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УДК 621.225:004
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ИНФОРМАЦИОННЫХ 
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МАТЕМАТИЧЕСКИХ 
МОДЕЛЕЙ К 

ОБЪЕКТАМ ГИДРО-
МАШИНОСТРОЕНИЯ

Розроблено та апробовано інфор-
маційну технологію щодо адапта-
ції математичної моделі об’єм-
них втрат та об’ємного ККД 
гідромоторів аксіально-поршнево-
го типу на прикладі математичної 
моделі втрат і ККД Городецького 
К.І. шляхом уточнення коефіцієнтів 
втрат з використанням сучасних 
інформаційно-оптимізаційних тех-
нологій. Отримані результати для 
гідромотора ГСТ-90 вказують, що 
математична модель втрат адап-
тована до сучасних експеримен-
тальних даних та більш ефективна
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Введение

За последние 30-40 лет развитие объемного гидро-
машиностроения в мире, в частности в Украине, шло 
по пути уменьшения потерь в парах трения, уменьше-
ния внешних утечек, внутренних перетечек и потерь 
на сжатие рабочей жидкости. Это достигалось путем 
рационального выбора материалов пар трения [3-5], 
уменьшения зазоров в них, выбора эффективных с 
точки зрения эксплуатации рабочих жидкостей, ми-
нимизации гидромеханических и объемных потерь, 
использованием новых высокоточных технологий в 
гидромашиностроении. В то же время отсутствие ис-
пользования информационно-оптимизационных тех-

нологий [1, 2, 4, 7], связанных с идентификацией 
коэффициентов потерь для определения объемных и 
механических потерь, а также КПД в объемных гидро-
машинах аксиально-поршневого типа, в частности для 
гидромоторов, в расчетно-теоретических исследова-
ниях оставались постоянными практически в течении 
30 лет [3-6]. 

Анализ последних достижений и публикаций

За указанный период времени практически в два 
раза уменьшились средние рабочие зазоры в торцевом 
распределителе (с 30-40 мкм до 15-20 мкм), в поршне-



21

Прикладная механика

вой группе (с 15-20 мкм до 7-10 мкм) [3-7], более чем на 
50% выросло максимальное рабочее (клапанное) дав-
ление в объемных гидромашинах [4, 7]. Уменьшению 
потерь, повышению надежности деталей и узлов акси-
ально-поршневых гидромашин способствовало также 
внедрение большого числа конструкторско-техноло-
гических мероприятий по их усовершенствованию.
Для гидронасосов попытка применения информаци-
онных технологий при адаптации математических 
моделей для современных экспериментальных данных 
были сделаны в работах [3, 4, 7].

Цель и постановка задачи

Разработка и апробация информационных техно-
логий, основанных на методах оптимизации нулевого 
порядка [1, 2], по уточнению математической модели 
объемных потерь и объемного КПД для гидромоторов 
аксиально-поршневого типа на примере математиче-
ской модели потерь и КПД Городецкого К.И. [3], как 
необходимого этапа моделирования основных техни-
ко-экономических показателей и оценки конкуренто-
способности отечественных гидрообъемных передач 
(ГОП) в целом.

Математическая модель и алгоритм решения задачи

Воспользуемся известными и общепринятыми со-
отношениями для объемного КПД гидронасоса ηO1  и 
гидромотора ηO2 , работающих в составе ГОП в прямом 
потоке мощности [3, 6, 7]. Здесь и далее индекс «1» от-
носится к регулируемому гидронасосу, а индекс «2» – к 
нерегулируемому гидромотору соответственно:
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где в соответствии с работами [3,7] для гидронасоса и ги-
дромотора соответственно приняты следующие значения 
коэффициентов потерь:

Ку1 = 0,156.10-3, су1=3,67  (3)
Ку2 = 0,146.10-3., су2=4,1. (4) 

В (1)-(4)  - коэффициент 
динамической вязкости; 
для перепадов давлений 
р, угловых скоростей , па-
раметров регулирования 
е первый индекс «1» отно-
ситься к для гидронасосу, а 
индекс «2» - к гидромотору. 
D q= 23 π  - характерный размер гидромашины, м (q – 
производительность гидромашины, м3/рад); V D= ωmax  - 
характерная скорость гидромашины, м/с [3].

Суть информационной технологии по адаптации 
математической модели объемного КПД гидромотора 
ГСТ-90 к современным экспериментальным данным 
ОАО «Гидросила» заключается в построении линий 

трендов с помощью полиномов, коэффициены которых 
идентифицируются на базе методов оптимизации ну-
левого порядка при использовании значений коэффи-
циентов потерь по соотношениям (4) в качестве первых 
приближений.

Введем две группы индексов j и k, для конкретных 
экспериментальных режимов работы гидромотора 
(табл.1) и относятся соответственно к двум линейным 
массивам. Угол наклона шайбы гидромотора 2=18о.

Таблица 1

Экспериментальные режимы работы гидромотора
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3.5 9901 3.5 9901 3.5 9975
7 9806 7 9923 7 9947

14 9516 14 9812 14 9873
21 9134 21 9667 21 9773
28 8719 28 9501 28 9654
35 8279 35 9314 35 9515
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800/    
83.734

1500/    
157

2500/   
261.67

100/     
10.467

200/     
20.933

400/    
41.867   

Индекс j=1 6,  меняется по значению перепада ра-
бочего давления гидромотора р, то есть j=1 для р=3.5 
МПа, j=2 для р=7 МПа, …, j=6 для р=35 МПа. Аало-
гично индекс k =1 6,  меняется по значению угловой 
скорости гидромотора ω, то есть k=1 для =10.467 рад/с 
(100 об/мин), k=2 для =20.933 рад/с (200 об/мин), …, 
k=6 для =261.67 рад/с (2500 об/мин).

Для определении коэффициентов потерь Ку2 и Су2 
КПД гидромотора вводится квадратичный функцио-
нал вида:
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Здесь K j C jy y2 2[ ] [ ],  – значения коэффициентов по-
терь, необходимые для построения трендов; ηO j k2 ,[ ] ,
η

O

M: A? j k
2

,[ ]  – расчетный и экспериментальный объем-
ные КПД на j,k-ом экспериментальном режиме. В раз-
вернутом виде функционал (5) с учетом выражения 
(2) имеет вид: 

В данном случае с помощью метода Хука-Дживса [1, 
2] путем минимизации функционала (6) вычисляются 
kmax пар значений коэффициентов потерь Ку2 и Су2 
для каждого рабочего перепада давления р при разных 
угловых скоростях вала гидромотора (в нашем случае 
6 пар). Линии трендов для коэффициентов потерь Ку2 
и Су2 показаны на рис.1 и рис.2 соответственно.
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Рисунок1. Линия тренда для коэффициента потерь Ky2  
для гидромотора

Рисунок 2. Линия тренда для коэффициента потерь Cy2  
для гидромотора

Представим далее выражения для Ку2 и Су2 в виде:
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где c pp( , )=1 5  – варьируемые коэффициенты линии 
тренда для Ку2 с начальными значениями 
c c c c c1
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(см. рис.1);

d pp( , )=1 5  – варьируемые коэффициенты линии тренда 
для Су2 с начальными значениями 
d d d d d1
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2
0

3
0

4
0

5
04 10 0 0045 0 1854 3 0243 20 974= ⋅ = − = = − =− ; . ; . ; . ; .  

(см. рис.2).
Оптимизируем теперь методом Хука-Дживса ква-

дратичный функционал, теоретический минимум ко-
торого равен нулю, по всему множеству эксперимен-
тальных режимов: 

Оптимизация компонент векторов с и d методом 
Хука-Дживса дает следующий результат:
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Анализ результатов применения информационно-
оптимизационной технологии при адаптации матема-
тической модели

В табл.2 представлены результаты сравнения относи-
тельных ошибок по модели Городецкого К.И. и при уточ-
ненных коэффициентах потерь по формулам (10) и (11) для 
трех из шести (ввиду ограниченного объема статьи) угло-
вых скоростей вала гидромотора. Темно-серым цветом вы-
делены относительные ошибки, которые «проигрывают» в 
сравнении с результатами модели Городецкого К.И. В пода-
вляющем числе случаев (в 75.0 %) найденные коэффициен-
ты Ку2 и Су2 по формулам (10) и (11) для всего множества 
экспериментальных режимов с использованием инфор-
мационно-оптимизационной технологии дают точность 
выше, чем по модели Городецкого К.И., что подтверждает 
необходимость ее уточнения для гидромотора. Из 25.0% 
случаев (в 9 из 36 экспериментальных точек) точность по 
предложенной модели уступает точности модели Городец-
кого К.И. Причем в 4 случаях выходит за трехпроцентный 
барьер, а на 5 режимах, уступая точности Городецкого К.И., 
тем не менее, не выходит за предел 1.2% ошибки (здесь 3%-
ная ошибка лимитирует максимальную относительную 
погрешность эксперимента). В целом предложенная ин-
формационная технология и методика идентификации 
коэффициентов потерь Ку2 и Су2 для определения объ-
емных потерь и КПД для аксиально-поршневых гидромо-
торов приводит к более точным результатам, как и в случае 
результатов исследования в работе [7].

Использование других оптимизационных методов 
нулевого порядка (Пауэлла, Розенброка, Нелдера-Мида) 
для квадратичного функционала в виде (9), а также 
для функционала, в котором все скобки в квадратах (9) 
заменены модулями, дали выражения для коэффици-
ентов потерь Ку2 и Су2, приводящие к большим отно-
сительным погрешностям при вычислении объемного 
КПД гидромотора по сравнению с экспериментальных 
данными (табл. 1). Такой же вывод был сделан авторами 

и в работе [7] по отношению к коэф-
фициентам потерь для аксиально-
поршневых гидронасосов.  В целом, 
в качестве новизны можно отметить 
реализацию идеи описания коэф-
фициентов потерь в виде полино-
миальных трендов и идентифика-
ции коэффициентов полиномов на 
основе экспериментальных данных 
на базе оптимизационных процедур 
нулевого порядка.
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Выводы

1. Разработана и апробирована информационная 
технология, основанная на методах оптимизации ну-
левого порядка, по уточнению математической модели 
объемных потерь и объемного КПД путем идентифи-
кации коэффициентов потерь для гидромоторов ак-
сиально-поршневого типа на примере математической 
модели потерь и КПД Городецкого К.И. [3].

2. Получены результаты сравнения относитель-
ных ошибок по модели Городецкого К.И., учитываю-
щей предложенные коэффициенты потерь для всего 

спектра экспериментальных данных для гидромотора 
ГСТ-90. Показано, что идентифицированные коэффи-
циенты потерь Ку2 и Су2, более эффективны, чем в мо-
дели Городецкого К.И., что дает возможность наиболее 
адекватно моделировать объемные потери и объемный 
КПД в гидромашинах аксиально-поршневого типа, 
кинематические, силовые и энергетические характери-
стики гидропередач в целом.

3. При использовании предложенной информаци-
онно-оптимизационной технологии при адаптации 
математических моделей объектов гидромашиностро-
ения к современным экспериментальным данным сре-

n/ω, (об/мин)/ 
(рад/с)

Перепад давления, ∆p, 
Мпа

Способ оптимизации
Относительные ошибки (%) расчета от 

эксперимента

100/ 10.467

3,5 Городецкий К.И. 0.991146

Оптимальная аппр-ция 0.320795

7 Городецкий К.И. 1.975897

Оптимальная аппр-ция 0.252292

14 Городецкий К.И. 1.731078

Оптимальная аппр-ция 0.957462

21 Городецкий К.И. 0.656071

Оптимальная аппр-ция 3.4024

28 Городецкий К.И. 4.131516

Оптимальная аппр-ция 8.030606

35 Городецкий К.И. 8.652993

Оптимальная аппр-ция 8.572105

… … … …

800/ 83.734

3,5 Городецкий К.И. 0.51397

Оптимальная аппр-ция 0.43413

7 Городецкий К.И. 0.631031

Оптимальная аппр-ция 0.313076

14 Городецкий К.И. 0.890639

Оптимальная аппр-ция 0.188732

21 Городецкий К.И. 0.77039

Оптимальная аппр-ция 0.440526

28 Городецкий К.И. 0.389619

Оптимальная аппр-ция 0.695741

35 Городецкий К.И. 0.266672

Оптимальная аппр-ция 2.728978

…

2500/ 261.67

3,5 Городецкий К.И. 0.247789

Оптимальная аппр-ция 0.289519

7 Городецкий К.И. 0.461867

Оптимальная аппр-ция 0.336876

14 Городецкий К.И. 0.69832

Оптимальная аппр-ция 0.204044

21 Городецкий К.И. 0.655542

Оптимальная аппр-ция 0.581425

28 Городецкий К.И. 0.397338

Оптимальная аппр-ция 1.146354

35 Городецкий К.И. 0.09589

Оптимальная аппр-ция 3.230132

Таблица 2

Сравнение результатов оптимизационных процедур по уточнению математической модели объемного КПД гидромотора 
– элемента ГСТ-90



24

Восточно-Европейский журнал передовых технологий 1/5 ( 37 ) 2009

ди методов оптимизации нулевого порядка наиболее 
эффективным оказался метод Хука-Дживса.
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1.Введение

При исследовании теплофизики процесса шлифо-
вания применяются два подхода. Первый, наиболее 
распространенный и хорошо разработанный Сипай-
ловым В.А. [1] и другими исследователями, рассма-
тривает источник тепла как сплошную поверхность 
контакта круга с обрабатываемой заготовкой. При 
этом плотность теплового потока в результате работы 
шлифования определяется исходя из условий шлифо-
вания экспериментально. Другой подход [2,3,4] пред-

полагает описание массового резания единичными 
абразивными зернами, т.е. источником тепла является 
работа резания единичным зерном.

Этот подход более сложный, однако, внимание к 
себе привлекает возможность более глубоко уяснить 
теплофизическую картину шлифования а, значит, и 
более грамотно управлять процессом.

Под массовым резанием единичными зернами 
предполагается решение задачи нагрева поверхности 
заготовки как результат резания последовательно це-
лым рядом зерен. При этом каждое последующее зерно 


