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a more reliable interpretation of data from space images. But 
the main disadvantages are the complexity of integrating 
different time information from different sensors and the 
insufficient number of available multimodal data sets.

Obtaining a clear optical image is affected by such fac-
tors as clouds, fog, and smoke. The experience of a full-scale 
war in Ukraine highlighted this problem. The first cloud-
free multispectral image of Mariupol from the Sentinel-2 
spacecraft was obtained only on March 14, 2022, after the 
Russian invasion on February 24, 2022. Since the combat 
zone is the object of special attention and the priority direc-
tion of space surveillance, the influence of smoke, cloudiness, 
etc. greatly complicates the possibility of using satellite im-
ages as a source of intelligence.

These factors have a minor effect on the performance of 
SAR sensors. This make it possible to use them under any 
weather conditions and time of day. However, the geometric 
distortions and characteristics inherent in SAR images make 
the study of discriminative features a more difficult task. 
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The object of this study is the process of 
removing cloudiness on optical space images. 
Solving the cloudiness removal task is an 
important stage in processing data from the Earth 
remote probing (ERP) aimed at reconstructing 
the information hidden by these atmospheric 
disturbances. The analyzed shortcomings in the 
fusion of purely optical data led to the conclusion 
that the best solution to the cloudiness removal 
problem is a combination of optical and radar 
data. Compared to conventional methods of image 
processing, neural networks could provide more 
efficient and better performance indicators due to 
the ability to adapt to different conditions and types 
of images. As a result, a generative adversarial 
network (GAN) model with cyclic-sequential 
7-ResNeXt block architecture was constructed 
for cloud removal in optical space imagery using 
synthetic aperture radar (SAR) imagery. The model 
built generates fewer artifacts when transforming 
the image compared to other models that process 
multi-temporal images.

The experimental results on the SEN12MS-CR 
data set demonstrate the ability of the constructed 
model to remove dense clouds from simultaneous 
Sentinel-2 space images. This is confirmed by the 
pixel reconstruction of all multispectral channels 
with an average RMSE value of 2.4 %. To increase 
the informativeness of the neural network during 
model training, a SAR image with a C-band 
signal is used, which has a longer wavelength and 
thereby provides medium-resolution data about the 
geometric structure of the Earth's surface. Applying 
this model could make it possible to improve the 
situational awareness at all levels of control over 
the Armed Forces (AF) of Ukraine through the use of 
current space observations of the Earth from various 
ERP systems
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1. Introduction 

Given current global and regional challenges, devel-
oped countries are revising their approaches to information 
technology support to national security. One of the possible 
ways to achieve this is the active and systematic use of space 
images, namely multi-spectral data from ERP.

The change in emphasis in the methods and forms of con-
ducting modern warfare has led to a significant expansion of 
tasks that are solved with the help of ERP data from various 
space vehicles (SVs) of medium and high resolution and 
when they are integrated. A promising option in this case is 
the use of open multispectral data from SVs.

Under the conditions of rapid development of technolo-
gies, including in the field of ERP, there are many opportu-
nities to use open ERP data obtained from various sensors in 
various formats. Such information is often complementary, 
and its integration could make it possible to obtain more de-
tailed and accurate observational data. This would provide 
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the need to select the freshest, least cloudy observations, as 
they replace corrupted cloudy pixels with real cloud-free ob-
servations. Therefore, the use of such approaches has certain 
limitations: if there are no completely cloud-free observa-
tions at a certain point in time, then the resulting forecast 
will also contain cloudy pixels. The reason for this is the time 
dependence between the acquisition of the reference and 
reconstructed image, especially under conditions of rapid 
changes in the underlying surface. The only way to overcome 
this limitation is to increase the sampling rate or time range 
of the observation, but cloudiness can persist for a long time 
depending on terrain and seasonality, so the closest cloud-
free observation may be irrelevant.

The first attempts to solve the problem of cloud removal 
in space images were based on the assumption that cloudy 
areas and the rest of the image have the same statistical and 
geometric structure. “Correction” approaches fill in dam-
aged fragments using surface information from clean regions 
of the same space image. For example, the interpolation 
method using a sparse dictionary for adaptive restoration of 
images with dense clouds [6]. Such methods do not require 
additional data but achieve good results only in the case of 
slight cloudiness. To overcome this problem, the process of 
selecting the most similar pixel for cloning is often based 
on the use of auxiliary data such as time-lapse [7] or SAR 
data [8]. Although such methods give good results, their 
disadvantage is increased complexity due to the need to use a 
large amount of multi-temporal or multi-sensor auxiliary data.

Close to them are interpolation methods that extract 
information hidden by clouds due to spatial interference 
from neighboring or sufficiently close pixels without clouds. 
Such methods are based on the method of nearest neighbors 
or kriging. Their disadvantage is that clouds may cover large 
contiguous areas continuously, in which case the proximity 
assumption is not effective.

There are two aspects to using SAR data for cloud re-
moval from multispectral imagery. The first is global fusion, 
which controls the relationship between all local optical 
windows to preserve the structure of the reconstructed 
region in accordance with the rest of the cloud-free regions. 
The second is local fusion, which transfers the additional in-
formation embedded in the SAR image corresponding to the 
cloud areas to create reliable textural details of the missing 
parts and uses dynamic filtering to reduce the performance 
degradation caused by speckle noise. The approach make it 
possible to create high-quality cloud-free images.

Prepared models based on neural networks are able to 
handle different types of clouds and other atmospheric dis-
turbances. The basis for approaches based on convolutional 
neural networks (CNN) was the essence of the cloud remov-
al process, which involves restoring an image from a noisy 
analog [9]. Their disadvantage is the need for a large amount 
of training data to achieve greater accuracy. The reason for 
this is the complexity of the variety of cloud types, which can 
affect the effectiveness of model training.

A more modern architecture is the conditional genera-
tive adversarial network (cGAN). In [10], a cGAN model is 
trained to remove detected clouds from visible (RGB) imag-
es from Worldview-2 using images in the near-infrared re-
gion as auxiliary data. The McGAN model [5] is a GNN built 
on the basis of the pix2pix model, which maps cloud images 
in the visible and near-infrared ranges of the spectrum. The 
next model, Cycle-GAN, does not require paired cloudy and 
cloudless space images for training [11]. The disadvantage of 

Thus, for most common ERP datasets, SAR images generally 
have lower classification accuracy than multispectral ones. 
Considering their complementary nature, an important task 
is the integration of multispectral and SAR data.

Privately-held companies launch their own ERP SVs, 
promoting the development of competition and innovation, 
offering open access to their own space data, which creates 
conditions for their use for military purposes. For example, 
the Copernicus mission provides access to space images 
from the Sentinel-2 spacecraft with a spatial resolution of 
about 10 m. Such images can be used to solve various tasks. 
The application of integrated multi-time and multi-parame-
ter data from ERP systems, which are publicly available for 
use, is one of the ways to increase the level of information 
technology support, namely situational awareness at all lev-
els of management of the Armed Forces of Ukraine. But con-
sidering that atmospheric obstacles, such as clouds, are regu-
lar weather phenomena, their presence is a problem for space 
observation of the Earth, which is attempted to be solved 
by automated reconstruction of the noisy or cloud-covered 
underlying surface [1]. Therefore, the improvement of space 
image processing algorithms is an urgent task.

2. Literature review and problem statement

Identification of cloudiness on space images obtained 
by ERP passive sensors in the visible and infrared parts 
of the electromagnetic spectrum is an important stage of 
pre-processing for the construction of high-quality geoinfor-
mation products. Cloudiness is the main limiting factor for 
the use of time series data obtained by ERP optical sensors.

Removal of cloudiness becomes an indispensable stage of 
pre-processing of ERP data and aims to reconstruct the miss-
ing information caused by these natural phenomena. Accord-
ing to the results of a comprehensive review [2], conventional 
methods can be divided into three groups: multispectral, multi-
temporal, and “painting” methods, and the rest are their hybrid 
combination. However, the disadvantage is that the issue of au-
tomation and increasing the accuracy of information recovery 
for complex weather conditions remains insufficiently resolved. 
The reason for this may be that most existing methods are fo-
cused on processing images with fixed time intervals between 
images, which does not make it possible to adequately process 
images with dynamic changes in cloudiness.

Multispectral approaches are used in the case of haze 
and thin cirrus clouds, when optical signals are not com-
pletely blocked but partially depend on the wavelength of 
absorption and reflection. In such cases, information about 
the surface can be restored using mathematical or physical 
models [3]. The advantage of multispectral methods is the 
possibility of using information from original space images, 
which does not require additional data. However, they can 
be effective only for translucent clouds since such models use 
optical information from the same image to restore, which 
in the case of dense covers does not eliminate the cloudiness 
problem or distorts the resulting information.

Multitemporal approaches reconstruct cloudy space 
images by integrating information from reference images 
obtained under clear sky conditions [4]. Multitemporal 
methods of catalog learning are also sometimes used for this 
purpose. Multi-time data can also come from different sen-
sors at different spacecraft [5]. These methods are popular 
due to their simplicity and practicality. Their drawback is 



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 5/2 ( 131 ) 2024

8

– input images are georeferenced cloud-free and cloud-cov-
ered Sentinel-2 multispectral space images in 12 bands (spatial 
resolutions of RGB bands: 2, 3, 4 and 8–10 m band, 5, 6, 7, 8A, 
11 and 12–20 m, and bands 1, 9–60 m), band 10 is used for 
atmospheric correction, so it is excluded;

– input SAR images are Sentinel-1 radar measurements 
of the same region in 2 polarization ranges VV and VH;

– the size of the input image is 256×256 px2;
– digital image processing procedures are applied;
– indicators that comprehensively ensure high accuracy 

of visual analysis of images and their correspondence to the 
original were chosen to evaluate the results, namely: Preci-
sion, Recall, F1, MAE, RMSE, PSNR, SSIM and SAM;

– the following hardware was used during the experi-
mental study of the model: 12th Gen Intel(R) Core (TM) 
i5-12400F 2.50 GHz processor, 64 Gb RAM, NVIDIA Ge-
Force RTX 3050 Gaming OC 8G video adapter;

– the following software was used for the experiment: 
Ubuntu 20 LTS OS with CUDA 12.1 and GPU support, 
PyTorch 2.3.0, torchvision 0.18.0.

5. Results of investigating the model for cloudiness 
removal on optical space images

5. 1. Basic elements of the model for cloudiness re-
moval in optical space images

Taking into account the approaches described in [11, 15], 
a model for the reconstruction of cloud-obscured information 
from optical satellite images is proposed, which explicitly pro-
cesses a continuous mask of cloudiness values to preserve cloud-
free pixels while correcting cloudy areas based on SAR data.

This model is trained without strict pixel-by-pixel align-
ment of cloudy and cloudless observations using fine-grained 
masks with continuous values. This is a major difference 
from previously discussed models that use binary cloudiness 
information or are more cloudiness agnostic.

The construction of a neural network for cloud removal 
in optical space images corresponds to the architecture 
of a cyclic-sequential 7-ResNeXt (in order to use a large 
receptive field due to aggressive convolution) block GAN 
with two output discriminators. The model consists of three 
parts: encoder, decoder, and generator (Fig. 1) with residual 
blocks (Fig. 2) [12].

cGAN is the high computational cost and the instability of 
training, and therefore prediction, in the case of low-quality 
input data (for example, satellite images with heavy clouds).

The models above give good results, but the data sets used 
are very limited. The disadvantages of the considered approach-
es are the need for large sets of real data; focus on narrow areas 
of interest; dependence on synthesized cloud samples. All this 
makes it impossible to generalize the data to more extensive ar-
eas and real conditions. Another significant disadvantage is the 
impossibility of using a set of weights from one area to process 
another, which differs under climatic conditions.

Therefore, approaches based on combining optical and 
SAR data deserve special attention. In [12], SAR data is 
combined with information from auxiliary optical imaging 
using the closest spectral matching method [13]. Although 
optical and radar sensors measure different quantities, which 
makes their comparison difficult, this became the basis for 
the development of deep learning approaches [14].

Since SAR is invariant to daylight conditions and robust to 
atmospheric noise, but differs in measured values   from optical 
sensors, the problem of bridging the gap between their modal-
ities arises. Although the approach of combining optical and 
radar data demonstrates the possibility of removing cloudiness 
from images, not all spectral characteristics of the earth’s sur-
face can be obtained from the corresponding radar measure-
ments, which fundamentally limits the sar2opt method [15].

Hence, the ability of GAN models to learn to transform 
images from one modality to another can help fill gaps caused 
by cloudiness; as well as generalize and adapt to new regions 
and conditions. Therefore, in the future, this approach will 
be used as a basis for building a model for cloudiness removal 
on optical space images.

3. The aim and objectives of the study

The aim of our study is to improve the process of con-
verting optical space images by removing cloudiness by 
reconstructing them with a generative adversarial network 
using additional SAR data. This will enable the process of 
cloudiness removal on optical space images with the neces-
sary quality indicators.

To achieve the set goal, the following tasks must be 
solved:

– to build a model for cloudiness re-
moval on optical space images;

– to conduct an experimental study 
of the model for removing cloudiness on 
optical space images.

4. The study materials and methods

The object of research is the process 
of removing cloudiness on optical space 
images. As the main hypothesis, it was 
suggested that the use of generative ad-
versarial networks to remove cloudiness 
in optical space images could provide 
the necessary image quality for further 
processing.

The following limitations and as-
sumptions were adopted during the re-
search:
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  Fig.	1.	Architecture	of	a	cloud	removal	model	in	optical	satellite	imagery	using	

generative	adversarial	networks
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During training, pairs of SAR and optical space images and 
corresponding cloud masks are fed to the encoder input. The 
output of the decoder is a map of predicted cloudiness masks. 
After aggregating the feature maps with the overcast images, 
the inverse hyperbolic tangent of the slope angle is applied to 
demodulate the effect of the output nonlinearity on the long-
passed pixels of the overcast input image. As a result, when 
used, the trained model reconstructs a cloudless optical image.

For the loss function, the cycleGAN approach [16] was 
used for both the generator network and the discriminator, 
which can be expressed as:
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where LcGAN is the loss function, E is the encoder, D is the 
decoder, G is the generator, and D tries to maximize while G 
tries to minimize the objective.

To reduce blurring and bring the original image closer to 
the target, the L loss function was used as follows:
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where S1, S2 are input SAR and optical data, respectively: 
� 1,S  � 2S  – synthesized, 1,S



 2S


 – regularized, 1,S  2S – in-
tra-domain transformations, DS1, DS2 – discriminant net-
works of these data; m is cloudiness mask, λadv=5.0, λcyc=5.0, 
λidt=1.0, λaux=10.0 – hyperparameters for linear fusion of 
individual losses for Lall.

Loss weights are set similarly to [16], with small manual 
adjustments. Ladv is the adversary loss originally proposed in 
LSGAN [17], which implements the least square error func-
tion for discriminator classifications. Lcyc and Lidt are the same 
as in [16], but weighted pixel by pixel with the cloud map. Laux 
is the cloud map regression loss introduced to ensure that the 
learned residual feature maps of the optical image data are 
sparse so that non-cloud pixels are almost uncorrectable.

The neural network model was evaluated using Preci-
sion and Recall, F1 [18], Mean Absolute Error (MAE), Root 
Mean Square Error (RMSE), Peak Signal-to-Noise Ratio 
(PSNR), Structural Similarity (SSIM), and Spectral Reflec-
tion Angle (SAM) [14].

MAE and RMSE are pixel-level metrics that measure the 
average deviation between the target and predicted images 
in absolute terms and in the units of interest:
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PSNR is an image-level metric that 
measures how well the reconstructed 
image matches the original target image 
in signal-to-noise ratio:
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SSIM is a metric that quantifies the structural differ-
ences between the target and predicted images, designed to 
capture the perceived change in structural information be-
tween two given images, as well as differences in brightness 
and contrast:
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SAM is a measure that quantifies the spectral angle be-
tween the target and predicted images by measuring their 
similarity in terms of rotations in spectral range space:
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where x, y are images to be compared with pixel values xc,h,w, 
yc,h,w∈[0,1], dimensionality C=3, H=W=256, mean values 
μx, μy, standard deviations σx, σy, covariance σxy and small 
numbers ∈1, ∈2 to stabilize calculations.

5. 2. Experimental study of the model for cloudiness 
removal on optical space images

The cloud removal data set SEN12MS-CR was used for 
the experiment. It consists of selected orthocorrected, ter-
rain-referenced cloud and cloud-free 13-band multispectral 
Sentinel-2 images, as well as a corresponding Sentinel-1 
image from globally distributed regions of interest, evenly 
distributed over all continents and in all meteorological 
seasons, having an average coverage size of approximate-
ly 52×40 km2, corresponding to a full-scale image size of 
5200×4000 px2. Each scene in the dataset is converted to 
the Mercator coordinate system and then partitioned into 
256×256 px2 plots with 50 % spatial overlap between adja-
cent plots. The average value of cloudiness is approximately 
47.93±36.08 %, i.e., about half of all optical image informa-
tion is cloudy. This value is close to the real value of 55 % 
cloud cover over land. To increase the number of training 
samples in the data set, synthetic data were generated using 
the “copy” method, similar to the method used in [19]. It is 
based on increasing the cloud cover in the image using cloud 
masks from other real cloud images.

During the training of the neural network model, subsets 
of 10,000 satellite images from several regions were used 
as input data. The hyperparameters of training the neural 
network model are as follows: the weights of the network w 
are initialized with a sample from the Gaussian distribution 
w~N(μ=0, σ2=0,02); ADAM optimizer with initial learning 
rate lr=0.0002 and impulse parameters β=(0.5, 0.999). The 
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256-d out 256-d in 128, 3x3, 128 

group=32 
 

  
Fig.	2.	Residual	block	of	the	cloud	removal	model
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model was trained over 50 epochs with initial learning rate 
lr, then for ndecay=25 epochs and further with a multiplica-
tive decay of the learning rate to ensure well-controlled op-
timization process during training [16]. The results of model 
training were compared with the results of model training 
described in [19] and are given in Table 1.

The results show that the built model is capable of recon-
structing cloud-covered areas while preserving information 
from non-cloudy areas of the image. The proposed neural 
network model improves image reconstruction by predicting 
uncertainty and outperforms the approach reported in [19]. 
Metrics such as SSIM and F1 show improvements in image 
restoration quality. In particular, the SSIM value increased 
by 0.005, which indicates an improvement in the visual sim-
ilarity of the restored image with the original. This indicates 
an improvement in the quality of reproduction of textures 
and image structures. However, forecasting uncertainty 
marginally degrades RMSE by 0.001. This is consistent with 
the fact that the proposed loss function implies a trade-off 
between mean optimization and variance estimation.

6. Discussion of results based on the model for cloud 
removal in optical space images

A neural network model was built for cloud removal on 
optical space images based on the block generative competi-
tive network architecture (Fig. 1). The choice of GAN is due 
to its high quality of generating realistic images, which does 
not require modeling of the probability distribution to ob-
tain new data, and the possibility of applying transfer learn-
ing. GAN blocks consist of cyclic-sequential 7-ResNeXt, 
which provides detection of more complex and multi-level 
features of input data without significantly increasing the 
number of block parameters. To train the model built, a loss 
function based on the cycleGAN approach was used, which 
ensures the preservation of key characteristics with minimal 
distortions during image generation (1) to (6).

To evaluate the results of our experiment, the following 
indicators were chosen: Precision, Recall, F1, MAE, RMSE, 
PSNR, SSIM, and SAM, calculated from expressions (7) 
to (11), as they comprehensively provide high accuracy of 
visual analysis of images, evaluating their quality and corre-
spondence to the original.

The results of our experiment (Table 1) demonstrate 
the ability of the proposed model to successfully restore 
cloud-covered areas from simultaneous Sentinel-2 space im-
ages, while preserving information from non-cloudy parts of 
the image. This is confirmed not only by visually evaluating 
the RGB channels of the input image but also by the pixel 
reconstruction of all multispectral image channels with an 
average RMSE value of 2.4 % (8). To improve the informa-
tiveness of the neural network during model training, a SAR 

image with a C-band signal is used, which has a longer wave-
length and thereby provides medium-resolution data about the 
geometric structure of the Earth’s surface. Accordingly, the use 
of auxiliary SAR images at the stage of pre-processing of imag-
es is effective, which is confirmed by the results given in Table 1. 

This enables fulfillment of most tasks in the field of 
national security that use data from ERP.

Unlike the method proposed in [5], in which 
matrix factorization and error correction methods 
were used to remove clouds, the proposed model 
provides a more accurate restoration of image 
textures and structure. For heterogeneous clouds 
and multispectral images, the matrix factorization 
method is less effective. The model built achieves 
a greater degree of consistency with the original 
images due to a more complex architecture and 
adaptation to different types of data.

The approach from [6] is effective for high spatial reso-
lution images. The proposed model provides more versatile 
results, especially for medium resolution images. Sparse 
dictionaries have limited efficiency when working with mul-
tispectral channels, and generative networks can model more 
complex spectral features.

A method from [7] is less adaptable to complex textures 
because interpolation does not always make it possible to 
preserve the geometric structures of objects, which are im-
portant for the analysis of the earth’s surface. The model using 
ResNeXt (Fig. 1) make it possible to more accurately model 
high-level features in large spaces, unlike [7], in which a mod-
el of Markov random fields is used to replace overcast pixels. 
This is confirmed by the better results of SSIM (10) and 
RMSE (8) metrics, especially in cases with dense cloud cover.

The proposed model produces fewer artifacts during im-
age transformation compared to other models that process 
multi-temporal images. As a result of the combination of 
ERP data, the model ensures the removal of dense clouds in 
the images. Comparison of the results with existing models 
demonstrates the possibility of its application for image recon-
struction during preprocessing of multispectral space images.

When applying in practice, as well as in further theoret-
ical studies, the following main limitations must be taken 
into account:

1. In complex cases, when there is a dense cloud cover 
of a complex shape, the model does not provide accurate 
reconstruction of the image due to the sampling of the 
SEN12MS-CR data set for all latitudes of the Earth. The 
model may perform better in regions similar to those in-
cluded in the training set, and worse under new, previously 
unknown conditions, such as other climate zones or specific 
ecosystems. To eliminate this shortcoming, it is necessary to 
retrain the constructed model on a data set corresponding 
to the space image processing area, or on data from a wider 
geographic and climatic spectrum to improve the universal-
ity of resulting models.

2. Images in the training data set were divided into 
smaller areas (256×256 pixels) with a spatial overlap of 50 %. 
This provides a larger training sample but may result in loss 
of context for large objects or phenomena in the image. In 
real-world scenarios where the context of large areas is im-
portant, the model may be less effective at removing cloud 
cover for large areas. In the future, we need to build models 
for removing clouds in optical space images that can work 
with larger image fragments or take into account the full 
context of the scene.

Table	1

Comparing	the	results	of	models	for	cloud	removal		
in	optical	space	images

Model Precision Recall F1 MAE RMSE PSNR SSIM SAM

Known  
model [20]

 0.458 0.586 0.514 0.017 0.023 35.802 0.904 9.936

Constructed  
model

0.461 0.589 0.517 0.018 0.024 36.028 0.909 9.866
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3. Sentinel-1 and Sentinel-2 data are used as a basis for 
model training, but these spacecraft have certain limitations in 
image quality and frequency. Further research into methods for 
integrating additional data sources or expanding the dataset 
could improve the quality of forecasting and cloud removal.

4. The model may show different results depending 
on which metric is prioritized. For example, in some tasks 
where the visual aspect is important, SSIM (10) may be key, 
while in tasks where precise numerical values are important, 
RMSE (8) may be more critical. What is needed is a method 
that would make it possible to balance the metrics or opti-
mize the model depending on the priorities of the task, for 
example, adapting the loss functions to specific practical 
applications. In real-world applications, it is important to 
properly tune the model for specific scenarios – whether it 
is a clearer image restoration or a priority on minimizing 
uncertainty.

Our experiment has confirmed the effectiveness of the 
proposed neural network model for cloud removal in optical 
space images, showing improvement in image restoration 
quality. However, to achieve optimal results under real 
conditions, it is necessary to consider the limitations, adapt 
the model, and conduct further research to improve its per-
formance.

Successful cloud removal is important for numerous 
applications such as environmental monitoring, agriculture, 
resource management, and natural disasters. The results of 
the research could prove useful for the implementation of 
more accurate satellite observations.

Prospects for further research are related to the improve-
ment of the methodical apparatus for cloudiness removal 
from multispectral space images based on medium spatial 
resolution ERP data.

7. Conclusions 

1. A neural network model for removing cloudiness in op-
tical space images has been built, based on the architecture 
of a cyclic-sequential 7-ResNeXt block GAN with two out-
put discriminators. Such an architecture makes it possible to 
effectively detect complex multi-level features of input data 
without significantly increasing the number of parameters. 
The use of GANs is due to its ability to generate realistic 
images without the need to model probability distributions 
to generate new data, as well as the ability to apply transfer 
learning. A CycleGAN-based loss function was used to train 
the model, which minimizes distortion while preserving the 
key features of the images. The model combines SAR and op-

tical data, using their synergy to improve the reconstruction. 
Additional information from SAR images helps increase the 
reliability of reconstructed images.

2. The experimental results show that the proposed 
model effectively restores cloudy areas in Sentinel-2 satel-
lite images, preserving information from cloud-free parts. 
This is confirmed not only by the visual evaluation of the 
RGB channels but also by the accurate pixel recovery of 
all multispectral channels with an average RMSE of 2.4 %. 
Metrics such as SSIM and F1 indicate an improvement in 
the reconstruction quality, in particular, the SSIM value 
increased by 0.005, indicating a higher visual similarity 
of the reconstructed images to the originals, especially in 
terms of textures and structures. To increase the efficiency 
of the model during training, SAR images from the C-band 
were used, which, owing to a longer wavelength, provide ad-
ditional information about the geometry of the Earth’s sur-
face. The model generates fewer artifacts compared to other 
multi-temporal image processing approaches and effectively 
removes dense clouds, making it suitable for most national 
security tasks based on remote probing data.
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