag-of-freebies and re-parameterization techniques, which 
enhance its capability to detect small objects efficiently. This 
capability plays a crucial role in early diagnosis and more ac-
curate treatment planning, with the potential to significant-
ly reduce the occurrence of false negatives in ASD detection. 
This improvement not only enhances diagnostic confidence 
but also contributes to timely and effective patient care, min-
imizing the risk of missed or delayed diagnoses.
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