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The object of this research is drill-
ing process. The key is to ensure safe
and efficient drilling operations by proac-
tively identifying and eliminating critical
anomalies, such as stuck pipes, that cause
downtime, increase costs and degrade
performance.

A machine learning model combin-
ing Multilayer Perceptron (MLP) and
XGBoost was developed to predict critical
parameters such as hook weight, mini-
mum weight on bit, effective tension, and
torque on bit. The model achieved 86 %
accuracy in detecting drilling anomalies,
including sinusoidal and spiral buckling.
This enabled timely corrective actions
and improving drilling efficiency.

The model’s accuracy is due to its abi-
lity to process large datasets and capture
complex, nonlinear relationships between
drilling parameters. By training on both
historical and real-time field data, it can
learn patterns that are difficult to detect
with traditional tools which allows to
predict of drilling anomalies in real-time.

The distinctive feature of this model
is its adaptability to new data, as well as
its ability to predict complex phenomena
like helical buckling and torque fluctua-
tions, which are challenging for traditio-
nal methods. Unlike conventional models
that need manual tuning, this model con-
tinuously learns from data, improving
over time and under varying conditions.

The model can be applied practically
in real-time drilling operations to opti-
mize drilling parameters, reduce the risk
of stuck pipes, and minimize non-produc-
tive time
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1. Introduction

Drilling operations in oil and gas exploration face persistent
challenges related to mechanical inefficiencies, including pipe
sticking, sinusoidal and helical buckling, and excessive torque,
all of which can cause significant operational delays and in-
creased costs. Despite advancements in drilling technologies,
these issues continue to impact wellbore stability and the over-
all success of drilling operations. As a result, the development of
new methodologies to mitigate these risks remains essential for
ensuring safe, cost-effective, and efficient drilling operations.

Traditional torque and drag (T&D) models, which often rely
on empirical relationships and manual tuning, have struggled to
capture the nonlinearities and complexities of dynamic drilling
environments. However, with the rise of machine learning (ML)
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techniques that can process vast datasets and make real-time
predictions, the potential to optimize drilling parameters and
improve operational efficiency has never been greater. Research
on leveraging ML to address drilling challenges is increasingly
necessary to advance the field [1, 2].

The oil and gas industries are progressively shifting to-
ward real-time data monitoring and automated decision-mak-
ing to enhance operational safety and efficiency. Machine
learning offers the potential to revolutionize drilling by
predicting anomalies, reducing non-productive time, and op-
timizing drilling parameters to minimize risks, such as stuck
pipes and buckling [3, 4]. Thus, research aimed at integrating
machine learning into drilling operations is both timely and
essential for addressing contemporary challenges faced by the
industry [5, 6].




Therefore, developing machine learning-based models to
optimize T&D and predict operational anomalies is highly
relevant. Such research is critical for addressing the ongoing
challenges in the oil and gas industry, ensuring the adoption
of innovative solutions that enhance both drilling efficiency
and safety.

2. Literature review and problem statement

Torque and drag (T&D) prediction has been a key focus in
drilling optimization due to its significant role in enhancing
drilling efficiency and reducing operational risks. Over the
years, T&D modeling has evolved from traditional mechanical
approaches to more sophisticated data-driven methods, with
real-time applications becoming increasingly prevalent.

The paper [6] presents research on a real-time T&D pre-
diction approach using machine learning models such as
random forests and support vector machines (SVMs). This
approach effectively handles non-linear data and accurately
classifies torque conditions, but unresolved issues remain
regarding computational efficiency in real-time field applica-
tions. The primary reason lies in the computational demands
of machine learning algorithms, which can hinder deploy-
ment in environments with limited processing power. A pos-
sible way to address these challenges is through optimization
algorithms that minimize computational load, yet real-time
scalability for field operations remains unresolved.

The paper [7] describes an automated T&D analysis sys-
tem that calibrates friction factors and identifies overpull and
underpull issues, thus enhancing drilling safety. Although this
model reduces the need for manual intervention and increases
decision-making speed, unresolved issues include reliance on
high-quality real-time data, which is often inconsistent due to
sensor limitations or drilling conditions. This inconsistency
limits the model’s effectiveness in low-data-quality settings.
While predictive algorithms can be adjusted to compensate,
ensuring continuous data reliability in complex well environ-
ments remain a barrier.

The paper [3] integrates a physics-based T&D model with
real-time analytics to provide continuous wellbore condition
updates, aiding drilling decisions. However, issues arise in
environments where automated data inputs may not cover all
necessary parameters, leading to gaps in predictive accuracy.
This is particularly problematic in remote or harsh conditions,
where data transmission can be unreliable. While some auto-
mation tools, like the Planned Well Path (PWP) Digitizer, help
streamline data entry, further refinement is needed to over-
come these operational and connectivity challenges.

This research [8] explores a hybrid approach combining
machine learning and mechanical analysis to predict torque
and friction in highly deviated and horizontal wells. Although
it achieves a relative error of less than 14 %, unresolved is-
sues remain with maintaining this accuracy across varying
well conditions. The high dependency on extensive training
data (84,000 field samples) makes this model challenging to
adapt in cases with limited or incomplete datasets. A possible
solution could involve the development of transfer learning
models that adapt to new datasets more flexibly, but the fun-
damental challenge of data availability and quality remains.

The work [9] on Torque-on-Bit (TOB) prediction uses five
machine learning algorithms to optimize TOB with minimal
error rates. Although boosted trees provided the most accurate
TOB predictions, unresolved issues include the high computa-

tional cost of these algorithms in real-time settings. Additionally,
the effectiveness of the approach depends on algorithm-specific
tuning, which can be impractical in field applications where
diverse well formations are encountered. Addressing these lim-
itations may require hybrid algorithms that balance accuracy
with computational efficiency, though real-time generalizability
across diverse drilling environments is still an issue.

The paper [10] introduces a coupled model that integrates
multiple metrics, such as ROP, TOB, MSE, and torsional vibra-
tions. This approach enhances drilling efficiency by consider-
ing the interactions between downhole phenomena, but it still
requires high-quality data and regular updates, which can be
difficult to maintain in real-time operations. The complexity
and computational demands also limit its adaptability across
different formations and drilling conditions. Techniques such
as adaptive machine learning models that adjust parameters
based on drilling conditions could be explored, but scalability
remains a challenge.

This paper [11] introduces a hybrid T&D model combining
physical and machine learning methods, tested on ultra-deep
and horizontal wells with a 23.19 % reduction in prediction
error. However, issues arise from its high data and computa-
tional requirements, limiting practicality in resource-limited
environments. While algorithm optimization may mitigate
some of these limitations, the reliance on high-quality data
for model training remains an unresolved issue that impacts
real-time application feasibility.

All of these studies demonstrate significant progress but
highlight several unresolved issues in real-time T&D predic-
tion, particularly around computational efficiency, data de-
pendency, and adaptability to diverse well conditions. These
limitations indicate that further research into an enhanced
T&D model - one that optimizes real-time prediction accura-
cy while minimizing data and computational requirements —
is advisable to address the ongoing challenges in T&D predic-
tion within complex and evolving drilling environments.

3. The aim and objectives of the study

The aim of this study is to develop a predictive model that
optimizes drilling parameters for efficient well construction,
with a focus on preventing pipe sticking and ensuring oper-
ational safety.

To achieve this aim, the study focuses on the following
key objectives:

- developing and training machine learning models to
predict outcomes such as torque, drag, and the likelihood of
pipe sticking under various drilling conditions;

- assessing the models’ accuracy and reliability by apply-
ing them to real-world field data and comparing their predic-
tions with actual operational outcomes.

4. Materials and methods

4.1. Object and hypothesis of the study

The object of the study is drilling process. The subject of
this study is the torque and drag model.

The main hypothesis of the study is the possibility of
building models that predict torque and drag. With an in-
crease in the set of historical data, acting as training data, the
model will be universal for all wells not only of one field, but
also for fields of similar depths and geology.



A new torque and drag model are developed using ma-
chine learning techniques to improve accuracy and predictive
capabilities. The model is based on a comprehensive analysis
of many factors, including geological characteristics of the
well (rock type, well conditions like as temperature, pressure);
historical data of drilling operations such as torque, drag, well
depth, trajectory data (azimuth, inclinometry and etc.); fluid
parameters such as density, viscosity, lubricating properties;
and production equipment parameters (pipe diameter, hook
weight, type of drilling pipes and coatings and their charac-
teristics. This research explores the application of a chained
regression model combining Multilayer Perceptron (MLP)
and XGBoost for predicting multiple physical properties in the
oil and gas industry.

The stacking model consists of two state-of-the-art models:
Multilayer Perceptron and XGBoost regressor. An MLP is
a type of neural network that includes an input layer, one
or more hidden layers, and an output layer. It is suitable for
classification and regression prediction problems and handles
tabular datasets effectively.

The XGBoost regressor is a powerful machine learning
algorithm known for its efficiency and accuracy in handling
regression tasks, excelling in capturing complex relationships
between input features and target variables, and providing
high predictive performance.

Model building process:

1. Data collection: historical and current data from drilling rigs.

2. Preprocessing: data cleaning, elimination of gaps, nor-
malization and transformation into a suitable format.

3. Training: based on training data sets with known out-
puts (torques and resistance).

4. Validation: checking the quality of the model on test data.

5. Application: integration of the model into software for
monitoring drilling operations.

4. 2. Data preparation and training

The dataset used for machine learning was obtained from
both real field measurements and simulated data — output
from the WellPlan software. It included key drilling parame-
ters such as wellbore depth, geometric and physical parame-
ters of the well itself and string details, and mechanical
parameters such as hook weight, torque, weight on bit during
various operations that affect the torque and drag model.

To identify key drilling parameters to create a model, the
following work was done:

1) The first and especially important part in completing
the task is processing and analyzing data using mathematical
statistics methods [12].

2) Combining depths using an algorithm "nearest neighbors".

High-quality data sampling (filtering - filtering out "extra”
data and sorting data; calculation of variation, which is
characterized by the range of variation (R=Xmax—Xmin), the
average linear deviation, dispersion and standard deviation
are calculated.

To find hidden connections between data let’s use the
method "Feature generation”.

The Pearson correlation (r) coefficient was calculated, ac-
cording to which the key parameters (input data) were selected.

Training and evaluation process. The model was trained
on data from four oil wells (moldabek2737, aktobe120, gran78,
balgimbayev245) and evaluated using train-test split with the
model training on 80 % of the data and tested on other 20 %.
The primary metric used was the Weighted Mean Absolute
Percentage Error (WMAPE), which measures forecast accu-

racy by accounting for the size of the actual values, providing
a more balanced error metric compared to the traditional
Mean Absolute Percentage Error (MAPE):

- the first training phase involves training and obtaining
cross-validated predictions from the MLP;

- using the linear regression method, the so-called ridge
regression, it is possible to estimate the value of a continuous
output variable based on the values of the input variables;

- next, using the XGBoost machine learning algorithm,
the decision tree makes a prediction to the minimum error:

1) predicts the actual value;

2) predicts its own deviation;

3) predicts variance of variance;

4) predicts a new value with minimal error;

- then, combining the last two methods (Ridge+XGBoost)
it is possible to average the prediction value, which results in
a decrease in the error of each (each other);

- validation: after training the model on historical data, it
built a model for a new, previously unseen well, the drilling
parameters of which were identified satisfactorily in compa-
rison with the results of WellPlan software from Haliburton.

4. 3. Model evaluation metrics

The performance and correctness of the built Torque and
Drag machine learning model was assessed using the main
key metric, which was chosen to provide insight into various
aspects of the model’s performance.

WMAPE (weighted Mean Absolute Percentage Error) is
a metric that is used to evaluate the prediction quality of re-
gression models. Unlike standard MAPE, wMAPE considers
the weight of each error depending on the value of the actual
observation, which makes it more robust to outliers or small
values of the target variable. Chained regression model of
forecast accuracy that accounts for the size of the actual
values, providing a more balanced error metric compared to
traditional MAPE (Mean Absolute Percentage Error):
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where y; - real value of the target variable; y; — model predic-
ted value; n — number of observations.

5. Results predicting the torque and drag parameters

5.1. Prediction performance and outcomes of the
drilling models

To obtain a universal model that will work regardless of dif-
ferent depths, it is possible to train the model in two steps. First,
the model was trained to predict parameter values at subsequent
depths of the same well, giving the parameters of previous
depths. This is done so that it reveals a pattern in the section.
Then they gave training to 4 wells at all depths (Aktobe 120, well
depth - 2928 m, Balgimbayev, well depth — 1282 m, Moldabek,
well depth — 765m, Gran 78, well depth — 1646 m), using
a neural network and deep machine learning algorithms for
predicting learning for absolutely a new, previously unseen well.

The first training phase involves training and obtaining
cross-validated predictions from the MLP [13].

In the second phase, MLP predictions are appended to
the input data, and the XGBoost Regressor is trained on this
augmented input data. The rationale for using the two models



is that MLP can be sensitive to noisy data and produce incor-
rect outputs; therefore, XGBoost is used as the final estimator
due to its robustness and resistance to overfitting. The MLP
has 2 layers with 64 and 42 nodes, respectively. The XGBoost
regressor consists of 100 trees with a depth of 5 and a sub
column rate of 0.9. All the input and target data were norma-
lized using normal distribution:

1) Input layer.

Contains input data (x;, X3, ..., X,,) — these are the input data
or features that are fed to the neural network. Each neuron in
this layer represents one feature of the data.

2) Hidden layer 1 (64 neurons): the first hidden layer
processes the input data. Each neuron in this layer applies
weights, that determines the significance of each input fea-
ture or neuron for a given neuron (w,) and an activation
function which is applied to the result of the weighted sum
of the neuron’s inputs (f(Z;x;w;+b) to the data received from
the input layer. This layer is responsible for extracting features
and creating a representation of the input data. Where b is
a bias that is added to the weighted sum of the inputs so that
the model can better fit the data. Bias helps a neuron fire even
if all input values are zero.

3) Hidden layer 2 (42 neurons): the first hidden layer
processes the input data. Each neuron in this layer applies
weights and an activation function to the data received from
the input layer. This layer is responsible for extracting features
and creating a representation of the input data.

4) Output layer: output y(prediction).

The following data was selected as input: «MD», «Incl»,
«Azim», "Sub_Sea", "TVD", "Local_N_Coord", "Local_E_Coord",
"Global_N_Coord", "Global_E_Coord", "Dogleg", "Vertical _
Section”, "Body_OD", "Body_ID", "Body_AvgJointLength",
"Stabilizer_Length", "Stabilizer_OD", "Stabilizer_ID, "Weight",
"Coefficient_of Friction", "Minimum_Yield_Stress", that is,
the geometric characteristics of the well itself and the parts
of the working string that is, the geometric characteristics
of the well itself and the parts of the working string. The
model produces the following data as output: "Derrick load
capacity (effect_na)", "Rotary drilling(effect_na)", "Spiral (he-
lical) buckling(without rotation) (effect_na)”, "Lifting (ef-
fect_na)", "Sinusoidal buckling (all operations) (effect_na)",
"Descent (effect_na)" and so on. That is, it provides optimal
parameters for drilling and tripping operations with and with-
out rotation, considering all limits. Also predicts the values
when sinusoidal and helical bends begin, which leads to stuck
string and tool in the well.

Below let’s present the results of machine learning model
and WellPlan software results as graphs for visual comparison
and analysis of the model.

A detailed comparison of the two variables can be seen
in Fig. 1, 2, which highlight the changes of Hook load values
over time and measured depth.

Comparison of the Hook load values.

As it is possible to see, the values of all parameters, in-
cluding critical ones according to the constructed model,
agree very well with the values from WellPlan. In Fig. 2, the
red line that indicates lifting (Tripping out) shows the actual
data 72.5 tones on the MD 2400 m, and also the red line in
Fig. 1 indicates lifting shows the predicted data 70.45 tones at
the same depth. The wMAPE is equal to 2.83 %, which shows
good convergence of the model with the real processes.

The maximum weight up to the yield point according to
machine learning model was 131.36 tons at the MD 2900 m,
and according to the WellPlan results it was 132.5 tons at the

same depth, that is, the value of WMAPE is 0.67 %, which also
means good model performance.
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Fig. 2. Hook load vs MD Wellplan results (aktobe 120)

As shown in Fig. 3, 4, the results demonstrate a significant
change in torque values with measured depth.

In Fig. 4, the green line that indicates rotary drilling shows
the actual data 6.25 kN-m on the MD 2600 m, and also the
green line in Fig. 3 indicates rotary drilling shows the predic-
ted data 6.44 kN-m at the same depth. The wMAPE is equal
to 2.9 %. It is also possible to see an excellent convergence in
the initial values. According to the results, WMAPE is no more
than 7 %, which is in acceptable limits.

Comparison of weight on bit results shown in Fig. 5, 6
bellow.

In Fig. 6, the red line that indicates Min. WOB before
helical buckling shows the actual data 9.375 kN-m on the MD
2600 m, and the blue line in Fig. 5 indicates Min. WOB before
helical buckling (rotary drilling) shows the predicted data
9.22 kN-m at the same depth. The wWMAPE is equal to 1,65 %.
As it is possible to see, it is in this parameter also means good
model performance.



As shown in Fig. 7, 8, the results demonstrate a significant
change in effective tension with measured depth.
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According to these graphs, it is also possible to see an al-
most perfect correspondence between the output data of the
trained model and the results of calculations by the world-re-
nowned Wellplan software.

5.2. Validation of neural network accuracy

The results of the model - predictions with errors (WMAPE)
were entered into the following Table 1. This table presents
25 predicted mechanical and operational characteristics of the
drill string and drilling equipment that affect drilling efficien-
cy, equipment safety, drill string stability and the safety of the
drilling process. Managing these parameters allows operators
to optimize the drilling process, minimize equipment wear and
prevent emergency situations, including stuck pipes.

Table 1
WMAPE scores in evaluation dataset
No. Index WMAPE Type
0 | Derrick load capacity 0.0 ves_na_kru
1 |Rotary drilling 0.005964 | ves_na_kru
2 | Lifting 0.004207 | ves_na_kru
3 | Descent 0.014113 | ves_na_kru
4 Drilling with a hydraulic down- 0.01588 | ves na kru
hole motor
5 ﬁ;’(ggcg:; tl))efore helical buck- 0.012408 | ves_na_kru
6 | Max. weight to yield limit (lifting) | 0.008219 | ves_na_kru
7 | Derrick load capacity 0.0 effect_na
8 | Rotary drilling 0.101938 | effect_na
9 | Spiral buckling (without rotation) | 0.151081 effect_na
10 | Lifting 0.068886 effect_na
11 | Sinusoidal buckling (all operations) | 0.151085 effect_na
12 | Descent 0.169645 effect_na
13 Ecﬁgl;% :’;’ith ahydraulicdown- | 176406 | effect_na
14 | Spiral buckling (with rotation) 0.151075 effect_na
15 | Tensile strength 0.004368 effect_na
16 | Rotary drilling 0.014711 moment
17 | Lifting 0.033193 moment
18 | Make-up torque 0.003918 moment
19 | Descent 0.031369 moment
20 lﬁ’g?kfi’riltgv("fé%:rtybgrfﬁ{fnghcal 0.07192 | min_ves
Min. bit weight before sinusoidal
21 | buckling (drilling with a hydraulic | 0.122105 min_ves
downhole motor)
” ll:/fli(r:llélti)riltgweight before sinusoidal 0.057226 min_ves
Min. bit weight before helical
23 | buckling (drilling with a hydraulic | 0.14781 min_ves
downhole motor)

The wMAPE across different domains are not homoge-
neous. Some variables, such as "Spiral (helical) buckling (with
rotation)” and "Descent’, have relatively high wMAPE %
values (e. g., 16.96 %, 15.11 %). Relatively high wMAPE % in-
dicates that the model has an error margin for these features,
which may suggest the need for further model tuning or fea-

ture engineering, however, these numbers are acceptable in
this case since the WMAPE % limit is 18 %. The wMAPE % va-
ries significantly across different domains (type), which could
imply that some types of features are more challenging for
the model to predict accurately. For instance, the "effect_na"
and "min_ves" types tend to have higher wMAPE % values
compared to "ves_na_kru". It also could be because of data di-
mensions and size since types have different size and dimen-
sions of the data. Additionally, there is a perfect score with
0 % wWMAPE, which indicates that a given property has zero or
near-zero variance and the model outputs constant value. This
is the derrick load capacity of the tower. Derrick load capa-
city is a critical parameter that affects drilling efficiency, hole
depth, tool selection, operational safety, and overall drilling
process management. Due to similar and shallow depths, it is
not difficult for a machine to predict its value without errors.

6. Discussion of received predicted parameters
of torque and drag

The results of this study demonstrate that the developed
machine learning models, using Multilayer Perceptron (MLP)
and XGBoost algorithms, offer high accuracy in predicting
drilling parameters such as torque, drag, and weight on bit.
The accuracy of the model is evident in the low wWMAPE
scores for several key parameters, as presented in Table 1,
where all parameters except spiral or helical buckling (with-
out rotation), sinusoidal buckling (all operations) and de-
scent (tripping in) in Effective Tension show minimal errors
compared to actual results. The significant difference in the
results can be explained, firstly, by the quantitative (the more
data, the better the neurons learn) and qualitative composi-
tion of the data (in the initial input data there were empty
cells - about 17 %, which negatively affected the result).
Secondly, these operations occur from many geological, physi-
cal, and geometric factors that are not considered analytically.
Therefore, obtaining such results with a deviation of no more
than 18 % is considered within normal limits.

Compared to other studies conducted in this field by sci-
entists such as [6, 12] and others, the prediction error is less by
about 7-8 %, which indicates good processing and preparation
of the input data itself and the effectiveness of the structure
of the selected combination of machine learning algorithms.

Moreover, unlike traditional models that focus on simpler
linear relationships, our machine learning model is capable of
handling complex parameters such as helical buckling with
rotation, which is known for its intricate nature. As seen in
Table 1, this feature was accurately predicted despite its inhe-
rent complexity. This result is a key benefit made possible by
the advanced algorithms of MLP and XGBoost, allowing the
model to capture relationships that traditional models often
overlook. Compared to traditional torque and drag prediction
tools like WellPlann, our machine learning model offers sig-
nificant advantages in flexibility, adaptability, and predictive
accuracy. Traditional models like WellPlann require extensive
manual tuning and are not capable of adjusting dynamically
based on real-time data. In contrast, the machine learning
model developed in this study is capable of learning and
adapting from historical data, improving its accuracy as more
data is introduced.

For example, Fig. 1, 2 present a comparison of Hook load
values between the machine learning model and actual results,
showing strong alignment. The blue line in Fig. 2 indicates that



the WellPlann model estimates the Hook load at 725 tons at
a depth of 2400 m, while the machine learning model predicts
a Hook load of 704.5 tonnes at the same depth, demonstrating
a WMAPE of 2.83 %, indicating strong convergence.

Similarly, the torque predictions, as shown in Fig. 3, 4,
further validate the accuracy of the model. At a depth of 2600
m, the WellPlann model estimates torque at 625 kN-m, while
our model predicts 644 kN-m, yielding a wMAPE of 2.9 %.
This low margin of error demonstrates the model’s ability to
generalize across depths and drilling operations.

However, as I mentioned before, the results also indicate
higher wMAPE values for parameters like Spiral (helical)
buckling with rotation and descent (lifting in), as shown in
Table 1, where the WMAPE for these parameters reaches
16.96 % and 15.11 %, respectively. This can be attributed to
the limited data quality and size available for these specific
features, causing reduced predictive accuracy.

For example, Fig. 5, 6 illustrate the comparison of weight
on bit predictions between the machine learning model and
WellPlann. At 2600 m, the model predicts a weight on bit
of 909 kN compared to the actual data from WellPlann of
760 kN. While the wMAPE for this prediction is relatively
high at 16.96 %, the overall ability of the model to generalize
such predictions in real time provides a clear advantage over
traditional methods that struggle with complex, nonlinear
relationships between variables.

This model also differs in its ability to predict subsequent
data (drilling parameters) for a well using a set of the first few
available data. That is, there is only data for the first half of the
depth of the new well, there is no data further to the design
depth. The model is configured for this case as well.

The machine learning model has achieved its goal by
providing reliable predictions of critical drilling parameters.
The problem of predicting torque and weight on bit accurately
across different operations was addressed by using a combina-
tion of MLP and XGBoost, which, as explained earlier, dyna-
mically learn from the data and generalize across different
well depths and operations.

As evidenced by Fig. 7, 8, the effective tension predicted by
the machine learning model shows a near-perfect match with
the WellPlann outputs. The wMAPE for this parameter is nota-
bly low, ensuring that the model can provide reliable, real-time
predictions for torque and drag during drilling operations.
The successful closing of this problematic part is further sup-
ported by the consistently low WMAPE scores across most
parameters, as shown in Table 1, demonstrating that the model
reliably meets the demands of real-time monitoring and predic-
tive accuracy.

By accurately predicting parameters like weight on bit and
torque, the model not only helps optimize drilling processes
but also minimizes the risk of downtime caused by stuck
pipes, which was the original aim of the study. Thus, the mod-
el provides a solution to the identified problem by enhancing
safety, reducing non-productive time (NPT), and improving
cost-efficiency.

One key limitation of this study is the sensitivity of the
model to the quality of input data. As observed in the higher
WMAPE scores for parameters like Spiral buckling with rota-
tion and Descent, the model’s accuracy is heavily influenced
by the volume and quality of the training data. This suggests
that, in real-world applications, the model’s performance
might degrade when applied to noisy or incomplete datasets.

The only and very important limitation of this model is
the need for qualitative and quantitative sets of historical

initial data, which is not always possible due to the lack of
a database on old wells.

Using a relatively small dataset from only four wells may
limit the model’s ability to generalize across different geolo-
gies and drilling conditions. Future practical applications will
require larger datasets that cover a wider range of conditions
to ensure the model’s robustness and reliability.

While the model generally performs well, there are several
shortcomings that may impact its broader application. First,
the relatively high wMAPE values for certain complex pa-
rameters, like Spiral buckling with rotation, indicate that the
model may struggle with highly nonlinear or poorly defined
relationships between variables when there is insufficient
data. This could limit its applicability in drilling environments
where such parameters are critical.

Another shortcoming is the model’s current inability to
handle missing or noisy data effectively. Although prepro-
cessing techniques were used to clean and prepare the data,
there were instances where data gaps affected the model’s
performance, as reflected in the higher wMAPE scores for
certain features. This suggests that further refinement of
data-handling techniques will be necessary to improve the
model’s performance in real-world applications.

Future research should focus on addressing the limita-
tions outlined above, particularly by improving the model’s
resilience to noisy or incomplete data. One approach could
be to integrate hybrid models that combine the strengths of
traditional physical models with machine learning algorithms.
Such a combination could provide a more comprehensive solu-
tion, leveraging the physical relationships between parameters
while also taking advantage of machine learning’s adaptability.

Moreover, expanding the dataset to include more wells
with varying geologies and depths will be essential for im-
proving the model’s generalizability. In addition, incorpo-
rating more advanced machine learning techniques, such
as reinforcement learning, could enable the model to adapt
dynamically to changes in real-time drilling conditions.

Finally, future work should focus on validating the model
across a wider range of drilling scenarios to assess its robust-
ness and scalability. By conducting extensive testing in re-
al-world applications, the model can be refined and developed
further to meet the evolving needs of the oil and gas industry.

7. Conclusions

1. The study successfully developed a machine learning
model combining Multilayer Perceptron (MLP) and XGBoost
to predict key drilling parameters, including torque, drag, and
sticking probability. This hybrid approach effectively captured
nonlinear relationships between drilling parameters, achiev-
ing high accuracy in complex scenarios such as helical buck-
ling and torque fluctuations. Distinctive features of the model
include its adaptability to new data and its ability to generalize
across different drilling conditions. This adaptability enables
it to predict complex phenomena, such as spiral and helical
buckling, with a reduced error margin compared to traditional
approaches. These results demonstrate the model’s ability to
process large, multidimensional datasets effectively, which
explains its superior predictive performance. By leveraging
advanced algorithms, the model identifies patterns that are
often missed by conventional empirical methods.

2. The validation process confirmed the developed machine
learning model’s high accuracy and reliability in predicting



critical drilling parameters, including torque, drag, and the prob-
ability of pipe sticking. The model achieved strong performance
when tested against real-world field data, as demonstrated by
alow Weighted Mean Absolute Percentage Error (WMAPE). For
example, torque predictions showed a WMAPE of 2.9 %, and
hook load predictions achieved a wMAPE of 2.83 %, reflecting
the model’s robustness. A key feature of this validation is the
model’s ability to generalize across diverse drilling conditions,
enabling accurate predictions for complex scenarios such as
helical and spiral buckling. Unlike traditional models, this
machine learning approach adapts dynamically to new data,
effectively capturing nonlinear. The model’s hybrid architecture,
combining Multilayer Perceptron (MLP) and XGBoost, enhan-
ces its ability to process complex datasets with high precision.
By integrating historical and real-time data, it provides reliable
insights, reducing risks like pipe sticking and minimizing
non-productive time. These results highlight the model’s poten-
tial to optimize drilling operations and improve safety, making
it a valuable tool for real-time torque and drag monitoring.
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