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The object of this research is drill-
ing process. The key is to ensure safe 
and efficient drilling operations by proac-
tively identifying and eliminating critical 
anomalies, such as stuck pipes, that cause 
downtime, increase costs and degrade 
performance.

A machine learning model combin-
ing Multilayer Perceptron (MLP) and 
XGBoost was developed to predict critical 
parameters such as hook weight, mini-
mum weight on bit, effective tension, and 
torque on bit. The model achieved 86 % 
accuracy in detecting drilling anomalies, 
including sinusoidal and spiral buckling. 
This enabled timely corrective actions 
and improving drilling efficiency.

The model’s accuracy is due to its abi
lity to process large datasets and capture 
complex, nonlinear relationships between 
drilling parameters. By training on both 
historical and real-time field data, it can 
learn patterns that are difficult to detect 
with traditional tools which allows to 
predict of drilling anomalies in real-time.

The distinctive feature of this model 
is its adaptability to new data, as well as 
its ability to predict complex phenomena 
like helical buckling and torque fluctua-
tions, which are challenging for traditio
nal methods. Unlike conventional models 
that need manual tuning, this model con-
tinuously learns from data, improving 
over time and under varying conditions.

The model can be applied practically 
in real-time drilling operations to opti-
mize drilling parameters, reduce the risk 
of stuck pipes, and minimize non-produc-
tive time
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1. Introduction

Drilling operations in oil and gas exploration face persistent 
challenges related to mechanical inefficiencies, including pipe 
sticking, sinusoidal and helical buckling, and excessive torque, 
all of which can cause significant operational delays and in-
creased costs. Despite advancements in drilling technologies, 
these issues continue to impact wellbore stability and the over-
all success of drilling operations. As a result, the development of 
new methodologies to mitigate these risks remains essential for 
ensuring safe, cost-effective, and efficient drilling operations.

Traditional torque and drag (T&D) models, which often rely 
on empirical relationships and manual tuning, have struggled to 
capture the nonlinearities and complexities of dynamic drilling 
environments. However, with the rise of machine learning (ML) 

techniques that can process vast datasets and make real-time 
predictions, the potential to optimize drilling parameters and 
improve operational efficiency has never been greater. Research 
on leveraging ML to address drilling challenges is increasingly 
necessary to advance the field [1, 2].

The oil and gas industries are progressively shifting to-
ward real-time data monitoring and automated decision-mak-
ing to enhance operational safety and efficiency. Machine 
learning offers the potential to revolutionize drilling by 
predicting anomalies, reducing non-productive time, and op-
timizing drilling parameters to minimize risks, such as stuck 
pipes and buckling [3, 4]. Thus, research aimed at integrating 
machine learning into drilling operations is both timely and 
essential for addressing contemporary challenges faced by the 
industry [5, 6].
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Therefore, developing machine learning-based models to 
optimize T&D and predict operational anomalies is highly 
relevant. Such research is critical for addressing the ongoing 
challenges in the oil and gas industry, ensuring the adoption 
of innovative solutions that enhance both drilling efficiency 
and safety.

2. Literature review and problem statement

Torque and drag (T&D) prediction has been a key focus in 
drilling optimization due to its significant role in enhancing 
drilling efficiency and reducing operational risks. Over the 
years, T&D modeling has evolved from traditional mechanical 
approaches to more sophisticated data-driven methods, with 
real-time applications becoming increasingly prevalent.

The paper [6] presents research on a real-time T&D pre-
diction approach using machine learning models such as 
random forests and support vector machines (SVMs). This 
approach effectively handles non-linear data and accurately 
classifies torque conditions, but unresolved issues remain 
regarding computational efficiency in real-time field applica-
tions. The primary reason lies in the computational demands 
of machine learning algorithms, which can hinder deploy-
ment in environments with limited processing power. A pos-
sible way to address these challenges is through optimization 
algorithms that minimize computational load, yet real-time 
scalability for field operations remains unresolved.

The paper [7] describes an automated T&D analysis sys-
tem that calibrates friction factors and identifies overpull and 
underpull issues, thus enhancing drilling safety. Although this 
model reduces the need for manual intervention and increases 
decision-making speed, unresolved issues include reliance on 
high-quality real-time data, which is often inconsistent due to 
sensor limitations or drilling conditions. This inconsistency 
limits the model’s effectiveness in low-data-quality settings. 
While predictive algorithms can be adjusted to compensate, 
ensuring continuous data reliability in complex well environ-
ments remain a barrier.

The paper [3] integrates a physics-based T&D model with 
real-time analytics to provide continuous wellbore condition 
updates, aiding drilling decisions. However, issues arise in 
environments where automated data inputs may not cover all 
necessary parameters, leading to gaps in predictive accuracy. 
This is particularly problematic in remote or harsh conditions, 
where data transmission can be unreliable. While some auto
mation tools, like the Planned Well Path (PWP) Digitizer, help 
streamline data entry, further refinement is needed to over-
come these operational and connectivity challenges.

This research [8] explores a hybrid approach combining 
machine learning and mechanical analysis to predict torque 
and friction in highly deviated and horizontal wells. Although 
it achieves a relative error of less than 14 %, unresolved is-
sues remain with maintaining this accuracy across varying 
well conditions. The high dependency on extensive training 
data (84,000 field samples) makes this model challenging to 
adapt in cases with limited or incomplete datasets. A possible 
solution could involve the development of transfer learning 
models that adapt to new datasets more flexibly, but the fun-
damental challenge of data availability and quality remains.

The work [9] on Torque-on-Bit (TOB) prediction uses five 
machine learning algorithms to optimize TOB with minimal 
error rates. Although boosted trees provided the most accurate 
TOB predictions, unresolved issues include the high computa-

tional cost of these algorithms in real-time settings. Additionally, 
the effectiveness of the approach depends on algorithm-specific 
tuning, which can be impractical in field applications where 
diverse well formations are encountered. Addressing these lim-
itations may require hybrid algorithms that balance accuracy 
with computational efficiency, though real-time generalizability 
across diverse drilling environments is still an issue.

The paper [10] introduces a coupled model that integrates 
multiple metrics, such as ROP, TOB, MSE, and torsional vibra-
tions. This approach enhances drilling efficiency by consider-
ing the interactions between downhole phenomena, but it still 
requires high-quality data and regular updates, which can be 
difficult to maintain in real-time operations. The complexity 
and computational demands also limit its adaptability across 
different formations and drilling conditions. Techniques such 
as adaptive machine learning models that adjust parameters 
based on drilling conditions could be explored, but scalability 
remains a challenge.

This paper [11] introduces a hybrid T&D model combining 
physical and machine learning methods, tested on ultra-deep 
and horizontal wells with a 23.19 % reduction in prediction 
error. However, issues arise from its high data and computa-
tional requirements, limiting practicality in resource-limited 
environments. While algorithm optimization may mitigate 
some of these limitations, the reliance on high-quality data 
for model training remains an unresolved issue that impacts 
real-time application feasibility.

All of these studies demonstrate significant progress but 
highlight several unresolved issues in real-time T&D predic-
tion, particularly around computational efficiency, data de-
pendency, and adaptability to diverse well conditions. These 
limitations indicate that further research into an enhanced 
T&D model – one that optimizes real-time prediction accura-
cy while minimizing data and computational requirements – 
is advisable to address the ongoing challenges in T&D predic-
tion within complex and evolving drilling environments.

3. The aim and objectives of the study

The aim of this study is to develop a predictive model that 
optimizes drilling parameters for efficient well construction, 
with a focus on preventing pipe sticking and ensuring oper-
ational safety. 

To achieve this aim, the study focuses on the following 
key objectives:

– developing and training machine learning models to 
predict outcomes such as torque, drag, and the likelihood of 
pipe sticking under various drilling conditions;

– assessing the models’ accuracy and reliability by apply-
ing them to real-world field data and comparing their predic-
tions with actual operational outcomes.

4. Materials and methods

4. 1. Object and hypothesis of the study
The object of the study is drilling process. The subject of 

this study is the torque and drag model. 
The main hypothesis of the study is the possibility of 

building models that predict torque and drag. With an in-
crease in the set of historical data, acting as training data, the 
model will be universal for all wells not only of one field, but 
also for fields of similar depths and geology.
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A new torque and drag model are developed using ma-
chine learning techniques to improve accuracy and predictive 
capabilities. The model is based on a comprehensive analysis 
of many factors, including geological characteristics of the 
well (rock type, well conditions like as temperature, pressure); 
historical data of drilling operations such as torque, drag, well 
depth, trajectory data (azimuth, inclinometry and etc.); fluid 
parameters such as density, viscosity, lubricating properties; 
and production equipment parameters (pipe diameter, hook 
weight, type of drilling pipes and coatings and their charac-
teristics. This research explores the application of a chained 
regression model combining Multilayer Perceptron (MLP) 
and XGBoost for predicting multiple physical properties in the 
oil and gas industry. 

The stacking model consists of two state-of-the-art models: 
Multilayer Perceptron and XGBoost regressor. An MLP is 
a type of neural network that includes an input layer, one 
or more hidden layers, and an output layer. It is suitable for 
classification and regression prediction problems and handles 
tabular datasets effectively. 

The XGBoost regressor is a powerful machine learning 
algorithm known for its efficiency and accuracy in handling 
regression tasks, excelling in capturing complex relationships 
between input features and target variables, and providing 
high predictive performance.

Model building process:
1. Data collection: historical and current data from drilling rigs.
2. Preprocessing: data cleaning, elimination of gaps, nor-

malization and transformation into a suitable format.
3. Training: based on training data sets with known out-

puts (torques and resistance).
4. Validation: checking the quality of the model on test data.
5. Application: integration of the model into software for 

monitoring drilling operations.

4. 2. Data preparation and training
The dataset used for machine learning was obtained from 

both real field measurements and simulated data – output 
from the WellPlan software. It included key drilling parame
ters such as wellbore depth, geometric and physical parame
ters of the well itself and string details, and mechanical 
parameters such as hook weight, torque, weight on bit during 
various operations that affect the torque and drag model.

To identify key drilling parameters to create a model, the 
following work was done: 

1) The first and especially important part in completing 
the task is processing and analyzing data using mathematical 
statistics methods [12].

2) Combining depths using an algorithm "nearest neighbors".
High-quality data sampling (filtering – filtering out "extra"  

data and sorting data; calculation of variation, which is 
characterized by the range of variation (R = xmax – xmin), the 
average linear deviation, dispersion and standard deviation 
are calculated.

To find hidden connections between data let’s use the 
method "Feature generation".

The Pearson correlation (r) coefficient was calculated, ac-
cording to which the key parameters (input data) were selected.

Training and evaluation process. The model was trained 
on data from four oil wells (moldabek2737, aktobe120, gran78, 
balgimbayev245) and evaluated using train-test split with the 
model training on 80 % of the data and tested on other 20 %. 
The primary metric used was the Weighted Mean Absolute 
Percentage Error (WMAPE), which measures forecast accu-

racy by accounting for the size of the actual values, providing  
a more balanced error metric compared to the traditional 
Mean Absolute Percentage Error (MAPE):

– the first training phase involves training and obtaining 
cross-validated predictions from the MLP;

– using the linear regression method, the so-called ridge 
regression, it is possible to estimate the value of a continuous 
output variable based on the values of the input variables;

– next, using the XGBoost machine learning algorithm, 
the decision tree makes a prediction to the minimum error: 

1) predicts the actual value; 
2) predicts its own deviation; 
3) predicts variance of variance;
4) predicts a new value with minimal error;
– then, combining the last two methods (Ridge+XGBoost) 

it is possible to average the prediction value, which results in 
a decrease in the error of each (each other);

– validation: after training the model on historical data, it 
built a model for a new, previously unseen well, the drilling 
parameters of which were identified satisfactorily in compa
rison with the results of WellPlan software from Haliburton.

4. 3. Model evaluation metrics
The performance and correctness of the built Torque and 

Drag machine learning model was assessed using the main 
key metric, which was chosen to provide insight into various 
aspects of the model’s performance.

wMAPE (weighted Mean Absolute Percentage Error) is 
a  metric that is used to evaluate the prediction quality of re-
gression models. Unlike standard MAPE, wMAPE considers 
the weight of each error depending on the value of the actual 
observation, which makes it more robust to outliers or small 
values of the target variable. Chained regression model of 
forecast accuracy that accounts for the size of the actual 
values, providing a more balanced error metric compared to 
traditional MAPE (Mean Absolute Percentage Error):
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where yi – real value of the target variable; ′yi  – model predic
ted value; n – number of observations.

5. Results predicting the torque and drag parameters

5. 1. Prediction performance and outcomes of the 
drilling models

To obtain a universal model that will work regardless of dif-
ferent depths, it is possible to train the model in two steps. First, 
the model was trained to predict parameter values at subsequent 
depths of the same well, giving the parameters of previous 
depths. This is done so that it reveals a pattern in the section. 
Then they gave training to 4 wells at all depths (Aktobe 120, well 
depth – 2928 m, Balgimbayev, well depth – 1282 m, Moldabek, 
well depth – 765 m, Gran 78, well depth – 1646 m), using  
a neural network and deep machine learning algorithms for 
predicting learning for absolutely a new, previously unseen well. 

The first training phase involves training and obtaining 
cross-validated predictions from the MLP [13]. 

In the second phase, MLP predictions are appended to 
the input data, and the XGBoost Regressor is trained on this 
augmented input data. The rationale for using the two models 
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is that MLP can be sensitive to noisy data and produce incor-
rect outputs; therefore, XGBoost is used as the final estimator 
due to its robustness and resistance to overfitting. The MLP 
has 2 layers with 64 and 42 nodes, respectively. The XGBoost 
regressor consists of 100 trees with a depth of 5 and a sub 
column rate of 0.9. All the input and target data were norma
lized using normal distribution:

1) Input layer.
Contains input data (x1, x2, ..., xm) – these are the input data 

or features that are fed to the neural network. Each neuron in 
this layer represents one feature of the data. 

2) Hidden layer 1 (64 neurons): the first hidden layer 
processes the input data. Each neuron in this layer applies 
weights, that determines the significance of each input fea-
ture or neuron for a given neuron (wn) and an activation 
function which is applied to the result of the weighted sum 
of the neuron’s inputs (f (Σixiwi+b) to the data received from 
the input layer. This layer is responsible for extracting features 
and creating a representation of the input data. Where b is  
a bias that is added to the weighted sum of the inputs so that 
the model can better fit the data. Bias helps a neuron fire even 
if all input values are zero.

3) Hidden layer 2 (42 neurons): the first hidden layer 
processes the input data. Each neuron in this layer applies 
weights and an activation function to the data received from 
the input layer. This layer is responsible for extracting features 
and creating a representation of the input data.

4) Output layer: output y(prediction).
The following data was selected as input: «MD», «Incl», 

«Azim», "Sub_Sea", "TVD", "Local_N_Coord", "Local_E_Coord",  
"Global_N_Coord", "Global_E_Coord", "Dogleg", "Vertical_
Section", "Body_OD", "Body_ID", "Body_AvgJointLength", 
"Stabilizer_Length", "Stabilizer_OD", "Stabilizer_ID, "Weight", 
"Coefficient_of_Friction", "Minimum_Yield_Stress", that is, 
the geometric characteristics of the well itself and the parts 
of the working string that is, the geometric characteristics 
of the well itself and the parts of the working string. The 
model produces the following data as output: "Derrick load 
capacity (effect_na)", "Rotary drilling(effect_na)", "Spiral (he-
lical) buckling(without rotation) (effect_na)", "Lifting (ef-
fect_na)", "Sinusoidal buckling (all operations) (effect_na)", 
"Descent (effect_na)" and so on. That is, it provides optimal 
parameters for drilling and tripping operations with and with-
out rotation, considering all limits. Also predicts the values 
when sinusoidal and helical bends begin, which leads to stuck 
string and tool in the well.

Below let’s present the results of machine learning model 
and WellPlan software results as graphs for visual comparison 
and analysis of the model.

A detailed comparison of the two variables can be seen 
in Fig. 1, 2, which highlight the changes of Hook load values 
over time and measured depth.

Comparison of the Hook load values.
As it is possible to see, the values of all parameters, in-

cluding critical ones according to the constructed model, 
agree very well with the values from WellPlan. In Fig. 2, the 
red line that indicates lifting (Tripping out) shows the actual 
data 72.5 tones on the MD 2400 m, and also the red line in 
Fig. 1 indicates lifting shows the predicted data 70.45 tones at 
the same depth. The wMAPE is equal to 2.83 %, which shows 
good convergence of the model with the real processes.

The maximum weight up to the yield point according to 
machine learning model was 131.36 tons at the MD 2900 m, 
and according to the WellPlan results it was 132.5 tons at the 

same depth, that is, the value of wMAPE is 0.67 %, which also 
means good model performance.

Fig. 1. Hook load vs MD from ML (aktobe120)

 

 

2320

2360

2400

2440

2480

2520

2560

2600

2640

2680

2720

2760

2800

2840

2880

2920

40 60 80 100 120 140 160 180 200 220 240

R
un

 m
ea

su
re

d 
de

pt
h 

(m
)

Hook load st surface (tonne)

Tripping in

Tripping out

Rotary drilling

Drilling with hydraulic
downhole motor
Min. weight before helical
buckling (Tripping in)
Max. weight to yield point
(Tripping out)
Rig capacity

Fig. 2. Hook load vs MD Wellplan results (aktobe120)

As shown in Fig. 3, 4, the results demonstrate a significant 
change in torque values with measured depth.

In Fig. 4, the green line that indicates rotary drilling shows 
the actual data 6.25 kN⋅m on the MD 2600 m, and also the 
green line in Fig. 3 indicates rotary drilling shows the predic
ted data 6.44 kN⋅m at the same depth. The wMAPE is equal  
to 2.9 %. It is also possible to see an excellent convergence in 
the initial values. According to the results, wMAPE is no more 
than 7 %, which is in acceptable limits.

Comparison of weight on bit results shown in Fig. 5, 6 
bellow.

In Fig. 6, the red line that indicates Min. WOB before 
helical buckling shows the actual data 9.375 kN⋅m on the MD 
2600 m, and the blue line in Fig. 5 indicates Min. WOB before 
helical buckling (rotary drilling) shows the predicted data 
9.22 kN⋅m at the same depth. The wMAPE is equal to 1,65 %. 
As it is possible to see, it is in this parameter also means good 
model performance.
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As shown in Fig. 7, 8, the results demonstrate a significant 
change in effective tension with measured depth.

 
Fig. 3. Torque vs MD from ML (aktobe120)
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Fig. 5. Weight on bit vs MD from ML (aktobe120)
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Fig. 7. Effective tension (ton) vs MD from ML results 
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According to these graphs, it is also possible to see an al-
most perfect correspondence between the output data of the 
trained model and the results of calculations by the world-re-
nowned Wellplan software.

5. 2. Validation of neural network accuracy
The results of the model – predictions with errors (wMAPE) 

were entered into the following Table 1. This table presents 
25 predicted mechanical and operational characteristics of the 
drill string and drilling equipment that affect drilling efficien-
cy, equipment safety, drill string stability and the safety of the 
drilling process. Managing these parameters allows operators 
to optimize the drilling process, minimize equipment wear and 
prevent emergency situations, including stuck pipes.

Table 1

wMAPE scores in evaluation dataset

No. Index wMAPE Type 

0 Derrick load capacity 0.0 ves_na_kru

1 Rotary drilling 0.005964 ves_na_kru

2 Lifting 0.004207 ves_na_kru

3 Descent 0.014113 ves_na_kru

4 Drilling with a hydraulic down-
hole motor 0.01588 ves_na_kru

5 Min. weight before helical buck-
ling (descent) 0.012408 ves_na_kru

6 Max. weight to yield limit (lifting) 0.008219 ves_na_kru

7 Derrick load capacity 0.0 effect_na

8 Rotary drilling 0.101938 effect_na

9 Spiral buckling (without rotation) 0.151081 effect_na

10 Lifting 0.068886 effect_na

11 Sinusoidal buckling (all operations) 0.151085 effect_na

12 Descent 0.169645 effect_na

13 Drilling with a hydraulic down-
hole motor 0.076406 effect_na

14 Spiral buckling (with rotation) 0.151075 effect_na

15 Tensile strength 0.004368 effect_na

16 Rotary drilling 0.014711 moment

17 Lifting 0.033193 moment

18 Make-up torque 0.003918 moment

19 Descent 0.031369 moment

20 Min. bit weight before helical 
buckling (rotary drilling) 0.07192 min_ves

21
Min. bit weight before sinusoidal 
buckling (drilling with a hydraulic 
downhole motor)

0.122105 min_ves

22 Min. bit weight before sinusoidal 
buckling 0.057226 min_ves

23
Min. bit weight before helical 
buckling (drilling with a hydraulic 
downhole motor)

0.14781 min_ves

The wMAPE across different domains are not homoge-
neous. Some variables, such as "Spiral (helical) buckling (with 
rotation)" and "Descent", have relatively high wMAPE % 
values (e. g., 16.96 %, 15.11 %). Relatively high wMAPE % in-
dicates that the model has an error margin for these features, 
which may suggest the need for further model tuning or fea-

ture engineering, however, these numbers are acceptable in 
this case since the wMAPE % limit is 18 %. The wMAPE % va
ries significantly across different domains (type), which could 
imply that some types of features are more challenging for 
the model to predict accurately. For instance, the "effect_na" 
and "min_ves" types tend to have higher wMAPE % values 
compared to "ves_na_kru". It also could be because of data di-
mensions and size since types have different size and dimen-
sions of the data. Additionally, there is a perfect score with 
0 % wMAPE, which indicates that a given property has zero or 
near-zero variance and the model outputs constant value. This 
is the derrick load capacity of the tower. Derrick load capa
city is a critical parameter that affects drilling efficiency, hole 
depth, tool selection, operational safety, and overall drilling 
process management. Due to similar and shallow depths, it is 
not difficult for a machine to predict its value without errors.

6. Discussion of received predicted parameters  
of torque and drag

The results of this study demonstrate that the developed 
machine learning models, using Multilayer Perceptron (MLP) 
and XGBoost algorithms, offer high accuracy in predicting 
drilling parameters such as torque, drag, and weight on bit. 
The accuracy of the model is evident in the low wMAPE 
scores for several key parameters, as presented in Table 1, 
where all parameters except spiral or helical buckling (with-
out rotation), sinusoidal buckling (all operations) and de-
scent  (tripping in) in Effective Tension show minimal errors 
compared to actual results. The significant difference in the 
results can be explained, firstly, by the quantitative (the more 
data, the better the neurons learn) and qualitative composi-
tion of the data (in the initial input data there were empty 
cells – about 17 %, which negatively affected the result). 
Secondly, these operations occur from many geological, physi-
cal, and geometric factors that are not considered analytically. 
Therefore, obtaining such results with a deviation of no more 
than 18 % is considered within normal limits.

Compared to other studies conducted in this field by sci-
entists such as [6, 12] and others, the prediction error is less by 
about 7–8 %, which indicates good processing and preparation 
of the input data itself and the effectiveness of the structure 
of the selected combination of machine learning algorithms.

Moreover, unlike traditional models that focus on simpler 
linear relationships, our machine learning model is capable of 
handling complex parameters such as helical buckling with 
rotation, which is known for its intricate nature. As seen in 
Table 1, this feature was accurately predicted despite its inhe
rent complexity. This result is a key benefit made possible by 
the advanced algorithms of MLP and XGBoost, allowing the 
model to capture relationships that traditional models often 
overlook. Compared to traditional torque and drag prediction 
tools like WellPlann, our machine learning model offers sig-
nificant advantages in flexibility, adaptability, and predictive 
accuracy. Traditional models like WellPlann require extensive 
manual tuning and are not capable of adjusting dynamically 
based on real-time data. In contrast, the machine learning 
model developed in this study is capable of learning and 
adapting from historical data, improving its accuracy as more 
data is introduced.

For example, Fig. 1, 2 present a comparison of Hook load 
values between the machine learning model and actual results, 
showing strong alignment. The blue line in Fig. 2 indicates that 
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the WellPlann model estimates the Hook load at 725 tons at  
a depth of 2400 m, while the machine learning model predicts 
a Hook load of 704.5 tonnes at the same depth, demonstrating 
a wMAPE of 2.83 %, indicating strong convergence.

Similarly, the torque predictions, as shown in Fig. 3, 4, 
further validate the accuracy of the model. At a depth of 2600 
m, the WellPlann model estimates torque at 625 kN·m, while 
our model predicts 644 kN·m, yielding a wMAPE of 2.9 %. 
This low margin of error demonstrates the model’s ability to 
generalize across depths and drilling operations.

However, as I mentioned before, the results also indicate 
higher wMAPE values for parameters like Spiral (helical) 
buckling with rotation and descent (lifting in), as shown in 
Table 1, where the wMAPE for these parameters reaches 
16.96 % and 15.11 %, respectively. This can be attributed to 
the limited data quality and size available for these specific 
features, causing reduced predictive accuracy.

For example, Fig. 5, 6 illustrate the comparison of weight 
on bit predictions between the machine learning model and 
WellPlann. At 2600 m, the model predicts a weight on bit 
of 909 kN compared to the actual data from WellPlann of 
760 kN. While the wMAPE for this prediction is relatively 
high at 16.96 %, the overall ability of the model to generalize 
such predictions in real time provides a clear advantage over 
traditional methods that struggle with complex, nonlinear 
relationships between variables.

This model also differs in its ability to predict subsequent 
data (drilling parameters) for a well using a set of the first few 
available data. That is, there is only data for the first half of the 
depth of the new well, there is no data further to the design 
depth. The model is configured for this case as well.

The machine learning model has achieved its goal by 
providing reliable predictions of critical drilling parameters. 
The problem of predicting torque and weight on bit accurately 
across different operations was addressed by using a combina-
tion of MLP and XGBoost, which, as explained earlier, dyna
mically learn from the data and generalize across different 
well depths and operations.

As evidenced by Fig. 7, 8, the effective tension predicted by 
the machine learning model shows a near-perfect match with 
the WellPlann outputs. The wMAPE for this parameter is nota-
bly low, ensuring that the model can provide reliable, real-time 
predictions for torque and drag during drilling operations.  
The successful closing of this problematic part is further sup-
ported by the consistently low wMAPE scores across most 
parameters, as shown in Table 1, demonstrating that the model 
reliably meets the demands of real-time monitoring and predic-
tive accuracy.

By accurately predicting parameters like weight on bit and 
torque, the model not only helps optimize drilling processes 
but also minimizes the risk of downtime caused by stuck 
pipes, which was the original aim of the study. Thus, the mod-
el provides a solution to the identified problem by enhancing 
safety, reducing non-productive time (NPT), and improving 
cost-efficiency.

One key limitation of this study is the sensitivity of the 
model to the quality of input data. As observed in the higher 
wMAPE scores for parameters like Spiral buckling with rota-
tion and Descent, the model’s accuracy is heavily influenced 
by the volume and quality of the training data. This suggests 
that, in real-world applications, the model’s performance 
might degrade when applied to noisy or incomplete datasets.

The only and very important limitation of this model is 
the need for qualitative and quantitative sets of historical 

initial data, which is not always possible due to the lack of  
a database on old wells.

Using a relatively small dataset from only four wells may 
limit the model’s ability to generalize across different geolo-
gies and drilling conditions. Future practical applications will 
require larger datasets that cover a wider range of conditions 
to ensure the model’s robustness and reliability.

While the model generally performs well, there are several 
shortcomings that may impact its broader application. First, 
the relatively high wMAPE values for certain complex pa-
rameters, like Spiral buckling with rotation, indicate that the 
model may struggle with highly nonlinear or poorly defined 
relationships between variables when there is insufficient 
data. This could limit its applicability in drilling environments 
where such parameters are critical.

Another shortcoming is the model’s current inability to 
handle missing or noisy data effectively. Although prepro-
cessing techniques were used to clean and prepare the data, 
there were instances where data gaps affected the model’s 
performance, as reflected in the higher wMAPE scores for 
certain features. This suggests that further refinement of 
data-handling techniques will be necessary to improve the 
model’s performance in real-world applications.

Future research should focus on addressing the limita-
tions outlined above, particularly by improving the model’s 
resilience to noisy or incomplete data. One approach could 
be to integrate hybrid models that combine the strengths of 
traditional physical models with machine learning algorithms. 
Such a combination could provide a more comprehensive solu-
tion, leveraging the physical relationships between parameters 
while also taking advantage of machine learning’s adaptability.

Moreover, expanding the dataset to include more wells 
with varying geologies and depths will be essential for im-
proving the model’s generalizability. In addition, incorpo-
rating more advanced machine learning techniques, such 
as reinforcement learning, could enable the model to adapt 
dynamically to changes in real-time drilling conditions.

Finally, future work should focus on validating the model 
across a wider range of drilling scenarios to assess its robust-
ness and scalability. By conducting extensive testing in re-
al-world applications, the model can be refined and developed 
further to meet the evolving needs of the oil and gas industry.

7. Conclusions

1. The study successfully developed a machine learning 
model combining Multilayer Perceptron (MLP) and XGBoost 
to predict key drilling parameters, including torque, drag, and 
sticking probability. This hybrid approach effectively captured 
nonlinear relationships between drilling parameters, achiev-
ing high accuracy in complex scenarios such as helical buck-
ling and torque fluctuations. Distinctive features of the model 
include its adaptability to new data and its ability to generalize 
across different drilling conditions. This adaptability enables 
it to predict complex phenomena, such as spiral and helical 
buckling, with a reduced error margin compared to traditional 
approaches. These results demonstrate the model’s ability to 
process large, multidimensional datasets effectively, which 
explains its superior predictive performance. By leveraging 
advanced algorithms, the model identifies patterns that are 
often missed by conventional empirical methods. 

2. The validation process confirmed the developed machine 
learning model’s high accuracy and reliability in predicting  
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critical drilling parameters, including torque, drag, and the prob-
ability of pipe sticking. The model achieved strong performance 
when tested against real-world field data, as demonstrated by  
a low Weighted Mean Absolute Percentage Error (wMAPE). For 
example, torque predictions showed a wMAPE of 2.9 %, and 
hook load predictions achieved a wMAPE of 2.83 %, reflecting 
the model’s robustness. A key feature of this validation is the 
model’s ability to generalize across diverse drilling conditions, 
enabling accurate predictions for complex scenarios such as 
helical and spiral buckling. Unlike traditional models, this 
machine learning approach adapts dynamically to new data, 
effectively capturing nonlinear. The model’s hybrid architecture, 
combining Multilayer Perceptron (MLP) and XGBoost, enhan
ces its ability to process complex datasets with high precision. 
By integrating historical and real-time data, it provides reliable 
insights, reducing risks like pipe sticking and minimizing 
non-productive time. These results highlight the model’s poten-
tial to optimize drilling operations and improve safety, making 
it a valuable tool for real-time torque and drag monitoring.
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