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1. Introduction

Thermal conductivity in microelectronic devices plays 
an important role in enabling stable operation and their du-
rability. Thermal processes can affect the efficiency, speed, 
and accuracy of functioning of microelectronic devices, so 
technologies that provide high thermal conductivity are 
of great importance and wide application. The speed of 
heat propagation from one place to another in materials is 
determined with the use of thermal conductivity methods. 
In microelectronic devices that function intensively in 
terms of their speed and high level of accuracy, a significant 
amount of heat is generated in individual nodes and their 
elements. As a result, heat generation is a significant factor 
that leads to a decrease in the reliability of microelectronic 
devices. The relative influence of temperature is the high-
est (55 %) compared to humidity (19 %), vibration (20 %), 
and dust (6 %) [1]. If there is no effective heat dissipation, 
the device overheats and becomes unusable. One of the main 
ways to ensure high thermal conductivity in microelectronic 

devices is the use of materials with high thermal conduc-
tivity. Metals, particularly copper and aluminum, which 
have high thermal conductivity, and silicon-based materials 
such as silicon and silicon oxide, which have lower thermal 
conductivity, are widely used. However, silicon-based mate-
rials have other important properties, due to which they are 
chosen for the design of electronic devices. However, in prac-
tice, the thermal conductivity of materials can significantly 
decrease as a result of the influence of various factors, such 
as geometric parameters, structure, and microstructure of 
materials. A large number of microstructural defects can sig-
nificantly reduce thermal conductivity, which leads to over-
heating of individual nodes and elements of microelectronic 
devices. One approach to ensure high thermal conductivity 
in microelectronic devices is to use materials with a low 
melting point. It can be indium and gallium, which have high 
thermal conductivity and can be used to coat metal surfaces. 
Another way is to use technologies to reduce the geometric 
parameters of microelectronic devices, which makes it possi-
ble to increase their thermal capacity and reduce the density 

Copyright © 2024, Authors. This is an open access article under the Creative Commons CC BY license

How to Cite: Havrysh, V., Dzhumelia, E., Hrytsai, O., Kachan, S., Maikher, V. (2024). Development of mathematical models 

of heat conductivity for modern electronic devices with elements containing foreign inclusions. Eastern-European Journal of 

Enterprise Technologies, 5 (5 (131)), 70–79. https://doi.org/10.15587/1729-4061.2024.313747

DEVELOPMENT OF 
MATHEMATICAL MODELS 

OF HEAT CONDUCTIVITY 
FOR MODERN ELECTRONIC 
DEVICES WITH ELEMENTS 

CONTAINING FOREIGN 
INCLUSIONS

V a s y l  H a v r y s h
Doctor of Technical Sciences, Professor*

E l v i r a  D z h u m e l i a
Corresponding author

PhD*
E-mail: elvira.a.dzhumelia@lpnu.ua

O k s a n a  H r y t s a i
PhD*

S t e p a n  K a c h a n
PhD, Associate Professor 

Department of Civil Safety**
V i k t o r i a  M a i k h e r 

PhD*
*Department of Software**

**Lviv Polytechnic National University
S. Bandery str., 12, Lviv, Ukraine, 79013

This paper considers the heat conduction process for 
an isotropic medium containing a foreign half-through 
inclusion and heated by a locally concentrated heat flow. 
Linear and non-linear mathematical models for determin-
ing the temperature field have been built to establish the 
temperature regimes for the effective operation of elec-
tronic devices. The coefficient of thermal conductivity of 
a non-uniform structure is represented as a whole, using 
asymmetric unit functions, which automatically provides 
the conditions of ideal thermal contact on the surfaces 
of materials. This results in solving one heat conduction 
equation with discontinuous and singular coefficients. A 
linearizing function was introduced to linearize the nonlin-
ear boundary value problem. Analytical-numerical solu-
tions of linear and nonlinear boundary-value problems 
have been obtained in a closed form. A linear tempera-
ture dependence of the coefficient of thermal conductivi-
ty of structural materials was chosen for a heat-sensitive 
medium. As a result, an analytical-numerical solution was 
derived, which determines the temperature distribution in 
this medium. On this basis, a numerical experiment was 
performed, the results of which are graphically displayed 
and confirm the adequacy of the constructed mathemati-
cal models to a real physical process.

The materials of the plate and inclusion are silicon 
and silver. The results for these materials based on the 
linear and non-linear model differ by 7 %. Their slight 
difference is explained by the fact that the values of the 
temperature coefficient of thermal conductivity are small. 
The models built make it possible to analyze the given 
environments in terms of their thermal resistance. As 
a result, it becomes possible to improve it, and protect 
structures from overheating, which could lead to the fail-
ure of individual nodes and their elements and the entire 
electronic device
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of heat losses. This is achieved with the help of nanotech-
nology and microelectromechanical systems. In addition, 
effective thermal management can be achieved through the 
design of microelectronic devices by considering component 
placement, thermal junction design, and the use of thermal 
interfaces. The use of thermal materials, such as thermal 
paste, allows for efficient heat transfer between components, 
reducing the risk of overheating electronic devices.

As a result, construction of mathematical models of the heat 
conduction process is an urgent problem since as a result of the 
operation of modern electronic devices, they are exposed to 
thermal loads. Due to the heterogeneity of environments and 
the intensity of heating, significant temperature gradients oc-
cur, which contribute to overheating, which leads to the failure 
of individual elements and assemblies, as well as the device in 
general. To prevent this, it is necessary to establish acceptable 
temperature regimes for the effective operation of devices. With-
out conducting expensive experiments for heterogeneous envi-
ronments, our research results make it possible to achieve this.

2. Literature review and problem statement

In [2], a method for modeling heat transfer in porous ma-
terials with temperature-dependent properties, which is rele-
vant for structures of complex architecture, is considered. This 
approach can be applied to electronics, as modern electronic 
devices with components containing foreign half-through 
inclusions face similar challenges in the field of thermal con-
ductivity. It is important to construct mathematical models 
based on analytical and numerical methods for predicting the 
thermal behavior of such devices, which could contribute to 
their more efficient operation and increased reliability. The 
use of the modeling method does not make it possible to take 
into account local thermal disturbances, which often occur in 
devices with foreign half-through inclusions.

Analytical solutions are given in [3] for the distribution of 
temperature, displacements, and stresses in layered rectangular 
plates with a simple support subjected to thermomechanical 
loads. The properties of the materials of the layers take into ac-
count the temperature dependence. The given analytical solu-
tions do not describe local thermomechanical loads, which lim-
its their application in problems with real operating conditions.

Reconstruction of the temperature field from limited ob-
servations is important for thermal regulation of electronic 
equipment. To solve such a problem, a deep learning method 
combining an adaptive UNet and a small multilayer percep-
tron (MLP) is reported in [4]. The method makes it possible 
to transform the problem of temperature field reconstruction 
into the problem of image-to-image regression. Adaptive UNet 
reconstructs the general temperature field, while MLP special-
izes in accurately predicting zones with large temperature gra-
dients. The results of numerical experiments performed using 
finite element simulation data show that the maximum absolute 
errors of the reconstructed temperature field are less than 1 °K. 
The method was also tested for different locations of heat sourc-
es and observation points. The disadvantage of this approach is 
the need for a significant amount of data for training the model, 
which is not easy to provide under real conditions.

Thermomechanical loads of fixed columns for longitudi-
nal thermal heating with various boundary conditions were 
analyzed in [5]. The temperature distribution is determined 
by the differential quadrature method (DQM). A segmental 
model of a column with a uniform temperature distribution 

is used to analyze the deflection. The critical load and de-
flection mode are determined by the transfer matrix method 
based on the Euler–Bernoulli theory. The results are con-
firmed by comparison with literature data and FEM. The in-
fluence of temperature and material properties on deflection 
and critical load was investigated. The main drawback of the 
given approach is the simplified model for determining the 
temperature distribution, which does not take into account 
the emergence of significant temperature gradients as a re-
sult of the critical temperature load.

Paper [6] presents the basic equations and data set of 
the thermal model for predicting temperature fields and 
heating rates when applying localized laser treatments to 
the Fe-C-Ni alloy. The model takes into account the tran-
sient properties of the material and the relationship between 
temperature and microstructure with an emphasis on the 
phase dependence of thermal parameters and hysteresis in 
the phase change. The model provides temperature fields 
that are consistent with experimental microstructures in 
the zones of laser exposure. The given model can be applied 
to other materials that exhibit solid-state transformations 
during laser processing. Thermophysical parameters are av-
eraged, which leads to errors in the reported results.

In paper [7], a temperature field model was built for 
controlling the shape of a steel plate during roller hardening. 
The cooling mechanism was analyzed and the heat transfer 
coefficients for each surface were obtained. The model is 
based on the equation of thermal conductivity, which makes 
it possible to investigate the uniformity of cooling of the 
plate. A plate shape control structure was designed and test-
ed experimentally. However, the results show certain errors 
when modeling for a homogeneous environment.

Work [8] investigated the influence of control parameters 
on dimensionless speed, temperature, skin friction and local 
heat exchange rate for two thermal boundary conditions: 
Newtonian heating and convection. The thermophysical prop-
erties of the liquid remain constant throughout the study for 
a constant temperature of the plate surface. Geometric map-
ping makes it possible to analyze the behavior of heat flow 
and temperature distribution in relation to the influence of 
dimensionless parameters. Studies confirm the influence of 
boundary conditions on the rate of heat transfer, with Newto-
nian heating increasing the rate and convective heating caus-
ing it to decrease. This is due to the heating at the boundary 
in Newtonian heating, which improves the transfer of thermal 
energy, unlike convective heating. As a result, the heat is 
dissipated due to the moving fluid, which limits the transfer 
rate. The thermophysical properties of the liquid are assumed 
to be constant, which does not reflect the real conditions in 
the heat treatment process. The thermophysical parameters of 
the liquid may depend on temperature and other factors, and 
failure to take this into account in the model may lead to the 
emergence of significant errors in the research results.

Thermal modeling of electronic devices is one of the most 
important tools for assessing their reliability under various 
operating modes. In [9], a thermal model of electronic devices 
is presented, which is based on experimental temperature 
measurement data obtained by an infrared camera. These data 
are input to the constructed mathematical model, which is 
based on the finite difference method and some known phys-
ical dependences. The model built was verified by comparing 
simulation data with experimental data. It can be used to 
study the thermal behavior of the device under various oper-
ating conditions. The temperature distribution is determined 
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experimentally, which introduces an error into the developed 
mathematical model based on the finite difference method. As 
a result, the results contain significant errors.

Paper [10] proposed dynamic compact thermal models for 
predicting the temperature of the body of portable devices, in 
particular, a smartphone and a laptop, based on the convolu-
tion method. The models allow rapid determination of case 
temperature by accounting for the step response of each heat 
source but are limited to two devices and are experimental. 
The model contributes to the improvement of thermal design 
and the determination of temperature control strategies in the 
early stages of development. The model built is experimental 
and does not make it possible to determine the temperature 
regimes for more than two portable electronic devices.

The solution for the steady-state reaction of thick cylinders 
subjected to pressure and external heat flow on the inner sur-
face is reported in [11]. The influence of the temperature gra-
dient on the deformations of the environment is not taken into 
account, which significantly worsens the accuracy of the model.

A functional defect causes an increase in temperature 
and thermal stresses in thermoelectric materials, which re-
duces the reliability of devices. In [12], thermoelectric-elas-
tic fields around an elliptical defect in a two-dimensional 
thermoelectric plate were investigated using the complex 
variable method. The results show that the temperature at 
the tip of the defect increases with its size and can exceed the 
material’s melting point, and stresses can exceed the yield 
strength. This is important for material failure analysis.

A thermal analysis of cylinders of different thickness, 
made of functionally graded materials, which are under the 
influence of heterogeneous heat flows concentrated on the 
inner and outer layers was performed in [13, 14]. The studies 
do not make it possible to analyze the thermal state of the 
cylinders for local thermal disturbance.

Functionally graded materials with a continuous change 
in properties are useful for thermal protection and bio-
medical applications. In the case of a thin coating on the 
substrate, the usual mesh discretization is ineffective. The 
devised method [15] of approximate transfer uses the con-
cept of finite differences to transfer boundary conditions 
from the coating to the substrate. This makes it possible 
to numerically consider only the substrate with convection 
conditions using a hybrid finite element method. The meth-
od has been tested for different types of coatings and can be 
used to build models of thermal conductivity in electronic 
devices containing separate assemblies and their elements 
with semi-through inclusions. Using the concept of finite 
differences to transfer boundary conditions can limit the 
accuracy of numerical calculations, especially for complex 
systems with continuously changing properties.

In work [16], the authors simplify the nonlinear three-dimen-
sional problem of thermal conductivity, reducing it to the Laplace 
equation using an intermediate function. A generalized ternary 
function is proposed, and a general solution to the Laplace equa-
tion is derived. Three specific problems are analyzed: it is shown 
that the heat flux of the nonlinear problem coincides with the 
results for the linear problem, while the temperature field differs. 
At the flat border of the defect, the heat flow has a singularity, 
and its intensity is proportional to the root of the fourth power 
from the width of the defect. The disadvantage of this approach 
is that the simplification of the nonlinear problem to the La-
place equation can lead to a loss of accuracy in determining the 
temperature field, since the nonlinearity inherent in the original 
problem is not always an adequately reproduced linear model.

Existing methods have been improved and new approaches 
have been devised to construct mathematical models that make 
it possible to analyze heat exchange in piecewise homogeneous 
media [17]. Planar and spatial models of heat exchange are 
given, in which the differential equations contain coefficients 
dependent on the thermophysical properties of the phases and 
the geometric structure. Approaches for determining analytical 
and analytical-numerical solutions to boundary value problems 
of thermal conductivity are reported in [18]. Heat exchange 
processes occurring in homogeneous and layered structures 
with foreign inclusions of canonical form were analyzed in [19].

Linear and nonlinear mathematical models have been 
built for determining the temperature field and analyzing 
temperature regimes in isotropic environments with local 
thermal heating [20]. Analytical solutions were derived and 
algorithms for the numerical implementation of the tempera-
ture distribution by spatial coordinates were developed. The 
results make it possible to analyze heat exchange processes 
and increase the thermal resistance of structures.

In the cited works [17–20], models that take into account 
local heating, the heterogeneity of environments, and the 
thermal sensitivity of their structural materials have remained 
insufficiently researched. The use of classical analytical and 
numerical methods does not make it possible to effectively 
take into account the given factors for individual elements and 
nodes of electronic device designs. Therefore, a technique for 
constructing mathematical models of thermal conductivity, in 
which these factors are taken into account, is given.

Our review of the literature reveals that there is not a 
strict, logical, theoretically grounded technique for build-
ing linear and nonlinear mathematical models of thermal 
conductivity for heterogeneous thermosensitive media. The 
components of modern digital devices are small in size and 
contain significant thermal power. Therefore, in research, it 
is important to take into account the heterogeneity of these 
elements, the thermal sensitivity of structural materials, and 
the locality of thermal heating.

3. The aim and objectives of the study

The aim of our study is to construct linear and nonlinear 
mathematical models of thermal conductivity for isotropic 
media that contain foreign semi-transparent inclusions and 
are subject to local external heating. As a result, there is an 
opportunity to increase the accuracy of determining tem-
perature fields, which would further affect the effectiveness 
of methods for designing modern electronic devices.

To achieve this goal, the following tasks must be solved:
– to build a linear mathematical model for determining 

the temperature field in a medium with a foreign semi-trans-
parent inclusion heated by a locally concentrated heat flow;

– to construct a non-linear mathematical model for de-
termining the temperature field in a thermosensitive (the 
thermophysical parameters of the material depend on the 
temperature) environment with a foreign half-through inclu-
sion heated by a locally concentrated heat flow.

4. The study materials and methods

The object of research is the heat conduction process for 
isotropic media with foreign semi-transparent inclusions, 
which are heated by a locally concentrated heat flow.
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Our hypothesis: the study was carried out within the 
framework of the classical theory of thermal conductivity.

The following assumptions and simplifications were 
accepted in the research process: the media are not aniso-
tropic, that is, the values of thermophysical parameters are 
constant in spatial directions. The process of heat conduc-
tion is stationary since the change in the temperature field is 
determined only by spatial coordinates.

An isotropic layer containing a foreign half-through cy-
lindrical inclusion with a radius R assigned to the cylindrical 
coordinate system (Orφz) is given. On the boundary surface of 
the layer L+ in the region of inclusion {(r, φ, h): 0rR, 0φ2π} 
the given structure is heated by a concentrated heat flux, the 
surface density of which is q0=const, and on the other surface 
of the layer L–={(r, φ, –l): 0r<µ, 0φ2π} there is a convective 
heat exchange with the environment with temperature tc=const 
according to Newton’s law. On inclusion surfaces KR={(R, φ, z): 
0φ2π, 0zh}, K0={(r, φ, 0): 0φ2π, 0rR} there is an ideal  

thermal contact t0(R, z)=t1(R, z), 
( ) ( )0 1

0 1

, ,t r z t r z

r r

∂ ∂
λ = λ

∂ ∂
 for  

r=R and t0(r, 0)=t1(r, 0), 
( ) ( )0 1

0 1

, ,t r z t r z

z z

∂ ∂
λ = λ

∂ ∂
 for z=0 (0 for 

inclusion, 1 for layer) (Fig. 1).
The behavior of the temperature t(r, z) as a function of 

the spatial coordinates r and z in the given inhomogeneous 
structure was obtained by solving the generalized heat con-
duction equation [17, 19]:

( ) ( )1
, , 0,div r r z grad r z

r
 λ θ =  	 (1)

under boundary conditions:

( ) ( )1

,
, ,

z l
z l

r z
r z

z =−
=−

∂θ
λ = αθ

∂

( ) ( )0 0

,
,

z h

r z
q S R r

z −

=

∂θ
λ = −

∂
	  (2)

where q(r, z)=t(t, z)–tc; λ(r, z) ‒ thermal conductivity 
coefficient of the heterogeneous layer; α ‒ coefficient of 
heat transfer from the boundary surface of the layer; L–; 
λ0(t), λ1(t) ‒ thermal conductivity coefficients of inclusion 
and layer materials, respectively; S±(z) are asymmetric unit 
functions:

( )
1, 0,

0.5 0.5, 0,

0, 0.

S±

ζ >
ζ = ζ =
 ζ <



In the case of intensive thermal load for certain tempera-
ture intervals, the thermophysical parameters of structural 
materials become dependent on temperature. As a result, 
the environment becomes thermally sensitive, and on this 
basis, nonlinear boundary value problems arise. Therefore, 
an isotropic thermosensitive layer containing a half-through 
inclusion of the canonical form is given. The surface of the 
layer L– is considered thermally insulated. On the inclusion 
surfaces KR, K0, the conditions of ideal thermal contact  

t0(R, z)=t1(R, z), ( ) ( ) ( ) ( )0 1
0 1

, ,t r z t r z
t t

r r

∂ ∂
λ = λ

∂ ∂
 for r=R and  

t0(r, 0)=t1(r, 0), ( ) ( ) ( ) ( )0 1
0 1

, ,t r z t r z
t t

z z

∂ ∂
λ = λ

∂ ∂
 for z=0 are set.

Taking into account the thermal sensitivity of the mate-
rials of the environment, the temperature distribution t(r, z) 
in the cylindrical coordinate system in the given structure is 
determined by solving the nonlinear heat conduction equa-
tion [17, 19]:

( ) ( )1
, , , 0,div r r z t grad t r z

r
 λ =  	 (3)

under boundary conditions:

( ), 0,
r

t r z
→∞

=  
( ),

0,
r

t r z

r
→∞

∂
=

∂
 

( , )
0,

z l

t r z
z =−

∂
=

∂
 

( ) ( ) ( )0 0

,
,

z h

t r z
t q S R r

z −

=

∂
λ = −

∂
		  (4)

where λ(r,z,t) is the thermal conductivity coefficient of the 
heterogeneous thermosensitive layer; λ0(t), λ1(t) are thermal 
conductivity coefficients of inclusion and layer materials, 
respectively.

5. Results of the construction of mathematical models of 
thermal conductivity for media with semi-through inclusions

5. 1. Linear mathematical model of thermal conductiv-
ity for a heterogeneous layer with heat flow

The coefficient of thermal conductivity of a layer with a 
foreign inclusion is shown in the form:

( ) ( ) ( ) ( )1 0 1, ,r z S R r S z− −λ = λ + λ −λ − 	 (5)

The following function has been introduced:

( ) ( ) ( ), , , ,T r z r z r z= λ θ  	  (6)

and it was differentiated by the variables r and z taking into 
account the expression for the thermal conductivity coeffi-
cient λ(r, z) (5). As a result, the following ratio was obtained:

( ) ( ) ( )

( ) ( ) ( ) ( )0 1

, ,
,

, ,
r R

r z T r z
r z

r r

r z r R S z+ −=

∂θ ∂
λ = +

∂ ∂
+ λ −λ θ δ −

Fig. 1. Cross-section of an isotropic layer with a half-through 
inclusion in the plane φ=0, which is heated by a heat flux
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( ) ( )
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= − λ −λ θ − δ
∂

 	 (7)

Here ( ) ( )dS

d
±

±

ζ
δ ζ =

ζ
 are Dirac’s asymmetric delta 

functions.
As a result of substituting expressions (7) into ratio (1), 

a second-order differential equation with partial derivatives 
with discontinuous and singular coefficients is built:

( ) ( )0 1 , 0,T F r z∆ + λ −λ = 	 (8)

where 
2

2

1
r

r r r z
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 is the Laplace operator in the cy-

lindrical coordinate system;
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r
r z S R r z
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− −=

′= θ δ − −

′−θ − δ

As a result, the desired temperature field in the given 
system is determined by equation (8) under boundary con-
ditions (2).

The unknown functions θ(R,z), θ(r,0) are approximated 
by linear constant functions for the variables z and r:

( ) ( ) ( )
1

1 1
1

, ,
n

i i i
i

R z S z z
−

+ −
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θ = θ + θ −θ −∑

( ) ( ) ( )
1

1 1
1

,0 ,
k

j j j
j

r S r r
−

+ −
=

θ = θ + θ −θ −∑  		  (9)

where zi(0;h); z1≤z2≤…≤zn-1; rj(0;R); r1≤r2≤…≤rk-1; n, k 
are the numbers of interval division (0;h),(0;R); ( )1, ,i i nθ =  
( )1,j j kθ =  are unknown approximate temperature values 

θ(R, z), θ(r,0).
After substituting expressions (9) into equation (8), a sec-

ond-order differential equation with partial derivatives with 
a discontinuous and singular right-hand side is constructed:

( ) ( )0 1 1 , .T F r z∆ = λ −λ 	 (10)
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Henkel’s integral transformation along the r coordinate 
is applied to equation (10) and boundary conditions (2) tak-
ing into account ratio (6).

As a result, an ordinary differential equation of the sec-
ond order with constant coefficients and a discontinuous and 
singular right-hand side is derived:
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kind of the J-th order;
z is a parameter of Henkel’s integral transformation.
The general solution to equation (11) is determined by 

the method of variation of constants:
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Boundary conditions (12) were used, and as a result, the 
solution to problem (11), (12) was derived in the form:
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( ) ( ) ( ) ( )2 1, 1 , ,B z ch z S z P z− ξ = θ ξ − − ξ 

( ) ( ),
, ,

E z
P z sh h

E

ξ
ξ = ξ

( ) ( )
( )( )
( ) ( )

1

3 1
1

1
, ,

n
i

i i
i i i

ch z z
B z

S z z D

−

+
= −

 ξ − − ×
 ξ = θ −θ
 × − − ξ 

∑

( ) ( ) ( )
( )

,
,i i

E z
D sh h z

E

ξ
ξ = ξ −

ξ

( ) ( ) ( )( ) ( )
1 1, ,z l z lE z e eξ + −ξ +ξ = λ ξ+α + λ ξ−α  
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( ) ( ) ( )( ) ( )
1 1 .h l h lE e eξ + −ξ +ξ = λ ξ+α − λ ξ−α

The inverse Henkel integral transformation was applied 
to ratio (13) and the following result was obtained:

( ) ( ) ( )0
0

, , d .T r z J r T z
∞

= ξ ξ ξ ξ∫ 	 (14)

Unknown approximation values ( )1,i i nθ =  and ( )1,j j kθ =  
of temperatures θ(R, z) and θ(r, 0) are determined by solving 
the system of n+k linear algebraic equations constructed after 
certain mathematical transformations from expression (14).

As a result, the desired temperature field in a layer with a 
half-through cylindrical inclusion is expressed by formula (14), 
from which the temperature value at an arbitrary point of the 
“layer-inclusion” structure is derived.

5. 2. Nonlinear mathematical model of thermal conduc-
tivity for a heat-sensitive inhomogeneous layer with heat flux

The coefficient of thermal conductivity for a heat-sensitive 
layer with a foreign inclusion is given in the form:

( ) ( ) ( ) ( ) ( ) ( )1 0 1, , .r z t t t t S R r S z− − λ = λ + λ −λ −  	 (15)

A linearizing function has been introduced:

( ) ( )

( ) ( )

( ) ( )
( ) ( )

( , )

1
0

( , )

0 1
( , )

( ,0)

0 1
( ,0)

, d

d

,

d

t r z

t r z

t R z

t r

t R

r z

S R r S z− −

ϑ = λ ζ ζ +

 
 λ ζ −λ ζ ζ −  

 
+ − 
  − λ ζ −λ ζ ζ  
 

∫

∫

∫
	 (16)

after differentiation of which by the variables r and z, the 
relation is obtained:

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )0 1

0

, ,
, ,

,
,

z

t r z r z
r z t

r r

t r z
t t S R r S z

r − −

=

∂ ∂ϑ
λ = +

∂ ∂
 ∂  + λ −λ −   ∂  

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )0 1

, ,
, ,

,
.

r R

t r z r z
r z t

z z

t r z
t t S R r S z

z − −

=

∂ ∂ϑ
λ = +

∂ ∂
 ∂  + λ −λ −   ∂  

	 (17)

Taking into account expressions (17), the original equa-
tion (3) is transformed into the following form:

( ) ( )
( ) ( )

( )

( ) ( ) ( ) ( ) ( )

0 1

0

0 1

1
,

,
0.

z

r R

r t t

S zt r zr r S R r
r

t r z
t t S z S R r

z z

−

−
=

− −

=

  λ −λ × ∂  ∆ϑ+ + ∂∂ × − 
∂ 

 ∂∂   + λ −λ − =  ∂ ∂  
	 (18)

The linearizing function (16) made it possible to 
transform the boundary conditions (4), which took the 
following form:

( ), 0,
r

r z
→∞

ϑ =  
( ),

0,
r

r z

r
→∞

∂ϑ
=

∂
 

( ),
0,

z l

r z

z
=−

∂ϑ
=

∂
	 (19)

( )

( ) ( ) ( ) ( )0 0 1

,

,
.

z h

r R
z h

r z

z

t r z
q t t S R r

z

=

−
=
=

∂ϑ
=

∂

 ∂  = − λ −λ −   ∂  
	 (20)

As a result, the nonlinear boundary value problem (3), (4) 
is reduced to a partially linearized differential equation with 
partial derivatives of the second order with discontinuous 
coefficients (18), linearized boundary conditions (19), and 
partially linearized boundary condition (20).

The unknown functions t(R, z) and t(r, 0) are approxi-
mated by piecewise constant functions in the spatial coor-
dinates z and r:

( ) ( ) ( )
1

1 1
1

, ,
n

i i i
i

t R z t t t S z z
−

+ −
=

= + − −∑

( ) ( ) ( )
1

1 1
1

,0 .
k

j j j
j

t r t t t S r r
−

+ −
=

= + − −∑ , 		  (21)

where ( )0; ;iz h∈  1 2 1;nz z z −≤ ≤ ≤  ( )0; ;jr R∈  1 2 1;kr r r −≤ ≤ ≤  
n, k are the numbers of dividing the intervals ( )0; ,h ( )0; ;R  

( )1, ,it i n= ( )1,jt j k=  are unknown approximate tempera-
ture values t(R, z), t(r,0).

The relation (21) was differentiated by the variables z 
and r, respectively, and as a result, we obtained:

( ) ( ) ( )
1

1
1

,
,

n

i i i
i

t R z
t t z z

z

−

+ −
=

∂
= − δ −

∂ ∑

( ) ( ) ( )
1

1
1

,0
.

k

j j j
j

t r
t t r r

r

−

+ −
=

∂
= − δ −

∂ ∑ 	 (22)

A second-order linear differential equation with partial 
derivatives and a discontinuous and singular right-hand side 
with respect to the linearizing function ϑ(r, z) is built as a result 
of substituting expressions (22) into relations (18) and (20):

( ) ( )
( )

( ) ( )

( ) ( ) ( ) ( ) ( )

1
10

1
1 11

1

1 1 10 1
1

1

,

k
i

j j j j
j i

n

i i i i i
i

t
r t t S z r r

r t

t t t t S R r z z

−
+

+ − −
= +

−

+ + + − −
=

∆ϑ =

 λ −
′= − − δ − − 

−λ  

  ′− − λ −λ − δ − 

∑

∑ 	 (23)

under a linear boundary condition:

( ) ( )0 .
z h

z
q S R r

z −

=

∂ϑ
= −

∂
	 (24)

Henkel’s integral transformation along the r coordinate was 
applied to equation (23) and boundary conditions (19), (24), 
and a second-order ordinary differential equation with con-
stant coefficients and a singular right-hand side was derived:

( )

( ) ( ) ( ) ( )

2
2

12

1

1

,
n

i i
i

d R
J R

dz

A z z A S z
−

− −
=

ϑ
−ξ ϑ = − ξ ×

ξ

′× ξ δ − −ξ ξ∑ 	 (25) 
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under boundary conditions:

( ),
0,

z l

d z

dz
=−

ϑ ξ
=  

( ) ( )0 1

,
,

z h

d z R
q J R

dz
=

ϑ ξ
= ξ
ξ

	 (26)

where ( ) ( ) ( )0
0

, , dz r r z J r r
∞

ϑ ξ = ϑ ξ∫  is the J(r ,z) function trans-

formant;

( ) ( ) ( ) ( )1 0 1 1 1 ,i i i i iA t t t t+ + + ξ = − λ −λ   

( ) ( )( ) ( ) ( )
1

1 1 0 1 1 1
1

.
k

j j j j j j
j

A r J r t t t t
−

+ + +
=

 ξ = ξ − λ −λ ∑

The general solution to equation (25) is derived as:

( )

( )
( ) ( ) ( )
( )( ) ( )

1 2

1

1
1

,

1
,

1

z z

n
i i i

i

z e e

A ch z z S z z
RJ R

A ch z S z

c cξ −ξ

−
−

= −

ϑ ξ −

 ξ ξ − − +
− ξ 
ξ + ξ ξ −  

∑

= +

and using boundary conditions (26) the constants of inte-
gration c1 and c2 are found. As a result, the solution to prob-
lem (25), (26) is obtained:

( )
( ) ( ) ( ) ( )

( ) ( ) ( )

0
1

1

1
1

, ,
1

, .

,
n

i i
i

Rq
J R P z A B z

z

RJ R A B z
−

=

 ξ ξ + ξ ξ + 
 ϑ ξ
 ξ
+ ξ ξ ξ 
 

ξ=
∑

	 (27)

Here: 

( ) ( ) ( ) ( ), , 1 ;B z P z sh h ch z S z−ξ ξ ξ − ξ −=  

( ) ( ) ( ) ( ) ( ), , ;i i i iB z P z sh h z ch z z S z z−ξ ξ ξ − − ξ − −=

( ) ( )
( )

, .
ch z l

P z
sh h l

ξ +
ξ

ξ +
=

The inverse Henkel integral transformation was applied 
to relation (27) and the expression for the linearizing func-
tion J(r, z) was determined in the following form:

( ) ( ) ( )0
0

, , d .r z J r z
∞

ϑ = ξ ξ ϑ ξ ξ∫ 	 (28)

As a result of substituting the temperature dependence of 
the coefficient of thermal conductivity of the layer materials 
and including it in relations (16) and (28), certain mathe-
matical transformations are performed. As a result, a system 
of nonlinear algebraic equations is constructed. It is used 
to determine the unknown approximate values ti ( )1, ,i n=  

( )1,jt j k=  of temperature t(R, z) and t(r, 0), respectively.
The desired temperature field t(r, z) for the given struc-

ture is determined using the resulting nonlinear algebraic 
equation. To this end, relations (16) and (28) are used as 
a result of substituting in them a specific expression of the 
temperature dependence of the coefficient of thermal con-
ductivity of structural materials.

A partial example. The dependence of the coefficient of 
thermal conductivity on the temperature of the structural 
materials of the structure is given in the form of a ratio:

( )0 1 ,m mk tλ = λ − 	 (29)

where 0 ,mλ  km are the reference and temperature coefficients 
of thermal conductivity of materials for inclusion (m=0) and 
layer (m=1).

Using relation (16) for the linearizing function and ex-
pression (29), the formulas for determining the temperature 
t(r, z) in the inclusion region ( ){ }, , : ,0 2 ,r z r R z hϕ ≤ ≤ ϕ≤ π ≤  
are derived:

( ) ( ) ( ) ( )0 0
0 0

2 ,1
, 1 1 ,

r z
t r z k r z

k

  ϑ = − − +ϑ+ϑ +ϑ   λ  
	 (30)

and in area outside the inclusion 

( ), , : ,

0 2 , :

r z r R

l z h

 ϕ >
 

≤ ϕ≤ π 
 − ≤ ≤ 

( ) ( )1
0

1 1

2 ,1
, 1 1 ,

k r z
t r z

k

 ϑ
 = − −
 λ 

	 (31)

where:

( ),n nt j t kϑ= λ − λ  ( ) ( ) ( ),0 ,0 ,r t r t r k j ϑ = λ −λ 

 ( ) ( ) ( ), , ,z t R z t R z k j ϑ = λ −λ 

 
0
1
0
0

2 1 ,j
 λ

λ = − 
λ 

 
0
1

1 00
0

.k k k
λ

λ = −
λ

Formulas (30) and (31) describe the temperature field in 
the thermosensitive “layer-inclusion” structure.

The main material of the layer is silicon, and the 
foreign inclusion material is silver. In the temperature 
range [20 °С; 1230 °С] the temperature dependence of 
the coefficient of thermal conductivity for the given ma-
terials was established by the interpolation technique in  
the form:

( )1

W 1
67.9 1 0.0005 ,

degree m degree
t t

 
λ = − ⋅  

( )0

W 1
422.54 1 0.00031 ,

degree m degree
t t

 
λ = − ⋅  

 	 (32)

which is a partial case of relation (29).
According to (14), numerical calculations of the tem-

perature distribution θ(r,z) in the layer were performed 
for the following initial data: λ1=67.9 W/(m·degree) for 
silicon and λ0=419 W/(m·degree) for silver according to 
temperature t=27 °С; q0=200 W/m2; l=0.1 m; h=0.075 m; 
R=0.05 m; α=17.64 W/(m2·degree). The temperature 
change θ(r, z) is illustrated depending on the spatial coor-
dinates r (z=0) (Fig. 2, a) and for z (r=0.05) (Fig. 2, b). It 
can be seen from the behavior of the curves that the tem-
perature as a function of spatial coordinates is smooth and 
monotonic. It reaches maximum values at the boundary 
surface of the plate L+, where the heat flow is concentrat-
ed. The number of partitions n and m of the intervals (0;h) 
and (0;R) is chosen to be nine. As a result, the numerical 
experiment was performed with an accuracy of 10–6.
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The results obtained for the selected materials based on 
the linear dependence of the coefficient of thermal conduc-
tivity on temperature differ from the results obtained for a 
constant coefficient of thermal conductivity by 7 %. Their 
slight difference is explained by the fact that the values of 
the temperature coefficient of thermal conductivity for the 
considered materials, as shown by ratio (32), are small.

6. Discussion of results related to investigating the 
constructed mathematical models of heat conduction in 

media with semi-through inclusions

The boundary value problems of thermal conductivity 
have been stated in accordance with a real physical process 
that is studied in heterogeneous media. Given this, differen-
tial equations of heat conduction and boundary conditions 
clearly describe mathematical models of the stationary 
process of heat conduction, which correspond to a certain 
physical model. The shape of the curves in Fig. 2, which are 
built on the basis of numerical results obtained from the an-
alytical-numerical solution to the boundary value problem, 
indicates their correspondence to the physical process. This 
is confirmed by the non-discontinuity of temperature as a 
function of spatial coordinates and the fulfillment of bound-
ary conditions at the edges of the environment.

In our studies, the theory of generalized functions 
was applied to effectively describe the thermophysical pa-

rameters of the environment with a foreign half-through 
inclusion and local temperature disturbances. As a re-
sult, differential equations with partial derivatives contain 
discontinuous and singular coefficients. To linearize the 
nonlinear boundary value problem (2), (3), the linearizing 
function (16) was introduced, and as a result, the partially 
linearized boundary value problem (18) to (20) was ob-
tained. Approximation of temperature as a function of spa-
tial coordinates was carried out on inclusion surfaces, which 
made it possible to apply Henkel’s integral transformation. 
As a result, analytical and numerical solutions (14), (33) to 
boundary value problems were derived. The temperature 
distribution is determined using relations (14), (30), (31), 
and is geometrically shown in Fig. 2.

It is worth noting that in our studies, an approach for 
linearization of boundary value problems of thermal con-
ductivity for heat-sensitive media was considered using an 
analytical-numerical method. Unlike work [1], in which a 
homogeneous environment is analyzed, and the use of the 
Kirchhoff transformation made it possible to linearize the 
boundary value problem, in our studies a new linearizing 
function has been proposed. Its application to a nonlinear 
problem made it possible to effectively obtain an analyti-
cal-numerical solution, which, in turn, leads to a minimum 
error in the results, in contrast to the use of numerical 
methods, which was not achieved in works [3, 4]. The use 
of generalized functions provided an effective description 
of the thermophysical parameters of media with foreign 

Fig. 2. Dependence of temperature θ(r,z) on spatial coordinates: a – dependence of temperature θ(r,z) on radial r coordinate; 
b – dependence of temperature θ(r,z) on the axial z coordinate

a

b
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semi-transparent inclusions, which made it possible to solve 
the differential equations of thermal conductivity with 
partial derivatives of the second order, which contain dis-
continuous and singular coefficients. This approach was not 
used in [2].

The current studies relate only to the stationary pro-
cess of heat conduction and were performed for media with 
foreign semi-through inclusions. In the future, it is possible 
to build on these studies for layered media with foreign 
half-through inclusions, as well as for non-stationary heat 
conduction processes and anisotropic layered media with the 
same inclusions.

Since in the architecture of modern electronic devices, 
separate nodes and their elements are concentrated in the 
form of structures with foreign semi-through inclusions, 
there is a need to construct mathematical models of the 
heat conduction process. These models could be both lin-
ear and nonlinear for isotropic layered media containing 
foreign half-through inclusions. As a result, the given math-
ematical models of heat conduction are simplified, but they 
make it possible to construct more complex mathematical 
models of the heat conduction process for composite media 
based on them.

Based on our analytical and numerical solutions to linear 
and nonlinear boundary value problems of heat transfer, it is 
proposed to develop computational algorithms and software 
tools for their numerical implementation. This will make 
it possible to conduct research for a number of materials 
used in the process of designing digital electronic devices, 
regarding the influence of their thermal sensitivity on the 
temperature distribution.

It is proposed to take into account the presence of 
half-through foreign inclusions in isotropic media, as well 
as the thermal sensitivity of structural materials for the 
analysis of thermal regimes, which significantly compli-
cates the solution to the corresponding linear and non-
linear boundary value problems of thermal conductivity. 
The sought solutions to these problems more adequately 
describe the temperature behavior as a function of spatial 
coordinates.

Our study was carried out for a stationary heat con-
duction process, therefore the models built are limited and 
make it possible to determine the temperature change only 
by spatial coordinates. Heat conduction problems contain 
boundary conditions of the first, second, and third kind at 
the boundary surfaces of media, which is a disadvantage, 
although this does not reduce the generality of research.

Further studies may focus on the construction of math-
ematical models for determining temperature fields in lay-
ered media with foreign semi-transparent inclusions for the 
non-stationary process of heat conduction and more complex 
boundary conditions, such as thermal radiation.

7. Conclusions 

1. A linear mathematical model for determining the 
temperature field and, subsequently, for analyzing thermal 
regimes in the structures of electronic devices with a foreign 
half-through inclusion when heated by a locally concentrat-
ed heat flow, has been constructed. An analytical-numerical 
solution to the boundary-value problem was derived and, on 
its basis, the temperature behavior as a function of spatial 
coordinates was determined graphically.

2. A nonlinear mathematical model has been built for 
determining the temperature field and, subsequently, for 
analyzing thermal regimes in thermosensitive structures of 
electronic devices with foreign half-through inclusion when 
heated by a locally concentrated heat flow. A linearizing 
function was introduced, using which a nonlinear boundary 
value problem was partially linearized. The piecewise linear 
approximation of the temperature on the inclusion surfaces 
has made it possible to fully linearize this problem. On this 
basis, an analytical-numerical solution to the initial bound-
ary value problem was obtained for the linear dependence 
of the coefficient of thermal conductivity of the structure 
materials, which determines the temperature distribution in 
the structure. The results obtained for the selected materials 
based on the linear dependence of the coefficient of thermal 
conductivity on temperature differ from the results obtained 
for a constant coefficient of thermal conductivity by 7 %.
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