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The object of research are models of optimal logic 
circuits based on universal Peirce-Webb functions. 
The problem solved is the efficiency of the technique 
for simplifying the Peirce-Webb functions. The exten-
sion of the non-standard system to the simplifica-
tion of Peirce-Webb functions makes it possible to 
discover new rules of equivalent transformations of 
Boolean functions, and to complete the simplification 
procedure in one step. A feature of the simplification 
of functions in the Peirce-Webb basis by a non-stan-
dard system is fixing the digital project at the level of 
abstraction, followed by the application of the mecha-
nism of logical synthesis to generate the corresponding 
equivalent at the level of gates of the logic circuit. The 
result of the transformation of the terms of the binary 
matrix in the end is some combinato rial system, meta-
data that can explain other data, for example, deter-
mine the minimum function for another logical basis.

The interpretation of the result consists in the use 
of combinatorial properties of binary structures of 
functions in the Peirce-Webb basis and binary struc-
tures of functions in the basic basis. These properties 
do not depend on the selected logical basis, which 
makes it possible to carry out equivalent transfor-
mations on binary matrices of Peirce-Webb functions 
according to the rules of the algebra of the main basis.

It has been experimentally confirmed that a non- 
standard system enables:

– to reduce the algorithmic complexity of simpli-
fying the Peirce-Webb functions;

– to increase the performance of the simplification 
of Peirce-Webb functions by 200–300 %;

– to demonstrate the visibility of the process of 
simplifying functions.

In terms of application, the non-standard system 
of simplifying the Peirce-Webb functions could ensure 
the transfer of innovations to material production: 
from conducting fundamental research, expanding 
the capabilities of digital component design technolo-
gy to organizing serial or mass production of novelties

Keywords: DNF simplification, Peirce-Webb func-
tion, Peirce-Webb basis, non-standard system, logi-
cal circuit, AND-NOT, OR-NOT gates

UDC 681.325
DOI: 10.15587/1729-4061.2024.312968

How to Cite: Solomko, M., Tadeyev, P., Antoniuk, M., Mala, Y., Babych, S., Ivashchuk, Y. (2024). Implementation of a non-stan-

dard system for simplifying Peirce-Webb functions. Eastern-European Journal of Enterprise Technologies, 5 (4 (131)), 6–32. 

https://doi.org/10.15587/1729-4061.2024.312968

Received date 12.07.2024

Accepted date 23.09.2024

Published date 30.10.2024

1. Introduction

In practice, many logic circuits are implemented using 
OR-NOT or AND-NOT gates due to the fact that the main 
gates in some families of logic, such as transistor-transistor 
logic (TTL) and complementary metal oxide semiconduc-
tor (CMOS), are AND-NOT and OR-NOT gates. The AND 
and OR gates also exist in these families but their selection 
is much smaller, and they are usually more expensive, have 
longer signal delays, and may have higher thermal dissipation 
capacity. The implementation of the AND function by AND-
NOT gates is performed by connecting two AND-NOT gates 

in a cascade, the first of which performs the AND-NOT ope-
ration, and the second is used as an inverter. The technique 
of implementing Boolean functions on AND-NOT gates does 
not necessarily ensure their minimal implementation. How-
ever, in some cases, factorization makes it possible to create 
an AND-NOT circuit with fewer gates.

These logic elements require fewer transistors (for exam-
ple, in NMOS logic, a NAND gate is simpler than an AND or 
OR logic element) [1–3]. However, developers naturally use 
representations based on the logic base {AND, OR, NOT} 
rather than based on {NOR, NAND}. In addition, almost all 
known methods for minimizing logical circuits, starting with  
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Carnot maps and ending with Espresso algorithms, also give 
results based on {AND, OR, NOT} [4, 5]. Only after such 
minimization, special algorithms replace elements of the basis 
{AND, OR, NOT} with elements of the basis {NOR, NAND}.

Logical elements AND-NOT and OR-NOT are used 
for hardware implementation of any logic circuit. For this 
reason, AND-NOT and OR-NOT logic elements are called 
universal gates.

The Peirce-Webb basis uses OR-NOT logical elements 
and is functionally complete for the space of Boolean func-
tions from 2 variables. This means that each Boolean func-
tion can be implemented using a combination of elements 
OR-NOT (Fig. 1) or AND-NOT.
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Fig.	1.	Implementation	of	elements	of	the	basic		
basis	{NOT,	AND,	OR}	on	OR-NOT	elements:	a	–	inverter;	

b –	conjunction;	c	–	disjunction

Logical NOR represents a dyadic logical operation 2-OR-
NOT (Fig. 2).
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Fig.	2.	Logic	element	2-OR-NOT

The symbol ↓ is used to indicate the "Peirce arrow" ope-
ration. The operation "logical NOR" is the negation of the 
disjunction f x x x x x x= ↓( ) = + = ⋅1 2 1 2 1 2, therefore, the value 
of the operation "logical NOR" will be "true" only when 
both arguments x1 and x2 take the value "false" (Table 1).

Table	1

Truth	table	of	the	"logical	NOR"	operation

х1 х2 f x x x x x x= ↓ = + = ⋅1 2 1 2 1 2

0 0 1

0 1 0

1 0 0

1 1 0

The Peirce-Webb basis belongs to the field of optimization 
of logical functions. In this regard, it is still relevant to con-
duct studies aimed, in particular, at improving such factors as:

– methods for simplifying Boolean functions in the Peirce-
Webb basis;

– minimization of logic circuits based on Peirce-Webb 
functions;

– reliability of the optimal function minimization result;
– the cost of the process of simplifying logical functions.

2. Literature review and problem statement
Fast transformation of the multi-level logic of the basis 

{AND, OR, NOT} to the functionally equivalent scheme of 
the basis {OR-NOT, AND-NOT} is considered in paper [6]. 
It is shown that the problem can be solved by replacing 
logical AND and OR elements with OR-NOT or AND-NOT 
elements, but this requires in some cases the introduction 
of additional inverters or the distribution of logic elements. 
The paper proposes algorithms for fast transformation of 
the circuit from the basis {AND, OR, NOT} to the basis  
{OR-NOT, AND-NOT}, while minimizing the number of 
inverters. The presented algorithms make it possible to turn 
any multi-level scheme into a chain, which is a combination 
of logical elements OR-NOT, AND-NOT or both types of 
universal logical elements. Almost all known methods for 
minimizing Boolean functions, including Espresso, give re-
sults in the same logical AND-OR-NOT basis. Only after 
such a simplification procedure, a library of logic elements 
is connected, including OR-NOT and AND-NOT gates for 
circuit synthesis. For two-level minimization in the form of 
a sum of products or a product of sums, such a mapping is 
trivial. But in FPGA schemes consisting of logical blocks of 
multi-level implementation of Boolean functions, optimizing 
the transformation of a multi-level scheme from an AND-
OR-NOT basis to an OR-NOT-AND-NOT basis is not an 
easy task. It should be noted that during the transition from 
the main basis to the Schaeffer and Peirce-Webb bases using 
the method discussed in [6], the number of operations for the 
transition would increase non-linearly. In turn, the number of 
logic elements in digital technology devices would increase 
linearly depending on the number of variables that are ap-
plied to the input of the microcircuit.

The implementation of logical functions using OR-NOT 
or AND-NOT gates is considered in [7]. The replacement 
of NOT, OR and AND logic elements in the scheme with 
AND-NOT logic elements is demonstrated. The uniqueness 
of replacing logical elements from the basis {AND, OR, NOT}  
with elements from the basis {OR-NOT, AND-NOT} is en-
sured by de Morgan transformations. The procedure for 
replacing logical elements is completed by optimizing the 
scheme, which is reduced to replacing a connection with 
an even number of inversions in the form of a NOT func-
tion with a conductor segment. It is worth noting that the 
replacement of NOT, OR and AND logic elements in the 
circuit with AND-NOT logic elements gives a linear increase 
in the number of logic elements in digital technology devices, 
depending on the number of variables that are applied to the 
input of the microcircuit.

The optimization of simple combinational universal logic 
elements using the Minitab19 programming environment 
and Boolean algebra is reported in [8]. It is noted that the 
replacement of AND and OR logic elements on the OR-NOT 
or AND-NOT gate in some cases requires the introduction 
of additional inverters or the separation of gates. The result 
of minimization is simplified expressions of functions in the 
form of sum of products (SOP) or product of sums (POS). 
The SOP form can be transformed into an AND-NOT ex-
pression, but such a transformation does not provide an opti-
mal circuit, neither in the range of gates nor in the range of 
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logic levels. Paper [8] also presents a method of genetic cod-
ing for the synthesis of combinational logic universal circuits, 
when universal AND-NOT logic gates are used instead of the 
main set of gates, i.e. AND, OR, NOT, XOR. Experimental 
results show that the considered technique gives better re-
sults, compared to the modernization of the SOP form to the 
AND-NOT expression. It should be noted that the genetic 
algorithm refers to heuristic methods that provide approxi-
mate simplification and minimization of Boolean functions. 
A genetic algorithm could provide accurate minimization 
with a large number of iterations. The problem, however, is 
the stopping of the algorithm, which is currently unsolved.

One of the tasks of the synthesis and analysis of the opera-
tion of combinational devices is the representation of Boolean 
functions in different bases. The absolute completeness of 
the use and implementation of various transformations of 
Boolean functions is impossible without the implementation 
of transformations into universal Schaeffer (AND-NOT) 
or Peirce-Webb (OR-NOT) bases. The Logic library of the 
Maple computer algebra system makes it possible to use only 
AND-NOT (Scheffer basis) and OR-NOT (Peirce-Webb 
basis) operations to build a digital device model. Therefore, 
there is a need to extend the functionality of the Maple com-
puter algebra system logic library by representing Boolean 
functions in Schaeffer and/or Peirce-Webb bases. In this 
regard, work [9] reports the development of procedures 
that allow disjunctive or conjunctive normal forms of the 
main basis to be represented in the Schaeffer basis or in the 
Peirce-Webb basis. The development was carried out tak-
ing into account the existing functions and data processing 
procedures. The paper presents the technology of expanding 
the Logic library of the Maple computer algebra system with 
developed procedures that implement the transformation 
of a given or obtained Boolean function in the Schaeffer or 
Peirce-Webb bases. It is advisable to provide the Maple com-
puter algebra system with the use of distributive laws of the 
1st and 2nd kind, which will thus form a reserve for optimal 
simplification of functions in the Schaeffer (AND-NOT) and 
Peirce-Webb (OR-NOT) bases.

In paper [10], the transition from the basic basis of arbi-
trary logical functions to the bases of Schaeffer and Peirce 
is investigated. To this end, recurrent dependences of the 
representation of disjunctive and conjunctive monomials 
in the specified bases were first established and generaliza-
tions were made to arbitrary logical formulas in the form of 
disjunctive and conjunctive normal forms of representation. 
Estimates of the number of operations for logical formulas 
during the transition to the Schaeffer and Peirce bases 
are obtained, which determines the practical value of the 
results. It is worth noting that before the transition of the 
Boolean function of the main basis to the Schaeffer and Peirce 
bases, it is possible to apply distributive laws of the 1st and  
2nd kind (factorization). This is possible both with the dis-
junctive normal form (DNF) representation and with the 
conjunctive normal form (CNF) representation of the func-
tion, which is a reserve for optimizing the number of logical 
operations and literals for the considered problems.

The algorithm for implementing the Boolean value of 
functions using only logical elements of conjunction nega-
tion (NAND) or only disjunction negation (NOR) is repor-
ted in [11]. The algorithm for converting the logical structure 
of the Boolean basis to the structure of the monobasis is per-
formed step by step. First, the Boolean function represented 
by the logic elements {AND, OR, NOT}, using de Morgan’s 

laws in various forms, is transformed so that only NAND ele-
ments or only NOR elements are used in the circuit. Next, re-
dundant inverters are removed. In the case of two inverters in 
series (inverted output going directly into the inverted input), 
both inverters are removed because they cancel each other out.  
At the last stage, the remaining inverters are replaced with 
equivalent NAND or NOR elements. It is worth noting that 
during the transition from the main basis to the Schaeffer and 
Peirce-Webb bases using the method discussed in [11], the 
number of operations for the transition would grow non-linearly. 
In turn, the number of logical elements in digital techno logy 
devices would increase linearly depending on the number of 
variables that are applied to the input of the microcircuit.

Optimization of combinational logic circuits using NAND 
elements and genetic programming is considered in paper [12]. 
Optimization of a logic circuit implementing a Boolean func-
tion can be performed according to various criteria. It can be 
optimization of the complexity of the circuit, the number of 
logic levels, the number of semiconductor devices in the cir-
cuit, etc. In [12], the authors describe an approach that uses 
genetic programming to optimize a given Boolean function 
with respect to the above criteria. Instead of a set of logical 
elements {AND, OR, NOT, XOR}, universal NAND elements 
were used, which ensured better speed and compactness of the 
circuit. Conventional methods for minimizing logical struc-
tures give simplified expressions in two standard forms: sum 
of products (SOP) or product of sums (POS). The SOP form 
can be converted to a NAND expression by a procedure, but 
the conversion does not lead to an optimal circuit, either in 
terms of the number of logic elements or the number of logic 
levels. The results of experimental studies showed that the 
method of genetic programming, which is reported in [12], 
gives better results, compared to the transformation of the 
SOP form into a NAND expression, in terms of the number of 
gates, logic levels, and semiconductor devices of the circuit. It 
is worth noting that genetic programming refers to heuristic 
methods that provide approximate simplification and minimi-
zation of Boolean functions. The genetic programming meth-
od can demonstrate exact minimization similar to the results 
of the analytical method, however, with a large number of 
iterations. The problem here is stopping the algorithm, which 
currently appears to be unsolved.

From our review of the literature [6–12], it follows that 
the task can be solved by replacing logical elements AND and 
OR with OR-NOT or AND-NOT elements. This, however, 
requires in some cases the introduction of additional inver-
ters or the distribution of logic elements. The unambiguity of 
replacing logical elements from the basis {AND, OR, NOT}  
with elements from the basis {OR-NOT, AND-NOT} is 
ensured by de Morgan transformations [7, 11]. To replace 
logical elements AND and OR on the gate AND-NOT or 
OR-NOT, in [8, 9] automation of calculations is applied. 
Another method of replacing logical AND and OR elements 
with OR-NOT or AND-NOT elements consists in using re-
current dependences of the representation of disjunctive and 
conjunctive monomials in the specified bases [10].

The methods for simplifying Boolean functions in the 
Peirce-Webb basis, discussed in [6–9, 11, 12], with the ex-
ception of [10], represent the first experience of solving prob-
lems of this type. The task is solved by replacing logical AND 
and OR elements with OR-NOT or AND-NOT elements. 
However, making the transition from the basic basis to the 
Schaeffer or Peirce-Webb basis at the level of logical ele-
ments gives a non-linear increase in the number of operations 
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for this transition. In turn, the number of logical elements in 
digital technology devices would increase linearly depending 
on the number of variables that are applied to the input of 
the microcircuit. Recurrent dependences give intermediate 
operations, which increases the complexity of the algorithm 
for replacing elements from the basis {AND, OR, NOT} with 
elements from the basis {OR-NOT, AND-NOT}.

The non-linear increase in the number of transition 
operations from the basis {AND, OR, NOT} to the basis  
{OR-NOT, AND-NOT} and the linear increase of logical ele-
ments in digital devices may affect the innovative capacity of 
the technology of simplifying the Peirce-Webb functions in 
the future, which is a problem.

Changes to the technology of simplifying Boolean func-
tions in the Peirce-Webb basis in the form of the objection 
of methods, which are considered in works [6–12], serve to 
overcome the specified problem.

To this end, it is necessary:
– to devise new rules for equivalent transformation of 

Boolean functions in the Peirce-Webb basis;
– to provide a technology for simplifying the Peirce-

Webb functions in one step;
– to carry out the minimization of Peirce-Webb functions 

on the complete truth table;
– to apply, when simplifying the Peirce-Webb functions, 

the distributive law of the 2nd kind;
– to take into account the simplification of the Peirce-

Webb functions in the Reed-M ller basis.
The non-standard system is based on the combinatorial 

properties of binary structures PNFPW-1, PNFPW-2 func-
tions in the Peirce-Webb basis and DDNF, DKNF functions of 
the main basis. These properties do not depend on the selec-
ted logical basis, which makes it possible to carry out equi-
valent transformations on the binary matrices PNFPW-1,  
PNFPW-2 according to the rules of the algebra of the main 
basis. The result of the transformation of the terms of the 
binary matrix in the end is some combinatorial system, meta-
data that can explain other data, for example, determine the 
minimum function for another logical basis.

Thus, algorithms and methods for replacing logical AND 
and OR elements with AND-NOT or OR-NOT elements, 
created software tools for them [6–12] and a non-standard 
system for simplifying Boolean functions have excellent ap-
proaches (principles). And so, they imply different prospects 
regarding the possibility of optimal simplification of Boolean 
functions in the Peirce-Webb basis.

And this is a reason to believe that the software-techno-
logical base, which is represented by algorithms and methods 
for replacing the logical elements of the basic basis AND and 
OR with elements of the universal basis OR-NOT, AND-
NOT for solving a Boolean problem [6–12], is insufficient 
for conducting theoretical studies regarding the optimal sim-
plification of the Peirce-Webb functions. This predetermines 
the need to carry out research using a non-standard system 
for simplifying Boolean functions in the Peirce-Webb basis.

In terms of application, the non-standard system of 
simplifying the Peirce-Webb functions could ensure the 
development of the innovation process and the transfer of in-
novations into material production. From decision-making, 
conducting fundamental research, expanding the capabili-
ties of digital component design technology based on uni-
versal Peirce-Webb functions, creating prototypes, testing 
them, to organizing serial or mass production of novelties 
and their implementation.

3. The aim and objectives of the study

The aim of our work is to extend a non-standard system 
for simplifying the Peirce-Webb functions, in particular the 
first perfect normal form of the function in the Peirce-Webb 
basis (PNFPW-1) and the second perfect normal form of the 
function in the Peirce-Webb basis (PNFPW-2). This could 
make it possible to expand the algebra of equivalent transfor-
mations, to increase the productivity of the simplification of 
the specified functions.

To achieve the set goal, the following tasks must be solved:
– to determine the hermeneutics of logical transforma-

tions on the binary structures of Peirce-Webb functions;
– to establish the rules for equivalent transformation of 

Peirce-Webb functions in exceptional situations;
– to expand the algebra of equivalent transformations to 

simplify Boolean functions in the Peirce-Webb basis;
– to analyze the expediency of minimizing the Peirce-

Webb functions on the complete truth table;
– to conduct a comparative analysis of the results of the 

simplification of Boolean functions by a non-standard system 
in the Peirce-Webb basis and the simplification of functions by 
a matrix algorithm, algebraic bi-decomposition, and the me-
thod of bitwise partitioning of the set of output conjunctures, in 
order to compare the cost of implementing minimal functions.

4. The study materials and methods

The object of research are models of optimal logic circuits 
based on universal Peirce-Webb functions.

It should be expected that the regular and constant appli-
cation of the visual-matrix form of the analytical method for 
simplifying Boolean functions in the Peirce-Webb basis will 
allow for the following:

– to fix digital projects at the level of abstraction, fol-
lowed by the use of the logic synthesis mechanism to gene-
rate the corresponding equivalent at the gate level;

– to form new rules for equivalent transformation of 
Boolean functions in the Peirce-Webb basis;

– to complete the procedure for simplifying the Peirce-
Webb functions in one step;

– to simplify the Peirce-Webb functions in the Reed- 
M ller basis.

The term "Binary combinatorial systems with repeated 
2-(n, b)-design, 2-(n, x/b)-design" is shortened to "combina-
torial systems 2-(n, b)-design, 2-(n, x/b)-design", "2-(n, b)-de-
sign, 2-(n, x/b)-design systems".

FAL – functions of the algebra of logic.
Any logical function in the Peirce-Webb algebra can be 

represented in the canonical form – OR-NOT/OR-NOT (OR-
NOT/OR-NOT). OR-NOT/OR-NOT form is 2-level (nor-
mal) – both inner and outer are OR-NOT functions.

The canonical form of the OR-NOT/OR-NOT logical 
function of n variables consists of Peirce-Webb terms of the 
n-th rank, combined by the OR-NOT operation.

The Peirce-Webb term of the n-th rank takes the follow-
ing generalized form [13]:

x x x x x xn n n n n n
n n n nσ σ σ σ σ σ∨ ∨ ∨ ↓ ↓ ↓− −

− −
1 1

1 1 1 1... ... , or

where

x
x

x
i

i i

i i

iσ σ
σ

=
=
=







, ,

, ,

 if 

 if 

1

0
 i n= 2 3, ,..., , < > −−σ σ σn n 1 1...  binary set. 
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Any binary set corresponds to a Peirce-Webb term 

x x xn n n
n nσ σ σ∨ ∨ ∨−

−
1

1 1...  or a Peirce-Webb function x x xn n n
n nσ σ σ↓ ↓ ↓−

−
1

1 1... 

x x xn n n
n nσ σ σ↓ ↓ ↓−

−
1

1 1...  and, conversely, a binary set (tuple) corresponds 

to a Peirce-Webb term x x xn n n
n nσ σ σ∨ ∨ ∨−

−
1

1 1...  or a Peirce-Webb 

function x x xn n n
n nσ σ σ↓ ↓ ↓−

−
1

1 1... . For example, a set <0101> cor-

responds to a Peirce-Webb term x x x x4 3 2 1∨ ∨ ∨  or a Peirce-

Webb function x x x x4 3 2 1↓ ↓ ↓ , and a set <011> corresponds 

to a Peirce-Webb term x x x3 2 1∨ ∨  or a Peirce-Webb func-

tion x x x3 2 1↓ ↓ .
Any function in the algebra of logic can be represented in 

the form of a perfect disjunctive normal form (PDNF):

f x x x x x x F x xn n i n
n

1 2 1 1 2 1 1
1 2, ,..., ... ,..., ,( ) = ∨ ⋅ ⋅ ⋅ = ∨ ( )α α α

where F x x x x xi n n
n

1 1 2
1 2,..., ...( ) = ⋅ ⋅ ⋅α α α  – characteristic function, 

i = 1,2, …, k – numbers of sets on which the function returns 1.
Any function in the algebra of logic can also be represen-

ted in the form of perfect conjunctive normal form (PCNF):

f x x x x x x F x xn n i n

n

1 2 0 1 2 0 1

1 2
, ,..., ... ,..., ,( ) = ∧ ∨ ∨ ∨( ) = ∧ ( )α α α

where F x x x x x x x xi n n n
n

n

1 1 2 1 2
1 2

1 2
,..., ... ...( ) = ⋅ ⋅ ⋅ = ∨ ∨ ∨( )α α α α α α

 (on 

the basis of de Morgan’s formula).
Thus:

f x x x F x x F x xn i n i n1 2 1 1 0 1, ,..., ,..., ,..., .( ) = ∨ ( ) = ∧ ( )

For a function of n variables, the maximum number of 
characteristic functions is 2n.

It follows from de Morgan’s formulas for a function of 
two variables that x x x x1 2 1 2↓ =  or x x x x1 2 1 2↓ = . Analogous 
expressions can be written for a function of n variables. Then:

x x x x x xn n
n

n

1 2 1 2
1 2

1 2α α α α α α
... ...= ↓ ↓ ↓  

or

F x x x x xi n n

n

1 1 2

1 2
,..., ...( ) = ↓ ↓ ↓

α α α

under condition:

i n n
n= + + +− −α α α1

1
2

2 02 2 2... .

Since F F F F F Fk k1 2 1 2∨ ∨ ∨ = ↓ ↓ ↓... ... , the 
first perfect normal form of writing the func-
tion in the Peirce-Webb basis (PNFPW-1) is 
obtained from the expression for PDNF:

f x x x F x xn i n1 2 1 1, ,..., ,..., .( ) = ↓ ( )  

Similarly, on the basis of the relation F F F F F Fk k1 2 1 2∧ ∧ ∧ = ↓ ↓ ↓... ... , 
F F F F F Fk k1 2 1 2∧ ∧ ∧ = ↓ ↓ ↓... ... , from the expression for PCNF, the second 

perfect normal form of writing functions in the Peirce-Webb 
basis (PNFPW-2) is obtained:

f x x x F x xn i n1 2 0 1, ,..., ,..., .( ) = ↓ ( )

In both forms of the Peirce-Webb basis, the functions 
Fi(x1, …, xn) are found in the same way:

F x x x x xi n n

n

1 1 2

1 2
,..., ... .( ) = ↓ ↓ ↓

α α α

Therefore, all definitions for functions in the algebra of 
logic in the {AND, OR, NOT} basis have their analogs for the 
Peirce-Webb basis {OR-NOT} (Table 2). Replacing the basis 
{AND, OR, NOT} with the basis {OR-NOT} is possible on 
the basis of de Morgan’s formulas:

x x x x1 2 1 2⋅ = + ;

x x x x1 2 1 2+ = ⋅ .

The rules of transition from the tabular form of the func-
tion to, for example, PNFPW-2 are as follows:

1. Select all sets of variables on which the function re-
turns 0 in the truth table.

2. For each set of variables for which the function re-
turns 0, write expressions of the type x x x

n

n

1 2
1 2α α α↓ ↓ ↓... .  

If the argument xi is included in the given set of variables  
as 0, then xi is written without changes, if the argument xi is 
included in the given set of variables as 1, then xi is written 
with a negation sign xi( ).

3. All obtained expressions of the characteristic functions 
Fi(x1, …, xn) are combined by the k-binary Peirce-Webb ope-
ration, where k is the number of sets of variables in the truth 
table on which the function returns a zero value.

Let us represent the PNFPW-1 and PNFPW-2 functions 
for the Boolean function f(x1, x2, x3) (Table 3).

PNFPW-1:

f x x x

x x x x x x x x x

1 2 3

1 2 3 1 2 3 1 2 3

, ,

.

( ) =

= ↓ ↓( ) ↓ ↓ ↓( ) ↓ ↓ ↓( )
PNFPW-2:

Table	2
Thesauri	of	logical	bases

No. of entry {AND, OR, NOT} basis thesaurus {OR-NOT} basis thesaurus

1 Implicant Inversant

2 A simple implicant A simple inversant

3 Perfect disjunctive normal form (PDNF) Peirce–Webb-1 perfect normal form (PNFPW-1)

4 Perfect conjunctive normal form (PCNF) Peirce–Webb-2 perfect normal form (PNFPW-2)

5 Minimal disjunctive normal form (MDNF) Pierce–Webb-1 minimal normal form (MNFPW-1)

6 Minimal conjunctive normal form (MCNF) Pierce–Webb-2 minimal normal form (MNFPW-2)

f x x x

x x x x x x x x x x x x x x

1 2 3

1 2 3 1 2 3 1 2 3 1 2 3 1 2

, ,( ) =

= + +( ) + +( ) + +( ) + +( ) + ++( ) =

= + +( ) + + +( ) + + +( ) + + +( ) + + +

x

x x x x x x x x x x x x x x

3

1 2 3 1 2 3 1 2 3 1 2 3 1 2 xx

x x x x x x x x x x x x x x x

3

1 2 3 1 2 3 1 2 3 1 2 3 1 2

( ) =

= ↓ ↓( ) ↓ ↓ ↓( ) ↓ ↓ ↓( ) ↓ ↓ ↓( ) ↓ ↓ ↓ 33( ) =
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Table	3
Truth	table	of	logical	function	f(x1,	x2,	x3)

x1 x2 x3 f(x1, x2, x3) x1 x2 x3 f(x1, x2, x3)

0 0 0 0 1 0 0 0

0 0 1 0 1 0 1 0

0 1 0 0 1 1 0 1

0 1 1 1 1 1 1 1

The Peirce-Webb function is given by the expres-
sion x x x x x x1 2 1 2 1 2↓ = + = . The Peirce-Webb algebra has 
axioms (Table 4), which are verified using truth tables.

Table	4

Axioms	of	Peirce-Webb	algebra	and	transformation	formulas

No. of entry
Logical NOR, 
2-OR-NOT

No. of entry
Logical NOR, 
2-OR-NOT

1 x x x↓ = 6 x x↓ =0

2 x x↓ = 0 7 x x x x1 2 1 2↓ = /

3 x ↓ =1 0 8 x x x x1 2 1 2↓ = /

4 x x↓ =0 9 x x x x1 2 1 2/ = ↓

5 x x↓ =0 10 x x x x1 2 1 2/ = ↓

Based on the axioms (Table 4), it follows that only the 
commutative law is valid for the logical NOR function:

x x x x1 2 2 1↓ = ↓ .

By analogy with dyadic functions, n-digit Peirce-Webb 
functions (Wn) are also considered (Table 5):

W x x x xn n= ↓ ↓ ↓ ↓1 2 3 ... .

Table	5

Truth	table	of	the	n-digit	Peirce-Webb	function	(Wn)

x1 x2 x3 . . . xn–1 xn Wn

0 0 0 – – – 0 0 1

0 0 0 – – – 0 1 0

0 0 0 – – – 1 0 0

– – – – – – – – –

– – – – – – – – –

1 1 1 – – – 0 0 0

1 1 1 – – – 1 0 0

1 1 1 – – – 1 1 0

When n = 2, from Table 5 we get a dyadic Peirce-Webb 
function, and at n = 1 the Peirce-Webb function degenerates 
into a negation function. Therefore, the expression x x↓  can 
be represented as x :

x x x x x= + = ↓ .

Any dyadic logical operation can be represented using a 
logical NOR, for example:

x x x↓ ≡ −  denial;

x x x x x x x x1 1 2 2 1 2 1 2↓( ) ↓ ↓( ) ≡ ↓ ≡ −  conjunction; 

x x x x x x x x1 2 1 2 1 2 1 2↓( ) ↓ ↓( ) ≡ ↓ ≡ + −  disjunction;

x x x x x x x x1 1 2 1 1 2 1 2↓( ) ↓( ) ↓ ↓( ) ↓( ) ≡ → −  implication.

In this way, logical NOR operation can be used by itself, 
without any other logical functions, as part of a logical for-
mal system (making this function functionally complete).

For electronics, this means that the implementation of all the 
variety of signal conversion schemes that represent logic values 
involves one universal element called the "2-OR-NOT opera-
tion" (2-in NOR). On the other hand, this approach increases 
the complexity of schemes implementing logical expressions. 
This reduces their reliability, and also increases signal transit 
time, as well as reduces the performance of the digital device.

The following relations are valid for n-digit Peirce-Webb 
functions [14]:

x x x x x↓ ↓ ↓ ↓ =... ;

x x x x x↓ ↓ ↓ ↓ ↓ ↓ =... ... ;0

x xl1 1 1 0↓ ↓ ↓ ↓ ↓ =... ... ;

x x x xl l1 10 0↓ ↓ ↓ ↓ ↓ = ↓ ↓... ... ... ;

x x x x x x x x xn n n1 2 1 2 1 2↓ ↓ ↓ = ∨ ∨ ∨ =... ... ... .

At the end, relations are presented that demonstrate the 
connection between the n-digit Peirce-Webb and Schaef-
fer functions, which are analogs of de Morgan’s formulas:

x x xn x x xn

x x xn x x xn

1 2 1 2

1 2 1 2

/ / ... / ... ;

... / / ... / .

= ↓ ↓ ↓

↓ ↓ ↓ =







The validity of all the above ratios can be established 
using FAL truth tables.

5. Results of the simplification of Peirce-Webb functions 
by a non-standard system

5. 1. Extension of the hermeneutics of logical opera-
tions to binary structures of Peirce-Webb functions

In order to represent the perfect normal form of the 
n-digit Peirce-Webb function as a binary equivalent, the 
rules of chapter 4 must be followed. To this end, variables 
with inversion xn are replaced by 1n, and variables without 
inversion xn are replaced by 0n, where n is a numerical index 
that determines the bitness of the symbol-variable "1" or "0" 
in terms of the Peirce-Webb function. Following the specified 
procedure with the values of the variables belonging to the 
perfect normal form of the function of the basic basis, for ex-
ample, the conjunctive normal form (PCNF) of the function:

f x x x x x x x x x1 2 3 1 2 3 1 2 3, ,( ) = + +( ) + +( )
it is possible to obtain the binary equivalent of the perfect 
normal form of the Peirce-Webb function (PNFPW-2):

F = ↓ ↓( ) ↓ ↓ ↓( )1 1 1 1 1 01 2 3 1 2 3 ,

or the matrix:

F =
1 1 1

1 1 0
. (1)
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Matrix (1) is an instance of the class of binary matrices of 
Peirce-Webb functions. The algebraic analog of the binary rep-
resentation of the Peirce-Webb function (1) is the expression:

F x x x x x x= ↓ ↓( ) ↓ ↓ ↓( )1 2 3 1 2 3 .

The hermeneutics of logical operations for matrix (1) is 
that the matrix (1) gives the terms of the second perfect nor-
mal form of the function in the Peirce-Webb basis (PNFPW-2) 
and the "Logical NOR" operation for them. A similar her-
meneutic is possible for the terms of the first perfect normal 
form of the function in the Peirce-Webb basis (PNFPW-1). 
The specified hermeneutics should be used when deriving the 
results of equivalent transformations in the class of binary 
matrices of Peirce-Webb functions.

Example 1. For the function f(x1, x2, x3) (Table 6), find 
PNFPW-1, MNFPV-1, PNFPW-2, MNFPV-2.

Table	6
Truth	table	of	function	f(x1,	x2,	x3)

x1 x2 x3 f(x1, x2, x3) x1 x2 x3 f(x1, x2, x3)

0 0 0 0 1 0 0 0

0 0 1 1 1 0 1 0

0 1 0 0 1 1 0 1

0 1 1 1 1 1 1 1

Solution.
PNFPW-1 of the function f(x1, x2, x3) (Table 6) takes the 

following form:

F x x x x x x

x x x x x x

DNFPW− = ↓ ↓( ) ↓ ↓ ↓( ) ↓

↓ ↓ ↓( ) ↓ ↓ ↓( )
1 1 2 3 1 2 3

1 2 3 1 2 3 .

The MNFPV-1 derivation of the function f(x1, x2, x3) 
(Table 6) has an illustration of mapping:

F

x x x x

MNFPW− =

= = = ↓( ) ↓ ↓( )

1

1 3 1 2

1 1 0

1 0 0

0 0 1

0 0 0

1 0

0 0
. (2)

Note. The first matrix of expression (2) reflects the 
structure of the PNFPW-1 function f(x1, x2, x3) (Table 6). 
It is important to note that the combinatorial properties of 
binary structures PNFPW-1, PNFPW-2 functions in the 
Peirce-Webb basis and PDNF, PCNF functions of the main 
basis do not depend on the selected logical basis (Boolean 
basis or Peirce-Webb basis). This makes it possible to carry 
out equivalent transformations in the first matrix of expres-
sion (2) according to the rules of the algebra of the main basis.

PNFPW-2 of the function f(x1, x2, x3) (Table 6) takes the 
following form:

f x x x x x x x x x

x x x x x x

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3

, ,

.

( ) = ↓ ↓( ) ↓ ↓ ↓( ) ↓

↓ ↓ ↓( ) ↓ ↓ ↓( )
The MNFPW-2 derivation of the function f(x1, x2, x3) 

(Table 6) has an illustration of mapping:

F

x x x x x x x x

MNFPW2

1 3 1 2 1 3 1 2

1 1 1
1 0 1
0 1 1
0 1 0

1 1
0 1

= = =

= ↓( ) ↓( ) = ↓( ) ↓ ↓( )
or

F x x x xMNFPW2 1 3 1 2

1 1 1
1 0 1
0 1 1
0 1 0

1 1
0 1

= = = ↓( ) ↓ ↓( ). (3)

The first matrix of expression (3) reflects the PNFPW-2 
structure of the function f(x1, x2, x3) (Table 6). It is impor-
tant to note that equivalent transformations in the first ma-
trix of expression (3) are carried out according to the rules of 
the logic algebra of the main basis. In particular, the gluing of 
variables was carried out according to rule (18).

5. 2. Exceptional situations during the simplification of 
Peirce-Webb functions

The first exceptional situation. If the simplified Peirce-Webb 
function has term(s) which, among the other n-digit terms 
present, consists of a single literal (that is, the term has maxi-
mum rank), then the literal representing the term is inverted.

In the Peirce-Webb basis, one literal is given in the form:

x x x↓ =  or x x x↓ = . (4)

Expression (4) represents the negation operation imple-
mented by logic elements as in Fig. 3.

 

11 1x1x
1x

1x

Fig.	3.	Logic	elements	for	the	negation	operation		
and	one	literal	in	the	Peirce-Webb	basis

Example 2. Obtain MNFPW-1 for the Boolean function 
f(x1, x2, x3, x4) given in the canonical form:

f x x x x1 2 3 4 2 3 4 5 6 7 12 13 14 15, , , , , , , , , , , , .( ) = ( )Σ  (5)

Solution.
Simplification of function (5) is carried out in the Peirce-

Webb basis. To this end, the values of the function variables 
are written to the visual matrix form according to the rules 
of chapter 4:

F

x x x x
MDFPW1

No.

=

=

1 2 3 4

2 1 1 0 1
3 1 1 0 0
4
5
6 1 0
7 1 0

12
1

1 0 1 1
1 0 1 0

0 1
0 0

0 0 1 1
33

14
15

1 0

0 0 1 0
0 0 0 1
0 0 0 0

0

1 2 3 4

1 3 2= = ↓( ) ↓
x x x x

x x x . (6)
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In the first matrix of expression (6), the following actions 
are performed: to blocks 4, 5, 6, 7, 12, 13, 14, 15, which con-
tain the complete combinatorial system 2-(3, 8)-design and 
to blocks 2, 3, 6, 7, which contain a complete combinatorial 
system of 2-(2, 4)-design, super-gluing operations of vari-
ables are applied [15].

The sixth "1001" and the seventh "1000" sets of variables 
are common to the two systems – Σm(4, 5, 6, 7, 12, 13, 14, 15)  
and Σm(2, 3, 6, 7) and two operations of super gluing of vari-
ables, the localization of which is determined by combinato-
rial systems 2-(3, 8)-design and 2-(2, 4)-design [16, 17].

The first exception is applied to the variable x2. As a re-
sult, the minimum normal form of the Boolean function in the 
Peirce-Webb basis (MNFPW-1) was obtained in one step:

F x x xMNFPW− = ↓( ) ↓1 1 3 2.

Example 3. Simplify the Boolean function specified in 
PNFPW-1.

F

x x x x x x

x x x x x x

x

DNFPW1

1 2 3 1 2 3

1 2 3 1 2 3

1

=

= ↓ ↓( ) ↓ ↓ ↓( ) ↓

↓ ↓ ↓( ) ↓ ↓ ↓( ) ↓

↓ ↓↓ ↓( ) ↓ ↓ ↓( )x x x x x2 3 1 2 3 .

Solution:

F

x x x

x x x

x x

MNFPW

No.

− =

= = =

= ↓

1

1 2 3

1 2 3

2

7

6 1

4 0 1 1

3

2 1

0 1 1 1

1

0

1

0 0

0 0

0 0

1 0

0

33 2 3= ↓x x .  (7)

In the first matrix of expression (7), the following actions 
are performed: the operation of super-gluing the variables is 
applied to blocks 0, 2, 4, 6 and to blocks 2, 3, 6, 7, each of which 
contains a complete combinatorial system 2-(2, 4)-design [15].

The second "101" and the sixth "001" sets of variables are 
common to two systems – Σm(0, 2, 4, 6) and Σm(2, 3, 6, 7)  
and two operations of super-gluing the variables, the localiza-
tion of which is determined by combinatorial 2-(2, 4)-design 
systems [16, 17].

The first exception is applied to the variables x2 and x3. 
As a result, the minimum normal form of the Peirce-Webb 
function (MNFPW-1) was obtained in one step:

F x xMNFPW− = ↓1 2 3. (8)

The second exceptional situation. If the result of the sim-
plification of the Peirce-Webb function is only one Peirce-
Webb term containing several literals, then a general inver-
sion over all literals is taken (Fig. 4).

 

1

1x

2x

nx

1 2 ... nx x x↓ ↓ ↓

Fig.	4.	Logic	element	n-OR-NOT	in	the	Peirce-Webb	basis

Example 4. Simplify the Boolean function defined in 
PNFPW-1. 

F x x x x x xDNFPW1 1 2 3 1 2 3= ↓ ↓( ) ↓ ↓ ↓( ). 

Solution:

F x x x xMNFPW− = = = ↓ = ↓1 1 2 1 2

0 0 0

0 0 1
0 0 . (9)

To derive the result of (9), the second exceptional situa-
tion is taken into account.

Example 5. For the function from example 2, simplify 
PNFPW-2.

F x x x x x xDNFPW− = ↓ ↓( ) ↓ ↓ ↓( )2 1 2 3 1 2 3 .

Solution:

F

x x x
x x x

x x

MNFPW− =

= = = ↓

2

1 2 3
1 2 3

2 31 1 0

0 1 0
1 0

. (10)

To derive the result of (10), the second exceptional 
situation is taken into account. It should be noted that  
FMNFPW-1 (8) and FMNFPW-2 (10) coincide.

Example 6. Simplify PNFPW-2 for the Boolean function 
f(x1, x2, x3, x4) given by the truth table (Table 7):

Table	7
Truth	table	of	function	f(x1,	x2,	x3,	x4)

No. of entry x1 x2 x3 x4 f(x1, x2, x3, x4)

2 0 0 1 0 0

6 0 1 1 0 0

7 0 1 1 1 0

9 1 0 0 1 0

11 1 0 1 1 0

Solution.
The "logical NOR" function does not obey the law of 

associativity. This must be taken into account when moving 
from n-digit operations to dyadic operations. Such a transi-
tion can be made using the following ratios:

x x x x x x

x x x x x x

1 2 3 1 2 3

1 2 3 1 2 3

↓ ↓ = ↓ ↓ =

= ↓ ↓ ≠ ↓( ) ↓ ,

x x x x x x x x1 2 3 4 1 2 3 4↓ ↓ ↓ = ↓ ↓ ↓ ,

the validity of which is checked by a truth table.
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Simplification of the function f(x1, x2, x3, x4) (Table 7) is 
carried out in the Peirce-Webb basis. To this end, the values 
of the function variables are written to the visual matrix form 
according to the rules from chapter 4:

F

x x x

MNFPW− =

= = =

= ↓ ↓( )

2

1 3 4

2 1 1 0 1

6 0

7

9

11

1 0 11 0 1

1 0 0 0

0 1 1 0

0 1 0 0

1 0 0

0 1 0

↓↓ ↓ ↓( ) ↓ ↓ ↓( ) =

= ↓ ↓( ) ↓ ↓ ↓( ) ↓ ↓ ↓( ) =

x x x x x x

x x x x x x x x x

1 2 3 1 2 4

1 3 4 1 2 3 1 2 4

== ↓ ↓( ) ↓ ↓ ↓( ) ↓ ↓ ↓( )x x x x x x x x x1 3 4 1 2 3 1 2 4 .  (11)

MNFPW-2 function (11) consists of dyadic operations 
"logical NOR" and takes the following form:

F

x x x x x x x x x

MNFPW− =

= ↓ ↓( ) ↓ ↓ ↓( ) ↓ ↓ ↓( )
2

1 3 4 1 2 3 1 2 4 . (12)

Verification of MNFPW-2 (12) is carried out in the main 
basis given in Table 8.

Table 8 demonstrates that MNFPW-2 x x x x x x x x x1 3 4 1 2 3 1 2 4↓ ↓( ) ↓ ↓ ↓( ) ↓ ↓ ↓( ) 

x x x x x x x x x1 3 4 1 2 3 1 2 4↓ ↓( ) ↓ ↓ ↓( ) ↓ ↓ ↓( ) satisfies the terms of the ini-

tial function of the main basis (Table 7).
The third exceptional situation. If the result of simplifying 

the function is only one term, and one that contains only one 
literal, then the MNFPW takes the following from:

f x xn nMNFPW = = .

That is, in the third exceptional situation, the result of the 
simplification of the Peirce-Webb function does not change.

In the Peirce-Webb basis, a literal with a double inversion 
corresponds to a logic element in Fig. 5.

Rules (14), (20), (28) serve as an example of the simplifi-
cation of the Peirce-Webb functions for the occurrence of the 
third exceptional situation.

 

11 1 11x 1x 1x 1x

Fig.	5.	Logic	elements	for	a	literal	with	a	double	inversion		
in	the	Peirce-Webb	basis

5. 3. Equivalent transformations in the Peirce-Webb basis
During the simplification of Boolean functions in the 

Peirce-Webb basis by a non-standard system, the following 
rules of logic algebra are possible.

Gluing the variable dyadic PNFPW-1 terms:

x x x x x1 2 1 2 2↓( ) ↓ ↓( ) = .  (13)

Proof (13):

x x x x x x x x

x x x x x x x x

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

↓( ) ↓ ↓( ) = ⋅( ) ↓ ⋅( ) =

( )( ) = +( ) +( )) = =x x2 2.

Equivalent transformations for the rule of gluing the variable 
dyadic PNFPW-1 terms (13) have an illustration of mapping:

1 1

0 1
1 2= = x . (14)

To derive the result in (14), the third exceptional situa-
tion is taken into account.

Gluing the variable 3-digit PNFPW-1 terms:

x x x x x x x x1 2 3 1 2 3 1 2↓ ↓( ) ↓ ↓ ↓( ) = ↓ . (15)

Proof of expression (15):

x x x x x x

x x x x x x x x x x x x

1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2 3

↓ ↓( ) ↓ ↓ ↓( ) =

= ( ) ↓ ( ) = ( )( ) =

== + +( ) + +( ) =

= + =

= ↓ =

= ↓

x x x x x x

x x

x x

x x

1 2 3 1 2 3

1 2

1 2

1 2.

Equivalent transformations for  
the rule of gluing the variable 3-di-
git PNFPW-1 terms (15) in the 
Peirce-Webb basis have an illustra-
tion of mapping:

1 1 1

1 1 0

1 1

1 1

1 1 1 2

=

= =

= = ↓x x . (16)

To derive results in (15) and 
(16), the second exceptional situa-
tion is taken into account.

Table	8

Verification	of	MNFPW-2	–	 x x x x x x x x x1 3 4 1 2 3 1 2 4↓ ↓( ) ↓ ↓ ↓( ) ↓ ↓ ↓( )
No. x1 x2 x3 x4 FDNFPW-2 x x x x x x x x x1 3 4 1 2 3 1 2 4↓ ↓( ) ↓ ↓ ↓( ) ↓ ↓ ↓( ) FMNFPW-2

2 0 0 1 0 0 0 1 0 0 0 1 0 0 01 3 4 1 2 3 1 2 4↓ ↓( ) ↓ ↓ ↓( ) ↓ ↓ ↓( ) 0

6 0 1 1 0 0 0 1 0 0 1 1 0 1 01 3 4 1 2 3 1 2 4↓ ↓( ) ↓ ↓ ↓( ) ↓ ↓ ↓( ) 0

7 0 1 1 1 0 0 1 1 0 1 1 0 1 11 3 4 1 2 3 1 2 4↓ ↓( ) ↓ ↓ ↓( ) ↓ ↓ ↓( ) 0

9 1 0 0 1 0 1 0 1 1 0 0 1 0 11 3 4 1 2 3 1 2 4↓ ↓( ) ↓ ↓ ↓( ) ↓ ↓ ↓( ) 0

11 1 0 1 1 0 1 1 1 1 0 1 1 0 11 3 4 1 2 3 1 2 4↓ ↓( ) ↓ ↓ ↓( ) ↓ ↓ ↓( ) 0
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Gluing the variable 3-digit PNFPW-2 terms.
Recall that to obtain PNFPW-2 in each Peirce-Webb term, 

the variables on which it depends are combined by the "logical 
NOR" operation. If the variable takes a zero value in the main 
basis, then for the Peirce-Webb term it is taken in the direct 
code, otherwise – in the inverse code (rules from chapter 4).

PNFPW-2 3-digit terms:

x x x x x x1 2 3 1 2 3↓ ↓( ) ↓ ↓ ↓( ), (17)

correspond to PNFPW-2 binary sets:

1 1 1 1 1 01 2 3 1 2 3↓ ↓( ) ↓ ↓ ↓( ), 

or PNFPW-2 matrix:

1 1 1

1 1 0
. 

The operation of gluing the variable 3-digit PNFPW-2 
terms in the Peirce-Webb basis takes the following form:

1 1 1

1 1 0
1 1 1 2 1 2= = + + ↓x x x x . (18)

To derive the result in (18), the second exceptional situa-
tion is taken into account.

Verification of the result (18) is carried out in the main 
basis (Table 9).

Table	9
Verification	of	the	result	–	x x1 2↓

х1 х2 х3 PNFPW-2 x x1 2↓ Verification 

0 0 0 0 0 01 2↓ 0

0 0 1 0 0 01 2↓ 0

Table 9 demonstrates that the result of gluing the vari-
ables x x1 2↓  satisfies the given terms PNFPW-2 (17).

The logical operation of super-gluing the variables.
The combinatorial properties of binary structures PNFPW-1  

or PNFPW-2 and PDNF of the Boolean function of the ba-
sic basis do not change depending on the logical basis. This 
makes it possible to implement the logical operation of su-
per-gluing the variables in the Peirce-Webb basis. For 3-digit 
PNFPW-1 terms, the operation of super-gluing the variables 
may take the following form, for example:

x x x x x x

x x x x x x x

1 2 3 1 2 3

1 2 3 1 2 3 2

↓ ↓( ) ↓ ↓ ↓( ) ↓

↓ ↓ ↓( ) ↓ ↓ ↓( ) = . (19)

Proof:

The operation of super-gluing the variables for 3-digit 
PNFPW-1 terms (19) in the Peirce-Webb basis has an illus-
tration of mapping:

1 1 1

0 1 1

1 1 0

0 1 0

2= x . (20)

To derive the result in (20), the third exceptional situa-
tion is taken into account.

For 4-digit PNFPW-1 terms, the operation of super-glu-
ing the variables may take the following form, for example:

x x x x x x x x

x x x x x x x x x

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

↓ ↓ ↓( ) ↓ ↓ ↓ ↓( ) ↓

↓ ↓ ↓ ↓( ) ↓ ↓ ↓ ↓( ) = 11 3↓ x . (21)

Proof:

x x x x x x x x

x x x x x x x x

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

↓ ↓ ↓( ) ↓ ↓ ↓ ↓( ) ↓

↓ ↓ ↓ ↓( ) ↓ ↓ ↓ ↓( ) =

= xx x x x x x x x

x x x x x x x x

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

⋅ ⋅ ⋅( ) ↓ ⋅ ⋅ ⋅( ) ↓

↓ ⋅ ⋅ ⋅( ) ↓ ⋅ ⋅ ⋅( ) =

== ⋅ ⋅ ⋅( )⋅ ⋅ ⋅ ⋅( )×

× ⋅ ⋅ ⋅( )⋅ ⋅ ⋅ ⋅( )
x x x x x x x x

x x x x x x x x

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 ==

= + + +( ) + + +( ) ×

× + + +( ) + + +( ) =

x x x x x x x x

x x x x x x x x

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

==
+ + + + + + + +

+ + + +

x x x x x x x x x x x x x x x x

x x x x x x

1 1 1 2 1 3 1 4 1 2 2 2 2 3 2 4

1 3 2 3 3 3 xx x x x x x x x x x

x x x x x x x x x x

3 4 1 4 2 4 3 4 4 4

1 1 1 2 1 3 1 4 1 2

+ + + +









 ×

×
+ + + + + xx x x x x x

x x x x x x x x x x x x x x x x

2 2 2 3 2 4

1 3 2 3 3 3 3 4 1 4 2 4 3 4 4 4

+ + +

+ + + + + + + +









 =

= + +( ) + +( ) =

= +( ) = = ↓ = ↓

x x x x x x

x x x x x x x x

1 2 3 1 2 3

1 3 1 3 1 3 1 3.

The operation of super-gluing the variables for 4-digit 
PNFPW-1 terms (21) in the Peirce-Webb basis has an illus-
tration of mapping:

1 1 0 1

1 1 0 0

1 0 0 1

1 0 0 0

1 3= ↓x x . (22)

To derive the result in (22), the 
second exceptional situation is taken 
into account.

Incomplete super-gluing of va-
riables.

The combinatorial properties of 
the incomplete combinatorial sys-
tem with the repeated 2-(n, x/b)-de-
sign in the main basis [15] provide 

x x x x x x x x x x x x

x x x x

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1

↓ ↓( ) ↓ ↓ ↓( ) ↓ ↓ ↓( ) ↓ ↓ ↓( ) =

= ⋅ ⋅( ) ↓ ⋅⋅ ⋅( ) ↓ ⋅ ⋅( ) ↓ ⋅ ⋅( ) =

= ⋅ ⋅( )⋅ ⋅ ⋅( )⋅ ⋅

x x x x x x x x

x x x x x x x

2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 xx x x x x

x x x x x x x x x x x x

2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2

⋅( )⋅ ⋅ ⋅( ) =

= + +( ) + +( ) + +( ) + + 33

1 1 1 2 1 3 1 2 2 2 2 3 1 3 2 3 3 3

1 1

( ) =

= + + + + + + + +( ) ×

×

x x x x x x x x x x x x x x x x x x

x x ++ + + + + + + +( ) =

= + +

x x x x x x x x x x x x x x x x

x x x x x x

1 2 1 3 1 2 2 2 2 3 1 3 2 3 3 3

1 2 1 3 1 22 2 2 3 1 3 2 3 3

1 2 1 3 1 2 2 2 3 1 3 2

+ + + + +( ) ×

× + + + + + +

x x x x x x x x

x x x x x x x x x x x x x33 3 2 3 2 3 2 2 2+( ) = +( ) +( ) = = =x x x x x x x x .
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the rule of incomplete super-gluing of variables in the Peirce-
Webb basis.

For dyadic PNFPW-1 terms, the rule of incomplete super- 
gluing of variables may take the following form, for example:

x x x x x x x x1 2 1 2 1 2 1 2↓( ) ↓ ↓( ) ↓ ↓( ) = ↓ .  (23)

Proof:

x x x x x x

x x x x x x

x x x x x x

x

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

↓( ) ↓ ↓( ) ↓ ↓( ) =

= ↓ ↓ =

= ⋅ ⋅ =

= 11 2 1 2 1 2

1 2 1 2

+( ) +( ) +( ) =

= = ↓

x x x x x

x x x x .

The operation of incomplete super-gluing of variables for 
dyadic PNFPW-1 terms (23) in the Peirce-Webb basis has 
an illustration of mapping:

  

0 0

1 0

0 1
0

0
1 2 1 2 1 2= = + = = ↓x x x x x x . (24)

The first matrix of expression (24) represents the un-
balanced combinatorial system of 2-(2, 3/4)-design [14].  
To derive the result in (24), the second exceptional situation 
is taken into account.

The operation of incomplete super-gluing of variables for 
3-digit PNFPW-1 terms in the Peirce-Webb basis may take 
the following form, for example:

  

No. x x x

x x x

x x x

1 2 3

1 2 3

1 2 3

0 0

1

2 0

3

4 0

5

6 1 1 0

0

0

0 1

0 1

0 1 1

0

0

0

1 0

1 0 1

0
= = + + ==

= = ↓ ↓ = ↓ ↓( )x x x x x x x x x1 2 3 1 2 3 1 2 3 .  (25)

In the first matrix of expression (25), the following ac-
tions are performed: to blocks 0, 1, 2, 3; 0,1,4,5 and to blocks 
0, 2, 4, 6, each of which contains a complete combinatorial 
system of 2-(2, 4)-design, the operation of super-gluing the 
variables is applied.

Blocks of variables "000", "001", "010", "100" are com-
mon to three systems – Σm(0, 1, 2, 3), Σm(0, 1, 4, 5) and  
Σm(0, 2, 4, 6) and three operations of super-gluing the vari-
ables, the localization of which is determined by combinato-
rial 2-(2, 4)-design systems [16, 17].

The first matrix of expression (25) represents a 2-(3, 7/8)- 
design combinatorial system [15]. To derive the result in (25), 
the second exceptional situation is taken into account.

Generalized gluing of variables is carried out using the 
transformation:

x x x x x x x x x x1 2 1 3 2 3 1 3 2 3↓( ) ↓ ↓( ) ↓ ↓( ) = ↓( ) ↓ ↓( ). (26)

Proof:

x x x x x x

x x x x x x

x x x x x x

x

1 2 1 3 2 3

1 2 1 3 2 3

1 2 1 3 2 3

↓( ) ↓ ↓( ) ↓ ↓( ) =

= ↓ ↓ =

= ⋅ ⋅ =

= 11 2 1 3 2 3

1 2 1 3 2 3

1 2 1 3

+( ) +( ) +( ) =

= +( ) + +( ) + +( ) =

= + +

x x x x x

x x x x x x

x x x x xx x

x x x x x x x x x x

x x x x

x x x x

x

2 3

1 2 3 1 2 3 1 3 2 3

1 3 2 3

1 3 2 3

1

=

= + + + =

= + =

= ↓ + ↓ =

= ↓↓ ↓ ↓x x x3 2 3.

Equivalent transformations for the rule of generalized 
gluing of variables (26) in the Peirce-Webb basis have an 
illustration of mapping:

0 0

0 0

0 1

0 0

0 1

1 3 2 3 1 3 2 3

= =

= + = ↓( ) ↓ ↓( )x x x x x x x x .

Another variant of the operation of generalized gluing of 
variables for PNFPW-1:

x x x x

x x x x x x

1 3 2 3

1 2 1 3 2 3

↓( ) ↓ ↓( ) =

= ↓( ) ↓ ↓( ) ↓ ↓( ).

0 0

0 1

0 0

0 0

0 1

1 2 1 3 2 3

= =

= ↓( ) ↓ ↓( ) ↓ ↓( )x x x x x x .

The logical operation of absorbing the variables is redu-
ced to transformations:

1. x x x x1 1 2 1↓ ↓( ) = . (27)

Proof:

x x x x x x

x x x x x x x

1 1 2 1 1 2

1 1 2 1 1 2 1

↓ ↓( ) = ↓ =

= = +( ) = .

The left-hand side of expression (27) represents the 
Peirce-Webb function having one term with one variable. 
According to the first exceptional situation, when entering 
such a function into the matrix, the variable representing the 
term must be inverted:

x x x x1 1 2 1

0

0 1
0↓ ↓( ) = = = . (28)

During the derivation of the result in (28), the third ex-
ceptional situation is applied:
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2. x x x x1 1 2 1↓ ↓( ) = .

Proof:

x x x x x x x x x x x x x1 1 2 1 1 2 1 1 2 1 1 2 1↓ ↓( ) = ↓ ⋅ = ⋅( ) = +( ) = .

3. x x x x x x x1 2 1 2 3 1 2↓( ) ↓ ↓ ↓( ) = ↓ .

Proof:

x x x x x x x x x x

x x x x x x x

1 2 1 2 3 1 2 1 2 3

1 2 1 2 3 1 2

↓( ) ↓ ↓ ↓( ) = ↓ =

= ⋅( )⋅ ⋅ ⋅( ) = +( )⋅⋅ + +( ) =

= + = ↓

x x x

x x x x

1 2 3

1 2 1 2.

1 1

1 1 1
1 1 1 2= = ↓x x . (29)

In the derivation of the result in (29), the second excep-
tional situation is applied:

4. x x x x x x x x1 2 1 2 3 4 1 2↓( ) ↓ ↓ ↓ ↓( ) = ↓ . 

Proof:

x x x x x x

x x x x x x

x x x x x

1 2 1 2 3 4

1 2 1 2 3 4

1 2 1 2 3

↓( ) ↓ ↓ ↓ ↓( ) =

= ⋅ ↓ ⋅ ⋅ ⋅ =

= ⋅( )⋅ ⋅ ⋅ ⋅⋅( ) =

= +( )⋅ + + +( ) =

= + = ↓

x

x x x x x x

x x x x

4

1 2 1 2 3 4

1 2 1 2.

1 1

1 1 1 1
1 1 1 2= = ↓x x . (30)

In the derivation of the result in (30), the second excep-
tional situation is applied.

The logical operation of semi-gluing the variables is re-
duced to the following transformations:

x x x x x x x x1 2 1 2 3 2 1 3↓( ) ↓ ↓ ↓( ) = ↓ ↓( ), (31)

Proof of rule (31) for PNFPW-2:

x x x x x x x x x x

x x x x x x x

1 2 1 2 3 1 2 1 2 3

1 2 1 2 3 1

↓( ) ↓ ↓ ↓( ) = ⋅ ↓ ⋅ ⋅ =

= ⋅( )⋅ ⋅ ⋅( ) = + 22 1 2 3

1 1 1 2 1 3 1 2 2 2 2 3

2 1 3 2

( ) + +( ) =

= + + + + + =

= + = +

x x x

x x x x x x x x x x x x

x x x x xx x

x x x

1 3

2 1 3

↓ =

= ↓ ↓( ).
The rule of semi-gluing the variables (31) has an illustra-

tion of mapping:

0 1

1 1 1

0 1

1 1

1 2 2 3 1 2 1 3 2 2 2 3

2 1 3 2

= =

= +( ) +( ) = + + + =

= + =

x x x x x x x x x x x x

x x x x ++ ↓ =

= ↓ ↓( )
x x

x x x

1 3

2 1 3 .  (32)

During the derivation of the result in (32), the first ex-
ceptional situation is applied.

Proof of the rule:

x x x x x1 1 2 1 2↓ ↓( ) = ↓ . (33)

for PNFPW-2, the following transformations were carried out:

x x x x x x x x x

x x x x x x x

1 1 2 1 1 2 1 1 2

1 1 2 1 2 1 2

↓ ↓( ) = ↓ ⋅ = ⋅ ⋅( ) =

= +( ) = = ↓ .

Rule (33) has a mapping illustration:

x x x x x1 1 2 1 2

0

1 1

0

1
↓ ↓( ) = = = ↓ . (34)

When deriving the result in (34), the first exceptional 
situation is applied.

Example 7. Use a non-standard system to simplify the func-
tion f(x1, x2, x3, x4) in the Peirce-Webb basis given by the 
Veitch diagram (Fig. 6) [18].

 

1 1 1 1
0 0 0 0
1 0 0 1
1 1 1 0

1x

2x

3x

4x
Fig.	6.	The	function	f(x1,	x2,	x3,	x4),	given		

by	the	Veitch	diagram

Solution.
The simplification of the PCNF function (Fig. 6) takes 

the following form:

f

x x x x

MCNF

No.

=

= =

1 2 3 4

0 0 0 0 0
3 0 0 1 1
7 0 1 1 1

10 1 0 1 0
11 1 0 1 1
14 1 1 1 0
15 1 1 1 1

xx x x x

x x x x

x

1 2 3 4

1 2 3 4

1 1 1 1

1 1 1 1

1 1 0 0
1 0 0 0

0 0

0 0

0 0

0 1 0 1
0 1
0 0 0 1
0 0

0 0

=

= =

= 11 3 3 4 1 2 3 4+( ) +( ) + + +( )x x x x x x x .  (35)

According to Nelson’s method, in the first matrix of 
expression (35), the variables are inverted [19]. In the 
second matrix of expression (35), the following actions are 
performed: the operation of supergluing the variables is ap-
plied to blocks 3, 7, 11, 15 and to blocks 10, 11, 14, 15, since 
these blocks form intervals of the Boolean space containing 
combinatorial 2 -(2, 4)-design systems. The results of logical 
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operations of super-gluing the variables are written to the 
third matrix.

The eleventh block of variables "0100" and the fifteenth 
"0000" are common to two systems – Σm(3, 7, 11, 15) and 
Σm(10, 11, 12, 13) and two operations of supergluing the 
variables, the location of which is determined by combinato-
rial 2-(2, 4)-design systems [16, 17].

As a result, the minimal function in CNF was obtained 
in one step.

MCNF (35) coincides with [18].
For MCNF (35), PNFPW-2 is written, using the distri-

butive law of the 2nd kind (distributiveness of disjunction 
relative to conjunction), factorization in CNF:

x x x x x x x1 2 3 1 2 1 3+ ⋅( ) = +( ) +( ).

F

x x x x x x x x

x x x x x

CNFPW2 =

= +( ) +( ) + + +( ) =

= + ( )( )( ) + +

1 3 3 4 1 2 3 4

3 1 4 1 2 xx x

x x x x x x x

x x x x x x x

3 4

3 1 4 1 2 3 4

3 1 4 1 2 3 4

+( ) =

= +( ) + + +( ) =

= + ↓( )( ) ↓ ↓ ↓( )) =

= ↓ ↓( )( ) ↓ ↓ ↓( ) =

= ↓ ↓( )( ) ↓ ↓ ↓ ↓( ) =

x x x x x x x

x x x x x x x

3 1 4 1 2 3 4

3 1 4 1 2 3 4

== ↓ ↓( )( ) ↓ ↓( ) ↓ ↓( )( )x x x x x x x3 1 4 1 2 3 4 .

PNFPW-2 takes the following form:

F x x x x x x xDNFPW2 = ↓ ↓( )( ) ↓ ↓( ) ↓ ↓( )( )3 1 4 1 2 3 4 . (36)

The realization price (36)  k k kl inθ / / / / ,= 4 7 3  where 
kθ, kl, kin are the number of n-digit "logical NOR" opera-
tions, literals, and inversions, respectively. The price of the 

implementation of function F x x x x x x x xDNFPW2 = ↓( ) ↓ ↓( ) ↓ ↓( ) ↓ ↓( )1 3 3 4 1 2 3 4 

F x x x x x x x xDNFPW2 = ↓( ) ↓ ↓( ) ↓ ↓( ) ↓ ↓( )1 3 3 4 1 2 3 4  [18] is  k k kl inθ / / / / .= 4 8 7

5. 4. Simplification of Peirce-Webb functions on the 
complete truth table

Simplification of DNF or CNF of Boolean functions is 
carried out on the corresponding sets of variables in the truth 
table. It is important to note that in order to obtain an opti-
mal result, from the point of view of practical implementation 
in digital technology, it is advisable to perform minimization 
on two normal forms – DNF and CNF. To this end, you need 
to use the complete truth table of the given function. The 
minimum function should be chosen based on the results of 
minimization of two normal forms – DNF and CNF.

Example 8. Using a non-standard system, simplify the 
function f(x1, x2, x3, x4) on the complete truth table given in 
the canonical form [20]:

F x x x x1 2 3 4 2 3 4 6 7 8 9 10 11 15, , , , , , , , , , , , .( ) = ∑( )  (37)

In expression (37), Σ defines the minterms at which the 
function f(x1, x2, x3, x4) returns "1" at the output.

The minimum function is chosen based on the results of 
the simplification of two perfect normal forms – PNFPW-1 
and PNFPW-2.

Solution.
The PDNF simplification of function (37) takes the fol-

lowing form:

F

x x x x

MDNF

No.

=

=

4 3 2 1

2
3
4 0 1 0 0
6
7 1
8
9

10

0 0 1 0
0 0

0 1 1 0
0 1

1 1

1
1 0 0 0
1 0 0 1
1 0 1 00
1 0

1 0

11
15

0 1 0

1 1
1 1 1 1

1 1

0 1
4 3 2 1

4 2 4 3 1 4 3 2 1

= =

= + + +

x x x x

x x x x x x x x x .  (38)

The price of realization of MDNF (38) k k kl inθ / / / / ,= 4 9 4  
where kθ, kl, kin are the number of conjunct terms, literals, and 
inversions, respectively.

For MDNF (38), PNFPW-1 is recorded:

F

x x x x x x x x x

x x x x x x x x

x

MNFPW− =

= + + + =

= +( ) + + =

=

1

4 2 4 3 1 4 3 2 1

4 2 3 1 4 3 2 1

4 xx x x x x x x

x x x x x x x

2 3 1 4 3 2 1

4 2 3 1 4 3 2

+ ↓( )( ) + ↓( )+ ↓( ) =

= ↓ ↓( )



 + ↓( )+ ↓↓( ) =

= ↓ ↓ ↓( )( )( ) + ↓( )+ ↓( ) =

= ↓ ↓ ↓( )( )

x

x x x x x x x x

x x x x

1

4 2 3 1 4 3 2 1

4 2 3 1(( ) + ↓( )+ ↓( ) =

= ↓ ↓ ↓( )( )( ) ↓ ↓( ) ↓ ↓( )
x x x x

x x x x x x x x

4 3 2 1

4 2 3 1 4 3 2 1 .

PNFPW-1 takes the following form:

F

x x x x x x x x

DNFPW1 =

= ↓ ↓ ↓( )( )( ) ↓ ↓( ) ↓ ↓( )4 2 3 1 4 3 2 1 . (39)

DCNF simplification of function (37) takes the follow-
ing form:

F

x x x x x x x

MCNF

No.

=

= =

4 3 2 1 4 3 2

0 0 0 0 0
1 0 0 0 1
5 0 1 0 1

12 1 1 0 0
13 1 1 0 1
14 1 1 1 0

xx

x x x x

x x x

1

4 3 2 1

4 3 2

1 1 1 1
1 1 1 0

1 1 1

1 0 1 0

0 0 1 0

0 1 0

0 0 1 1

0 0 0 1

0 0 1

=

= =

= + +( ) xx x x x x x3 2 1 4 3 1+ +( ) + +( ).  (40)
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Realization price of MKNF (40)  k k kl inθ / / / / .= 3 9 4
For MCNF (40), PNFPW-2 is recorded:

F

x x x x x x x x x

x x x x x

DNFPW− =

= + +( ) + +( ) + +( ) =

= + +( ) + +

2

4 3 2 3 2 1 4 3 1

4 3 2 3 2 xx x x

x x x x x x x x

x

1 4 1

4 3 2 3 2 1 4 1

4

( ) +( )( ) =

= ↓ ↓( ) + ↓( ) ↓( )









 =

= ↓ xx x x x x x x

x x x x x x x x

3 2 3 2 1 4 1

4 3 2 3 2 1 4 1

↓( ) + ↓( ) ↓ ↓( )( )( ) =

= ↓ ↓( ) ↓ ↓( ) ↓ ↓(( )( )



 =

= ↓ ↓( ) ↓ ↓ ↓( ) ↓ ↓( )( )( )x x x x x x x x4 3 2 3 2 1 4 1 .

PNFPW-2 takes the following form:

F

x x x x x x x x

DNFPW2 =

= ↓ ↓( ) ↓ ↓ ↓( ) ↓ ↓( )( )( )4 3 2 3 2 1 4 1 . (41)

Due to the smaller number of inversions in PNFPW-2 (41), 
the latter has a simpler logical structure (Fig. 7, b) compared 
to PNFPW-1 (39) (Fig. 7, a).

Verification of PNFPW-1 and PNFPW-2 is given  
in Table 10.

Table 10 demonstrates that FDNFPW-1 and FDNFPW-2 pass 
the verification.

Based on the results of simplifying the two normal forms – 
PNFPW-1 and PNFPW-2, we choose PNFPW-2 as the mi-
nimum (41).

111

1

1

14x

3x
FDNFPV −1

1
1

1

1

1

1

4x
3x

2x
1x

FDNFPV −2

1x
2x

111

1

1

14x

3x
FDNFPV −1

1
1

1

1

1

1

4x
3x

2x
1x

FDNFPV −2

1x
2x

a b

Fig.	7.	Implementation	of	the	minimum	logical	function	f (x1,	x2,	x3,	x4)	(37)	in	the	Peirce-Webb	basis		
by	a	combinational	scheme:	a	–	PNFPW-1;	b	–	PNFPW-2

Table	10

Verification	of	functions	F x x x x x x x xDNFPW1 = ↓ ↓ ↓( )( )( ) ↓ ↓( ) ↓ ↓( )4 2 3 1 4 3 2 1 ,	

F x x x x x x x xDNFPW2 = ↓ ↓( ) ↓ ↓ ↓( ) ↓ ↓( )( )( )4 3 2 3 2 1 4 1

No. of entry x1 x2 x3 x4 F(x1, x2, x3, x4) FDNFPW-1 FDNFPW-2

2 0 0 1 0 1 1 1

3 0 0 1 1 1 1 1

4 0 1 0 0 1 1 1

6 0 1 1 0 1 1 1

7 0 1 1 1 1 1 1

8 1 0 0 0 1 1 1

9 1 0 0 1 1 1 1

10 1 0 1 0 1 1 1

11 1 0 1 1 1 1 1

15 1 1 1 1 1 1 1

No. of entry x1 x2 x3 x4 F(x1, x2, x3, x4) FDNFPW-1 FDNFPW-2

0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0

5 0 1 0 1 0 0 0

12 1 1 0 0 0 0 0

13 1 1 0 1 0 0 0

14 1 1 1 0 0 0 0
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5. 5. Comparison with the matrix algorithm, the methods 
for algebraic bi-decomposition and bitwise partitioning of 
the set of output conjuncterms

Boolean functions can be expressed in algebraic form 
through the half-tensor product of matrices [21]. As a result, this 
gives a matrix algorithm for simplifying logical functions [22].

Example 9. Use a non-standard system to simplify the 
function f(w, x, y, z) given in the canonical form [22]:

f w x y z wxyz wxyz wxyz

wxyz wx yz w xyz w x yz

, , ,

.

( ) = + + +

+ + + +  (42)

Solution:
For convenience, the variables in expression (42) have 

been replaced:

w x→ 1; x x→ 2; y x→ 3; z x→ 4.

Function with new variables:

f x x x x x x x x x x x x

x x x x x x x x x x x x x

= + + +

+ + + +
1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 11 2 3 4x x x . (43)

Simplification of the function f(x1, x2, x3, x4) (43) in the 
disjunctive normal form (DNF):

f x x x x

x x x x

MDNF

No.

1 2 3 4

1 2 3 4

1
3
5
7

10
1

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 1 0

, , ,( ) =

=

11
14

1 1 1

1 0 1

0
1 1 1 0

1 1 0

0 1
1 2 3 4

1 4 1 2 3 1 3 4

= =

= + +

x x x x

x x x x x x x x .  (44)

The result of simplification (44) of the function f(x1, x2, x3, x4) 
coincides with [22], but the non-standard system is signifi-
cantly simpler in terms of procedure.

In the general case, the search for the minimum function 
is carried out on the complete truth table and on various 
logical bases.

Simplification of the function f(x1, x2, x3, x4) (43) in the 
conjunctive normal form (CNF):

f x x x x

x x x x

MCNF

No.

1 2 3 4

1 2 3 4

0 0 0 0 0
2 0 0 1 0
4 0 1 0 0
6 0 1 1 0
8 1 0 0 0
9 1

, , ,( ) =

=

00 0 1
12 1 1 0 0
13 1 1 0 1
15 1 1 1 1

1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 1
0 1 1 1
0 1 1 0
0 0 1

1 2 3 4

=

x x x x

11
0 0 0

0 1

1
0 0 0 0

0 0 0

1 1
1 2 3 4

1 4 1 3 1 2 4

=

= = +( ) +( ) + +( )
x x x x

x x x x x x x . (45)

MDNF (44) and MCNF (45) demonstrate that MCNF (45) 
contains one less literal.

For MCNF (45), PNFPW-2 is recorded:

f x x x x

x x x x x x x

x x x

DNFPW2 1 2 3 4

1 4 1 3 1 2 4

1 4 1

, , ,( ) =

= +( ) +( ) + +( ) =

= +( ) ++ ( ) +( )( ) =

= ↓( ) + ( ) ↓( )



 =

= ↓( ) + ↓

x x x

x x x x x x

x x x x x

3 2 4

1 4 1 3 2 4

1 4 1 3 22 4

1 4 1 3 2 4

1 4 1 3

↓( )( )( ) =

= ↓( ) ↓ ↓ ↓( )( )



 =

= ↓( ) ↓ ↓ ↓

x

x x x x x x

x x x x x22 4↓( )( )( )x .

Therefore, PNFPW-2 contains two literals less than 
MDNF (44).

There are well-known examples of the use of bi-decompo-
sition methods to reduce the delay of signals by combinatio-
nal circuits [23, 24] and during the synthesis of FPGA-based 
circuits [25].

Example 10. Using a non-standard system, simplify the 
partially defined Boolean function f(x1, x2, x3, x4, x5) given 
by matrices M1, M0 [26] (through numbering is used for the 
matrix rows):

M1

1 2 3 4 5

1 1 1

0 1 2

1 1 3

0 0 4

1 0 0 5

1 1 1 6

1 0 0 1 7

=

− − −
− − −

− − −
− − −

− −
− −

−

x x x x x

;

M0

1 2 3 4 5

0 1 0 0 1 8

1 1 0 0 9

1 0 0 1 10

1 0 1 0 11

= −
−
−

x x x x x

. (46)

Solution.
The ternary vector – –11– in М1 is considered as an in-

terval of the Boolean space I(α, β) of five Boolean variables, 
which is formed by the following terms:

I Iα β, ,( ) = ( ) =00110 11111

00110

00111

01110

01111

10110

10111

11110

111111

.

The set of internal components of the interval I(α, β) 
form a combinatorial system of 2-(n, b)-design. For a given 
example, 2-(3, 8)-design.
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The terms of the given partially defined function (46) 
are obtained through the interval I(α, β) constructed in the 
Boolean space for all ternary vectors that are placed in the 
matrices M1, M0 (46). It is important to note that during 
the generation of terms, the logical law of idempotency 
must be applied, since part of the terms of the function will 
be repeated.

The truth table of the partially defined function 
f(x1, x2, x3, x4, x5) (46) takes the following form (Table 11).

Table	11

Truth	table	of	the	partially	defined	function	
f(x1,	x2,	x3,	x4,	x5)	(46)

No. of entry x1 x2 x3 x4 x5 F

0 0 0 0 0 0 1

1 0 0 0 0 1 1

2 0 0 0 1 0 1

3 0 0 0 1 1 1

4 0 0 1 0 0 1

5 0 0 1 0 1 1

6 0 0 1 1 0 1

7 0 0 1 1 1 1

8 0 1 0 0 0 1

9 0 1 0 0 1 0

10 0 1 0 1 0 1

11 0 1 0 1 1 1

12 0 1 1 0 0 1

13 0 1 1 0 1 1

14 0 1 1 1 0 1

15 0 1 1 1 1 1

16 1 0 0 0 0 –

17 1 0 0 0 1 1

18 1 0 0 1 0 0

19 1 0 0 1 1 0

20 1 0 1 0 0 0

21 1 0 1 0 1 0

22 1 0 1 1 0 1

23 1 0 1 1 1 1

24 1 1 0 0 0 1

25 1 1 0 0 1 1

26 1 1 0 1 0 1

27 1 1 0 1 1 1

28 1 1 1 0 0 0

29 1 1 1 0 1 1

30 1 1 1 1 0 1

31 1 1 1 1 1 1

Simplification of the function f(x1, x2, x3, x4, x5) (46) in 
the disjunctive normal form (DNF):

f x x x x x

x x x x x F

MDNF

No.

1 2 3 4 5

1 2 3 4 5

0 1
1 1
2 1

0
0 1
0 0 0 1 0

0 0 0
0 0 0

0

, , , ,( ) =

=

33 1
4 1
5 1
6 1
7 1
8 0 1 1

10 1
11

0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0
0 1

0 1 1
0 1 1

0 0 0
0 1 0 1 0
0 1 0 1 1 11

12 1
13 1
14 1
15 1
17 1 1 1
22 1 0 1
23 1 1 1

0 1 1 0 0
0 1 1 0 1
0 1 1
0 1 1

1 0
1 1

0 0 0
0 1 1
0 1 1

224 1 1 1
25 1 1 0 0 1 1
26 1
27 1
29 1 1 1 0 1 1
30 1
31 1
1

0 0 0

1 1 0 1 0
1 1 0 1 1

1 1 1 1 0
1 1 1 1 1

66 1

1 1 1

0 0 0

0 0 0

0

0 0 0
0 0

1 1
0 1

1 1

1 2 3 4 5

1 2 1 3 2 4 3 4

−

=

= =

= + + +

x x x x x

x x x x x x x x ++

+ + + =

= +( ) + +( ) +

+ +

x x x x x x x x x

x x x x x x

x x x x x x

1 2 5 2 3 4 3 4 5

1 2 3 4 2 3

1 2 5 3 4 22 5+( )x .  (47)

In the first matrix of expression (47), the following ac-
tions are performed: to blocks 0, 1, 2, 3, 4, 5, 6, 7; 10, 11, 14, 
13, 26, 27, 30, 31; 4, 5, 6, 7, 12, 13, 14, 15; 6, 7, 14, 15, 22, 23, 
30, 31, which form intervals of the Boolean space containing 
the complete combinatorial system of 2-(3, 8)-design, and 
to blocks 0, 8, 24, 16; 0, 1, 17, 16; 25, 27, 29, 31, which form 
the interval of the Boolean space, containing the complete 
combinatorial system of 2-(2, 4)-design, the operation of 
super-gluing the variables is applied.

The zero block of variables "00000" is common to three sys-
tems – Σm(0, 1, 2, 3, 4, 5, 6, 7), Σm(0, 1, 17, 16), Σm(0, 8, 24, 16) 
and three operations of super-gluing the variables, the location  
of which is determined by the combinatorial systems of 
2-(3, 8)-design and 2-(2, 4)-design [16, 17].

The first block of variables "00001" is common to two 
systems – Σm(0, 1, 2, 3, 4, 5, 6, 7), Σm(0, 1, 17, 16) and two 
operations of super-gluing the variables, location which is 
determined by the combinatorial systems of 2-(3, 8)-design 
and 2-(2, 4)-design.
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The sixth and seventh blocks of 
variables "00110", "00111" are com-
mon to the two systems – Σm(0, 1, 2, 3, 
4, 5, 6, 7), Σm(6, 7, 14, 15, 22, 23, 30, 31) 
and two operations of super-gluing 
the variables, the location of which is 
determined by combinatorial systems 
of 2-(3, 8)-design.

The eighth block of variables 
"01000" is common to two systems –  
Σm(0, 8, 24, 16), Σm(25, 27, 29, 31) 
and two ope rations of super-gluing 
the variables, the location of which is 
determined by combinatorial systems 
of 2-(2, 4)-design.

The fourteenth and fifteenth blocks of variables 
"01110", "01111" are common to the two systems – 
Σm(4, 5, 6, 7, 12, 13, 14, 15), Σm(10, 11, 14, 13, 26, 27, 30, 31)  
and two operations of super-gluing the variables, the lo-
cation of which is determined by combinatorial systems  
of 2-(3, 8)-design.

As a result, the minimal function of the basic basis is ob-
tained in one step:

f x x x x x x x x

x x x x x x x x x x

MDNF 1 2 3 4 5 1 2 3

4 2 3 1 2 5 3 4 2

, , , ,( ) = +( ) +

+ +( ) + + + 55( ). (48)

For MDNF (48), PNFPW-1 is recorded:

x x x x x x x x x x x x x

x x x x x x

1 2 3 4 2 3 1 2 5 3 4 2 5

1 2 3 4 2 3

+( ) + +( ) + + +( ) =

= ↓( ) + ↓( )) + ↓ ↓( ) + ↓( ) =

= ↓ ↓





+ ↓ ↓



 + ↓

x x x x x x x

x x x x x x x

1 2 5 3 4 2 5

1 2 3 4 2 3 1 xx x

x x x x x x x x x x

x x

2 5

3 4 2 5 1 2 3 4 2 3

1 2

↓( ) +

+ ↓( ) ↓( ) = ↓ ↓( )( ) + ↓ ↓( )( ) +

+ ↓ ↓ xx x x x x x x x

x x x x x

5 3 4 2 5 1 2 3

4 2 3 1 2

( ) + ↓( ) ↓( )



 = ↓ ↓( )( ) +

+ ↓ ↓( )( ) + ↓ ↓ xx x x x x

x x x x x x x x

5 3 4 2 5

1 2 3 4 2 3 1 2

( ) + ↓( ) ↓ ↓





=

= ↓ ↓( )( ) + ↓ ↓( )( ) + ↓ ↓↓( ) +

+ ↓( ) ↓ ↓( )( ) = ↓ ↓( )( ) ↓ ↓ ↓( )( ) ↓

↓ ↓

x

x x x x x x x x x x

x x

5

3 4 2 5 1 2 3 4 2 3

1 2 ↓↓ ↓( )( ) ↓ ↓( ) ↓( )x x xx x5 2 53 4 .

PNFPW-1 takes the following form:

F x x x x x x

x x xx x x

DNFPW1 = ↓ ↓( )( ) ↓ ↓ ↓( )( ) ↓

↓ ↓( ) ↓ ↓( ) ↓↓ ↓

1 2 3 4 2 3

1 3 42 5 2 xx5( )( ).  (49)

PNFPW-1 (49) provides the corresponding values of one 
and zero for the matrices M1, M0. It is important to note that the  
"logical NOR" operation x x2 5↓  occurs twice in PNFPW-1 (49). 
This provides an additional resource for simplifying the logic 
circuit implementing PNFPW-1 (49) (Fig. 8).

Simplification of the function f(x1, x2, x3, x4, x5) (46) in 
the conjunctive normal form (CNF):

f x x x x x

x x x x x F

MCNF

No.

1 2 3 4 5

1 2 3 4 5

9 0 1 0 0 1 0
18 1 0 0 1 0 0
19 1 0 0 1

, , , ,( ) =

=
11 0

20 1 0 1 0 0 0
21 1 0 1 0 1 0
28 1 1 1 0 0 0
16 1 0 0 0 0

9 1 0 1 1 0 0
18

1 2 3 4 5

−

=

=

x x x x x F

00 1 1 0 1
0 1 1 0 0

0
19 0
20 0
21 0
28 0
16

0 0 1 1
0 1 0 1 0

1

0 0 0 1 1
0 1 1 1 1

1 2 3 4

−

=

=

x x x x x55

1 2 3 4 5 1 2 3 4

1 2

1 0 1 1 0
0 1 1 0
0 1 0 1
0 0 1 1

=

= + + + +( ) + + +( ) ×

× + +

x x x x x x x x x

x x xx x x x x x3 4 1 3 4 5+( ) + + +( ).  (50)

According to Nelson’s method, in the first matrix of ex-
pression (50), the variables are inverted [19]. In the se cond 
matrix of expression (50), the following actions are performed: 
to blocks 18, 19; 20, 21; 20, 28, which form the intervals of the 
Boolean space containing combinatorial systems of 2-(1, 2)-de-
sign, the operation of simple gluing of variables is applied.

It should be noted that the undefined set of variables 16 in 
the second matrix of expression (50) is not written to the third 
matrix of expression (50) because the set 16 does not partici-
pate in the further simplification of the partially defined func-
tion f(x1, x2, x3, x4, x5) (46) [16]. This ultimately reduces the 
complexity of simplifying the function f(x1, x2, x3, x4, x5) (46) 
in the conjunctive normal form (CNF).

The twentieth block of variables "01011" is common to two 
systems – Σm(20, 21), Σm(20, 28) and two operations of simple 

1

1

1

1

1 1

1

1

1

1

1

5x
4x

3x
2x
1x

F
DNFPV −1

Fig.	8.	The	logic	circuit	that	implements	PNFPW-1	(49):	the	complexity	of	the	circuit	
is	11	2-input	logic	elements	"Logical	NOR",	9	inverters,	a	total	of	20	logic	elements,	

the	depth	of	the	circuit	is	8	logic	elements
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gluing of variables, the location of which is determined by 
combinatorial 2-(1, 2)-design systems [16, 17].

As a result, in one step, the minimum function in CNF is 
obtained:

f x x x x x x x x x x

x x x x x x

MCNF 1 2 3 4 5 1 2 3 4 5

1 2 3 4 1 2

, , , ,( ) = + + + +( ) ×

× + + +( ) + ++ +( ) + + +( )x x x x x x3 4 1 3 4 5 . (51)

PNFPW-2 is recorded for MCNF (51):

x x x x x x x x x

x x x x x x x x

1 2 3 4 5 1 2 3 4

1 2 3 4 1 3 4 5

+ + + +( ) + + +( ) ×

× + + +( ) + + +( ) =

== +( ) + +( ) +( )( ) ×

× + + + +( ) + +( )( ) =

=

x x x x x x

x x x x x x x x

1 2 3 4 3 4

4 1 2 3 5 1 3 5

xx x x x x x

x x x x x x x x

1 2 3 4 3 4

4 1 2 3 5 1 3 5

↓( ) + ↓( ) ↓( )



 ×

× + ↓ ↓ ↓( ) ↓ ↓( )



 =

= ↓( ) + ↓( ) ↓ ↓( )( )



 ×

× + ↓ ↓ ↓( ) ↓ ↓ ↓

x x x x x x

x x x x x x x

1 2 3 4 3 4

4 1 2 3 5 1 3 xx

x x x x x x

x x x x x

5

1 2 3 4 3 4

4 1 2 3 5

( )( )( ) =

= ↓( ) ↓ ↓( ) ↓ ↓( )( )



 ×

× ↓ ↓ ↓ ↓( ) ↓↓ ↓ ↓( )( )



 =

= ↓( ) ↓ ↓( ) ↓ ↓( )( )



 ↓

↓ ↓

x x x

x x x x x x

x x

1 3 5

1 2 3 4 3 4

4 1 ↓↓ ↓ ↓( ) ↓ ↓ ↓( )









x x x x x x2 3 5 1 3 5 .

PNFPW-2 takes the following form:

F x x x x x x

x x x x x x

DNFPW2 = ↓( ) ↓ ↓( ) ↓ ↓( )( )



 ↓

↓ ↓ ↓ ↓ ↓( ) ↓

1 2 3 4 3 4

4 1 2 3 5 11 3 5↓ ↓( )









x x .  (52)

PNFPW-2 (52) provides the corresponding values of one 
and zero for matrices M1, M0. The logic circuit implementing 
PNFPW-2 (52) is shown in Fig. 9.

Since the first matrix of expression (47) is a singular 
function [27], this makes it possible to simplify the function 
f(x1, x2, x3, x4, x5) (46) in the polynomial basis with the 
transition of the minimal polynomial form to the main basis.

f x x x x x

x x x x x

MPNF

No.

1 2 3 4 5

1 2 3 4 5
0
1
2
3

0
0 1
0 0 0 1 0
0 0 0

0 0 0
0 0 0

0

, , , ,( ) =

=

11 1
0 0 1 0 0
0 0 1 0 1
0 0
0 1

4
5
6
7
8 0 1

10
11
12
13

0 1 1
0 1 1

0 0 0
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 11 0 1
0 1 1
0 1 1

14
15
17 1 1
22 1 0
23 1 1
24 1 1
25 1 1 0 0 1
26

1 0
1 1

1 1 0

0 0 0
0 1 1
0 1 1

0 0 0

11 0
1 1 0 1 1

1 1 1 1 0
1 1 1 1 1

27
29 1 1 1 0 1
30
31
16 1 0 0 0

0 0 0
0 0 0

0

00
0 1
0 0 0 1 0
0 0 0 1

=

11
0 0 1 0 0
0 0 1 0 1
0 0
0 1

0 1 1
0 1 1

0 1
0 1 0 0 1

0 0 0

0 1 0 1 0
0 1 0 1 1

1 0

0 1 1 0 0
0 1 1 0 1
0 1 1
0 11 1 1 1

1 1 0 1 0
1 1 0 1 1

1 1 1

0 1 0 0 1
1 1
1 0
1 1
1 1
1 1 0 0 1

1 1 1 0 0
1 1 1 0 1

0 0 0
0 1 1
0 1 1

0 0 0

11 0
1 1 1 1 1
1 1 1 0 0
1

0 1 0 0 1
1 1
1 0
1 1
1 1
1 1 1 0 0
1

0 0 0

0 0 0

0

0

0 1 1
0 1 1

1 2 3 4 5

=

x x x x x

00 0 0 0

0
0 1 0 0 1
1 0 0 0
1 0 1 1
1 1
1 1 1 0 0

0
0 1 0 0 1
1 0 0

1 2 3 4 5 1 2 3 4 5

=

= =

x x x x x x x x x x

11 0 1
1 1
1 1 1 0 0

0
0 1 0 0 1
1 0 0
1 0 0
1
1 1 1 0 0

1
0 1 0 0

1 2 3 4 5

1 2 3 4 5

= =

= ⊕

x x x x x

x x x x x
11

1 0 0
1 0 0
1 1 1 0 0

1

0 1 0 0 1
1 0 0 0
1 0 1 0
1 0 0
1 1 1 0 0

1

1 2 3 4 5

1 2 3

= ⊕ =

= ⊕

x x x x x

x x x x44 5
0 1 0 0 1
1 0 0 1
1 0 1 0
1 1 1 0 0

x

.
 

 (53)

1

1

1

1

1

1

1 11

1 1

1

1
5x

4x

3x

2x
1x

FDNFPV −2

Fig.	9.	Logic	circuit	implementing	PNFPW-2	(52):	circuit	complexity	13	2-input	logic	elements	"Logical	NOR",	9	inverters,		
total	22	logic	elements,	circuit	depth	7	logic	elements
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The last matrix of expression (53) is a singular function. 
This makes it possible to obtain the minimum function in the 
main basis and write PNFPW-1 for it:

1

0 1 0 0 1

1 0 0 1

1 0 1 0

1 1 1 0 0

1 2 3 4 5

2 4 1 3 5 1 3 5 1 2 3

⊕ =

= +( )+

x x x x x

x x x x x x x x x x x xx x x

x x x x x x x x x x x x x x

x x x x

4 3 4

2 4 1 3 5 1 3 5 1 2 3 4 3 4

2 4 1 3

+( ) =

= ↓( ) + ↓( ) =

= ↓ xx x x x x x x x x x

x x x x x x x x x

5 1 3 5 1 2 3 4 3 4

2 4 1 3 5 1 3 5 1

↓





+ ↓ ↓( ) =

= ↓ ↓( ) + xx x x x x

x x x x x x x x x x x x x x

2 3 4 3 4

2 4 1 3 5 1 3 5 1 2 3 4 3 4

↓ ↓( ) =

= +( ) ↓ ↓( ) + +( ) ↓ ↓(( )( ) =

= ↓( ) ↓ ↓ ↓( ) ↓ ↓ ↓( )( )



 +

+ ↓( ) ↓ ↓(

x x x x x x x x

x x x x

2 4 1 3 5 1 3 5

1 2 3 4 )) ↓ ↓( )



 =

= ↓( ) ↓ ↓ ↓( ) ↓ ↓ ↓( )( )



 ↓

↓ ↓

x x

x x x x x x x x

x x

3 4

2 4 1 3 5 1 3 5

1 2(( ) ↓ ↓( ) ↓ ↓( )



 =

= ↓( ) ↓ ↓ ↓( ) ↓ ↓ ↓( )( )


x x x x

x x x x x x x x

3 4 3 4

2 4 1 3 5 1 3 5

 ↓

↓ ↓( ) ↓ ↓( ) ↓ ↓( )( )



 =

= ↓( ) ↓ ↓ ↓( ) ↓ ↓

x x x x x x

x x x x x x

1 2 3 4 3 4

2 4 1 3 5 1 xx x

x x x x x x

3 5

1 2 3 4 3 4

↓( )









 ↓

↓ ↓( ) ↓ ↓( ) ↓ ↓( )( )



 .

PNFPW-1 takes the following form:

F x x x x x x x x

x x

DNFPW1 = ↓( ) ↓ ↓ ↓( ) ↓ ↓ ↓( )









 ↓

↓ ↓( ) ↓

2 4 1 3 5 1 3 5

1 2 xx x x x3 4 3 4↓( ) ↓ ↓( )( )



 .  (54)

PNFPW-1 (54) provides the corresponding values of one 
and zero for matrices M1, M0. The logic circuit implementing 
PNFPW-1 (54) is shown in Fig. 10.

PNFPW-1 (49), (54) and PNFPW-2 (52) represent the 
class of dead-end forms of the function f(x1, x2, x3, x4, x5) (46).  
Depending on the technical conditions for designing  
a logic circuit, one of the considered dead-end forms may 
become minimal. The parameters of the logic circuits that 
implement the specified Peirce-Webb functions are given 
in Table 12.

Table	12

Parameters	of	logic	circuits	that	implement		
Peirce-Webb	functions

Logic form
Number of 

logical NOR 
elements

Number of 
inverters

Total logic 
elements

Circuit 
depth

Fig.

PNFPW-1 11 9 20 8 7

PNFPW-2 13 9 22 7 8

PNFPW-1 13 9 22 7 9

Fig. 11 shows a logic scheme designed by the method 
of algebraic bi-decomposition of the Boolean function [26].

Considering the schemes in Fig. 8–10, we can see that 
these schemes show a smaller number of logic elements, 
which they consist of, compared to the scheme in Fig. 11. 
The depth of the scheme in Fig. 9–11 is the same, it is 7 lo-
gic elements.

The peculiarity of the method of bitwise partitioning 
of the set of output conjuncterms is the absence of tau-
tology when simplifying Boolean functions, the conjunc-
terms of the lower rank are established without perform-
ing intermediate operations of gluing the variables [28].  
This gives the optimal complexity of the function simplifi-
cation procedure.

1
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1

1

1

1 1 1

1

1

1

1

1

5x

4x
3x

2x
1x

FDNFPV −1

Fig.	10.	The	logic	circuit	that	implements	PNFPW-1	(54):	the	complexity	of	the	circuit		
is	13	2-input	logic	elements	"Logical	NOR",	9	inverters,	a	total	of	22	logic	elements,	the	depth		

of	the	circuit	is	7	logic	elements
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Example 11. Use a non-standard system to simplify the func-
tion f(x1, x2, x3, x4, x5, x6, x7) given in the canonical form [28]:

f x x x x x x x1 2 3 4 5 6 7

0 1 5 6 7 8 10 14 22 23 38 39 48

, , , , , ,

, , , , , , , , , , , , ,

( ) =

=
449

53 54 55 58 62 86 87 102 103 122

,

, , , , , , , , ,
.





∑  (55)

Solution.
Simplification of the function f(x1, x2, x3, x4, x5, x6, x7) 

(55) in the disjunctive normal form (DNF):

f x x x x x x x

x x x x x x x F
MDNF

No.
1 2 3 4 5 6 7

1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 1
1 0

, , , , , ,( ) =

=

00 0 0 0 0 1
0 0 0 0 1 0 1

0 0 0 1 0 1 0
0 0

1
5 1
6 1
7 1
8 0 0 0 1 0 0 0 1

10 1
14

0 0 0 0 1 1 0
0 0 0 0 1 1 1

00 1 1 1 0 1
22 1
23 1
38 1
39 1
48 1
4

0 0 1 1 0
0 0 1 1 1
0 0 1 1 0
0 0 1 1 1

0 1
0 1
1 0
1 0

0 1 1 0 0 0 0
99 1

53 1
54 1
55 1
58 1
62

0 1 1 0 0 0
0 1 1 0 1 0 1

0 1 1 1 0 1 0
1 1 1 1 1

1

0 1 1 0 1 1 0
0 1 1 0 1 1 1

0 00 1
86 1 0 1
87 1 1 1

102 1 0 1
103 1 1 1
122 1

0 1 0 1 1
0 1 0 1 1
1 0 0 1 1
1 0 0 1 1

1 1 1 1 0 1 0

=

=

xx x x x x x x1 2 3 4 5 6 7

0 0 0 0 0 0
0 0 0 0 0 1

0 0 0 1 1 0

0 1 1 0 0 1
0 1 1 1 1 0

0 0 1 1

0 1 1 0 0 0

0 1 0 11 1
1 0 0 1 1
1 1 1 0 1 0

.  (56)

In the first matrix of expression (56), 
the following operations are performed: 
to blocks 6, 7, 22, 23, 38, 39, 54, 55, 
which form intervals of the Boolean space 
containing the complete combinatorial 
system of 2-(3, 8)-design, and to blocks 
22, 23, 86, 87; 38, 39, 102, 103, which 
form intervals of the Boolean space con-
taining complete combinatorial systems 
of 2-(2, 4)-design, the operation of su-
per-gluing the variables is applied.

The 22nd "0010110" and 23rd "0010111"  
variable blocks are common to the two 
systems – Σm(6, 7, 22, 23, 38, 39, 54, 55), 
Σm(22, 23, 86, 87) and two operations of 
super-gluing the variables, the location 
of which is determined by the combi-
natorial systems of 2-(3, 8)-design and  
2-(2, 4)-design.

The 38th "0100110" and 39th "0100111" variable blocks 
are common to two systems – Σm(6, 7, 22, 23, 38, 39, 54, 55), 
Σm(38, 39, 102, 103) and two operations of super-gluing the 
variables, the location of which is determined by the combi-
natorial systems of 2-(3, 8)-design and 2-(2, 4)-design.

In the first matrix of expression (54), to blocks 0, 8; 1, 5; 
10, 14; 48, 49; 49, 53; 58, 62; 62, 122, which form the intervals 
of the Boolean space containing the complete combinatorial 
system of 2-(1, 2)-design, the operation of simple gluing of 
variables is applied.

The 49th "0110001" block of variables is common to two 
systems – Σm(48, 49), Σm(49,53) and one operation of simple 
gluing of variables, the location of which is determined by 
combinatorial systems of 2-(1, 2)-design.

The 62nd "0111110" block of variables is common to two 
systems – Σm(58, 62), Σm(62, 122) and one simple variable 
gluing operation, the location of which is determined by 
combinatorial 2-(1, 2)-design systems.

As a result, the minimal function in disjunctive normal 
form is obtained in one step:

f x x x x x x x

x x x x x x x x x x x x x x

MDNF 1 2 3 4 5 6 7

1 2 3 5 6 7 1 2 3 4 6 7 1

, , , , , ,( ) =

= + + 44 5 6

1 2 3 4 6 7 1 2 3 4 5 6

1 2 3 4 6 7 1 2 3 4 6

x x

x x x x x x x x x x x x

x x x x x x x x x x x

+

+ + +

+ + xx x x x x x

x x x x x x x x x x x

7 2 3 4 5 6

2 3 4 5 6 2 3 4 5 6 7

+ +

+ + .  (57)

Decimal equivalent of MDNF (57):

f x x x x x x xMDNF 1 2 3 4 5 6 7

0 8 1 5 6 7 22 23 38 39 5

, , , , , ,

, , , , , , , , , ,

( ) =

( ) ( )
=

44 55

10 14 22 23 86 87 38 39 102 103

48 49 49

, ,

, , , , , , , , , ,

, , ,

( )
( ) ( ) ( )
( )

 

553 58 62 62 122

0 1 5 6 7 8 10 14 22

( ) ( ) ( )



















=

=

, , , ,

, , , , , , , , ,, , , , , ,

, , , , , , , , ,

 23 38 39 48 49

53 54 55 58 62 86 87 102 103 122












,

coincides with the decimal counterpart, represented in ab-
breviated form [28].

Simplification of the function f(x1, x2, x3, x4, x5, x6, x7) 
(55) in the conjunctive normal form (CNF) (Fig. 12).

Fig.	11.	A	logic	circuit	designed	by	the	method	of	algebraic	decomposition	of	
a	Boolean	function:	the	complexity	of	the	circuit	is	15	2-input	logic	elements	

"Logical	NOR"	and	8	inverters,	a	total	of	23	logic	elements,	the	depth		
of	the	circuit	is	7	logic	elements

x2 

x4 

x3 

x5 
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No. x1 x2 x3 x4 x5 x6 x7 f No. x1 x2 x3 x4 x5 x6 x7 f
2 0 0 0 0 0 1 0 0 71 1 0 0 0 1 1 1 0
3 0 0 0 0 0 1 1 0 72 1 0 0 1 0 0 0 0
4 0 0 0 0 1 0 0 0 73 1 0 0 1 0 0 1 0
9 0 0 0 1 0 0 1 0 74 1 0 0 1 0 1 0 0

11 0 0 0 1 0 1 1 0 75 1 0 0 1 0 1 1 0
12 0 0 0 1 1 0 0 0 76 1 0 0 1 1 0 0 0
13 0 0 0 1 1 0 1 0 77 1 0 0 1 1 0 1 0
15 0 0 0 1 1 1 1 0 78 1 0 0 1 1 1 0 0
16 0 0 1 0 0 0 0 0 79 1 0 0 1 1 1 1 0
17 0 0 1 0 0 0 1 0 80 1 0 1 0 0 0 0 0
18 0 0 1 0 0 1 0 0 81 1 0 1 0 0 0 1 0
19 0 0 1 0 0 1 1 0 82 1 0 1 0 0 1 0 0
20 0 0 1 0 1 0 0 0 83 1 0 1 0 0 1 1 0
21 0 0 1 0 1 0 1 0 84 1 0 1 0 1 0 0 0
24 0 0 1 1 0 0 0 0 85 1 0 1 0 1 0 1 0
25 0 0 1 1 0 0 1 0 88 1 0 1 1 0 0 0 0
26 0 0 1 1 0 1 0 0 89 1 0 1 1 0 0 1 0
27 0 0 1 1 0 1 1 0 90 1 0 1 1 0 1 0 0
28 0 0 1 1 1 0 0 0 91 1 0 1 1 0 1 1 0
29 0 0 1 1 1 0 1 0 92 1 0 1 1 1 0 0 0
30 0 0 1 1 1 1 0 0 93 1 0 1 1 1 0 1 0
31 0 0 1 1 1 1 1 0 94 1 0 1 1 1 1 0 0
32 0 1 0 0 0 0 0 0 95 1 0 1 1 1 1 1 0
33 0 1 0 0 0 0 1 0 96 1 1 0 0 0 0 0 0
34 0 1 0 0 0 1 0 0 97 1 1 0 0 0 0 1 0
35 0 1 0 0 0 1 1 0 98 1 1 0 0 0 1 0 0
36 0 1 0 0 1 0 0 0 99 1 1 0 0 0 1 1 0
37 0 1 0 0 1 0 1 0 100 1 1 0 0 1 0 0 0
40 0 1 0 1 0 0 0 0 101 1 1 0 0 1 0 1 0
41 0 1 0 1 0 0 1 0 104 1 1 0 1 0 0 0 0
42 0 1 0 1 0 1 0 0 105 1 1 0 1 0 0 1 0
43 0 1 0 1 0 1 1 0 106 1 1 0 1 0 1 0 0
44 0 1 0 1 1 0 0 0 107 1 1 0 1 0 1 1 0
45 0 1 0 1 1 0 1 0 108 1 1 0 1 1 0 0 0
46 0 1 0 1 1 1 0 0 109 1 1 0 1 1 0 1 0
47 0 1 0 1 1 1 1 0 110 1 1 0 1 1 1 0 0
50 0 1 1 0 0 1 0 0 111 1 1 0 1 1 1 1 0
51 0 1 1 0 0 1 1 0 112 1 1 1 0 0 0 0 0
52 0 1 1 0 1 0 0 0 113 1 1 1 0 0 0 1 0
56 0 1 1 1 0 0 0 0 114 1 1 1 0 0 1 0 0
57 0 1 1 1 0 0 1 0 115 1 1 1 0 0 1 1 0
59 0 1 1 1 0 1 1 0 116 1 1 1 0 1 0 0 0
60 0 1 1 1 1 0 0 0 117 1 1 1 0 1 0 1 0
61 0 1 1 1 1 0 1 0 118 1 1 1 0 1 1 0 0
63 0 1 1 1 1 1 1 0 119 1 1 1 0 1 1 1 0
64 1 0 0 0 0 0 0 0 120 1 1 1 1 0 0 0 0
65 1 0 0 0 0 0 1 0 121 1 1 1 1 0 0 1 0
66 1 0 0 0 0 1 0 0 123 1 1 1 1 0 1 1 0
67 1 0 0 0 0 1 1 0 124 1 1 1 1 1 0 0 0
68 1 0 0 0 1 0 0 0 125 1 1 1 1 1 0 1 0
69 1 0 0 0 1 0 1 0 126 1 1 1 1 1 1 0 0
70 1 0 0 0 1 1 0 0 127 1 1 1 1 1 1 1 0

Fig.	12.	Conjunctive	normal	form	(CNF)	of	function	(55)
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The last matrix of the CNF simpli-
fication of the function (Fig. 12) takes 
the following form:

f x x x x x x x

x x x x x x x

MCNF 1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 1 0

0 1 1

0 0

1 0 1

1 0 1

1

, , , , , ,( ) =

=

00 0

0 1 1

0 1 1

0 1 0

0 0 1

0 1 1

0 1 1

0 0 1

0 0 0 0

1 2 3 5

1 2 6

=

= + + +( ) ×

× + +( ) ×

×

x x x x

x x x

x11 4 5

1 2 3

2 4 6

2 3 4

2 3 6

+ +( ) ×

× + +( ) ×

× + +( ) ×

× + +( ) ×

× + +( )

x x

x x x

x x x

x x x

x x x

×× + +( ) ×

× + +( ) ×

× + +( ) ×

× + +( ) ×

× +( ) ×

x x x

x x x

x x x

x x x

x x

2 3 5

2 3 4

2 3 6

2 3 5

4 7

×× + +( )×

× + +( )
x x x

x x x

5 6 7

4 5 6 .  (58)

MCNF (58) contains 14 fewer lite-
rals compared to MDNF (57).

For MCNF (58), PNFPW-2 is re-
corded as follows:

( )( )( )( )( )
( )( )( )( )( )
( )( )( )( )

( )( )( )( )( )( )
( )( )( )( )( ) ( )( )( )( )

DNFPW2

1 2 3 5 1 2 6 1 4 5 1 2 3 2 4 6

2 3 4 2 3 6 2 3 5 2 3 4 2 3 6

2 3 5 4 7 5 6 7 4 5 6

1 2 3 5 2 6 4 5 2 3

2 4 6 3 4 3 6 3 5 2 3 4 3 6 3 5 4

F

x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x

x x x x x x x x x x x

x x x x x x x x x x

x x x x x x x x x x x x x x x x x

=

= + + + + + + + + + + + ×

× + + + + + + + + + + ×

× + + + + + + + =

= + + + + + + ×

× + + + + + + + + + +( )
( )( )

( )( )( ) ( )( )( )( )( )
( ) ( )( )( ) ( )( )( )

( )( )( )
( ) ( )( )( )

( ) ( )( ) ( )( )( )
( )( )

7

5 6 7 4 5 6

1 2 3 5 6 4 5 2 3

2 4 6 3 4 6 5 2 3 4 6 5

4 7 5 6 7 4 5 6

1 2 3 5 6 4 5 2 3

2 4 6 3 4 6 5 2 3 4 6 5

4 7 5 6 7 4

x

x x x x x x

x x x x x x x x x

x x x x x x x x x x x x

x x x x x x x x

x x x x x x x x x

x x x x x x x x x x x x

x x x x x x x

×

× + + + + =

= + + + + + ×

× + + + × + + ×

× + + + + + =

   = + + ↓ ↓ ↓ ×     

 × + ↓ + ↓ ↓ × + + ↓ ↓ × 

× ↓ ↓ ↓ ↓( )
( )( )( ) ( ) ( )( )( )

( ) ( ) ( )
( ) ( ) ( )( )

( )( ) ( ) ( )( )

( ) ( )( )

5 6

1 2 3 5 6 4 5 2 3

2 4 6 3 4 6 5 2 3 4 6 5

4 7 5 6 7 4 5 6

1 2 3 5 6 4 5 2 3

2 4 6 3 4 6 5

2 3 4

x

x x x x x x x x x

x x x x x x x x x x x x

x x x x x x x x

x x x x x x x x x

x x x x x x x

x x x

 ↓ =  

= + + ↓ ↓ ↓ ↓ ↓ ×

      × ↓ ↓ ↓ ↓ ↓ × + ↓ ↓ ↓ ×       

× ↓ ↓ ↓ ↓ ↓ ↓ ↓ =

  = + ↓ ↓ ↓ ↓ ↓ ↓ ×    

  × ↓ ↓ ↓ ↓ ↓ ↓ ×   

× ↓ ↓ ↓( ) ( ) ( ) ( )( )
( )( ) ( ) ( )( )

( ) ( )( )
( ) ( ) ( ) ( )( )
( )( )( ) ( ) ( )( )( )

6 5 4 7 5 6 7 4 5 6

1 2 3 5 6 4 5 2 3

2 4 6 3 4 6 5

2 3 4 6 5 4 7 5 6 7 4 5 6

1 2 3 5 6 4 5 2 3

2 4 3

x x x x x x x x x x

x x x x x x x x x

x x x x x x x

x x x x x x x x x x x x x

x x x x x x x x x

x x x x

  ↓ × ↓ ↓ ↓ ↓ ↓ ↓ ↓ =   

  = ↓ ↓ ↓ ↓ ↓ ↓ ↓ ×    

  × ↓ ↓ ↓ ↓ ↓ ↓ ×   

  × ↓ ↓ ↓ ↓ × ↓ ↓ ↓ ↓ ↓ ↓ ↓ =   

= ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ×

× ↓ ↓ ↓( )( ) ( )( )( ) ( ) ( )
( ) ( ) ( )

( )( )( ) ( ) ( )( )( )
( )( ) ( )( )( ) ( ) ( )

( ) ( ) ( )

6 3 5 6 2 3 4 5 6

4 7 5 6 7 4 5 6

1 2 3 5 6 4 5 2 3

2 4 3 6 3 5 6 2 3 4 5 6

4 7 5 6 7 4 5 6 .

x x x x x x x x

x x x x x x x x

x x x x x x x x x

x x x x x x x x x x x x

x x x x x x x x

↓ ↓ ↓ × ↓ ↓ ↓ ↓ ×

× ↓ ↓ ↓ ↓ ↓ ↓ ↓ =

 = ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓  

 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 

 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 
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F

x
x x x x

x x x x

DNFPW2 =

= ↓
↓ ↓( ) ↓( )( ) ↓
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1

2 3 5 6
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↓

↓ ↓ ↓ ↓( )( ) ↓ ↓ ↓( )( )( )( ) ↓

↓ ↓( ) ↓
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x x x
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 ↓

↓ ↓( ) ↓ ↓ ↓( ) ↓ ↓ ↓( )





x x

x x x x x x x x

5 6

4 7 5 6 7 4 5 6 . (59)

PNFPW-2 (59) (Fig. 13) contains 27 fewer literals com-
pared to MDNF (57).

The logic circuit in Fig. 13 consists of 17 2-input Peirce-ar-
row logic elements, 4 3-input Peirce-arrow logic elements,  
1 4-input Peirce-arrow logic element, and 10 inverters.

6. Discussion of results from the simplification of Peirce-
Webb functions by a non-standard system

The beginning of the simplification of Boolean functions by 
a non-standard system in the Peirce-Webb basis is the search 
for intervals of the Boolean space containing the combinatorial 
systems of 2-(n, b)-design, 2-(n, x/b)-design, in particular, in 
the case when different intervals of the Boolean space partially 
coincide. The non-standard is heuristic. Heuristics are inven-
tive, the answer is not to "calculate" but to find, this is the true 
search – the desire to find. Detection through the search for 
the necessary intervals of the Boolean space unambiguously 
implies the locations of equivalent transformations and pro-
vides the "trigger causality" of the consequence, in the form of 
the very solution to the problem of the systematized procedure 

for simplifying the Peirce-Webb functions by the visual-matrix 
form of the analytical method [16].

The mathematical apparatus of the non-standard system 
for simplifying Boolean functions in the Peirce-Webb basis is 
the method of figurative transformations, which is conside-
red in works [29–32] and others.

A new component in the technology of simplifying Boolean  
functions with a non-standard system represents the algebra 
of equivalent transformations in the class of perfect normal 
forms of Peirce-Webb functions.

The following results were obtained for each task, in or-
der to achieve the overall goal of the research:

1. Boolean functions in the Peirce-Webb basis – PNFPW-1 
and PNFPW-2 – are represented by matrices with the same 
combinatorial properties. The difference between the speci-
fied matrices lies in the hermeneutics of logical operations. 
The PNFPW-1 matrix gives the PNFPW-1 terms and the 
logical NOR operation for them, and the PNFPW-2 ma-

trix gives the PNFPW-2 terms and 
the logical NOR operation for them.

It is important to see that the combi-
natorial properties of binary structures 
PNFPW-1, PNFPW-2 functions in the 
Peirce-Webb basis and PDNF, DCNF 
functions of the main basis do not de-
pend on the selected logical basis. This 
makes it possible to carry out equiva-
lent transformations in the PNFPW-1, 
PNFPW-2 matrices according to the 
rules of the algebra of the main basis.

The hermeneutics of logical ope-
rations are demonstrated on matri-
ces (1) to (3) and others.

2. The rules for simplifying the 
Peirce-Webb functions in 3 exceptio nal 
situations have been established. The 
graphic equivalent of the specified rules 
in the form of logic elements is presen-
ted in Fig. 3–5. The rules for simplifying 
the Peirce-Webb functions for the first 
and second exceptional situations are 
discussed in examples 1–5. The third ex-
ceptional situation is demonstrated by 
the rules of equivalent transformation of 
Peirce-Webb functions – (14), (20), (28).

3. The algebra of equivalent trans-
formations for the simplification of 
Boolean functions in the Peirce-Webb 
basis has been extended (Table 13).

Logical operations 4–8, 12, 13 (Table 10) are new opera-
tions of equivalent transformation of Boolean functions in the 
Peirce-Webb basis. This extends the capabilities of the ana-
lytical method when simplifying the Peirce-Webb functions.

4. In the general case, the search for the minimal function is 
carried out on the complete truth table and on various logical 
bases. A complete truth table holds the sets of variables for which 
the function returns either "1" or "0" at the output. The mini-
mum function in the Peirce-Webb basis should be chosen based 
on the results of minimization of two normal forms – PNFPW-1 
and PNFPW-2, which is demonstrated by example 8.

5. A comparative analysis of the results of the simplifica-
tion of Boolean functions in the Peirce-Webb basis by a non- 
standard system and examples of the simplification of func-
tions by the Veitch diagram, matrix and graph algorithms, 
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1
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Fig.	13.	Logic	circuit	implementing	PNFPW-2	(59)
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methods for algebraic bi-decomposition and bitwise division 
of the set of initial conjunctives was carried out (Table 14).

The non-standard system shows the same result of sim-
plifying functions in the main basis and a better result in the 
Peirce-Webb basis. For all the considered examples, the sim-
plification procedure with a non-standard system is simpler. 
This makes it possible, to a certain extent, to simplify func-
tions without the use of automated calculations.

The interpretation of the result is determined by the pro-
perties of the binary combinatorial structures of PNFPW-1, 
PNFPW-2 functions in the Peirce-Webb basis and PDNF, 
DCNF functions of the main basis. The specified properties 
do not depend on the selected logical basis. This makes it 
possible to carry out equivalent transformations on the binary 
matrices PNFPW-1, PNFPW-2 according to the rules of the 
algebra of the main basis. The result of the transformation of 
the terms of the binary matrix in the end is some combinato-
rial system, metadata that can explain other data, for example, 
determine the minimum function for another logical basis. 
Equivalent transformations involving combinatorial systems 
of 2-(n, b)-design, 2-(n, x/b)-design, which by their proper-
ties have a greater information capacity, could effectively 
replace verbal procedures of algebraic transformations.

In contrast to the transition to the Peirce-Webb basis at 
the level of logic elements, by replacing AND and OR gates 
with OR-NOT or AND-NOT gates [1–4, 6, 7], or replacing 
AND and OR logic elements with OR elements NOT or 
AND-NOT by applying recurrent dependences [5], the fea-
ture of the simplification of Boolean functions in the Peirce-
Webb basis by a non-standard system consists in changing 

the form of simplification of Boolean functions in the Peirce-
Webb basis within the following representations:

– formation of new rules for equivalent transformation of 
Boolean functions in the Peirce-Webb basis;

– providing a procedure for simplifying the Peirce-Webb 
functions in one step;

– performing the minimization of Peirce-Webb functions 
on the complete truth table;

– application of the distributive law of the 2nd kind when 
simplifying the Peirce-Webb functions;

– using the Reed-M ller basis to simplify the Peirce-
Webb functions.

The non-standard system is based on combinatorial pro- 
perties of binary structures of PNFPW-1, PNFPW-2 func-
tions in the Peirce-Webb basis and PDNF, DCNF functions of 
the main basis. These properties do not depend on the selec-
ted logical basis, which makes it possible to carry out equi-
valent transformations on the binary matrices PNFPW-1,  
PNFPW-2 according to the rules of the algebra of the main 
basis. The result of the transformation of the terms of the 
binary matrix in the end is some combinatorial system, meta-
data that can explain other data, for example, determine the 
minimum function for another logical basis.

Implication of the Peirce-Webb function simplification 
algorithm by the 2-(n, b)-design, 2-(n, x/b)-design systems 
through their search on the binary structure of the truth 
table is also possible when different intervals of the Boolean 
space partially coincide. It is important to note that the stan-
dard (verbal) procedure for simplifying Boolean functions 
does not provide for the intersection of minterms (maxterms).

Table	13
Equivalent	transformation	operations	of	Boolean	functions	for	the	OR-NOT	monobasis

No. of entry Logic operation ID Reference in the text Representation form

1 Gluing of 2-digit terms of variables (13), (14) PNFPW-1

2 Gluing of 3-digit terms of variables (15), (16) PNFPW-1

3 Gluing of 3-digit terms of variables (18) PNFPW-2

4 Supergluing of 3-digit terms of variables (19), (20) PNFPW-1

5 Supergluing of 4-digit terms of variables (21), (22) PNFPW-1

6 Incomplete supergluing of 2-digit terms of variables (23), (24) PNFPW-1

7 Incomplete supergluing of 3-digit terms of variables (25) PNFPW-1

8 Generalized gluing of variables (26) PNFPW-1

9 Operation of absorbing the variables (27), (28) PNFPW-1

10 Operation of absorbing the variables (29) PNFPW-1

11 Operation of absorbing the variables (30) PNFPW-1

12 Operation of semi-gluing the variables (31), (32) PNFPW-2

13 Rule without a name (33), (34) PNFPW-2

Table	14

Comparative	table	of	examples	of	simplification	of	Boolean	functions	borrowed	from	the	works	by	other	authors		
and	a	non-standard	system

Example 
No.

Number of 
input variables

Simplification method ID Simplification result Non-standard system 

7 4 Veitch diagram [18] MCNF 8 literals MCNF 8 literals. PNFPW-2 7 literals

8 4 Graph method [19] MDNF 9 literals MDNF 9 literals. PNFPW-2 8 literals 

9 4 Matrix method [21] MDNF 8 literals MDNF 8 literals. PNFPW-2 6 literals 

10 5 Bi-decomposition method [25]
OR-NOT basis 23 gates, 

circuit depth 7
OR-NOT basis 22 gates, circuit  

depth 7; 20 gates; circuit depth 8

11 7
The method of bitwise partitioning of the 

set of output conjuncterms [28]
MDNF 56 literals

MDNF 56 literals.  
PNFPW-2 29 literals
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The application of the obtained result makes it possible to 
improve and expand the capabilities of the design technology 
of electronic components and devices for their use in digital 
technologies, which are based on the Peirce-Webb functions.

The visual representation of 2-dimensional binary matri-
ces allows, to a certain extent, for a manual way to simplify 
the Peirce-Webb functions using a mathematical editor, for 
example, Math Type 7.4.0 (USA): examples 1–10.

The non-standard system for simplifying the Peirce-
Webb functions opposes the transition to the Peirce-Webb 
basis at the level of logic elements, by replacing AND and 
OR gates with OR-NOT or AND-NOT gates and brings the 
problem of simplifying Boolean functions in the Peirce-Webb 
basis to the level of a well-researched problem in the class of 
disjunctive-conjunctive normal forms (DCNF) of represen-
tation of Boolean functions. The limitation of the application 
of the non-standard system is the cases when the switching 
function is represented in a mixed basis. In this case, the func-
tion must be represented by one logical basis.

The weakness of the considered system is its limited prac-
tical application for simplifying the Peirce-Webb functions 
with the subsequent design and manufacture of the corre-
sponding computing components. The negative internal fac-
tors of a non-standard system are associated with additional 
time costs for establishing the protocols for simplifying the 
Peirce-Webb functions, followed by the creation of a library 
of protocols that illustrate equivalent image transformations.

The lack of installation of the simplification method in 
the automated design system can be noted as a shortcoming 
of this study. This shortcoming can be eliminated in the 
future by writing a software tool that implements the infor-
mation technology of performing the functions of designing 
logical circuits according to the considered method.

Equivalent figurative transformations are a universal toolset 
for simplifying Boolean functions. In this regard, the prospect of 
further research may be, for example, the use of a non-standard 
system to simplify the logical functions of the majority basis.

7. Conclusions

1. The perfect normal form of an n-bit Peirce-Webb func-
tion can be represented by binary sets or a matrix, which in 
this case will give the terms of the Peirce-Webb function and 
the logical NOR operation for them. Boolean functions of  
PNFPW-1 and PNFPW-2 representations are set by matrices 
with the same combinatorial properties. The difference between 
the specified matrices is the hermeneutics of logical operations. 
The PNFPW-1 matrix gives PNFPW-1 terms and the logical 
NOR operation for them, and the PNFPW-2 matrix gives  
PNFPW-2 terms and the logical NOR operation for them.

The combinatorial properties of the binary structures 
PNFPW-1, PNFPW-2 of functions in the Peirce-Webb basis 
and PDNF, PCNF of the functions of the main basis do not 
depend on the selected logical basis (Boolean basis or Peirce-
Webb basis). This makes it possible to carry out equivalent 
transformations in the PNFPW-1, PNFPW-2 matrices ac-
cording to the rules of the algebra of the main basis.

It is advisable to use the hermeneutics of logical opera-
tions when simplifying the Peirce-Webb functions.

2. When simplifying the Peirce-Webb functions, excep-
tional situations should be taken into account and equivalent 
transformation rules should be created for them. The rules 
of equivalent transformation of Peirce-Webb functions in 

3 exceptional situations have been established. The graphic 
equivalent of the specified rules in the form of connections 
of logic elements is presented. The application of the rules 
of equivalent transformation of Peirce-Webb functions in 
exceptional situations is required not only when deriving the 
result of simplification from a binary matrix but also when 
entering the algebraic form of a function into a binary matrix.

3. To properly simplify the Peirce-Webb functions with 
a non-standard system, we have developed rules for their 
equivalent transformation, in which logical operations 4–8, 12, 
13 are new equivalent transformation operations of Boolean 
functions in the Peirce-Webb basis. This increases the ana-
lytical method’s ability to obtain the optimal function in the 
Peirce-Webb basis.

4. It was found that the best result in the minimization of 
Peirce-Webb functions can be achieved both in PNFPW-1 
and in PNFPW-2. It follows that the minimization of the 
given function should be carried out in two perfect normal 
forms – PNFPW-1 and PNFPW-2, using a complete truth 
table. And the optimal function should be chosen based on 
the results of minimization of two normal forms – PNFPW-1 
and PNFPW-2.

5. A comparative analysis of the results of the simpli-
fication of Boolean functions in the Peirce-Webb basis by 
a non-standard system and examples of the simplification of 
functions by the Veitch diagram, matrix and graph algorithms,  
methods for algebraic bi-decomposition and bitwise parti-
tioning of the set of initial conjuncterms was carried out. The 
non-standard system shows the same result of simplifying the 
functions in the main basis, but a better result in the Peirce-
Webb basis. From the comparative analysis, it follows that 
the non-standard system, in contrast to the replacement of 
AND and OR logic elements with OR-NOT or AND-NOT 
elements, makes it possible to obtain a simpler Boolean func-
tion during the transition from the basic basis to the Peirce-
Webb basis. For all the considered examples, the simplifica-
tion procedure with a non-standard system is simpler. This 
makes it possible, to a certain extent, to simplify functions 
without the use of automated calculations.
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