
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/4 (131) 2024

6

MATHEMATICS AND CYBERNETICS – APPLIED ASPECTS

IMPLEMENTATION OF
A NON-STANDARD

SYSTEM FOR
SIMPLIFYING PEIRCE-

WEBB FUNCTIONS
M y k h a i l o S o l o m k o

Corresponding author
PhD, Associate Professor

Department of Computer Engineering*
E-mail: doctrinas@ukr.net

P e t r o T a d e y e v
PhD, Doctor of Pedagogical Sciences, Professor

Department of Higher Mathematics*
M y k o l a A n t o n i u k

PhD, Associate Professor
Department of Information and Communication

Technologies and Methods of Teaching Informatics**
Y u l i i a M a l a

PhD
Department of Computer Science and Software Engineering

University of Customs and Finance
Volodymyr Vernadskyi, 2/4, Dnipro, Ukraine, 49000

S t e p a n i i a B a b y c h
PhD, Associate Professor

Department of Information Technologies and Modeling**
Y a k i v I v a s h c h u k

PhD
Department of Higher Mathematics*

*National University of Water and Environmental Engineering
Soborna str., 11, Rivne, Ukraine, 33028
**Rivne State University of Humanities

S. Bandery str., 12, Rivne, Ukraine, 33028

The object of research are models of optimal logic
circuits based on universal Peirce-Webb functions.
The problem solved is the efficiency of the technique
for simplifying the Peirce-Webb functions. The exten-
sion of the non-standard system to the simplifica-
tion of Peirce-Webb functions makes it possible to
discover new rules of equivalent transformations of
Boolean functions, and to complete the simplification
procedure in one step. A feature of the simplification
of functions in the Peirce-Webb basis by a non-stan-
dard system is fixing the digital project at the level of
abstraction, followed by the application of the mecha-
nism of logical synthesis to generate the corresponding
equivalent at the level of gates of the logic circuit. The
result of the transformation of the terms of the binary
matrix in the end is some combinatorial system, meta-
data that can explain other data, for example, deter-
mine the minimum function for another logical basis.

The interpretation of the result consists in the use
of combinatorial properties of binary structures of
functions in the Peirce-Webb basis and binary struc-
tures of functions in the basic basis. These properties
do not depend on the selected logical basis, which
makes it possible to carry out equivalent transfor-
mations on binary matrices of Peirce-Webb functions
according to the rules of the algebra of the main basis.

It has been experimentally confirmed that a non-
standard system enables:

– to reduce the algorithmic complexity of simpli-
fying the Peirce-Webb functions;

– to increase the performance of the simplification
of Peirce-Webb functions by 200–300 %;

– to demonstrate the visibility of the process of
simplifying functions.

In terms of application, the non-standard system
of simplifying the Peirce-Webb functions could ensure
the transfer of innovations to material production:
from conducting fundamental research, expanding
the capabilities of digital component design technolo-
gy to organizing serial or mass production of novelties

Keywords: DNF simplification, Peirce-Webb func-
tion, Peirce-Webb basis, non-standard system, logi-
cal circuit, AND-NOT, OR-NOT gates

UDC 681.325
DOI: 10.15587/1729-4061.2024.312968

How to Cite: Solomko, M., Tadeyev, P., Antoniuk, M., Mala, Y., Babych, S., Ivashchuk, Y. (2024). Implementation of a non-stan-

dard system for simplifying Peirce-Webb functions. Eastern-European Journal of Enterprise Technologies, 5 (4 (131)), 6–32.

https://doi.org/10.15587/1729-4061.2024.312968

Received date 12.07.2024

Accepted date 23.09.2024

Published date 30.10.2024

1. Introduction

In practice, many logic circuits are implemented using
OR-NOT or AND-NOT gates due to the fact that the main
gates in some families of logic, such as transistor-transistor
logic (TTL) and complementary metal oxide semiconduc-
tor (CMOS), are AND-NOT and OR-NOT gates. The AND
and OR gates also exist in these families but their selection
is much smaller, and they are usually more expensive, have
longer signal delays, and may have higher thermal dissipation
capacity. The implementation of the AND function by AND-
NOT gates is performed by connecting two AND-NOT gates

in a cascade, the first of which performs the AND-NOT ope
ration, and the second is used as an inverter. The technique
of implementing Boolean functions on AND-NOT gates does
not necessarily ensure their minimal implementation. How-
ever, in some cases, factorization makes it possible to create
an AND-NOT circuit with fewer gates.

These logic elements require fewer transistors (for exam-
ple, in NMOS logic, a NAND gate is simpler than an AND or
OR logic element) [1–3]. However, developers naturally use
representations based on the logic base {AND, OR, NOT}
rather than based on {NOR, NAND}. In addition, almost all
known methods for minimizing logical circuits, starting with

Mathematics and Cybernetics – applied aspects

7

Carnot maps and ending with Espresso algorithms, also give
results based on {AND, OR, NOT} [4, 5]. Only after such
minimization, special algorithms replace elements of the basis
{AND, OR, NOT} with elements of the basis {NOR, NAND}.

Logical elements AND-NOT and OR-NOT are used
for hardware implementation of any logic circuit. For this
reason, AND-NOT and OR-NOT logic elements are called
universal gates.

The Peirce-Webb basis uses OR-NOT logical elements
and is functionally complete for the space of Boolean func-
tions from 2 variables. This means that each Boolean func-
tion can be implemented using a combination of elements
OR-NOT (Fig. 1) or AND-NOT.

1 1x1x

1 1
1x

2x 1 2x x+

1

1

1

1x

2x
1 2x x⋅

1 1x1x

1 1
1x

2x 1 2x x+

1

1

1

1x

2x
1 2x x⋅

1 1x1x

1 1
1x

2x 1 2x x+

1

1

1

1x

2x
1 2x x⋅

a

b

c

Fig. 1. Implementation of elements of the basic 	
basis {NOT, AND, OR} on OR-NOT elements: a – inverter;

b – conjunction; c – disjunction

Logical NOR represents a dyadic logical operation 2-OR-
NOT (Fig. 2).

1
1x

2x

Fig. 2. Logic element 2-OR-NOT

The symbol ↓ is used to indicate the "Peirce arrow" ope
ration. The operation "logical NOR" is the negation of the
disjunction f x x x x x x= ↓() = + = ⋅1 2 1 2 1 2, therefore, the value
of the operation "logical NOR" will be "true" only when
both arguments x1 and x2 take the value "false" (Table 1).

Table 1

Truth table of the "logical NOR" operation

х1 х2 f x x x x x x= ↓ = + = ⋅1 2 1 2 1 2

0 0 1

0 1 0

1 0 0

1 1 0

The Peirce-Webb basis belongs to the field of optimization
of logical functions. In this regard, it is still relevant to con-
duct studies aimed, in particular, at improving such factors as:

– methods for simplifying Boolean functions in the Peirce-
Webb basis;

– minimization of logic circuits based on Peirce-Webb
functions;

– reliability of the optimal function minimization result;
– the cost of the process of simplifying logical functions.

2. Literature review and problem statement
Fast transformation of the multi-level logic of the basis

{AND, OR, NOT} to the functionally equivalent scheme of
the basis {OR-NOT, AND-NOT} is considered in paper [6].
It is shown that the problem can be solved by replacing
logical AND and OR elements with OR-NOT or AND-NOT
elements, but this requires in some cases the introduction
of additional inverters or the distribution of logic elements.
The paper proposes algorithms for fast transformation of
the circuit from the basis {AND, OR, NOT} to the basis
{OR-NOT, AND-NOT}, while minimizing the number of
inverters. The presented algorithms make it possible to turn
any multi-level scheme into a chain, which is a combination
of logical elements OR-NOT, AND-NOT or both types of
universal logical elements. Almost all known methods for
minimizing Boolean functions, including Espresso, give re-
sults in the same logical AND-OR-NOT basis. Only after
such a simplification procedure, a library of logic elements
is connected, including OR-NOT and AND-NOT gates for
circuit synthesis. For two-level minimization in the form of
a sum of products or a product of sums, such a mapping is
trivial. But in FPGA schemes consisting of logical blocks of
multi-level implementation of Boolean functions, optimizing
the transformation of a multi-level scheme from an AND-
OR-NOT basis to an OR-NOT-AND-NOT basis is not an
easy task. It should be noted that during the transition from
the main basis to the Schaeffer and Peirce-Webb bases using
the method discussed in [6], the number of operations for the
transition would increase non-linearly. In turn, the number of
logic elements in digital technology devices would increase
linearly depending on the number of variables that are ap-
plied to the input of the microcircuit.

The implementation of logical functions using OR-NOT
or AND-NOT gates is considered in [7]. The replacement
of NOT, OR and AND logic elements in the scheme with
AND-NOT logic elements is demonstrated. The uniqueness
of replacing logical elements from the basis {AND, OR, NOT}
with elements from the basis {OR-NOT, AND-NOT} is en-
sured by de Morgan transformations. The procedure for
replacing logical elements is completed by optimizing the
scheme, which is reduced to replacing a connection with
an even number of inversions in the form of a NOT func-
tion with a conductor segment. It is worth noting that the
replacement of NOT, OR and AND logic elements in the
circuit with AND-NOT logic elements gives a linear increase
in the number of logic elements in digital technology devices,
depending on the number of variables that are applied to the
input of the microcircuit.

The optimization of simple combinational universal logic
elements using the Minitab19 programming environment
and Boolean algebra is reported in [8]. It is noted that the
replacement of AND and OR logic elements on the OR-NOT
or AND-NOT gate in some cases requires the introduction
of additional inverters or the separation of gates. The result
of minimization is simplified expressions of functions in the
form of sum of products (SOP) or product of sums (POS).
The SOP form can be transformed into an AND-NOT ex-
pression, but such a transformation does not provide an opti
mal circuit, neither in the range of gates nor in the range of

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/4 (131) 2024

8

logic levels. Paper [8] also presents a method of genetic cod-
ing for the synthesis of combinational logic universal circuits,
when universal AND-NOT logic gates are used instead of the
main set of gates, i.e. AND, OR, NOT, XOR. Experimental
results show that the considered technique gives better re-
sults, compared to the modernization of the SOP form to the
AND-NOT expression. It should be noted that the genetic
algorithm refers to heuristic methods that provide approxi-
mate simplification and minimization of Boolean functions.
A genetic algorithm could provide accurate minimization
with a large number of iterations. The problem, however, is
the stopping of the algorithm, which is currently unsolved.

One of the tasks of the synthesis and analysis of the opera
tion of combinational devices is the representation of Boolean
functions in different bases. The absolute completeness of
the use and implementation of various transformations of
Boolean functions is impossible without the implementation
of transformations into universal Schaeffer (AND-NOT)
or Peirce-Webb (OR-NOT) bases. The Logic library of the
Maple computer algebra system makes it possible to use only
AND-NOT (Scheffer basis) and OR-NOT (Peirce-Webb
basis) operations to build a digital device model. Therefore,
there is a need to extend the functionality of the Maple com-
puter algebra system logic library by representing Boolean
functions in Schaeffer and/or Peirce-Webb bases. In this
regard, work [9] reports the development of procedures
that allow disjunctive or conjunctive normal forms of the
main basis to be represented in the Schaeffer basis or in the
Peirce-Webb basis. The development was carried out tak-
ing into account the existing functions and data processing
procedures. The paper presents the technology of expanding
the Logic library of the Maple computer algebra system with
developed procedures that implement the transformation
of a given or obtained Boolean function in the Schaeffer or
Peirce-Webb bases. It is advisable to provide the Maple com-
puter algebra system with the use of distributive laws of the
1st and 2nd kind, which will thus form a reserve for optimal
simplification of functions in the Schaeffer (AND-NOT) and
Peirce-Webb (OR-NOT) bases.

In paper [10], the transition from the basic basis of arbi-
trary logical functions to the bases of Schaeffer and Peirce
is investigated. To this end, recurrent dependences of the
representation of disjunctive and conjunctive monomials
in the specified bases were first established and generaliza-
tions were made to arbitrary logical formulas in the form of
disjunctive and conjunctive normal forms of representation.
Estimates of the number of operations for logical formulas
during the transition to the Schaeffer and Peirce bases
are obtained, which determines the practical value of the
results. It is worth noting that before the transition of the
Boolean function of the main basis to the Schaeffer and Peirce
bases, it is possible to apply distributive laws of the 1st and
2nd kind (factorization). This is possible both with the dis-
junctive normal form (DNF) representation and with the
conjunctive normal form (CNF) representation of the func-
tion, which is a reserve for optimizing the number of logical
operations and literals for the considered problems.

The algorithm for implementing the Boolean value of
functions using only logical elements of conjunction nega-
tion (NAND) or only disjunction negation (NOR) is repor
ted in [11]. The algorithm for converting the logical structure
of the Boolean basis to the structure of the monobasis is per-
formed step by step. First, the Boolean function represented
by the logic elements {AND, OR, NOT}, using de Morgan’s

laws in various forms, is transformed so that only NAND ele-
ments or only NOR elements are used in the circuit. Next, re-
dundant inverters are removed. In the case of two inverters in
series (inverted output going directly into the inverted input),
both inverters are removed because they cancel each other out.
At the last stage, the remaining inverters are replaced with
equivalent NAND or NOR elements. It is worth noting that
during the transition from the main basis to the Schaeffer and
Peirce-Webb bases using the method discussed in [11], the
number of operations for the transition would grow non-linearly.
In turn, the number of logical elements in digital technology
devices would increase linearly depending on the number of
variables that are applied to the input of the microcircuit.

Optimization of combinational logic circuits using NAND
elements and genetic programming is considered in paper [12].
Optimization of a logic circuit implementing a Boolean func-
tion can be performed according to various criteria. It can be
optimization of the complexity of the circuit, the number of
logic levels, the number of semiconductor devices in the cir-
cuit, etc. In [12], the authors describe an approach that uses
genetic programming to optimize a given Boolean function
with respect to the above criteria. Instead of a set of logical
elements {AND, OR, NOT, XOR}, universal NAND elements
were used, which ensured better speed and compactness of the
circuit. Conventional methods for minimizing logical struc-
tures give simplified expressions in two standard forms: sum
of products (SOP) or product of sums (POS). The SOP form
can be converted to a NAND expression by a procedure, but
the conversion does not lead to an optimal circuit, either in
terms of the number of logic elements or the number of logic
levels. The results of experimental studies showed that the
method of genetic programming, which is reported in [12],
gives better results, compared to the transformation of the
SOP form into a NAND expression, in terms of the number of
gates, logic levels, and semiconductor devices of the circuit. It
is worth noting that genetic programming refers to heuristic
methods that provide approximate simplification and minimi-
zation of Boolean functions. The genetic programming meth-
od can demonstrate exact minimization similar to the results
of the analytical method, however, with a large number of
iterations. The problem here is stopping the algorithm, which
currently appears to be unsolved.

From our review of the literature [6–12], it follows that
the task can be solved by replacing logical elements AND and
OR with OR-NOT or AND-NOT elements. This, however,
requires in some cases the introduction of additional inver
ters or the distribution of logic elements. The unambiguity of
replacing logical elements from the basis {AND, OR, NOT}
with elements from the basis {OR-NOT, AND-NOT} is
ensured by de Morgan transformations [7, 11]. To replace
logical elements AND and OR on the gate AND-NOT or
OR-NOT, in [8, 9] automation of calculations is applied.
Another method of replacing logical AND and OR elements
with OR-NOT or AND-NOT elements consists in using re-
current dependences of the representation of disjunctive and
conjunctive monomials in the specified bases [10].

The methods for simplifying Boolean functions in the
Peirce-Webb basis, discussed in [6–9, 11, 12], with the ex-
ception of [10], represent the first experience of solving prob-
lems of this type. The task is solved by replacing logical AND
and OR elements with OR-NOT or AND-NOT elements.
However, making the transition from the basic basis to the
Schaeffer or Peirce-Webb basis at the level of logical ele-
ments gives a non-linear increase in the number of operations

Mathematics and Cybernetics – applied aspects

9

for this transition. In turn, the number of logical elements in
digital technology devices would increase linearly depending
on the number of variables that are applied to the input of
the microcircuit. Recurrent dependences give intermediate
operations, which increases the complexity of the algorithm
for replacing elements from the basis {AND, OR, NOT} with
elements from the basis {OR-NOT, AND-NOT}.

The non-linear increase in the number of transition
operations from the basis {AND, OR, NOT} to the basis
{OR-NOT, AND-NOT} and the linear increase of logical ele-
ments in digital devices may affect the innovative capacity of
the technology of simplifying the Peirce-Webb functions in
the future, which is a problem.

Changes to the technology of simplifying Boolean func-
tions in the Peirce-Webb basis in the form of the objection
of methods, which are considered in works [6–12], serve to
overcome the specified problem.

To this end, it is necessary:
– to devise new rules for equivalent transformation of

Boolean functions in the Peirce-Webb basis;
– to provide a technology for simplifying the Peirce-

Webb functions in one step;
– to carry out the minimization of Peirce-Webb functions

on the complete truth table;
– to apply, when simplifying the Peirce-Webb functions,

the distributive law of the 2nd kind;
– to take into account the simplification of the Peirce-

Webb functions in the Reed-M ller basis.
The non-standard system is based on the combinatorial

properties of binary structures PNFPW-1, PNFPW-2 func-
tions in the Peirce-Webb basis and DDNF, DKNF functions of
the main basis. These properties do not depend on the selec
ted logical basis, which makes it possible to carry out equi
valent transformations on the binary matrices PNFPW-1,
PNFPW-2 according to the rules of the algebra of the main
basis. The result of the transformation of the terms of the
binary matrix in the end is some combinatorial system, meta-
data that can explain other data, for example, determine the
minimum function for another logical basis.

Thus, algorithms and methods for replacing logical AND
and OR elements with AND-NOT or OR-NOT elements,
created software tools for them [6–12] and a non-standard
system for simplifying Boolean functions have excellent ap-
proaches (principles). And so, they imply different prospects
regarding the possibility of optimal simplification of Boolean
functions in the Peirce-Webb basis.

And this is a reason to believe that the software-techno-
logical base, which is represented by algorithms and methods
for replacing the logical elements of the basic basis AND and
OR with elements of the universal basis OR-NOT, AND-
NOT for solving a Boolean problem [6–12], is insufficient
for conducting theoretical studies regarding the optimal sim-
plification of the Peirce-Webb functions. This predetermines
the need to carry out research using a non-standard system
for simplifying Boolean functions in the Peirce-Webb basis.

In terms of application, the non-standard system of
simplifying the Peirce-Webb functions could ensure the
development of the innovation process and the transfer of in-
novations into material production. From decision-making,
conducting fundamental research, expanding the capabili-
ties of digital component design technology based on uni-
versal Peirce-Webb functions, creating prototypes, testing
them, to organizing serial or mass production of novelties
and their implementation.

3. The aim and objectives of the study

The aim of our work is to extend a non-standard system
for simplifying the Peirce-Webb functions, in particular the
first perfect normal form of the function in the Peirce-Webb
basis (PNFPW-1) and the second perfect normal form of the
function in the Peirce-Webb basis (PNFPW-2). This could
make it possible to expand the algebra of equivalent transfor-
mations, to increase the productivity of the simplification of
the specified functions.

To achieve the set goal, the following tasks must be solved:
– to determine the hermeneutics of logical transforma-

tions on the binary structures of Peirce-Webb functions;
– to establish the rules for equivalent transformation of

Peirce-Webb functions in exceptional situations;
– to expand the algebra of equivalent transformations to

simplify Boolean functions in the Peirce-Webb basis;
– to analyze the expediency of minimizing the Peirce-

Webb functions on the complete truth table;
– to conduct a comparative analysis of the results of the

simplification of Boolean functions by a non-standard system
in the Peirce-Webb basis and the simplification of functions by
a matrix algorithm, algebraic bi-decomposition, and the me
thod of bitwise partitioning of the set of output conjunctures, in
order to compare the cost of implementing minimal functions.

4. The study materials and methods

The object of research are models of optimal logic circuits
based on universal Peirce-Webb functions.

It should be expected that the regular and constant appli-
cation of the visual-matrix form of the analytical method for
simplifying Boolean functions in the Peirce-Webb basis will
allow for the following:

– to fix digital projects at the level of abstraction, fol-
lowed by the use of the logic synthesis mechanism to gene
rate the corresponding equivalent at the gate level;

– to form new rules for equivalent transformation of
Boolean functions in the Peirce-Webb basis;

– to complete the procedure for simplifying the Peirce-
Webb functions in one step;

– to simplify the Peirce-Webb functions in the Reed-
M ller basis.

The term "Binary combinatorial systems with repeated
2-(n, b)-design, 2-(n, x/b)-design" is shortened to "combina-
torial systems 2-(n, b)-design, 2-(n, x/b)-design", "2-(n, b)-de-
sign, 2-(n, x/b)-design systems".

FAL – functions of the algebra of logic.
Any logical function in the Peirce-Webb algebra can be

represented in the canonical form – OR-NOT/OR-NOT (OR-
NOT/OR-NOT). OR-NOT/OR-NOT form is 2-level (nor-
mal) – both inner and outer are OR-NOT functions.

The canonical form of the OR-NOT/OR-NOT logical
function of n variables consists of Peirce-Webb terms of the
n-th rank, combined by the OR-NOT operation.

The Peirce-Webb term of the n-th rank takes the follow-
ing generalized form [13]:

x x x x x xn n n n n n
n n n nσ σ σ σ σ σ∨ ∨ ∨ ↓ ↓ ↓− −

− −
1 1

1 1 1 1... ... , or

where

x
x

x
i

i i

i i

iσ σ
σ

=
=
=







, ,

, ,

 if

 if

1

0
 i n= 2 3, ,..., , < > −−σ σ σn n 1 1... binary set.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/4 (131) 2024

10

Any binary set corresponds to a Peirce-Webb term

x x xn n n
n nσ σ σ∨ ∨ ∨−

−
1

1 1... or a Peirce-Webb function x x xn n n
n nσ σ σ↓ ↓ ↓−

−
1

1 1...

x x xn n n
n nσ σ σ↓ ↓ ↓−

−
1

1 1... and, conversely, a binary set (tuple) corresponds

to a Peirce-Webb term x x xn n n
n nσ σ σ∨ ∨ ∨−

−
1

1 1... or a Peirce-Webb

function x x xn n n
n nσ σ σ↓ ↓ ↓−

−
1

1 1... . For example, a set <0101> cor-

responds to a Peirce-Webb term x x x x4 3 2 1∨ ∨ ∨ or a Peirce-

Webb function x x x x4 3 2 1↓ ↓ ↓ , and a set <011> corresponds

to a Peirce-Webb term x x x3 2 1∨ ∨ or a Peirce-Webb func-

tion x x x3 2 1↓ ↓ .
Any function in the algebra of logic can be represented in

the form of a perfect disjunctive normal form (PDNF):

f x x x x x x F x xn n i n
n

1 2 1 1 2 1 1
1 2, ,..., ... ,..., ,() = ∨ ⋅ ⋅ ⋅ = ∨ ()α α α

where F x x x x xi n n
n

1 1 2
1 2,..., ...() = ⋅ ⋅ ⋅α α α – characteristic function,

i = 1,2, …, k – numbers of sets on which the function returns 1.
Any function in the algebra of logic can also be represen

ted in the form of perfect conjunctive normal form (PCNF):

f x x x x x x F x xn n i n

n

1 2 0 1 2 0 1

1 2
, ,..., ... ,..., ,() = ∧ ∨ ∨ ∨() = ∧ ()α α α

where F x x x x x x x xi n n n
n

n

1 1 2 1 2
1 2

1 2
,...,() = ⋅ ⋅ ⋅ = ∨ ∨ ∨()α α α α α α

 (on

the basis of de Morgan’s formula).
Thus:

f x x x F x x F x xn i n i n1 2 1 1 0 1, ,..., ,..., ,..., .() = ∨ () = ∧ ()

For a function of n variables, the maximum number of
characteristic functions is 2n.

It follows from de Morgan’s formulas for a function of
two variables that x x x x1 2 1 2↓ = or x x x x1 2 1 2↓ = . Analogous
expressions can be written for a function of n variables. Then:

x x x x x xn n
n

n

1 2 1 2
1 2

1 2α α α α α α
... ...= ↓ ↓ ↓

or

F x x x x xi n n

n

1 1 2

1 2
,..., ...() = ↓ ↓ ↓

α α α

under condition:

i n n
n= + + +− −α α α1

1
2

2 02 2 2... .

Since F F F F F Fk k1 2 1 2∨ ∨ ∨ = ↓ ↓ ↓... ... , the
first perfect normal form of writing the func-
tion in the Peirce-Webb basis (PNFPW-1) is
obtained from the expression for PDNF:

f x x x F x xn i n1 2 1 1, ,..., ,..., .() = ↓ ()

Similarly, on the basis of the relation F F F F F Fk k1 2 1 2∧ ∧ ∧ = ↓ ↓ ↓... ... ,
F F F F F Fk k1 2 1 2∧ ∧ ∧ = ↓ ↓ ↓... ... , from the expression for PCNF, the second

perfect normal form of writing functions in the Peirce-Webb
basis (PNFPW-2) is obtained:

f x x x F x xn i n1 2 0 1, ,..., ,..., .() = ↓ ()

In both forms of the Peirce-Webb basis, the functions
Fi(x1, …, xn) are found in the same way:

F x x x x xi n n

n

1 1 2

1 2
,...,() = ↓ ↓ ↓

α α α

Therefore, all definitions for functions in the algebra of
logic in the {AND, OR, NOT} basis have their analogs for the
Peirce-Webb basis {OR-NOT} (Table 2). Replacing the basis
{AND, OR, NOT} with the basis {OR-NOT} is possible on
the basis of de Morgan’s formulas:

x x x x1 2 1 2⋅ = + ;

x x x x1 2 1 2+ = ⋅ .

The rules of transition from the tabular form of the func-
tion to, for example, PNFPW-2 are as follows:

1. Select all sets of variables on which the function re-
turns 0 in the truth table.

2. For each set of variables for which the function re-
turns 0, write expressions of the type x x x

n

n

1 2
1 2α α α↓ ↓ ↓... .

If the argument xi is included in the given set of variables
as 0, then xi is written without changes, if the argument xi is
included in the given set of variables as 1, then xi is written
with a negation sign xi().

3. All obtained expressions of the characteristic functions
Fi(x1, …, xn) are combined by the k-binary Peirce-Webb ope
ration, where k is the number of sets of variables in the truth
table on which the function returns a zero value.

Let us represent the PNFPW-1 and PNFPW-2 functions
for the Boolean function f(x1, x2, x3) (Table 3).

PNFPW-1:

f x x x

x x x x x x x x x

1 2 3

1 2 3 1 2 3 1 2 3

, ,

.

() =

= ↓ ↓() ↓ ↓ ↓() ↓ ↓ ↓()
PNFPW-2:

Table 2
Thesauri of logical bases

No. of entry {AND, OR, NOT} basis thesaurus {OR-NOT} basis thesaurus

1 Implicant Inversant

2 A simple implicant A simple inversant

3 Perfect disjunctive normal form (PDNF) Peirce–Webb-1 perfect normal form (PNFPW-1)

4 Perfect conjunctive normal form (PCNF) Peirce–Webb-2 perfect normal form (PNFPW-2)

5 Minimal disjunctive normal form (MDNF) Pierce–Webb-1 minimal normal form (MNFPW-1)

6 Minimal conjunctive normal form (MCNF) Pierce–Webb-2 minimal normal form (MNFPW-2)

f x x x

x x x x x x x x x x x x x x

1 2 3

1 2 3 1 2 3 1 2 3 1 2 3 1 2

, ,() =

= + +() + +() + +() + +() + ++() =

= + +() + + +() + + +() + + +() + + +

x

x x x x x x x x x x x x x x

3

1 2 3 1 2 3 1 2 3 1 2 3 1 2 xx

x x x x x x x x x x x x x x x

3

1 2 3 1 2 3 1 2 3 1 2 3 1 2

() =

= ↓ ↓() ↓ ↓ ↓() ↓ ↓ ↓() ↓ ↓ ↓() ↓ ↓ ↓ 33() =

Mathematics and Cybernetics – applied aspects

11

Table 3
Truth table of logical function f(x1, x2, x3)

x1 x2 x3 f(x1, x2, x3) x1 x2 x3 f(x1, x2, x3)

0 0 0 0 1 0 0 0

0 0 1 0 1 0 1 0

0 1 0 0 1 1 0 1

0 1 1 1 1 1 1 1

The Peirce-Webb function is given by the expres-
sion x x x x x x1 2 1 2 1 2↓ = + = . The Peirce-Webb algebra has
axioms (Table 4), which are verified using truth tables.

Table 4

Axioms of Peirce-Webb algebra and transformation formulas

No. of entry
Logical NOR,
2-OR-NOT

No. of entry
Logical NOR,
2-OR-NOT

1 x x x↓ = 6 x x↓ =0

2 x x↓ = 0 7 x x x x1 2 1 2↓ = /

3 x ↓ =1 0 8 x x x x1 2 1 2↓ = /

4 x x↓ =0 9 x x x x1 2 1 2/ = ↓

5 x x↓ =0 10 x x x x1 2 1 2/ = ↓

Based on the axioms (Table 4), it follows that only the
commutative law is valid for the logical NOR function:

x x x x1 2 2 1↓ = ↓ .

By analogy with dyadic functions, n-digit Peirce-Webb
functions (Wn) are also considered (Table 5):

W x x x xn n= ↓ ↓ ↓ ↓1 2 3

Table 5

Truth table of the n-digit Peirce-Webb function (Wn)

x1 x2 x3 . . . xn–1 xn Wn

0 0 0 – – – 0 0 1

0 0 0 – – – 0 1 0

0 0 0 – – – 1 0 0

– – – – – – – – –

– – – – – – – – –

1 1 1 – – – 0 0 0

1 1 1 – – – 1 0 0

1 1 1 – – – 1 1 0

When n = 2, from Table 5 we get a dyadic Peirce-Webb
function, and at n = 1 the Peirce-Webb function degenerates
into a negation function. Therefore, the expression x x↓ can
be represented as x :

x x x x x= + = ↓ .

Any dyadic logical operation can be represented using a
logical NOR, for example:

x x x↓ ≡ − denial;

x x x x x x x x1 1 2 2 1 2 1 2↓() ↓ ↓() ≡ ↓ ≡ − conjunction;

x x x x x x x x1 2 1 2 1 2 1 2↓() ↓ ↓() ≡ ↓ ≡ + − disjunction;

x x x x x x x x1 1 2 1 1 2 1 2↓() ↓() ↓ ↓() ↓() ≡ → − implication.

In this way, logical NOR operation can be used by itself,
without any other logical functions, as part of a logical for-
mal system (making this function functionally complete).

For electronics, this means that the implementation of all the
variety of signal conversion schemes that represent logic values
involves one universal element called the "2-OR-NOT opera-
tion" (2-in NOR). On the other hand, this approach increases
the complexity of schemes implementing logical expressions.
This reduces their reliability, and also increases signal transit
time, as well as reduces the performance of the digital device.

The following relations are valid for n-digit Peirce-Webb
functions [14]:

x x x x x↓ ↓ ↓ ↓ =... ;

x x x x x↓ ↓ ↓ ↓ ↓ ↓ =... ... ;0

x xl1 1 1 0↓ ↓ ↓ ↓ ↓ =... ... ;

x x x xl l1 10 0↓ ↓ ↓ ↓ ↓ = ↓ ↓... ;

x x x x x x x x xn n n1 2 1 2 1 2↓ ↓ ↓ = ∨ ∨ ∨ =...

At the end, relations are presented that demonstrate the
connection between the n-digit Peirce-Webb and Schaef-
fer functions, which are analogs of de Morgan’s formulas:

x x xn x x xn

x x xn x x xn

1 2 1 2

1 2 1 2

/ / ... / ... ;

... / / ... / .

= ↓ ↓ ↓

↓ ↓ ↓ =







The validity of all the above ratios can be established
using FAL truth tables.

5. Results of the simplification of Peirce-Webb functions
by a non-standard system

5. 1. Extension of the hermeneutics of logical opera-
tions to binary structures of Peirce-Webb functions

In order to represent the perfect normal form of the
n-digit Peirce-Webb function as a binary equivalent, the
rules of chapter 4 must be followed. To this end, variables
with inversion xn are replaced by 1n, and variables without
inversion xn are replaced by 0n, where n is a numerical index
that determines the bitness of the symbol-variable "1" or "0"
in terms of the Peirce-Webb function. Following the specified
procedure with the values of the variables belonging to the
perfect normal form of the function of the basic basis, for ex-
ample, the conjunctive normal form (PCNF) of the function:

f x x x x x x x x x1 2 3 1 2 3 1 2 3, ,() = + +() + +()
it is possible to obtain the binary equivalent of the perfect
normal form of the Peirce-Webb function (PNFPW-2):

F = ↓ ↓() ↓ ↓ ↓()1 1 1 1 1 01 2 3 1 2 3 ,

or the matrix:

F =
1 1 1

1 1 0
.	 (1)

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/4 (131) 2024

12

Matrix (1) is an instance of the class of binary matrices of
Peirce-Webb functions. The algebraic analog of the binary rep-
resentation of the Peirce-Webb function (1) is the expression:

F x x x x x x= ↓ ↓() ↓ ↓ ↓()1 2 3 1 2 3 .

The hermeneutics of logical operations for matrix (1) is
that the matrix (1) gives the terms of the second perfect nor-
mal form of the function in the Peirce-Webb basis (PNFPW-2)
and the "Logical NOR" operation for them. A similar her-
meneutic is possible for the terms of the first perfect normal
form of the function in the Peirce-Webb basis (PNFPW-1).
The specified hermeneutics should be used when deriving the
results of equivalent transformations in the class of binary
matrices of Peirce-Webb functions.

Example 1. For the function f(x1, x2, x3) (Table 6), find
PNFPW-1, MNFPV-1, PNFPW-2, MNFPV-2.

Table 6
Truth table of function f(x1, x2, x3)

x1 x2 x3 f(x1, x2, x3) x1 x2 x3 f(x1, x2, x3)

0 0 0 0 1 0 0 0

0 0 1 1 1 0 1 0

0 1 0 0 1 1 0 1

0 1 1 1 1 1 1 1

Solution.
PNFPW-1 of the function f(x1, x2, x3) (Table 6) takes the

following form:

F x x x x x x

x x x x x x

DNFPW− = ↓ ↓() ↓ ↓ ↓() ↓

↓ ↓ ↓() ↓ ↓ ↓()
1 1 2 3 1 2 3

1 2 3 1 2 3 .

The MNFPV-1 derivation of the function f(x1, x2, x3)
(Table 6) has an illustration of mapping:

F

x x x x

MNFPW− =

= = = ↓() ↓ ↓()

1

1 3 1 2

1 1 0

1 0 0

0 0 1

0 0 0

1 0

0 0
.	 (2)

Note. The first matrix of expression (2) reflects the
structure of the PNFPW-1 function f(x1, x2, x3) (Table 6).
It is important to note that the combinatorial properties of
binary structures PNFPW-1, PNFPW-2 functions in the
Peirce-Webb basis and PDNF, PCNF functions of the main
basis do not depend on the selected logical basis (Boolean
basis or Peirce-Webb basis). This makes it possible to carry
out equivalent transformations in the first matrix of expres-
sion (2) according to the rules of the algebra of the main basis.

PNFPW-2 of the function f(x1, x2, x3) (Table 6) takes the
following form:

f x x x x x x x x x

x x x x x x

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3

, ,

.

() = ↓ ↓() ↓ ↓ ↓() ↓

↓ ↓ ↓() ↓ ↓ ↓()
The MNFPW-2 derivation of the function f(x1, x2, x3)

(Table 6) has an illustration of mapping:

F

x x x x x x x x

MNFPW2

1 3 1 2 1 3 1 2

1 1 1
1 0 1
0 1 1
0 1 0

1 1
0 1

= = =

= ↓() ↓() = ↓() ↓ ↓()
or

F x x x xMNFPW2 1 3 1 2

1 1 1
1 0 1
0 1 1
0 1 0

1 1
0 1

= = = ↓() ↓ ↓().	 (3)

The first matrix of expression (3) reflects the PNFPW-2
structure of the function f(x1, x2, x3) (Table 6). It is impor
tant to note that equivalent transformations in the first ma-
trix of expression (3) are carried out according to the rules of
the logic algebra of the main basis. In particular, the gluing of
variables was carried out according to rule (18).

5. 2. Exceptional situations during the simplification of
Peirce-Webb functions

The first exceptional situation. If the simplified Peirce-Webb
function has term(s) which, among the other n-digit terms
present, consists of a single literal (that is, the term has maxi
mum rank), then the literal representing the term is inverted.

In the Peirce-Webb basis, one literal is given in the form:

x x x↓ = or x x x↓ = .	 (4)

Expression (4) represents the negation operation imple-
mented by logic elements as in Fig. 3.

11 1x1x
1x

1x

Fig. 3. Logic elements for the negation operation 	
and one literal in the Peirce-Webb basis

Example 2. Obtain MNFPW-1 for the Boolean function
f(x1, x2, x3, x4) given in the canonical form:

f x x x x1 2 3 4 2 3 4 5 6 7 12 13 14 15, , , , , , , , , , , , .() = ()Σ 	 (5)

Solution.
Simplification of function (5) is carried out in the Peirce-

Webb basis. To this end, the values of the function variables
are written to the visual matrix form according to the rules
of chapter 4:

F

x x x x
MDFPW1

No.

=

=

1 2 3 4

2 1 1 0 1
3 1 1 0 0
4
5
6 1 0
7 1 0

12
1

1 0 1 1
1 0 1 0

0 1
0 0

0 0 1 1
33

14
15

1 0

0 0 1 0
0 0 0 1
0 0 0 0

0

1 2 3 4

1 3 2= = ↓() ↓
x x x x

x x x .	 (6)

Mathematics and Cybernetics – applied aspects

13

In the first matrix of expression (6), the following actions
are performed: to blocks 4, 5, 6, 7, 12, 13, 14, 15, which con-
tain the complete combinatorial system 2-(3, 8)-design and
to blocks 2, 3, 6, 7, which contain a complete combinatorial
system of 2-(2, 4)-design, super-gluing operations of vari-
ables are applied [15].

The sixth "1001" and the seventh "1000" sets of variables
are common to the two systems – Σm(4, 5, 6, 7, 12, 13, 14, 15)
and Σm(2, 3, 6, 7) and two operations of super gluing of vari-
ables, the localization of which is determined by combinato
rial systems 2-(3, 8)-design and 2-(2, 4)-design [16, 17].

The first exception is applied to the variable x2. As a re-
sult, the minimum normal form of the Boolean function in the
Peirce-Webb basis (MNFPW-1) was obtained in one step:

F x x xMNFPW− = ↓() ↓1 1 3 2.

Example 3. Simplify the Boolean function specified in
PNFPW-1.

F

x x x x x x

x x x x x x

x

DNFPW1

1 2 3 1 2 3

1 2 3 1 2 3

1

=

= ↓ ↓() ↓ ↓ ↓() ↓

↓ ↓ ↓() ↓ ↓ ↓() ↓

↓ ↓↓ ↓() ↓ ↓ ↓()x x x x x2 3 1 2 3 .

Solution:

F

x x x

x x x

x x

MNFPW

No.

− =

= = =

= ↓

1

1 2 3

1 2 3

2

7

6 1

4 0 1 1

3

2 1

0 1 1 1

1

0

1

0 0

0 0

0 0

1 0

0

33 2 3= ↓x x . 	 (7)

In the first matrix of expression (7), the following actions
are performed: the operation of super-gluing the variables is
applied to blocks 0, 2, 4, 6 and to blocks 2, 3, 6, 7, each of which
contains a complete combinatorial system 2-(2, 4)-design [15].

The second "101" and the sixth "001" sets of variables are
common to two systems – Σm(0, 2, 4, 6) and Σm(2, 3, 6, 7)
and two operations of super-gluing the variables, the localiza-
tion of which is determined by combinatorial 2-(2, 4)-design
systems [16, 17].

The first exception is applied to the variables x2 and x3.
As a result, the minimum normal form of the Peirce-Webb
function (MNFPW-1) was obtained in one step:

F x xMNFPW− = ↓1 2 3.	 (8)

The second exceptional situation. If the result of the sim-
plification of the Peirce-Webb function is only one Peirce-
Webb term containing several literals, then a general inver-
sion over all literals is taken (Fig. 4).

1

1x

2x

nx

1 2 ... nx x x↓ ↓ ↓

Fig. 4. Logic element n-OR-NOT in the Peirce-Webb basis

Example 4. Simplify the Boolean function defined in
PNFPW-1.

F x x x x x xDNFPW1 1 2 3 1 2 3= ↓ ↓() ↓ ↓ ↓().

Solution:

F x x x xMNFPW− = = = ↓ = ↓1 1 2 1 2

0 0 0

0 0 1
0 0 .	 (9)

To derive the result of (9), the second exceptional situa-
tion is taken into account.

Example 5. For the function from example 2, simplify
PNFPW-2.

F x x x x x xDNFPW− = ↓ ↓() ↓ ↓ ↓()2 1 2 3 1 2 3 .

Solution:

F

x x x
x x x

x x

MNFPW− =

= = = ↓

2

1 2 3
1 2 3

2 31 1 0

0 1 0
1 0

.	 (10)

To derive the result of (10), the second exceptional
situation is taken into account. It should be noted that
FMNFPW-1 (8) and FMNFPW-2 (10) coincide.

Example 6. Simplify PNFPW-2 for the Boolean function
f(x1, x2, x3, x4) given by the truth table (Table 7):

Table 7
Truth table of function f(x1, x2, x3, x4)

No. of entry x1 x2 x3 x4 f(x1, x2, x3, x4)

2 0 0 1 0 0

6 0 1 1 0 0

7 0 1 1 1 0

9 1 0 0 1 0

11 1 0 1 1 0

Solution.
The "logical NOR" function does not obey the law of

associativity. This must be taken into account when moving
from n-digit operations to dyadic operations. Such a transi-
tion can be made using the following ratios:

x x x x x x

x x x x x x

1 2 3 1 2 3

1 2 3 1 2 3

↓ ↓ = ↓ ↓ =

= ↓ ↓ ≠ ↓() ↓ ,

x x x x x x x x1 2 3 4 1 2 3 4↓ ↓ ↓ = ↓ ↓ ↓ ,

the validity of which is checked by a truth table.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/4 (131) 2024

14

Simplification of the function f(x1, x2, x3, x4) (Table 7) is
carried out in the Peirce-Webb basis. To this end, the values
of the function variables are written to the visual matrix form
according to the rules from chapter 4:

F

x x x

MNFPW− =

= = =

= ↓ ↓()

2

1 3 4

2 1 1 0 1

6 0

7

9

11

1 0 11 0 1

1 0 0 0

0 1 1 0

0 1 0 0

1 0 0

0 1 0

↓↓ ↓ ↓() ↓ ↓ ↓() =

= ↓ ↓() ↓ ↓ ↓() ↓ ↓ ↓() =

x x x x x x

x x x x x x x x x

1 2 3 1 2 4

1 3 4 1 2 3 1 2 4

== ↓ ↓() ↓ ↓ ↓() ↓ ↓ ↓()x x x x x x x x x1 3 4 1 2 3 1 2 4 . 	 (11)

MNFPW-2 function (11) consists of dyadic operations
"logical NOR" and takes the following form:

F

x x x x x x x x x

MNFPW− =

= ↓ ↓() ↓ ↓ ↓() ↓ ↓ ↓()
2

1 3 4 1 2 3 1 2 4 .	 (12)

Verification of MNFPW-2 (12) is carried out in the main
basis given in Table 8.

Table 8 demonstrates that MNFPW-2 x x x x x x x x x1 3 4 1 2 3 1 2 4↓ ↓() ↓ ↓ ↓() ↓ ↓ ↓()

x x x x x x x x x1 3 4 1 2 3 1 2 4↓ ↓() ↓ ↓ ↓() ↓ ↓ ↓() satisfies the terms of the ini-

tial function of the main basis (Table 7).
The third exceptional situation. If the result of simplifying

the function is only one term, and one that contains only one
literal, then the MNFPW takes the following from:

f x xn nMNFPW = = .

That is, in the third exceptional situation, the result of the
simplification of the Peirce-Webb function does not change.

In the Peirce-Webb basis, a literal with a double inversion
corresponds to a logic element in Fig. 5.

Rules (14), (20), (28) serve as an example of the simplifi-
cation of the Peirce-Webb functions for the occurrence of the
third exceptional situation.

11 1 11x 1x 1x 1x

Fig. 5. Logic elements for a literal with a double inversion 	
in the Peirce-Webb basis

5. 3. Equivalent transformations in the Peirce-Webb basis
During the simplification of Boolean functions in the

Peirce-Webb basis by a non-standard system, the following
rules of logic algebra are possible.

Gluing the variable dyadic PNFPW-1 terms:

x x x x x1 2 1 2 2↓() ↓ ↓() = . 	 (13)

Proof (13):

x x x x x x x x

x x x x x x x x

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

↓() ↓ ↓() = ⋅() ↓ ⋅() =

()() = +() +()) = =x x2 2.

Equivalent transformations for the rule of gluing the variable
dyadic PNFPW-1 terms (13) have an illustration of mapping:

1 1

0 1
1 2= = x .	 (14)

To derive the result in (14), the third exceptional situa-
tion is taken into account.

Gluing the variable 3-digit PNFPW-1 terms:

x x x x x x x x1 2 3 1 2 3 1 2↓ ↓() ↓ ↓ ↓() = ↓ .	 (15)

Proof of expression (15):

x x x x x x

x x x x x x x x x x x x

1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2 3

↓ ↓() ↓ ↓ ↓() =

= () ↓ () = ()() =

== + +() + +() =

= + =

= ↓ =

= ↓

x x x x x x

x x

x x

x x

1 2 3 1 2 3

1 2

1 2

1 2.

Equivalent transformations for
the rule of gluing the variable 3-di
git PNFPW-1 terms (15) in the
Peirce-Webb basis have an illustra-
tion of mapping:

1 1 1

1 1 0

1 1

1 1

1 1 1 2

=

= =

= = ↓x x .	 (16)

To derive results in (15) and
(16), the second exceptional situa-
tion is taken into account.

Table 8

Verification of MNFPW-2 – x x x x x x x x x1 3 4 1 2 3 1 2 4↓ ↓() ↓ ↓ ↓() ↓ ↓ ↓()
No. x1 x2 x3 x4 FDNFPW-2 x x x x x x x x x1 3 4 1 2 3 1 2 4↓ ↓() ↓ ↓ ↓() ↓ ↓ ↓() FMNFPW-2

2 0 0 1 0 0 0 1 0 0 0 1 0 0 01 3 4 1 2 3 1 2 4↓ ↓() ↓ ↓ ↓() ↓ ↓ ↓() 0

6 0 1 1 0 0 0 1 0 0 1 1 0 1 01 3 4 1 2 3 1 2 4↓ ↓() ↓ ↓ ↓() ↓ ↓ ↓() 0

7 0 1 1 1 0 0 1 1 0 1 1 0 1 11 3 4 1 2 3 1 2 4↓ ↓() ↓ ↓ ↓() ↓ ↓ ↓() 0

9 1 0 0 1 0 1 0 1 1 0 0 1 0 11 3 4 1 2 3 1 2 4↓ ↓() ↓ ↓ ↓() ↓ ↓ ↓() 0

11 1 0 1 1 0 1 1 1 1 0 1 1 0 11 3 4 1 2 3 1 2 4↓ ↓() ↓ ↓ ↓() ↓ ↓ ↓() 0

Mathematics and Cybernetics – applied aspects

15

Gluing the variable 3-digit PNFPW-2 terms.
Recall that to obtain PNFPW-2 in each Peirce-Webb term,

the variables on which it depends are combined by the "logical
NOR" operation. If the variable takes a zero value in the main
basis, then for the Peirce-Webb term it is taken in the direct
code, otherwise – in the inverse code (rules from chapter 4).

PNFPW-2 3-digit terms:

x x x x x x1 2 3 1 2 3↓ ↓() ↓ ↓ ↓(),	 (17)

correspond to PNFPW-2 binary sets:

1 1 1 1 1 01 2 3 1 2 3↓ ↓() ↓ ↓ ↓(),

or PNFPW-2 matrix:

1 1 1

1 1 0
.

The operation of gluing the variable 3-digit PNFPW-2
terms in the Peirce-Webb basis takes the following form:

1 1 1

1 1 0
1 1 1 2 1 2= = + + ↓x x x x .	 (18)

To derive the result in (18), the second exceptional situa-
tion is taken into account.

Verification of the result (18) is carried out in the main
basis (Table 9).

Table 9
Verification of the result – x x1 2↓

х1 х2 х3 PNFPW-2 x x1 2↓ Verification

0 0 0 0 0 01 2↓ 0

0 0 1 0 0 01 2↓ 0

Table 9 demonstrates that the result of gluing the vari-
ables x x1 2↓ satisfies the given terms PNFPW-2 (17).

The logical operation of super-gluing the variables.
The combinatorial properties of binary structures PNFPW-1

or PNFPW-2 and PDNF of the Boolean function of the ba-
sic basis do not change depending on the logical basis. This
makes it possible to implement the logical operation of su-
per-gluing the variables in the Peirce-Webb basis. For 3-digit
PNFPW-1 terms, the operation of super-gluing the variables
may take the following form, for example:

x x x x x x

x x x x x x x

1 2 3 1 2 3

1 2 3 1 2 3 2

↓ ↓() ↓ ↓ ↓() ↓

↓ ↓ ↓() ↓ ↓ ↓() = .	 (19)

Proof:

The operation of super-gluing the variables for 3-digit
PNFPW-1 terms (19) in the Peirce-Webb basis has an illus-
tration of mapping:

1 1 1

0 1 1

1 1 0

0 1 0

2= x .	 (20)

To derive the result in (20), the third exceptional situa-
tion is taken into account.

For 4-digit PNFPW-1 terms, the operation of super-glu-
ing the variables may take the following form, for example:

x x x x x x x x

x x x x x x x x x

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

↓ ↓ ↓() ↓ ↓ ↓ ↓() ↓

↓ ↓ ↓ ↓() ↓ ↓ ↓ ↓() = 11 3↓ x .	 (21)

Proof:

x x x x x x x x

x x x x x x x x

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

↓ ↓ ↓() ↓ ↓ ↓ ↓() ↓

↓ ↓ ↓ ↓() ↓ ↓ ↓ ↓() =

= xx x x x x x x x

x x x x x x x x

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

⋅ ⋅ ⋅() ↓ ⋅ ⋅ ⋅() ↓

↓ ⋅ ⋅ ⋅() ↓ ⋅ ⋅ ⋅() =

== ⋅ ⋅ ⋅()⋅ ⋅ ⋅ ⋅()×

× ⋅ ⋅ ⋅()⋅ ⋅ ⋅ ⋅()
x x x x x x x x

x x x x x x x x

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 ==

= + + +() + + +() ×

× + + +() + + +() =

x x x x x x x x

x x x x x x x x

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

==
+ + + + + + + +

+ + + +

x x x x x x x x x x x x x x x x

x x x x x x

1 1 1 2 1 3 1 4 1 2 2 2 2 3 2 4

1 3 2 3 3 3 xx x x x x x x x x x

x x x x x x x x x x

3 4 1 4 2 4 3 4 4 4

1 1 1 2 1 3 1 4 1 2

+ + + +









 ×

×
+ + + + + xx x x x x x

x x x x x x x x x x x x x x x x

2 2 2 3 2 4

1 3 2 3 3 3 3 4 1 4 2 4 3 4 4 4

+ + +

+ + + + + + + +









 =

= + +() + +() =

= +() = = ↓ = ↓

x x x x x x

x x x x x x x x

1 2 3 1 2 3

1 3 1 3 1 3 1 3.

The operation of super-gluing the variables for 4-digit
PNFPW-1 terms (21) in the Peirce-Webb basis has an illus-
tration of mapping:

1 1 0 1

1 1 0 0

1 0 0 1

1 0 0 0

1 3= ↓x x .	 (22)

To derive the result in (22), the
second exceptional situation is taken
into account.

Incomplete super-gluing of va
riables.

The combinatorial properties of
the incomplete combinatorial sys-
tem with the repeated 2-(n, x/b)-de-
sign in the main basis [15] provide

x x x x x x x x x x x x

x x x x

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1

↓ ↓() ↓ ↓ ↓() ↓ ↓ ↓() ↓ ↓ ↓() =

= ⋅ ⋅() ↓ ⋅⋅ ⋅() ↓ ⋅ ⋅() ↓ ⋅ ⋅() =

= ⋅ ⋅()⋅ ⋅ ⋅()⋅ ⋅

x x x x x x x x

x x x x x x x

2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 xx x x x x

x x x x x x x x x x x x

2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2

⋅()⋅ ⋅ ⋅() =

= + +() + +() + +() + + 33

1 1 1 2 1 3 1 2 2 2 2 3 1 3 2 3 3 3

1 1

() =

= + + + + + + + +() ×

×

x x x x x x x x x x x x x x x x x x

x x ++ + + + + + + +() =

= + +

x x x x x x x x x x x x x x x x

x x x x x x

1 2 1 3 1 2 2 2 2 3 1 3 2 3 3 3

1 2 1 3 1 22 2 2 3 1 3 2 3 3

1 2 1 3 1 2 2 2 3 1 3 2

+ + + + +() ×

× + + + + + +

x x x x x x x x

x x x x x x x x x x x x x33 3 2 3 2 3 2 2 2+() = +() +() = = =x x x x x x x x .

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/4 (131) 2024

16

the rule of incomplete super-gluing of variables in the Peirce-
Webb basis.

For dyadic PNFPW-1 terms, the rule of incomplete super-
gluing of variables may take the following form, for example:

x x x x x x x x1 2 1 2 1 2 1 2↓() ↓ ↓() ↓ ↓() = ↓ . 	 (23)

Proof:

x x x x x x

x x x x x x

x x x x x x

x

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

↓() ↓ ↓() ↓ ↓() =

= ↓ ↓ =

= ⋅ ⋅ =

= 11 2 1 2 1 2

1 2 1 2

+() +() +() =

= = ↓

x x x x x

x x x x .

The operation of incomplete super-gluing of variables for
dyadic PNFPW-1 terms (23) in the Peirce-Webb basis has
an illustration of mapping:

0 0

1 0

0 1
0

0
1 2 1 2 1 2= = + = = ↓x x x x x x .	 (24)

The first matrix of expression (24) represents the un-
balanced combinatorial system of 2-(2, 3/4)-design [14].
To derive the result in (24), the second exceptional situation
is taken into account.

The operation of incomplete super-gluing of variables for
3-digit PNFPW-1 terms in the Peirce-Webb basis may take
the following form, for example:

No. x x x

x x x

x x x

1 2 3

1 2 3

1 2 3

0 0

1

2 0

3

4 0

5

6 1 1 0

0

0

0 1

0 1

0 1 1

0

0

0

1 0

1 0 1

0
= = + + ==

= = ↓ ↓ = ↓ ↓()x x x x x x x x x1 2 3 1 2 3 1 2 3 . 	 (25)

In the first matrix of expression (25), the following ac-
tions are performed: to blocks 0, 1, 2, 3; 0,1,4,5 and to blocks
0, 2, 4, 6, each of which contains a complete combinatorial
system of 2-(2, 4)-design, the operation of super-gluing the
variables is applied.

Blocks of variables "000", "001", "010", "100" are com-
mon to three systems – Σm(0, 1, 2, 3), Σm(0, 1, 4, 5) and
Σm(0, 2, 4, 6) and three operations of super-gluing the vari-
ables, the localization of which is determined by combinato-
rial 2-(2, 4)-design systems [16, 17].

The first matrix of expression (25) represents a 2-(3, 7/8)-
design combinatorial system [15]. To derive the result in (25),
the second exceptional situation is taken into account.

Generalized gluing of variables is carried out using the
transformation:

x x x x x x x x x x1 2 1 3 2 3 1 3 2 3↓() ↓ ↓() ↓ ↓() = ↓() ↓ ↓().	 (26)

Proof:

x x x x x x

x x x x x x

x x x x x x

x

1 2 1 3 2 3

1 2 1 3 2 3

1 2 1 3 2 3

↓() ↓ ↓() ↓ ↓() =

= ↓ ↓ =

= ⋅ ⋅ =

= 11 2 1 3 2 3

1 2 1 3 2 3

1 2 1 3

+() +() +() =

= +() + +() + +() =

= + +

x x x x x

x x x x x x

x x x x xx x

x x x x x x x x x x

x x x x

x x x x

x

2 3

1 2 3 1 2 3 1 3 2 3

1 3 2 3

1 3 2 3

1

=

= + + + =

= + =

= ↓ + ↓ =

= ↓↓ ↓ ↓x x x3 2 3.

Equivalent transformations for the rule of generalized
gluing of variables (26) in the Peirce-Webb basis have an
illustration of mapping:

0 0

0 0

0 1

0 0

0 1

1 3 2 3 1 3 2 3

= =

= + = ↓() ↓ ↓()x x x x x x x x .

Another variant of the operation of generalized gluing of
variables for PNFPW-1:

x x x x

x x x x x x

1 3 2 3

1 2 1 3 2 3

↓() ↓ ↓() =

= ↓() ↓ ↓() ↓ ↓().

0 0

0 1

0 0

0 0

0 1

1 2 1 3 2 3

= =

= ↓() ↓ ↓() ↓ ↓()x x x x x x .

The logical operation of absorbing the variables is redu
ced to transformations:

1. x x x x1 1 2 1↓ ↓() = .	 (27)

Proof:

x x x x x x

x x x x x x x

1 1 2 1 1 2

1 1 2 1 1 2 1

↓ ↓() = ↓ =

= = +() = .

The left-hand side of expression (27) represents the
Peirce-Webb function having one term with one variable.
According to the first exceptional situation, when entering
such a function into the matrix, the variable representing the
term must be inverted:

x x x x1 1 2 1

0

0 1
0↓ ↓() = = = .	 (28)

During the derivation of the result in (28), the third ex-
ceptional situation is applied:

Mathematics and Cybernetics – applied aspects

17

2. x x x x1 1 2 1↓ ↓() = .

Proof:

x x x x x x x x x x x x x1 1 2 1 1 2 1 1 2 1 1 2 1↓ ↓() = ↓ ⋅ = ⋅() = +() = .

3. x x x x x x x1 2 1 2 3 1 2↓() ↓ ↓ ↓() = ↓ .

Proof:

x x x x x x x x x x

x x x x x x x

1 2 1 2 3 1 2 1 2 3

1 2 1 2 3 1 2

↓() ↓ ↓ ↓() = ↓ =

= ⋅()⋅ ⋅ ⋅() = +()⋅⋅ + +() =

= + = ↓

x x x

x x x x

1 2 3

1 2 1 2.

1 1

1 1 1
1 1 1 2= = ↓x x .	 (29)

In the derivation of the result in (29), the second excep-
tional situation is applied:

4. x x x x x x x x1 2 1 2 3 4 1 2↓() ↓ ↓ ↓ ↓() = ↓ .

Proof:

x x x x x x

x x x x x x

x x x x x

1 2 1 2 3 4

1 2 1 2 3 4

1 2 1 2 3

↓() ↓ ↓ ↓ ↓() =

= ⋅ ↓ ⋅ ⋅ ⋅ =

= ⋅()⋅ ⋅ ⋅ ⋅⋅() =

= +()⋅ + + +() =

= + = ↓

x

x x x x x x

x x x x

4

1 2 1 2 3 4

1 2 1 2.

1 1

1 1 1 1
1 1 1 2= = ↓x x .	 (30)

In the derivation of the result in (30), the second excep-
tional situation is applied.

The logical operation of semi-gluing the variables is re-
duced to the following transformations:

x x x x x x x x1 2 1 2 3 2 1 3↓() ↓ ↓ ↓() = ↓ ↓(),	 (31)

Proof of rule (31) for PNFPW-2:

x x x x x x x x x x

x x x x x x x

1 2 1 2 3 1 2 1 2 3

1 2 1 2 3 1

↓() ↓ ↓ ↓() = ⋅ ↓ ⋅ ⋅ =

= ⋅()⋅ ⋅ ⋅() = + 22 1 2 3

1 1 1 2 1 3 1 2 2 2 2 3

2 1 3 2

() + +() =

= + + + + + =

= + = +

x x x

x x x x x x x x x x x x

x x x x xx x

x x x

1 3

2 1 3

↓ =

= ↓ ↓().
The rule of semi-gluing the variables (31) has an illustra-

tion of mapping:

0 1

1 1 1

0 1

1 1

1 2 2 3 1 2 1 3 2 2 2 3

2 1 3 2

= =

= +() +() = + + + =

= + =

x x x x x x x x x x x x

x x x x ++ ↓ =

= ↓ ↓()
x x

x x x

1 3

2 1 3 . 	 (32)

During the derivation of the result in (32), the first ex-
ceptional situation is applied.

Proof of the rule:

x x x x x1 1 2 1 2↓ ↓() = ↓ .	 (33)

for PNFPW-2, the following transformations were carried out:

x x x x x x x x x

x x x x x x x

1 1 2 1 1 2 1 1 2

1 1 2 1 2 1 2

↓ ↓() = ↓ ⋅ = ⋅ ⋅() =

= +() = = ↓ .

Rule (33) has a mapping illustration:

x x x x x1 1 2 1 2

0

1 1

0

1
↓ ↓() = = = ↓ .	 (34)

When deriving the result in (34), the first exceptional
situation is applied.

Example 7. Use a non-standard system to simplify the func-
tion f(x1, x2, x3, x4) in the Peirce-Webb basis given by the
Veitch diagram (Fig. 6) [18].

1 1 1 1
0 0 0 0
1 0 0 1
1 1 1 0

1x

2x

3x

4x
Fig. 6. The function f(x1, x2, x3, x4), given 	

by the Veitch diagram

Solution.
The simplification of the PCNF function (Fig. 6) takes

the following form:

f

x x x x

MCNF

No.

=

= =

1 2 3 4

0 0 0 0 0
3 0 0 1 1
7 0 1 1 1

10 1 0 1 0
11 1 0 1 1
14 1 1 1 0
15 1 1 1 1

xx x x x

x x x x

x

1 2 3 4

1 2 3 4

1 1 1 1

1 1 1 1

1 1 0 0
1 0 0 0

0 0

0 0

0 0

0 1 0 1
0 1
0 0 0 1
0 0

0 0

=

= =

= 11 3 3 4 1 2 3 4+() +() + + +()x x x x x x x . 	 (35)

According to Nelson’s method, in the first matrix of
expression (35), the variables are inverted [19]. In the
second matrix of expression (35), the following actions are
performed: the operation of supergluing the variables is ap-
plied to blocks 3, 7, 11, 15 and to blocks 10, 11, 14, 15, since
these blocks form intervals of the Boolean space containing
combinatorial 2 -(2, 4)-design systems. The results of logical

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/4 (131) 2024

18

operations of super-gluing the variables are written to the
third matrix.

The eleventh block of variables "0100" and the fifteenth
"0000" are common to two systems – Σm(3, 7, 11, 15) and
Σm(10, 11, 12, 13) and two operations of supergluing the
variables, the location of which is determined by combinato-
rial 2-(2, 4)-design systems [16, 17].

As a result, the minimal function in CNF was obtained
in one step.

MCNF (35) coincides with [18].
For MCNF (35), PNFPW-2 is written, using the distri

butive law of the 2nd kind (distributiveness of disjunction
relative to conjunction), factorization in CNF:

x x x x x x x1 2 3 1 2 1 3+ ⋅() = +() +().

F

x x x x x x x x

x x x x x

CNFPW2 =

= +() +() + + +() =

= + ()()() + +

1 3 3 4 1 2 3 4

3 1 4 1 2 xx x

x x x x x x x

x x x x x x x

3 4

3 1 4 1 2 3 4

3 1 4 1 2 3 4

+() =

= +() + + +() =

= + ↓()() ↓ ↓ ↓()) =

= ↓ ↓()() ↓ ↓ ↓() =

= ↓ ↓()() ↓ ↓ ↓ ↓() =

x x x x x x x

x x x x x x x

3 1 4 1 2 3 4

3 1 4 1 2 3 4

== ↓ ↓()() ↓ ↓() ↓ ↓()()x x x x x x x3 1 4 1 2 3 4 .

PNFPW-2 takes the following form:

F x x x x x x xDNFPW2 = ↓ ↓()() ↓ ↓() ↓ ↓()()3 1 4 1 2 3 4 .	 (36)

The realization price (36) k k kl inθ / / / / ,= 4 7 3 where
kθ, kl, kin are the number of n-digit "logical NOR" opera-
tions, literals, and inversions, respectively. The price of the

implementation of function F x x x x x x x xDNFPW2 = ↓() ↓ ↓() ↓ ↓() ↓ ↓()1 3 3 4 1 2 3 4

F x x x x x x x xDNFPW2 = ↓() ↓ ↓() ↓ ↓() ↓ ↓()1 3 3 4 1 2 3 4 [18] is k k kl inθ / / / / .= 4 8 7

5. 4. Simplification of Peirce-Webb functions on the
complete truth table

Simplification of DNF or CNF of Boolean functions is
carried out on the corresponding sets of variables in the truth
table. It is important to note that in order to obtain an opti-
mal result, from the point of view of practical implementation
in digital technology, it is advisable to perform minimization
on two normal forms – DNF and CNF. To this end, you need
to use the complete truth table of the given function. The
minimum function should be chosen based on the results of
minimization of two normal forms – DNF and CNF.

Example 8. Using a non-standard system, simplify the
function f(x1, x2, x3, x4) on the complete truth table given in
the canonical form [20]:

F x x x x1 2 3 4 2 3 4 6 7 8 9 10 11 15, , , , , , , , , , , , .() = ∑() 	 (37)

In expression (37), S defines the minterms at which the
function f(x1, x2, x3, x4) returns "1" at the output.

The minimum function is chosen based on the results of
the simplification of two perfect normal forms – PNFPW-1
and PNFPW-2.

Solution.
The PDNF simplification of function (37) takes the fol-

lowing form:

F

x x x x

MDNF

No.

=

=

4 3 2 1

2
3
4 0 1 0 0
6
7 1
8
9

10

0 0 1 0
0 0

0 1 1 0
0 1

1 1

1
1 0 0 0
1 0 0 1
1 0 1 00
1 0

1 0

11
15

0 1 0

1 1
1 1 1 1

1 1

0 1
4 3 2 1

4 2 4 3 1 4 3 2 1

= =

= + + +

x x x x

x x x x x x x x x . 	 (38)

The price of realization of MDNF (38) k k kl inθ / / / / ,= 4 9 4
where kθ, kl, kin are the number of conjunct terms, literals, and
inversions, respectively.

For MDNF (38), PNFPW-1 is recorded:

F

x x x x x x x x x

x x x x x x x x

x

MNFPW− =

= + + + =

= +() + + =

=

1

4 2 4 3 1 4 3 2 1

4 2 3 1 4 3 2 1

4 xx x x x x x x

x x x x x x x

2 3 1 4 3 2 1

4 2 3 1 4 3 2

+ ↓()() + ↓()+ ↓() =

= ↓ ↓()



 + ↓()+ ↓↓() =

= ↓ ↓ ↓()()() + ↓()+ ↓() =

= ↓ ↓ ↓()()

x

x x x x x x x x

x x x x

1

4 2 3 1 4 3 2 1

4 2 3 1(() + ↓()+ ↓() =

= ↓ ↓ ↓()()() ↓ ↓() ↓ ↓()
x x x x

x x x x x x x x

4 3 2 1

4 2 3 1 4 3 2 1 .

PNFPW-1 takes the following form:

F

x x x x x x x x

DNFPW1 =

= ↓ ↓ ↓()()() ↓ ↓() ↓ ↓()4 2 3 1 4 3 2 1 .	 (39)

DCNF simplification of function (37) takes the follow-
ing form:

F

x x x x x x x

MCNF

No.

=

= =

4 3 2 1 4 3 2

0 0 0 0 0
1 0 0 0 1
5 0 1 0 1

12 1 1 0 0
13 1 1 0 1
14 1 1 1 0

xx

x x x x

x x x

1

4 3 2 1

4 3 2

1 1 1 1
1 1 1 0

1 1 1

1 0 1 0

0 0 1 0

0 1 0

0 0 1 1

0 0 0 1

0 0 1

=

= =

= + +() xx x x x x x3 2 1 4 3 1+ +() + +(). 	 (40)

Mathematics and Cybernetics – applied aspects

19

Realization price of MKNF (40) k k kl inθ / / / / .= 3 9 4
For MCNF (40), PNFPW-2 is recorded:

F

x x x x x x x x x

x x x x x

DNFPW− =

= + +() + +() + +() =

= + +() + +

2

4 3 2 3 2 1 4 3 1

4 3 2 3 2 xx x x

x x x x x x x x

x

1 4 1

4 3 2 3 2 1 4 1

4

() +()() =

= ↓ ↓() + ↓() ↓()









 =

= ↓ xx x x x x x x

x x x x x x x x

3 2 3 2 1 4 1

4 3 2 3 2 1 4 1

↓() + ↓() ↓ ↓()()() =

= ↓ ↓() ↓ ↓() ↓ ↓(()()



 =

= ↓ ↓() ↓ ↓ ↓() ↓ ↓()()()x x x x x x x x4 3 2 3 2 1 4 1 .

PNFPW-2 takes the following form:

F

x x x x x x x x

DNFPW2 =

= ↓ ↓() ↓ ↓ ↓() ↓ ↓()()()4 3 2 3 2 1 4 1 .	 (41)

Due to the smaller number of inversions in PNFPW-2 (41),
the latter has a simpler logical structure (Fig. 7, b) compared
to PNFPW-1 (39) (Fig. 7, a).

Verification of PNFPW-1 and PNFPW-2 is given
in Table 10.

Table 10 demonstrates that FDNFPW-1 and FDNFPW-2 pass
the verification.

Based on the results of simplifying the two normal forms –
PNFPW-1 and PNFPW-2, we choose PNFPW-2 as the mi
nimum (41).

111

1

1

14x

3x
FDNFPV −1

1
1

1

1

1

1

4x
3x

2x
1x

FDNFPV −2

1x
2x

111

1

1

14x

3x
FDNFPV −1

1
1

1

1

1

1

4x
3x

2x
1x

FDNFPV −2

1x
2x

a b

Fig. 7. Implementation of the minimum logical function f (x1, x2, x3, x4) (37) in the Peirce-Webb basis 	
by a combinational scheme: a – PNFPW-1; b – PNFPW-2

Table 10

Verification of functions F x x x x x x x xDNFPW1 = ↓ ↓ ↓()()() ↓ ↓() ↓ ↓()4 2 3 1 4 3 2 1 ,

F x x x x x x x xDNFPW2 = ↓ ↓() ↓ ↓ ↓() ↓ ↓()()()4 3 2 3 2 1 4 1

No. of entry x1 x2 x3 x4 F(x1, x2, x3, x4) FDNFPW-1 FDNFPW-2

2 0 0 1 0 1 1 1

3 0 0 1 1 1 1 1

4 0 1 0 0 1 1 1

6 0 1 1 0 1 1 1

7 0 1 1 1 1 1 1

8 1 0 0 0 1 1 1

9 1 0 0 1 1 1 1

10 1 0 1 0 1 1 1

11 1 0 1 1 1 1 1

15 1 1 1 1 1 1 1

No. of entry x1 x2 x3 x4 F(x1, x2, x3, x4) FDNFPW-1 FDNFPW-2

0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0

5 0 1 0 1 0 0 0

12 1 1 0 0 0 0 0

13 1 1 0 1 0 0 0

14 1 1 1 0 0 0 0

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/4 (131) 2024

20

5. 5. Comparison with the matrix algorithm, the methods
for algebraic bi-decomposition and bitwise partitioning of
the set of output conjuncterms

Boolean functions can be expressed in algebraic form
through the half-tensor product of matrices [21]. As a result, this
gives a matrix algorithm for simplifying logical functions [22].

Example 9. Use a non-standard system to simplify the
function f(w, x, y, z) given in the canonical form [22]:

f w x y z wxyz wxyz wxyz

wxyz wx yz w xyz w x yz

, , ,

.

() = + + +

+ + + + 	 (42)

Solution:
For convenience, the variables in expression (42) have

been replaced:

w x→ 1; x x→ 2; y x→ 3; z x→ 4.

Function with new variables:

f x x x x x x x x x x x x

x x x x x x x x x x x x x

= + + +

+ + + +
1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 11 2 3 4x x x .	 (43)

Simplification of the function f(x1, x2, x3, x4) (43) in the
disjunctive normal form (DNF):

f x x x x

x x x x

MDNF

No.

1 2 3 4

1 2 3 4

1
3
5
7

10
1

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 1 0

, , ,() =

=

11
14

1 1 1

1 0 1

0
1 1 1 0

1 1 0

0 1
1 2 3 4

1 4 1 2 3 1 3 4

= =

= + +

x x x x

x x x x x x x x . 	 (44)

The result of simplification (44) of the function f(x1, x2, x3, x4)
coincides with [22], but the non-standard system is signifi-
cantly simpler in terms of procedure.

In the general case, the search for the minimum function
is carried out on the complete truth table and on various
logical bases.

Simplification of the function f(x1, x2, x3, x4) (43) in the
conjunctive normal form (CNF):

f x x x x

x x x x

MCNF

No.

1 2 3 4

1 2 3 4

0 0 0 0 0
2 0 0 1 0
4 0 1 0 0
6 0 1 1 0
8 1 0 0 0
9 1

, , ,() =

=

00 0 1
12 1 1 0 0
13 1 1 0 1
15 1 1 1 1

1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 1
0 1 1 1
0 1 1 0
0 0 1

1 2 3 4

=

x x x x

11
0 0 0

0 1

1
0 0 0 0

0 0 0

1 1
1 2 3 4

1 4 1 3 1 2 4

=

= = +() +() + +()
x x x x

x x x x x x x .	 (45)

MDNF (44) and MCNF (45) demonstrate that MCNF (45)
contains one less literal.

For MCNF (45), PNFPW-2 is recorded:

f x x x x

x x x x x x x

x x x

DNFPW2 1 2 3 4

1 4 1 3 1 2 4

1 4 1

, , ,() =

= +() +() + +() =

= +() ++ () +()() =

= ↓() + () ↓()



 =

= ↓() + ↓

x x x

x x x x x x

x x x x x

3 2 4

1 4 1 3 2 4

1 4 1 3 22 4

1 4 1 3 2 4

1 4 1 3

↓()()() =

= ↓() ↓ ↓ ↓()()



 =

= ↓() ↓ ↓ ↓

x

x x x x x x

x x x x x22 4↓()()()x .

Therefore, PNFPW-2 contains two literals less than
MDNF (44).

There are well-known examples of the use of bi-decompo-
sition methods to reduce the delay of signals by combinatio
nal circuits [23, 24] and during the synthesis of FPGA-based
circuits [25].

Example 10. Using a non-standard system, simplify the
partially defined Boolean function f(x1, x2, x3, x4, x5) given
by matrices M1, M0 [26] (through numbering is used for the
matrix rows):

M1

1 2 3 4 5

1 1 1

0 1 2

1 1 3

0 0 4

1 0 0 5

1 1 1 6

1 0 0 1 7

=

− − −
− − −

− − −
− − −

− −
− −

−

x x x x x

;

M0

1 2 3 4 5

0 1 0 0 1 8

1 1 0 0 9

1 0 0 1 10

1 0 1 0 11

= −
−
−

x x x x x

.	 (46)

Solution.
The ternary vector – –11– in М1 is considered as an in-

terval of the Boolean space I(α, β) of five Boolean variables,
which is formed by the following terms:

I Iα β, ,() = () =00110 11111

00110

00111

01110

01111

10110

10111

11110

111111

.

The set of internal components of the interval I(α, β)
form a combinatorial system of 2-(n, b)-design. For a given
example, 2-(3, 8)-design.

Mathematics and Cybernetics – applied aspects

21

The terms of the given partially defined function (46)
are obtained through the interval I(α, β) constructed in the
Boolean space for all ternary vectors that are placed in the
matrices M1, M0 (46). It is important to note that during
the generation of terms, the logical law of idempotency
must be applied, since part of the terms of the function will
be repeated.

The truth table of the partially defined function
f(x1, x2, x3, x4, x5) (46) takes the following form (Table 11).

Table 11

Truth table of the partially defined function
f(x1, x2, x3, x4, x5) (46)

No. of entry x1 x2 x3 x4 x5 F

0 0 0 0 0 0 1

1 0 0 0 0 1 1

2 0 0 0 1 0 1

3 0 0 0 1 1 1

4 0 0 1 0 0 1

5 0 0 1 0 1 1

6 0 0 1 1 0 1

7 0 0 1 1 1 1

8 0 1 0 0 0 1

9 0 1 0 0 1 0

10 0 1 0 1 0 1

11 0 1 0 1 1 1

12 0 1 1 0 0 1

13 0 1 1 0 1 1

14 0 1 1 1 0 1

15 0 1 1 1 1 1

16 1 0 0 0 0 –

17 1 0 0 0 1 1

18 1 0 0 1 0 0

19 1 0 0 1 1 0

20 1 0 1 0 0 0

21 1 0 1 0 1 0

22 1 0 1 1 0 1

23 1 0 1 1 1 1

24 1 1 0 0 0 1

25 1 1 0 0 1 1

26 1 1 0 1 0 1

27 1 1 0 1 1 1

28 1 1 1 0 0 0

29 1 1 1 0 1 1

30 1 1 1 1 0 1

31 1 1 1 1 1 1

Simplification of the function f(x1, x2, x3, x4, x5) (46) in
the disjunctive normal form (DNF):

f x x x x x

x x x x x F

MDNF

No.

1 2 3 4 5

1 2 3 4 5

0 1
1 1
2 1

0
0 1
0 0 0 1 0

0 0 0
0 0 0

0

, , , ,() =

=

33 1
4 1
5 1
6 1
7 1
8 0 1 1

10 1
11

0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0
0 1

0 1 1
0 1 1

0 0 0
0 1 0 1 0
0 1 0 1 1 11

12 1
13 1
14 1
15 1
17 1 1 1
22 1 0 1
23 1 1 1

0 1 1 0 0
0 1 1 0 1
0 1 1
0 1 1

1 0
1 1

0 0 0
0 1 1
0 1 1

224 1 1 1
25 1 1 0 0 1 1
26 1
27 1
29 1 1 1 0 1 1
30 1
31 1
1

0 0 0

1 1 0 1 0
1 1 0 1 1

1 1 1 1 0
1 1 1 1 1

66 1

1 1 1

0 0 0

0 0 0

0

0 0 0
0 0

1 1
0 1

1 1

1 2 3 4 5

1 2 1 3 2 4 3 4

−

=

= =

= + + +

x x x x x

x x x x x x x x ++

+ + + =

= +() + +() +

+ +

x x x x x x x x x

x x x x x x

x x x x x x

1 2 5 2 3 4 3 4 5

1 2 3 4 2 3

1 2 5 3 4 22 5+()x . 	 (47)

In the first matrix of expression (47), the following ac-
tions are performed: to blocks 0, 1, 2, 3, 4, 5, 6, 7; 10, 11, 14,
13, 26, 27, 30, 31; 4, 5, 6, 7, 12, 13, 14, 15; 6, 7, 14, 15, 22, 23,
30, 31, which form intervals of the Boolean space containing
the complete combinatorial system of 2-(3, 8)-design, and
to blocks 0, 8, 24, 16; 0, 1, 17, 16; 25, 27, 29, 31, which form
the interval of the Boolean space, containing the complete
combinatorial system of 2-(2, 4)-design, the operation of
super-gluing the variables is applied.

The zero block of variables "00000" is common to three sys-
tems – Σm(0, 1, 2, 3, 4, 5, 6, 7), Σm(0, 1, 17, 16), Σm(0, 8, 24, 16)
and three operations of super-gluing the variables, the location
of which is determined by the combinatorial systems of
2-(3, 8)-design and 2-(2, 4)-design [16, 17].

The first block of variables "00001" is common to two
systems – Σm(0, 1, 2, 3, 4, 5, 6, 7), Σm(0, 1, 17, 16) and two
operations of super-gluing the variables, location which is
determined by the combinatorial systems of 2-(3, 8)-design
and 2-(2, 4)-design.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/4 (131) 2024

22

The sixth and seventh blocks of
variables "00110", "00111" are com-
mon to the two systems – Σm(0, 1, 2, 3,
4, 5, 6, 7), Σm(6, 7, 14, 15, 22, 23, 30, 31)
and two operations of super-gluing
the variables, the location of which is
determined by combinatorial systems
of 2-(3, 8)-design.

The eighth block of variables
"01000" is common to two systems –
Σm(0, 8, 24, 16), Σm(25, 27, 29, 31)
and two operations of super-gluing
the variables, the location of which is
determined by combinatorial systems
of 2-(2, 4)-design.

The fourteenth and fifteenth blocks of variables
"01110", "01111" are common to the two systems –
Σm(4, 5, 6, 7, 12, 13, 14, 15), Σm(10, 11, 14, 13, 26, 27, 30, 31)
and two operations of super-gluing the variables, the lo-
cation of which is determined by combinatorial systems
of 2-(3, 8)-design.

As a result, the minimal function of the basic basis is ob-
tained in one step:

f x x x x x x x x

x x x x x x x x x x

MDNF 1 2 3 4 5 1 2 3

4 2 3 1 2 5 3 4 2

, , , ,() = +() +

+ +() + + + 55().	 (48)

For MDNF (48), PNFPW-1 is recorded:

x x x x x x x x x x x x x

x x x x x x

1 2 3 4 2 3 1 2 5 3 4 2 5

1 2 3 4 2 3

+() + +() + + +() =

= ↓() + ↓()) + ↓ ↓() + ↓() =

= ↓ ↓





+ ↓ ↓



 + ↓

x x x x x x x

x x x x x x x

1 2 5 3 4 2 5

1 2 3 4 2 3 1 xx x

x x x x x x x x x x

x x

2 5

3 4 2 5 1 2 3 4 2 3

1 2

↓() +

+ ↓() ↓() = ↓ ↓()() + ↓ ↓()() +

+ ↓ ↓ xx x x x x x x x

x x x x x

5 3 4 2 5 1 2 3

4 2 3 1 2

() + ↓() ↓()



 = ↓ ↓()() +

+ ↓ ↓()() + ↓ ↓ xx x x x x

x x x x x x x x

5 3 4 2 5

1 2 3 4 2 3 1 2

() + ↓() ↓ ↓





=

= ↓ ↓()() + ↓ ↓()() + ↓ ↓↓() +

+ ↓() ↓ ↓()() = ↓ ↓()() ↓ ↓ ↓()() ↓

↓ ↓

x

x x x x x x x x x x

x x

5

3 4 2 5 1 2 3 4 2 3

1 2 ↓↓ ↓()() ↓ ↓() ↓()x x xx x5 2 53 4 .

PNFPW-1 takes the following form:

F x x x x x x

x x xx x x

DNFPW1 = ↓ ↓()() ↓ ↓ ↓()() ↓

↓ ↓() ↓ ↓() ↓↓ ↓

1 2 3 4 2 3

1 3 42 5 2 xx5()(). 	 (49)

PNFPW-1 (49) provides the corresponding values of one
and zero for the matrices M1, M0. It is important to note that the
"logical NOR" operation x x2 5↓ occurs twice in PNFPW-1 (49).
This provides an additional resource for simplifying the logic
circuit implementing PNFPW-1 (49) (Fig. 8).

Simplification of the function f(x1, x2, x3, x4, x5) (46) in
the conjunctive normal form (CNF):

f x x x x x

x x x x x F

MCNF

No.

1 2 3 4 5

1 2 3 4 5

9 0 1 0 0 1 0
18 1 0 0 1 0 0
19 1 0 0 1

, , , ,() =

=
11 0

20 1 0 1 0 0 0
21 1 0 1 0 1 0
28 1 1 1 0 0 0
16 1 0 0 0 0

9 1 0 1 1 0 0
18

1 2 3 4 5

−

=

=

x x x x x F

00 1 1 0 1
0 1 1 0 0

0
19 0
20 0
21 0
28 0
16

0 0 1 1
0 1 0 1 0

1

0 0 0 1 1
0 1 1 1 1

1 2 3 4

−

=

=

x x x x x55

1 2 3 4 5 1 2 3 4

1 2

1 0 1 1 0
0 1 1 0
0 1 0 1
0 0 1 1

=

= + + + +() + + +() ×

× + +

x x x x x x x x x

x x xx x x x x x3 4 1 3 4 5+() + + +(). 	 (50)

According to Nelson’s method, in the first matrix of ex-
pression (50), the variables are inverted [19]. In the second
matrix of expression (50), the following actions are performed:
to blocks 18, 19; 20, 21; 20, 28, which form the intervals of the
Boolean space containing combinatorial systems of 2-(1, 2)-de-
sign, the operation of simple gluing of variables is applied.

It should be noted that the undefined set of variables 16 in
the second matrix of expression (50) is not written to the third
matrix of expression (50) because the set 16 does not partici-
pate in the further simplification of the partially defined func-
tion f(x1, x2, x3, x4, x5) (46) [16]. This ultimately reduces the
complexity of simplifying the function f(x1, x2, x3, x4, x5) (46)
in the conjunctive normal form (CNF).

The twentieth block of variables "01011" is common to two
systems – Σm(20, 21), Σm(20, 28) and two operations of simple

1

1

1

1

1 1

1

1

1

1

1

5x
4x

3x
2x
1x

F
DNFPV −1

Fig. 8. The logic circuit that implements PNFPW-1 (49): the complexity of the circuit
is 11 2-input logic elements "Logical NOR", 9 inverters, a total of 20 logic elements,

the depth of the circuit is 8 logic elements

Mathematics and Cybernetics – applied aspects

23

gluing of variables, the location of which is determined by
combinatorial 2-(1, 2)-design systems [16, 17].

As a result, in one step, the minimum function in CNF is
obtained:

f x x x x x x x x x x

x x x x x x

MCNF 1 2 3 4 5 1 2 3 4 5

1 2 3 4 1 2

, , , ,() = + + + +() ×

× + + +() + ++ +() + + +()x x x x x x3 4 1 3 4 5 .	 (51)

PNFPW-2 is recorded for MCNF (51):

x x x x x x x x x

x x x x x x x x

1 2 3 4 5 1 2 3 4

1 2 3 4 1 3 4 5

+ + + +() + + +() ×

× + + +() + + +() =

== +() + +() +()() ×

× + + + +() + +()() =

=

x x x x x x

x x x x x x x x

1 2 3 4 3 4

4 1 2 3 5 1 3 5

xx x x x x x

x x x x x x x x

1 2 3 4 3 4

4 1 2 3 5 1 3 5

↓() + ↓() ↓()



 ×

× + ↓ ↓ ↓() ↓ ↓()



 =

= ↓() + ↓() ↓ ↓()()



 ×

× + ↓ ↓ ↓() ↓ ↓ ↓

x x x x x x

x x x x x x x

1 2 3 4 3 4

4 1 2 3 5 1 3 xx

x x x x x x

x x x x x

5

1 2 3 4 3 4

4 1 2 3 5

()()() =

= ↓() ↓ ↓() ↓ ↓()()



 ×

× ↓ ↓ ↓ ↓() ↓↓ ↓ ↓()()



 =

= ↓() ↓ ↓() ↓ ↓()()



 ↓

↓ ↓

x x x

x x x x x x

x x

1 3 5

1 2 3 4 3 4

4 1 ↓↓ ↓ ↓() ↓ ↓ ↓()









x x x x x x2 3 5 1 3 5 .

PNFPW-2 takes the following form:

F x x x x x x

x x x x x x

DNFPW2 = ↓() ↓ ↓() ↓ ↓()()



 ↓

↓ ↓ ↓ ↓ ↓() ↓

1 2 3 4 3 4

4 1 2 3 5 11 3 5↓ ↓()









x x . 	 (52)

PNFPW-2 (52) provides the corresponding values of one
and zero for matrices M1, M0. The logic circuit implementing
PNFPW-2 (52) is shown in Fig. 9.

Since the first matrix of expression (47) is a singular
function [27], this makes it possible to simplify the function
f(x1, x2, x3, x4, x5) (46) in the polynomial basis with the
transition of the minimal polynomial form to the main basis.

f x x x x x

x x x x x

MPNF

No.

1 2 3 4 5

1 2 3 4 5
0
1
2
3

0
0 1
0 0 0 1 0
0 0 0

0 0 0
0 0 0

0

, , , ,() =

=

11 1
0 0 1 0 0
0 0 1 0 1
0 0
0 1

4
5
6
7
8 0 1

10
11
12
13

0 1 1
0 1 1

0 0 0
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 11 0 1
0 1 1
0 1 1

14
15
17 1 1
22 1 0
23 1 1
24 1 1
25 1 1 0 0 1
26

1 0
1 1

1 1 0

0 0 0
0 1 1
0 1 1

0 0 0

11 0
1 1 0 1 1

1 1 1 1 0
1 1 1 1 1

27
29 1 1 1 0 1
30
31
16 1 0 0 0

0 0 0
0 0 0

0

00
0 1
0 0 0 1 0
0 0 0 1

=

11
0 0 1 0 0
0 0 1 0 1
0 0
0 1

0 1 1
0 1 1

0 1
0 1 0 0 1

0 0 0

0 1 0 1 0
0 1 0 1 1

1 0

0 1 1 0 0
0 1 1 0 1
0 1 1
0 11 1 1 1

1 1 0 1 0
1 1 0 1 1

1 1 1

0 1 0 0 1
1 1
1 0
1 1
1 1
1 1 0 0 1

1 1 1 0 0
1 1 1 0 1

0 0 0
0 1 1
0 1 1

0 0 0

11 0
1 1 1 1 1
1 1 1 0 0
1

0 1 0 0 1
1 1
1 0
1 1
1 1
1 1 1 0 0
1

0 0 0

0 0 0

0

0

0 1 1
0 1 1

1 2 3 4 5

=

x x x x x

00 0 0 0

0
0 1 0 0 1
1 0 0 0
1 0 1 1
1 1
1 1 1 0 0

0
0 1 0 0 1
1 0 0

1 2 3 4 5 1 2 3 4 5

=

= =

x x x x x x x x x x

11 0 1
1 1
1 1 1 0 0

0
0 1 0 0 1
1 0 0
1 0 0
1
1 1 1 0 0

1
0 1 0 0

1 2 3 4 5

1 2 3 4 5

= =

= ⊕

x x x x x

x x x x x
11

1 0 0
1 0 0
1 1 1 0 0

1

0 1 0 0 1
1 0 0 0
1 0 1 0
1 0 0
1 1 1 0 0

1

1 2 3 4 5

1 2 3

= ⊕ =

= ⊕

x x x x x

x x x x44 5
0 1 0 0 1
1 0 0 1
1 0 1 0
1 1 1 0 0

x

.
	

	 (53)

1

1

1

1

1

1

1 11

1 1

1

1
5x

4x

3x

2x
1x

FDNFPV −2

Fig. 9. Logic circuit implementing PNFPW-2 (52): circuit complexity 13 2-input logic elements "Logical NOR", 9 inverters, 	
total 22 logic elements, circuit depth 7 logic elements

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/4 (131) 2024

24

The last matrix of expression (53) is a singular function.
This makes it possible to obtain the minimum function in the
main basis and write PNFPW-1 for it:

1

0 1 0 0 1

1 0 0 1

1 0 1 0

1 1 1 0 0

1 2 3 4 5

2 4 1 3 5 1 3 5 1 2 3

⊕ =

= +()+

x x x x x

x x x x x x x x x x x xx x x

x x x x x x x x x x x x x x

x x x x

4 3 4

2 4 1 3 5 1 3 5 1 2 3 4 3 4

2 4 1 3

+() =

= ↓() + ↓() =

= ↓ xx x x x x x x x x x

x x x x x x x x x

5 1 3 5 1 2 3 4 3 4

2 4 1 3 5 1 3 5 1

↓





+ ↓ ↓() =

= ↓ ↓() + xx x x x x

x x x x x x x x x x x x x x

2 3 4 3 4

2 4 1 3 5 1 3 5 1 2 3 4 3 4

↓ ↓() =

= +() ↓ ↓() + +() ↓ ↓(()() =

= ↓() ↓ ↓ ↓() ↓ ↓ ↓()()



 +

+ ↓() ↓ ↓(

x x x x x x x x

x x x x

2 4 1 3 5 1 3 5

1 2 3 4)) ↓ ↓()



 =

= ↓() ↓ ↓ ↓() ↓ ↓ ↓()()



 ↓

↓ ↓

x x

x x x x x x x x

x x

3 4

2 4 1 3 5 1 3 5

1 2(() ↓ ↓() ↓ ↓()



 =

= ↓() ↓ ↓ ↓() ↓ ↓ ↓()()


x x x x

x x x x x x x x

3 4 3 4

2 4 1 3 5 1 3 5

 ↓

↓ ↓() ↓ ↓() ↓ ↓()()



 =

= ↓() ↓ ↓ ↓() ↓ ↓

x x x x x x

x x x x x x

1 2 3 4 3 4

2 4 1 3 5 1 xx x

x x x x x x

3 5

1 2 3 4 3 4

↓()









 ↓

↓ ↓() ↓ ↓() ↓ ↓()()



 .

PNFPW-1 takes the following form:

F x x x x x x x x

x x

DNFPW1 = ↓() ↓ ↓ ↓() ↓ ↓ ↓()









 ↓

↓ ↓() ↓

2 4 1 3 5 1 3 5

1 2 xx x x x3 4 3 4↓() ↓ ↓()()



 . 	(54)

PNFPW-1 (54) provides the corresponding values of one
and zero for matrices M1, M0. The logic circuit implementing
PNFPW-1 (54) is shown in Fig. 10.

PNFPW-1 (49), (54) and PNFPW-2 (52) represent the
class of dead-end forms of the function f(x1, x2, x3, x4, x5) (46).
Depending on the technical conditions for designing
a logic circuit, one of the considered dead-end forms may
become minimal. The parameters of the logic circuits that
implement the specified Peirce-Webb functions are given
in Table 12.

Table 12

Parameters of logic circuits that implement 	
Peirce-Webb functions

Logic form
Number of

logical NOR
elements

Number of
inverters

Total logic
elements

Circuit
depth

Fig.

PNFPW-1 11 9 20 8 7

PNFPW-2 13 9 22 7 8

PNFPW-1 13 9 22 7 9

Fig. 11 shows a logic scheme designed by the method
of algebraic bi-decomposition of the Boolean function [26].

Considering the schemes in Fig. 8–10, we can see that
these schemes show a smaller number of logic elements,
which they consist of, compared to the scheme in Fig. 11.
The depth of the scheme in Fig. 9–11 is the same, it is 7 lo
gic elements.

The peculiarity of the method of bitwise partitioning
of the set of output conjuncterms is the absence of tau-
tology when simplifying Boolean functions, the conjunc-
terms of the lower rank are established without perform-
ing intermediate operations of gluing the variables [28].
This gives the optimal complexity of the function simplifi-
cation procedure.

1

1

1

1

1

1 1 1

1

1

1

1

1

5x

4x
3x

2x
1x

FDNFPV −1

Fig. 10. The logic circuit that implements PNFPW-1 (54): the complexity of the circuit 	
is 13 2-input logic elements "Logical NOR", 9 inverters, a total of 22 logic elements, the depth 	

of the circuit is 7 logic elements

Mathematics and Cybernetics – applied aspects

25

Example 11. Use a non-standard system to simplify the func-
tion f(x1, x2, x3, x4, x5, x6, x7) given in the canonical form [28]:

f x x x x x x x1 2 3 4 5 6 7

0 1 5 6 7 8 10 14 22 23 38 39 48

, , , , , ,

, , , , , , , , , , , , ,

() =

=
449

53 54 55 58 62 86 87 102 103 122

,

, , , , , , , , ,
.





∑ 	 (55)

Solution.
Simplification of the function f(x1, x2, x3, x4, x5, x6, x7)

(55) in the disjunctive normal form (DNF):

f x x x x x x x

x x x x x x x F
MDNF

No.
1 2 3 4 5 6 7

1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 1
1 0

, , , , , ,() =

=

00 0 0 0 0 1
0 0 0 0 1 0 1

0 0 0 1 0 1 0
0 0

1
5 1
6 1
7 1
8 0 0 0 1 0 0 0 1

10 1
14

0 0 0 0 1 1 0
0 0 0 0 1 1 1

00 1 1 1 0 1
22 1
23 1
38 1
39 1
48 1
4

0 0 1 1 0
0 0 1 1 1
0 0 1 1 0
0 0 1 1 1

0 1
0 1
1 0
1 0

0 1 1 0 0 0 0
99 1

53 1
54 1
55 1
58 1
62

0 1 1 0 0 0
0 1 1 0 1 0 1

0 1 1 1 0 1 0
1 1 1 1 1

1

0 1 1 0 1 1 0
0 1 1 0 1 1 1

0 00 1
86 1 0 1
87 1 1 1

102 1 0 1
103 1 1 1
122 1

0 1 0 1 1
0 1 0 1 1
1 0 0 1 1
1 0 0 1 1

1 1 1 1 0 1 0

=

=

xx x x x x x x1 2 3 4 5 6 7

0 0 0 0 0 0
0 0 0 0 0 1

0 0 0 1 1 0

0 1 1 0 0 1
0 1 1 1 1 0

0 0 1 1

0 1 1 0 0 0

0 1 0 11 1
1 0 0 1 1
1 1 1 0 1 0

. 	 (56)

In the first matrix of expression (56),
the following operations are performed:
to blocks 6, 7, 22, 23, 38, 39, 54, 55,
which form intervals of the Boolean space
containing the complete combinatorial
system of 2-(3, 8)-design, and to blocks
22, 23, 86, 87; 38, 39, 102, 103, which
form intervals of the Boolean space con-
taining complete combinatorial systems
of 2-(2, 4)-design, the operation of su-
per-gluing the variables is applied.

The 22nd "0010110" and 23rd "0010111"
variable blocks are common to the two
systems – Σm(6, 7, 22, 23, 38, 39, 54, 55),
Σm(22, 23, 86, 87) and two operations of
super-gluing the variables, the location
of which is determined by the combi-
natorial systems of 2-(3, 8)-design and
2-(2, 4)-design.

The 38th "0100110" and 39th "0100111" variable blocks
are common to two systems – Σm(6, 7, 22, 23, 38, 39, 54, 55),
Σm(38, 39, 102, 103) and two operations of super-gluing the
variables, the location of which is determined by the combi-
natorial systems of 2-(3, 8)-design and 2-(2, 4)-design.

In the first matrix of expression (54), to blocks 0, 8; 1, 5;
10, 14; 48, 49; 49, 53; 58, 62; 62, 122, which form the intervals
of the Boolean space containing the complete combinatorial
system of 2-(1, 2)-design, the operation of simple gluing of
variables is applied.

The 49th "0110001" block of variables is common to two
systems – Σm(48, 49), Σm(49,53) and one operation of simple
gluing of variables, the location of which is determined by
combinatorial systems of 2-(1, 2)-design.

The 62nd "0111110" block of variables is common to two
systems – Σm(58, 62), Σm(62, 122) and one simple variable
gluing operation, the location of which is determined by
combinatorial 2-(1, 2)-design systems.

As a result, the minimal function in disjunctive normal
form is obtained in one step:

f x x x x x x x

x x x x x x x x x x x x x x

MDNF 1 2 3 4 5 6 7

1 2 3 5 6 7 1 2 3 4 6 7 1

, , , , , ,() =

= + + 44 5 6

1 2 3 4 6 7 1 2 3 4 5 6

1 2 3 4 6 7 1 2 3 4 6

x x

x x x x x x x x x x x x

x x x x x x x x x x x

+

+ + +

+ + xx x x x x x

x x x x x x x x x x x

7 2 3 4 5 6

2 3 4 5 6 2 3 4 5 6 7

+ +

+ + . 	 (57)

Decimal equivalent of MDNF (57):

f x x x x x x xMDNF 1 2 3 4 5 6 7

0 8 1 5 6 7 22 23 38 39 5

, , , , , ,

, , , , , , , , , ,

() =

() ()
=

44 55

10 14 22 23 86 87 38 39 102 103

48 49 49

, ,

, , , , , , , , , ,

, , ,

()
() () ()
()

553 58 62 62 122

0 1 5 6 7 8 10 14 22

() () ()



















=

=

, , , ,

, , , , , , , , ,, , , , , ,

, , , , , , , , ,

 23 38 39 48 49

53 54 55 58 62 86 87 102 103 122












,

coincides with the decimal counterpart, represented in ab-
breviated form [28].

Simplification of the function f(x1, x2, x3, x4, x5, x6, x7)
(55) in the conjunctive normal form (CNF) (Fig. 12).

Fig. 11. A logic circuit designed by the method of algebraic decomposition of
a Boolean function: the complexity of the circuit is 15 2-input logic elements

"Logical NOR" and 8 inverters, a total of 23 logic elements, the depth 	
of the circuit is 7 logic elements

x2

x4

x3

x5
x1

 f

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/4 (131) 2024

26

No. x1 x2 x3 x4 x5 x6 x7 f No. x1 x2 x3 x4 x5 x6 x7 f
2 0 0 0 0 0 1 0 0 71 1 0 0 0 1 1 1 0
3 0 0 0 0 0 1 1 0 72 1 0 0 1 0 0 0 0
4 0 0 0 0 1 0 0 0 73 1 0 0 1 0 0 1 0
9 0 0 0 1 0 0 1 0 74 1 0 0 1 0 1 0 0

11 0 0 0 1 0 1 1 0 75 1 0 0 1 0 1 1 0
12 0 0 0 1 1 0 0 0 76 1 0 0 1 1 0 0 0
13 0 0 0 1 1 0 1 0 77 1 0 0 1 1 0 1 0
15 0 0 0 1 1 1 1 0 78 1 0 0 1 1 1 0 0
16 0 0 1 0 0 0 0 0 79 1 0 0 1 1 1 1 0
17 0 0 1 0 0 0 1 0 80 1 0 1 0 0 0 0 0
18 0 0 1 0 0 1 0 0 81 1 0 1 0 0 0 1 0
19 0 0 1 0 0 1 1 0 82 1 0 1 0 0 1 0 0
20 0 0 1 0 1 0 0 0 83 1 0 1 0 0 1 1 0
21 0 0 1 0 1 0 1 0 84 1 0 1 0 1 0 0 0
24 0 0 1 1 0 0 0 0 85 1 0 1 0 1 0 1 0
25 0 0 1 1 0 0 1 0 88 1 0 1 1 0 0 0 0
26 0 0 1 1 0 1 0 0 89 1 0 1 1 0 0 1 0
27 0 0 1 1 0 1 1 0 90 1 0 1 1 0 1 0 0
28 0 0 1 1 1 0 0 0 91 1 0 1 1 0 1 1 0
29 0 0 1 1 1 0 1 0 92 1 0 1 1 1 0 0 0
30 0 0 1 1 1 1 0 0 93 1 0 1 1 1 0 1 0
31 0 0 1 1 1 1 1 0 94 1 0 1 1 1 1 0 0
32 0 1 0 0 0 0 0 0 95 1 0 1 1 1 1 1 0
33 0 1 0 0 0 0 1 0 96 1 1 0 0 0 0 0 0
34 0 1 0 0 0 1 0 0 97 1 1 0 0 0 0 1 0
35 0 1 0 0 0 1 1 0 98 1 1 0 0 0 1 0 0
36 0 1 0 0 1 0 0 0 99 1 1 0 0 0 1 1 0
37 0 1 0 0 1 0 1 0 100 1 1 0 0 1 0 0 0
40 0 1 0 1 0 0 0 0 101 1 1 0 0 1 0 1 0
41 0 1 0 1 0 0 1 0 104 1 1 0 1 0 0 0 0
42 0 1 0 1 0 1 0 0 105 1 1 0 1 0 0 1 0
43 0 1 0 1 0 1 1 0 106 1 1 0 1 0 1 0 0
44 0 1 0 1 1 0 0 0 107 1 1 0 1 0 1 1 0
45 0 1 0 1 1 0 1 0 108 1 1 0 1 1 0 0 0
46 0 1 0 1 1 1 0 0 109 1 1 0 1 1 0 1 0
47 0 1 0 1 1 1 1 0 110 1 1 0 1 1 1 0 0
50 0 1 1 0 0 1 0 0 111 1 1 0 1 1 1 1 0
51 0 1 1 0 0 1 1 0 112 1 1 1 0 0 0 0 0
52 0 1 1 0 1 0 0 0 113 1 1 1 0 0 0 1 0
56 0 1 1 1 0 0 0 0 114 1 1 1 0 0 1 0 0
57 0 1 1 1 0 0 1 0 115 1 1 1 0 0 1 1 0
59 0 1 1 1 0 1 1 0 116 1 1 1 0 1 0 0 0
60 0 1 1 1 1 0 0 0 117 1 1 1 0 1 0 1 0
61 0 1 1 1 1 0 1 0 118 1 1 1 0 1 1 0 0
63 0 1 1 1 1 1 1 0 119 1 1 1 0 1 1 1 0
64 1 0 0 0 0 0 0 0 120 1 1 1 1 0 0 0 0
65 1 0 0 0 0 0 1 0 121 1 1 1 1 0 0 1 0
66 1 0 0 0 0 1 0 0 123 1 1 1 1 0 1 1 0
67 1 0 0 0 0 1 1 0 124 1 1 1 1 1 0 0 0
68 1 0 0 0 1 0 0 0 125 1 1 1 1 1 0 1 0
69 1 0 0 0 1 0 1 0 126 1 1 1 1 1 1 0 0
70 1 0 0 0 1 1 0 0 127 1 1 1 1 1 1 1 0

Fig. 12. Conjunctive normal form (CNF) of function (55)

Mathematics and Cybernetics – applied aspects

27

The last matrix of the CNF simpli-
fication of the function (Fig. 12) takes
the following form:

f x x x x x x x

x x x x x x x

MCNF 1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 1 0

0 1 1

0 0

1 0 1

1 0 1

1

, , , , , ,() =

=

00 0

0 1 1

0 1 1

0 1 0

0 0 1

0 1 1

0 1 1

0 0 1

0 0 0 0

1 2 3 5

1 2 6

=

= + + +() ×

× + +() ×

×

x x x x

x x x

x11 4 5

1 2 3

2 4 6

2 3 4

2 3 6

+ +() ×

× + +() ×

× + +() ×

× + +() ×

× + +()

x x

x x x

x x x

x x x

x x x

×× + +() ×

× + +() ×

× + +() ×

× + +() ×

× +() ×

x x x

x x x

x x x

x x x

x x

2 3 5

2 3 4

2 3 6

2 3 5

4 7

×× + +()×

× + +()
x x x

x x x

5 6 7

4 5 6 . 	 (58)

MCNF (58) contains 14 fewer lite
rals compared to MDNF (57).

For MCNF (58), PNFPW-2 is re-
corded as follows:

()()()()()
()()()()()
()()()()

()()()()()()
()()()()() ()()()()

DNFPW2

1 2 3 5 1 2 6 1 4 5 1 2 3 2 4 6

2 3 4 2 3 6 2 3 5 2 3 4 2 3 6

2 3 5 4 7 5 6 7 4 5 6

1 2 3 5 2 6 4 5 2 3

2 4 6 3 4 3 6 3 5 2 3 4 3 6 3 5 4

F

x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x

x x x x x x x x x x x

x x x x x x x x x x

x x x x x x x x x x x x x x x x x

=

= + + + + + + + + + + + ×

× + + + + + + + + + + ×

× + + + + + + + =

= + + + + + + ×

× + + + + + + + + + +()
()()

()()() ()()()()()
() ()()() ()()()

()()()
() ()()()

() ()() ()()()
()()

7

5 6 7 4 5 6

1 2 3 5 6 4 5 2 3

2 4 6 3 4 6 5 2 3 4 6 5

4 7 5 6 7 4 5 6

1 2 3 5 6 4 5 2 3

2 4 6 3 4 6 5 2 3 4 6 5

4 7 5 6 7 4

x

x x x x x x

x x x x x x x x x

x x x x x x x x x x x x

x x x x x x x x

x x x x x x x x x

x x x x x x x x x x x x

x x x x x x x

×

× + + + + =

= + + + + + ×

× + + + × + + ×

× + + + + + =

   = + + ↓ ↓ ↓ ×     

 × + ↓ + ↓ ↓ × + + ↓ ↓ × 

× ↓ ↓ ↓ ↓()
()()() () ()()()

() () ()
() () ()()

()() () ()()

() ()()

5 6

1 2 3 5 6 4 5 2 3

2 4 6 3 4 6 5 2 3 4 6 5

4 7 5 6 7 4 5 6

1 2 3 5 6 4 5 2 3

2 4 6 3 4 6 5

2 3 4

x

x x x x x x x x x

x x x x x x x x x x x x

x x x x x x x x

x x x x x x x x x

x x x x x x x

x x x

 ↓ =  

= + + ↓ ↓ ↓ ↓ ↓ ×

      × ↓ ↓ ↓ ↓ ↓ × + ↓ ↓ ↓ ×       

× ↓ ↓ ↓ ↓ ↓ ↓ ↓ =

  = + ↓ ↓ ↓ ↓ ↓ ↓ ×    

  × ↓ ↓ ↓ ↓ ↓ ↓ ×   

× ↓ ↓ ↓() () () ()()
()() () ()()

() ()()
() () () ()()
()()() () ()()()

6 5 4 7 5 6 7 4 5 6

1 2 3 5 6 4 5 2 3

2 4 6 3 4 6 5

2 3 4 6 5 4 7 5 6 7 4 5 6

1 2 3 5 6 4 5 2 3

2 4 3

x x x x x x x x x x

x x x x x x x x x

x x x x x x x

x x x x x x x x x x x x x

x x x x x x x x x

x x x x

  ↓ × ↓ ↓ ↓ ↓ ↓ ↓ ↓ =   

  = ↓ ↓ ↓ ↓ ↓ ↓ ↓ ×    

  × ↓ ↓ ↓ ↓ ↓ ↓ ×   

  × ↓ ↓ ↓ ↓ × ↓ ↓ ↓ ↓ ↓ ↓ ↓ =   

= ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ×

× ↓ ↓ ↓()() ()()() () ()
() () ()

()()() () ()()()
()() ()()() () ()

() () ()

6 3 5 6 2 3 4 5 6

4 7 5 6 7 4 5 6

1 2 3 5 6 4 5 2 3

2 4 3 6 3 5 6 2 3 4 5 6

4 7 5 6 7 4 5 6 .

x x x x x x x x

x x x x x x x x

x x x x x x x x x

x x x x x x x x x x x x

x x x x x x x x

↓ ↓ ↓ × ↓ ↓ ↓ ↓ ×

× ↓ ↓ ↓ ↓ ↓ ↓ ↓ =

 = ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓  

 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 

 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/4 (131) 2024

28

F

x
x x x x

x x x x

DNFPW2 =

= ↓
↓ ↓() ↓()() ↓

↓ ↓() ↓ ↓()()













1

2 3 5 6

4 5 2 3 

















↓

↓ ↓ ↓ ↓()() ↓ ↓ ↓()()()() ↓

↓ ↓() ↓

x x x x x x x

x x x

2 4 3 6 3 5 6

2 3 4 ↓↓ ↓()



 ↓

↓ ↓() ↓ ↓ ↓() ↓ ↓ ↓()





x x

x x x x x x x x

5 6

4 7 5 6 7 4 5 6 .	 (59)

PNFPW-2 (59) (Fig. 13) contains 27 fewer literals com-
pared to MDNF (57).

The logic circuit in Fig. 13 consists of 17 2-input Peirce-ar-
row logic elements, 4 3-input Peirce-arrow logic elements,
1 4-input Peirce-arrow logic element, and 10 inverters.

6. Discussion of results from the simplification of Peirce-
Webb functions by a non-standard system

The beginning of the simplification of Boolean functions by
a non-standard system in the Peirce-Webb basis is the search
for intervals of the Boolean space containing the combinatorial
systems of 2-(n, b)-design, 2-(n, x/b)-design, in particular, in
the case when different intervals of the Boolean space partially
coincide. The non-standard is heuristic. Heuristics are inven-
tive, the answer is not to "calculate" but to find, this is the true
search – the desire to find. Detection through the search for
the necessary intervals of the Boolean space unambiguously
implies the locations of equivalent transformations and pro-
vides the "trigger causality" of the consequence, in the form of
the very solution to the problem of the systematized procedure

for simplifying the Peirce-Webb functions by the visual-matrix
form of the analytical method [16].

The mathematical apparatus of the non-standard system
for simplifying Boolean functions in the Peirce-Webb basis is
the method of figurative transformations, which is conside
red in works [29–32] and others.

A new component in the technology of simplifying Boolean
functions with a non-standard system represents the algebra
of equivalent transformations in the class of perfect normal
forms of Peirce-Webb functions.

The following results were obtained for each task, in or-
der to achieve the overall goal of the research:

1. Boolean functions in the Peirce-Webb basis – PNFPW-1
and PNFPW-2 – are represented by matrices with the same
combinatorial properties. The difference between the speci-
fied matrices lies in the hermeneutics of logical operations.
The PNFPW-1 matrix gives the PNFPW-1 terms and the
logical NOR operation for them, and the PNFPW-2 ma-

trix gives the PNFPW-2 terms and
the logical NOR operation for them.

It is important to see that the combi-
natorial properties of binary structures
PNFPW-1, PNFPW-2 functions in the
Peirce-Webb basis and PDNF, DCNF
functions of the main basis do not de-
pend on the selected logical basis. This
makes it possible to carry out equiva-
lent transformations in the PNFPW-1,
PNFPW-2 matrices according to the
rules of the algebra of the main basis.

The hermeneutics of logical ope
rations are demonstrated on matri-
ces (1) to (3) and others.

2. The rules for simplifying the
Peirce-Webb functions in 3 exceptional
situations have been established. The
graphic equivalent of the specified rules
in the form of logic elements is presen
ted in Fig. 3–5. The rules for simplifying
the Peirce-Webb functions for the first
and second exceptional situations are
discussed in examples 1–5. The third ex-
ceptional situation is demonstrated by
the rules of equivalent transformation of
Peirce-Webb functions – (14), (20), (28).

3. The algebra of equivalent trans-
formations for the simplification of
Boolean functions in the Peirce-Webb
basis has been extended (Table 13).

Logical operations 4–8, 12, 13 (Table 10) are new opera-
tions of equivalent transformation of Boolean functions in the
Peirce-Webb basis. This extends the capabilities of the ana-
lytical method when simplifying the Peirce-Webb functions.

4. In the general case, the search for the minimal function is
carried out on the complete truth table and on various logical
bases. A complete truth table holds the sets of variables for which
the function returns either "1" or "0" at the output. The mini-
mum function in the Peirce-Webb basis should be chosen based
on the results of minimization of two normal forms – PNFPW-1
and PNFPW-2, which is demonstrated by example 8.

5. A comparative analysis of the results of the simplifica-
tion of Boolean functions in the Peirce-Webb basis by a non-
standard system and examples of the simplification of func-
tions by the Veitch diagram, matrix and graph algorithms,

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

4x

3x

2x
1x

7x

6x

5x

FDNFPV −2

Fig. 13. Logic circuit implementing PNFPW-2 (59)

Mathematics and Cybernetics – applied aspects

29

methods for algebraic bi-decomposition and bitwise division
of the set of initial conjunctives was carried out (Table 14).

The non-standard system shows the same result of sim-
plifying functions in the main basis and a better result in the
Peirce-Webb basis. For all the considered examples, the sim-
plification procedure with a non-standard system is simpler.
This makes it possible, to a certain extent, to simplify func-
tions without the use of automated calculations.

The interpretation of the result is determined by the pro
perties of the binary combinatorial structures of PNFPW-1,
PNFPW-2 functions in the Peirce-Webb basis and PDNF,
DCNF functions of the main basis. The specified properties
do not depend on the selected logical basis. This makes it
possible to carry out equivalent transformations on the binary
matrices PNFPW-1, PNFPW-2 according to the rules of the
algebra of the main basis. The result of the transformation of
the terms of the binary matrix in the end is some combinato-
rial system, metadata that can explain other data, for example,
determine the minimum function for another logical basis.
Equivalent transformations involving combinatorial systems
of 2-(n, b)-design, 2-(n, x/b)-design, which by their proper
ties have a greater information capacity, could effectively
replace verbal procedures of algebraic transformations.

In contrast to the transition to the Peirce-Webb basis at
the level of logic elements, by replacing AND and OR gates
with OR-NOT or AND-NOT gates [1–4, 6, 7], or replacing
AND and OR logic elements with OR elements NOT or
AND-NOT by applying recurrent dependences [5], the fea-
ture of the simplification of Boolean functions in the Peirce-
Webb basis by a non-standard system consists in changing

the form of simplification of Boolean functions in the Peirce-
Webb basis within the following representations:

– formation of new rules for equivalent transformation of
Boolean functions in the Peirce-Webb basis;

– providing a procedure for simplifying the Peirce-Webb
functions in one step;

– performing the minimization of Peirce-Webb functions
on the complete truth table;

– application of the distributive law of the 2nd kind when
simplifying the Peirce-Webb functions;

– using the Reed-M ller basis to simplify the Peirce-
Webb functions.

The non-standard system is based on combinatorial pro-
perties of binary structures of PNFPW-1, PNFPW-2 func-
tions in the Peirce-Webb basis and PDNF, DCNF functions of
the main basis. These properties do not depend on the selec
ted logical basis, which makes it possible to carry out equi
valent transformations on the binary matrices PNFPW-1,
PNFPW-2 according to the rules of the algebra of the main
basis. The result of the transformation of the terms of the
binary matrix in the end is some combinatorial system, meta-
data that can explain other data, for example, determine the
minimum function for another logical basis.

Implication of the Peirce-Webb function simplification
algorithm by the 2-(n, b)-design, 2-(n, x/b)-design systems
through their search on the binary structure of the truth
table is also possible when different intervals of the Boolean
space partially coincide. It is important to note that the stan-
dard (verbal) procedure for simplifying Boolean functions
does not provide for the intersection of minterms (maxterms).

Table 13
Equivalent transformation operations of Boolean functions for the OR-NOT monobasis

No. of entry Logic operation ID Reference in the text Representation form

1 Gluing of 2-digit terms of variables (13), (14) PNFPW-1

2 Gluing of 3-digit terms of variables (15), (16) PNFPW-1

3 Gluing of 3-digit terms of variables (18) PNFPW-2

4 Supergluing of 3-digit terms of variables (19), (20) PNFPW-1

5 Supergluing of 4-digit terms of variables (21), (22) PNFPW-1

6 Incomplete supergluing of 2-digit terms of variables (23), (24) PNFPW-1

7 Incomplete supergluing of 3-digit terms of variables (25) PNFPW-1

8 Generalized gluing of variables (26) PNFPW-1

9 Operation of absorbing the variables (27), (28) PNFPW-1

10 Operation of absorbing the variables (29) PNFPW-1

11 Operation of absorbing the variables (30) PNFPW-1

12 Operation of semi-gluing the variables (31), (32) PNFPW-2

13 Rule without a name (33), (34) PNFPW-2

Table 14

Comparative table of examples of simplification of Boolean functions borrowed from the works by other authors 	
and a non-standard system

Example
No.

Number of
input variables

Simplification method ID Simplification result Non-standard system

7 4 Veitch diagram [18] MCNF 8 literals MCNF 8 literals. PNFPW-2 7 literals

8 4 Graph method [19] MDNF 9 literals MDNF 9 literals. PNFPW-2 8 literals

9 4 Matrix method [21] MDNF 8 literals MDNF 8 literals. PNFPW-2 6 literals

10 5 Bi-decomposition method [25]
OR-NOT basis 23 gates,

circuit depth 7
OR-NOT basis 22 gates, circuit

depth 7; 20 gates; circuit depth 8

11 7
The method of bitwise partitioning of the

set of output conjuncterms [28]
MDNF 56 literals

MDNF 56 literals.
PNFPW-2 29 literals

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/4 (131) 2024

30

The application of the obtained result makes it possible to
improve and expand the capabilities of the design technology
of electronic components and devices for their use in digital
technologies, which are based on the Peirce-Webb functions.

The visual representation of 2-dimensional binary matri-
ces allows, to a certain extent, for a manual way to simplify
the Peirce-Webb functions using a mathematical editor, for
example, Math Type 7.4.0 (USA): examples 1–10.

The non-standard system for simplifying the Peirce-
Webb functions opposes the transition to the Peirce-Webb
basis at the level of logic elements, by replacing AND and
OR gates with OR-NOT or AND-NOT gates and brings the
problem of simplifying Boolean functions in the Peirce-Webb
basis to the level of a well-researched problem in the class of
disjunctive-conjunctive normal forms (DCNF) of represen-
tation of Boolean functions. The limitation of the application
of the non-standard system is the cases when the switching
function is represented in a mixed basis. In this case, the func-
tion must be represented by one logical basis.

The weakness of the considered system is its limited prac-
tical application for simplifying the Peirce-Webb functions
with the subsequent design and manufacture of the corre-
sponding computing components. The negative internal fac-
tors of a non-standard system are associated with additional
time costs for establishing the protocols for simplifying the
Peirce-Webb functions, followed by the creation of a library
of protocols that illustrate equivalent image transformations.

The lack of installation of the simplification method in
the automated design system can be noted as a shortcoming
of this study. This shortcoming can be eliminated in the
future by writing a software tool that implements the infor-
mation technology of performing the functions of designing
logical circuits according to the considered method.

Equivalent figurative transformations are a universal toolset
for simplifying Boolean functions. In this regard, the prospect of
further research may be, for example, the use of a non-standard
system to simplify the logical functions of the majority basis.

7. Conclusions

1. The perfect normal form of an n-bit Peirce-Webb func-
tion can be represented by binary sets or a matrix, which in
this case will give the terms of the Peirce-Webb function and
the logical NOR operation for them. Boolean functions of
PNFPW-1 and PNFPW-2 representations are set by matrices
with the same combinatorial properties. The difference between
the specified matrices is the hermeneutics of logical operations.
The PNFPW-1 matrix gives PNFPW-1 terms and the logical
NOR operation for them, and the PNFPW-2 matrix gives
PNFPW-2 terms and the logical NOR operation for them.

The combinatorial properties of the binary structures
PNFPW-1, PNFPW-2 of functions in the Peirce-Webb basis
and PDNF, PCNF of the functions of the main basis do not
depend on the selected logical basis (Boolean basis or Peirce-
Webb basis). This makes it possible to carry out equivalent
transformations in the PNFPW-1, PNFPW-2 matrices ac-
cording to the rules of the algebra of the main basis.

It is advisable to use the hermeneutics of logical opera-
tions when simplifying the Peirce-Webb functions.

2. When simplifying the Peirce-Webb functions, excep-
tional situations should be taken into account and equivalent
transformation rules should be created for them. The rules
of equivalent transformation of Peirce-Webb functions in

3 exceptional situations have been established. The graphic
equivalent of the specified rules in the form of connections
of logic elements is presented. The application of the rules
of equivalent transformation of Peirce-Webb functions in
exceptional situations is required not only when deriving the
result of simplification from a binary matrix but also when
entering the algebraic form of a function into a binary matrix.

3. To properly simplify the Peirce-Webb functions with
a non-standard system, we have developed rules for their
equivalent transformation, in which logical operations 4–8, 12,
13 are new equivalent transformation operations of Boolean
functions in the Peirce-Webb basis. This increases the ana-
lytical method’s ability to obtain the optimal function in the
Peirce-Webb basis.

4. It was found that the best result in the minimization of
Peirce-Webb functions can be achieved both in PNFPW-1
and in PNFPW-2. It follows that the minimization of the
given function should be carried out in two perfect normal
forms – PNFPW-1 and PNFPW-2, using a complete truth
table. And the optimal function should be chosen based on
the results of minimization of two normal forms – PNFPW-1
and PNFPW-2.

5. A comparative analysis of the results of the simpli-
fication of Boolean functions in the Peirce-Webb basis by
a non-standard system and examples of the simplification of
functions by the Veitch diagram, matrix and graph algorithms,
methods for algebraic bi-decomposition and bitwise parti-
tioning of the set of initial conjuncterms was carried out. The
non-standard system shows the same result of simplifying the
functions in the main basis, but a better result in the Peirce-
Webb basis. From the comparative analysis, it follows that
the non-standard system, in contrast to the replacement of
AND and OR logic elements with OR-NOT or AND-NOT
elements, makes it possible to obtain a simpler Boolean func-
tion during the transition from the basic basis to the Peirce-
Webb basis. For all the considered examples, the simplifica-
tion procedure with a non-standard system is simpler. This
makes it possible, to a certain extent, to simplify functions
without the use of automated calculations.

Conflicts of interest

The authors declare that they have no conflicts of interest
in relation to the current study, including financial, personal,
authorship, or any other, that could affect the study, as well
as the results reported in this paper.

Funding

The study was conducted without financial support.

Data availability

All data are available, either in numerical or graphical
form, in the main text of the manuscript.

Use of artificial intelligence

The authors confirm that they did not use artificial intel-
ligence technologies when creating the current work.

Mathematics and Cybernetics – applied aspects

31

References

1.	 Pucknell, D. A. (1990). Fundamentals of Digital Logic Design, With VLSI Circuit applications. Prentice Hall, 472.

2.	 Mano, M., Kime, C. (2004). Logic and Computer Design Fundamentals. Prentice Hall.

3.	 Baranov, S. (2008). Logic and System Design of Digital Systems. Tallinn: TUT Press.

4.	 Micheli, G. (1994). Synthesis and Optimization of Digital Circuits. McGraw-Hill.

5.	 Zakrevskij, A., Pottosin, Yu., Cheremisinova, L. (2009). Optimization in Boolean Space. Tallinn: TUT Press.

6.	 Baranov, S., Karatkevich, A. (2018). On Transformation of a Logical Circuit to a Circuit with NAND and NOR Gates Only. INTL

JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 64 (3), 373–378. Available at: https://journals.pan.pl/dlibra/

publication/123535/edition/107750/content

7.	 Maxfield, M. (2018). Implementing and Converting Logic Circuits Using Only NAND or NOR Gates. Available at: https://www.

eeweb.com/implementing-logic-functions-using-only-nand-or-nor-gates/

8.	 Poomiga, M., Ananthi, M., Sinega, M., Aashika, S M., Nambi Rajan, M. (2021). Optimization of simple combinational universal logic

gates. International Research Journal of Modernization in Engineering Technology and Science, 03 (08), 1000–1006. Available at:

https://www.irjmets.com/uploadedfiles/paper/volume_3/issue_8_august_2021/15911/final/fin_irjmets1630308031.pdf

9.	 Olenev, A., Potekhina, E., Khabarov, A., Zvereva, L. (2024). Information and logical transformations in Schaeffer and Pierce Bases

in Maple. ITM Web of Conferences, 59, 02006. https://doi.org/10.1051/itmconf/20245902006

10.	 Menshikh, V. V., Nikitenko, V. A. (2022). Minimization of representations of the logical function in schaeffer and pierce bases. Bulletin

of the South Ural State University Series "Mathematics. Mechanics. Physics", 14 (4), 20–27. https://doi.org/10.14529/mmph220403

11.	 Barland, I. (2012). An algorithm to implement a boolean function using only NAND’s or only NOR’s. Rice University. Available at:

https://archive.org/details/cnx-org-col10347/page/n1/mode/2up

12.	 Rajaei, A., Houshmand, M., Rouhani, M. (2011). Optimization of Combinational Logic Circuits Using NAND Gates and Genetic

Programming. Soft Computing in Industrial Applications, 405–414. https://doi.org/10.1007/978-3-642-20505-7_36

13.	 Dychka, I. A., Tarasenko, V. P., Onai, M. V. (2019). Osnovy prykladnoi teorii tsyfrovykh avtomativ. Kyiv, 505.

14.	 Kalyadin, N. I. (2006). Praktikum po diskretnoy matematike (Chast’ IV. Minimizatsiya FAL). Izhevsk: Izd-vo IzhGTU, 48.

15.	 Riznyk, V., Solomko, M. (2017). Application of super-sticking algebraic operation of variables for Boolean functions minimiza-

tion by combinatorial method. Technology Audit and Production Reserves, 6 (2 (38)), 60–76. https://doi.org/10.15587/2312-

8372.2017.118336

16.	 Solomko, M., Antoniuk, M., Voitovych, I., Ulianovska, Y., Pavlova, N., Biletskyi, V. (2023). Implementing the method of figurative

transformations to minimize partially defined Boolean functions. Eastern-European Journal of Enterprise Technologies, 1 (4 (121)),

6–25. https://doi.org/10.15587/1729-4061.2023.273293

17.	 Solomko, M. (2024). Development of a non-standard system for simplifying boolean functions. Eastern-European Journal of Enter-

prise Technologies, 3 (4 (129)), 6–34. https://doi.org/10.15587/1729-4061.2024.305826

18.	 Kondratenko, N. R. (2010). Kompiuternyi praktykum z matematychnoi lohiky. Vinnytsia: VNTU, 117.

19.	 Riznyk, V., Solomko, M. (2018). Minimization of conjunctive normal forms of boolean functions by combinatorial method. Techno

logy Audit and Production Reserves, 5 (2 (43)), 42–55. https://doi.org/10.15587/2312-8372.2018.146312

20.	 Ritsar, B. E. (1997). Metod minimizatsii bulevyh funktsiy. Problemy upravleniya i informatiki, 3, 100–113.

21.	 Cheng, D. (2005). Semi-tensor Product of Matrices and its Applications to Dynamic Systems. New Directions and Applications in

Control Theory, 61–79. https://doi.org/10.1007/10984413_5

22.	 Feng, J., Zhao, R., Cui, Y. (2022). Simplification of logical functions with application to circuits. Electronic Research Archive,

30 (9), 3320–3336. https://doi.org/10.3934/era.2022168

23.	 Cortadella, J. (2003). Timing-driven logic bi-decomposition. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 22 (6), 675–685. https://doi.org/10.1109/tcad.2003.811447

24.	 Mishchenko, A., Steinbach, B., Perkowski, M. (2001). An algorithm for bi-decomposition of logic functions. Proceedings of the

38th Conference on Design Automation-DAC’01, 103–108. https://doi.org/10.1145/378239.378353

25.	 Chang S.-C., Marek-Sadowdka, M., Hwang, T. (1996). Technology mapping for TLU FPGAs based on decomposition of binary

decision diagrams. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 15 (10), 1226–1236. https://

doi.org/10.1109/43.541442

26.	 Pottosin, Yu. V. (2022). Synthesis of combinational circuits by means of bi-decomposition of Boolean functions. Informatics,

19 (1), 7–18. https://doi.org/10.37661/1816-0301-2022-19-1-7-18

27.	 Solomko, M., Batyshkina, I., Khomiuk, N., Ivashchuk, Y., Shevtsova, N. (2021). Developing the minimization of a polynomial nor-

mal form of boolean functions by the method of figurative transformations. Eastern-European Journal of Enterprise Technologies,

2 (4 (110)), 22–37. https://doi.org/10.15587/1729-4061.2021.229786

28.	 Minziuk, V. (2023). Method of minimizing boolean functions for designing digital combinational circuits. Information and Commu-

nication Technologies, Electronic Engineering, 3 (1), 146–153. https://doi.org/10.23939/ictee2023.01.146

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 5/4 (131) 2024

32

29.	 Solomko, M., Khomiuk, N., Ivashchuk, Y., Nazaruk, V., Reinska, V., Zubyk, L., Popova, A. (2020). Implementation of the method

of image transformations for minimizing the Sheffer functions. Eastern-European Journal of Enterprise Technologies, 5 (4 (107)),

19–34. https://doi.org/10.15587/1729-4061.2020.214899

30.	 Solomko, M. (2021). Developing an algorithm to minimize boolean functions for the visual-matrix form of the analytical method.

Eastern-European Journal of Enterprise Technologies, 1 (4 (109)), 6–21. https://doi.org/10.15587/1729-4061.2021.225325

31.	 Riznyk, V., Solomko, M., Tadeyev, P., Nazaruk, V., Zubyk, L., Voloshyn, V. (2020). The algorithm for minimizing Boolean functions

using a method of the optimal combination of the sequence of figurative transformations. Eastern-European Journal of Enterprise

Technologies, 3 (4 (105)), 43–60. https://doi.org/10.15587/1729-4061.2020.206308

32.	 Solomko, M., Tadeyev, P., Zubyk, L., Babych, S., Mala, Y., Voitovych, O. (2021). Implementation of the method of figurative trans-

formations to minimizing symmetric Boolean functions. Eastern-European Journal of Enterprise Technologies, 4 (4 (112)), 23–39.

https://doi.org/10.15587/1729-4061.2021.239149

