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1. Introduction  

Modern materials, in particular, intermetallics, func-
tional-gradient and composite materials are common in such 
fields as the aviation and aerospace industry, automotive 
industry, energy, etc. Effective design of structural elements 
from such heterogeneous materials is a difficult task and 
requires the use of modern methods for solving elasticity 
problems. In general, the use of computer simulations and 
virtual computing experiments makes it possible to reduce 
the costs of field studies, which may be associated with the 
destruction or damage of technical objects.

Engineering problems arising from such computer sim-
ulation are often reduced to the analysis of mathematical 
models, which are described by linear and nonlinear differ-
ential equations and the corresponding conditions on the 
boundaries of the areas of definition of technical objects [1]. 
Boundary value problems play a key role in the theory of 
elasticity and construction mechanics, taking into account 
the physical characteristics of structural materials.

Approximate methods by Ritz, Galerkin, of collocations 
and finite elements are usually used to solve boundary 
value problems [2]. The directions of “scientific machine 

learning” (SciML) or “Physics-informed machine learn-
ing” (PIML) are also becoming widespread [3, 4]. In these 
approaches, neural networks are used to approximate un-
known functions [5]. Neural network variants of the Ritz, 
Galerkin, collocation and other similar methods were devel-
oped [6, 7]. As a result of the operation of these algorithms, 
a neural network with physical information (Physics-In-
formed Neural Networks, PINN) is formed, which satisfies 
differential equations and boundary conditions [8].

Solving inverse problems for differential equations is of 
great practical importance. In various fields of science and 
engineering, these problems make it possible to obtain im-
portant information about systems described by differential 
equations. For example, in mechanics problems, it is possible 
to determine the parameters of structures that satisfy a cer-
tain measured or projected value of the stress-strain state.

Analytical and numerical methods are standard ap-
proaches for finding solutions to inverse problems. Analyt-
ical methods usually require complex mathematical trans-
formations and do not always make it possible to obtain a 
solution in an explicit form. Numerical methods, on the other 
hand, can require significant computational resources to 
reach convergence. The use of neural network methods can 
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This paper examines the use of neural network methods to solve 
inverse problems in the mechanics of elastic materials. 

The aim is to design physics-informed neural networks that 
can predict the parameters of structural components, and the 
physical properties of materials based on a specified displacement 
distribution. 

A key feature of the specified neural networks is the integration 
of differential equations and boundary conditions into the loss func-
tion calculation. This approach ensures that the error in approx-
imating unknown functions has a direct impact on optimizing the 
network’s weights. As a result, the resulting neural network approx-
imations of unknown functions comply with the differential equa-
tions and boundary conditions.

To test the capabilities of the designed neural networks, inverse 
problems involving the bending of plates and beams have been 
solved, focusing on determining one or two unknown parameters. 
Comparison of predicted and exact values demonstrates high accu-
racy of the constructed neural network models, with a relative pre-
diction error of less than 3 % across all cases.

Unlike analytical methods for solving inverse problems, the pri-
mary advantage of physics-informed neural networks is their flex-
ibility when addressing both linear and nonlinear problems. For 
instance, the same network architecture can be employed to solve 
various boundary-value problems without modification. Compared 
to classical numerical methods, the parallelization capability of neu-
ral networks is inherently supported by modern software libraries.

Therefore, the application of physics-informed neural networks 
for solving inverse elasticity problems of plates and beams is effec-
tive, as evidenced by the achieved relative errors and the computa-
tional robustness of the method. In practice, the proposed solution 
can be used for relevant calculations during the design of structural 
elements. The developed software code can also be integrated into 
automated design systems or computer algebra systems
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reduce the marginal problem to the problem of optimizing 
the weight coefficients of neural networks. In the general 
case, such an optimization problem is effectively solved by 
methods of gradient descent and error backpropagation 
when training neural networks.

Scientific research on the development of computational 
methods for solving differential equations and their systems 
is important for the theory of neural networks and for prac-
tical engineering applications. An actual direction is the ex-
pansion of the use of neural networks for solving non-linear 
physical and engineering problems.

2. Literature review and problem statement 

Paper [9] discusses the technique for combining the fi-
nite element method with neural networks for solving direct 
and inverse boundary value problems. As a result, the work 
formulates a hybrid model for solving direct and inverse 
problems. The finite element method and physics-informed 
neural networks are used to form a joint loss function when 
solving direct problems. Losses are optimized during sys-
tem training using the method of error backpropagation. In 
the inverse statement, the problem of identifying the flow 
rate-dependent coefficients of liquid bearings is solved. The 
disadvantage of the work is the lack of learning curves of the 
hybrid systems and hyperparameters of the neural networks 
that were used. Probably, this is due to the fact that the 
authors mostly paid attention to the theoretical justification 
of the method. The lack of data on the structure and hyper-
parameters of the neural networks used in the work does 
not make it possible to reproduce the results reported in the 
paper. An option to overcome these difficulties is the use of 
standardized libraries, such as DeepXDE [10].

The Python library for solving differential equations 
DeepXDE, which is an implementation of the approach 
based on physics-informed neural networks, is considered 
in [10]. A feature of the library is the use of the method of 
adaptive refinement of the solution based on residuals. The 
finite element method is used for comparison with the results 
obtained in the work. Neural networks were used to solve or-
dinary differential equations and equations in partial deriva-
tives, the inverse problem of differential equations in partial 
derivatives, as well as to approximate a given function. The 
disadvantage of the work is insufficient coverage of the soft-
ware architecture of the library. The reason for this may be 
that the library is publicly available and has a rather complex 
structure, and therefore it was inappropriate to describe the 
software architecture in the paper. 

The method of solving the Hirota equation with variable 
coefficients is considered in [11]. A data-driven solution of 
direct and inverse problems is constructed. Local adaptive 
activation functions were used to design one of the variants 
of physics-informed neural networks. The effectiveness of 
the improved PINN algorithm is demonstrated for param-
eter prediction under different noise intensities. Different 
strategies of parameter regularization and corresponding 
weighting factors were used. The results obtained in the 
paper confirm that forward and inverse problems, including 
data-driven variable coefficient function discovery, can be 
solved by deep learning. The disadvantage of the work is the 
lack of an open software implementation of the described 
approaches. This can be explained by the fact that software 

code for academic research usually needs refactoring for fur-
ther use by a wide range of specialists.

Direct and inverse problems of Lorentz and Ressler 
chaotic and hyperchaotic systems are considered in [12]. 
Neural Fourier operators are used to solve direct problems. 
The sparse identification of nonlinear dynamics (SINDy) 
algorithm is used for solving inverse problems. The influence 
of the depth of the Fourier layers and various activation 
functions on the accuracy of the networks was analyzed. The 
disadvantage of the work is the lack of analysis of the possi-
bility of using other types of neural operators, for example, 
DeepONet or convolutional neural operator. This is proba-
bly due to the use of the Fourier transform in the operator 
layers, which make it possible reduce the volume of data for 
modeling nonlinear systems. 

The inverse problems of groundwater flow modeled using 
the Richards partial differential equation are considered 
in [13]. The PINN of the network is used for solving. Inverse 
problems are solved by reformulating the loss function of a 
deep neural network. Such a loss function must simultane-
ously aim to satisfy the measured values and the unknown 
values in a set of points distributed in the problem domain. 
The inverse problem data set was generated using a finite 
difference method applied to solve the forward problem in 
the given domain. The shortcoming of the work is the lack of 
analysis of the impact of various methods of data generation 
for the inverse problem on the accuracy of determining pro-
cess parameters. This can be explained by the fact that such 
computational experiments require significant resources. 
At the same time, the increase in accuracy when choosing a 
certain method for data generation may be insignificant for 
this class of problems.

In [14], the neural network architecture of direct signal 
propagation was used to model blood flow in arteries. For 
this purpose, the Navier-Stokes equation and the Windkes-
sel model of hemodynamics were used. The PINN network 
was used to estimate the time-dependent velocity and pres-
sure of blood flow in the aorta. Average values of velocity 
and pressure, which were measured using phase-contrast 
magnetic resonance imaging, were used as input data. The 
work contains a link to the open source code of the pub-
lication. The shortcoming of the paper is the insufficient 
description of the set of magnetic resonance imaging images 
and the lack of experiments with real clinical data. This can 
be explained by the complexity of preparing and processing 
medical images. 

Work [15] reports the use of physics-informed neural 
networks to approximate the Euler equations that model 
high-speed aerodynamic flows. The authors solved direct 
and inverse problems in one-dimensional and two-dimen-
sional domains. For the direct problem, the Euler equation 
and initial/boundary conditions are used to formulate the 
loss function. One-dimensional Euler equations with smooth 
solutions and with solutions that have a contact discon-
tinuity are solved. It is shown that a stable solution can 
be obtained using distributed points randomly clustered 
around discontinuities. The shortcoming of the work is the 
insufficient analysis of adaptive methods for determining 
the points of the region in which the boundary conditions 
and the differential equation are satisfied. Such an analysis 
would make it possible to understand the limits of applica-
tion of the proposed approach. This can be explained by the 
fact that reasonable accuracy was obtained using a random 
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distribution of points, and further analysis was considered 
inappropriate by the authors.

So, from our review of the literature, it can be concluded 
that most works consider the solution to inverse problems of 
the dynamics of liquid and gas flows. At the same time, the 
application of the above neural network methods to solving 
linear and nonlinear elasticity problems is not covered in 
detail. In particular, effective methods for modeling the 
inverse problems of plates and beams would make it possible 
to determine the parameters of structural elements based on 
known displacements. Therefore, it is advisable to conduct a 
study aimed at applying physics-informed neural networks 
to solve linear and nonlinear inverse problems of the elastic-
ity of plates and beams.

3. The aim and objectives of the study

Our goal is to design physics-informed neural net-
works for predicting parameters of structural elements and 
physical characteristics of materials based on a predefined 
displacement distribution. This will make it possible to in-
troduce appropriate neural network methods into modern 
automated design systems for rapid assessment of structural 
characteristics.

To achieve the goal, the following tasks have been for-
mulated:

– to develop a software implementation of the physics-in-
formed neural network method;

– to apply the method of neural networks to solve in-
verse linear and nonlinear problems of the mechanics of 
elastic bodies.

4. The study materials and methods

The object of our research is neural network methods for 
solving inverse problems of the mechanics of elastic bodies.

The hypothesis of the study assumes that the use of 
physics-informed neural networks is effective in solving in-
verse problems of elasticity not only in a linear but also in a 
nonlinear statement.

This paper considers the bending problems of round 
plates and beams with a circular cross-section. In this case, 
simplified hypotheses of the linear theory of elasticity, as 
well as the geometrically nonlinear theory, are accepted. 
This makes it possible to simplify the general statement of 
the problem of the theory of elasticity. However, due to the 
adopted simplified hypotheses, it is possible to compare our 
results with published works.

In the PINN method, the neural network is trained by 
integrating physical laws described by differential equations 
directly into the learning process [7]. The result of PINN 
work can be represented as a complex composition of func-
tions where, in addition to classic neural operations, the net-
work takes into account differential equations and boundary 
conditions. As a result, the neural network approximates the 
unknown function and satisfies the differential equation and 
boundary conditions.

The general PINN equation for the case of inverse prob-
lems takes the form:

 ( ) ( )( )( )( )1 2 1, ... , ,L Lu x f f f f x−θ = θ     (1)

where x is an input vector of data, in the general case 
is a spatial variable (depending on the dimensionality), 
û(x,θ)

 
is an approximate solution to a differential equation 

modeled by a neural network, fl is a function of the l-th layer, 
which is a combination of linear transformation and activa-
tion, θ is a set of parameters characterizing the system, for 
example, coefficients of a differential equation or boundary 
conditions.

Unknown parameters of the system in problems of elas-
ticity are usually used to determine the physical constants 
of the material (Young’s modulus, Poisson’s ratio) or the 
geometric dimensions of structural elements.

Each function fl can be described as a linear transforma-
tion involving a weighted sum of the inputs with the addition 
of a shift, as well as the application of a nonlinear activation 
function σ:

( ) ( )( )1, , ,l l l lf x W f x b−θ = σ ⋅ θ +    (2)

where Wl is the matrix of neural network weights for the lth 
layer, bl is the shift vector, and σ is the activation function.

The generalized loss function E(W,b,θ) of the PINN 
network, which depends on the weighting coefficients of the 
neural networks, the shift, and the unknown parameters:

( ) ( )
( ) ( )

, , , ,

, , , , ,

pde

boundary initial

W b W b

W b W b

Ε θ = Ε θ +

+Ε θ +Ε θ    (3)
 

where Epde(W,b,θ) is the error of the differential equation, 
Eboundary(W,b,θ) is the error of the boundary conditions,  
Einitial(W,b,θ) is the error of the initial conditions.

PINN uses the automatic differentiation method to 
calculate the derivatives of the neural network not only 
with respect to the unknown variables but also with re-
spect to the parameters θ, which allows the parameters 
to be updated in the learning process using gradient 
methods.

Therefore, the network learns both to solve the differ-
ential equation and to find the optimal values of the pa-
rameters θ that minimize the loss function, i.e., the neural 
network solves the inverse problem during training.

For all inverse problems considered below, the solu-
tions to direct problems of bending plates and beams from 
works [8, 16] are input data. In this case, the prediction of 
the neural network is compared with the corresponding 
distributions of movements. The resulting error is, in fact, 
the error of Eboundary(W,b,θ)+ Einitial(W,b,θ). Next, the error 
of the differential equation is calculated. During the training 
of the network, the parameters θ, which were entered during 
the initialization of the neural network as its weighting fac-
tors, are also adjusted.

To form a training and testing sample in a given area, 
several strategies for choosing collocation points are used 
in practice, in which the error of compliance with the dif-
ferential equation is calculated [17]. In particular, methods 
of non-adaptive uniform and adaptive non-uniform selection 
of points are considered in [17]. The advantages of the adap-
tive method are the possibility of condensing the number 
of points near areas with features (holes, stress concentra-
tors, etc.). At the same time, uniform sampling is fast and 
provides satisfactory accuracy for homogeneous structural 
elements. In this work, uniform sampling with different 
steps is used for training and test data.
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5. Results of implementing the physics-informed neural 
networks for solving inverse problems of the mechanics 

of elastic bodies

5. 1. Results of the software implementation of the 
method of physics-informed neural networks

The software implementation of the neural network 
method consisted in creating appropriate data structures 
and functions for determining neural networks and the con-
ditions of the problems being solved. Two 
classes are implemented: NN and Net_inv 
using PyTorch and Numpy libraries. The 
NN class defines the neural network, the 
number of layers and neurons. Fig. 1 shows 
the software code for defining a neural net-
work with three fully connected layers of 
eight neurons each. The hyperbolic tangent 
activation function ensures the nonlinear-
ity of the neural network model, which 
usually leads to a better approximation of 
dependences in the data.

The Net_inv class is implemented to 
realize the PINN method. This class defines 
the distribution of data points on which the 
model is trained and the method for calculat-
ing the loss function of the neural network. 
Fig. 2 shows a code fragment that defines 
the network parameters that are adjusted 
during gradient descent training. In partic-
ular, the parameter lambda_value is included 
in the internal weights of the neural network. 
Therefore, the lambda_value will be opti-
mized during network training to match the 
differential equation and the input displace-
ment distribution from the forward problem 
solution. The uf parameter of the class con-
structor contains the value of the unknown 
function at the specified points, i.e., it is the 
solution to the direct problem at the specified 
points of the domain of definition [8].

The method of the Net_inv class, which 
calculates the loss function of the neural 
network, is shown in Fig. 3. The peculiari-
ty of PINN is the loss function, which con-
sists of the approximation error at the points of the domain of 
definition and the error of the differential equation.

The value of the unknown function is calculated as the 
result of the prediction of the neural network on a given set 
of points. After that, numerical differentiation, and substi-

tution of the obtained approximate values in the differential 
equation takes place. Also, the error of the network at the 
points of the definition domain is additionally calculated 
relative to the values of the solution to the direct problem. 
The resulting deviations are added to the general error of the 
neural network and the method of error backpropagation is 
used to optimize the weighting coefficients.

The software implementation of the proposed methods 
and the results of solving some problems are given in [18].

5. 2. Results of using physics-informed neural net-
works for solving inverse linear and nonlinear problems 
of the mechanics of elastic bodies

The developed software implementation of physics-in-
formed neural networks is applied to solving linear and non-
linear problems of bending plates and beams. These problems 
are test and intended for verification of the PINN method 
on well-known models. Linear statements assume the pres-
ence of exact solutions, and nonlinear ones – approximate 
solutions published in the literature. For the considered 
problems, the results of solving direct statements using phys-
ics-informed neural networks are given in [8]. Approximate 
solutions of direct statements are used as input data to deter-
mine unknown parameters when solving inverse problems.

Problem 1. Bending of a circular plate with a pinched 
contour under the action of a distributed transverse constant 
load. The differential equation of deflection w(r) [8]:

4 3 2

4 3 2 2 3

2 1 1
,

d w d w d w dw q
dr r dr r dr r dr D

+ − + =   (4) 

Fig. 1. The class that defines the neural network  
of the PINN method

Fig. 2. The Net_inv class containing the implementation of the PINN method

Fig. 3. Loss function of the PINN method
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where q –  value of the distributed transverse load; D – cy-
lindrical stiffness of the plate; r is a spatial coordinate in the 
polar coordinate system.

Boundary conditions were used in the following form [8]:

( ) 0,
dw

a
dr

=  ( )0 0,
dw
dr

=  ( ) 0,w a =    (5)
 

where a is the radius of the circular plate.
Parameters of transverse bending of a round single-layer 

plate: plate thickness h=18·10-3 m, radius a=0.4 m, shear mod-
ulus and Poisson’s ratio of the material – G=2.77·104 MPa 
and ν=0.3, respectively, distributed load q=0.5 MPa.

The unknown parameter was the value of q/D, that is, 
the inverse problem was to find such a ratio of distributed 
load to cylindrical stiffness that corresponded to the input 
deflection distribution.

The convergence of the values of the unknown parameter 
is shown in Fig. 4. The change in the value of q/D during 
training of the neural network model is shown.

Problem 2. Bending of a circular plate with a hinged con-
tour under the action of a distributed transverse permanent 
load. The differential equation coincides with the equation of 
problem 1, and the boundary conditions are:

( ) 0,w a =  
2

2
0.

d w dw
D

dr r dr

 ν
− + = 

 
   (6)

The convergence of forecasting the unknown parameter 
q/D when solving the inverse problem is shown in Fig. 5.

The unknown parameter, as in problem 1, was the ratio q/D. 
Therefore, the optimal values of the load and characteristics of 
the material of the round plate were determined, satisfying the 
input deflection distribution.

Problem 3. Bending of a beam of circular cross section 
with fixed ends under the action of a distributed transverse 
load. The differential equation of bending took the form [8]:

4

4
,

d w q
dx EI

=       (7)

where q –  value of the distributed transverse load; E – Young’s 
modulus; I –  moment of inertia of the beam; x – spatial coordi-
nate in the Cartesian coordinate system.

Boundary conditions:

( ) 0,w L =  ( )0 0,w =  ( )0 0,
dw
dx

=  ( ) 0,
dw

L
dx

=  (8)

where L is the length of the beam.
When solving the direct problem [8], the following geo-

metric and physical parameters were adopted: length L=2 m, 
concentrated load force q=1 N, Young’s modulus E=72 GPa, 
diameter of the circular section d=0.005 m.

In this case, the inverse problem of determining the 
Young’s modulus E of the beam was solved. The change in 
the approximate values of the unknown parameter E with 
increasing training epochs is shown in Fig. 6.

Problem 4. Bending of a beam with one fixed end and one 
free end [8].

The differential equation was used similarly to prob-
lem 3. The boundary conditions were as follows:

( )0 0,w =  ( )0 0.
dw
dx

=      (9)

In this case, the parameter determined when solving the 
inverse problem was the ratio q/EI. The convergence of the 
values of the unknown parameter is shown in Fig. 7

Fig. 4. Convergence of the solution to inverse problem 1

q/
D

, m
-3

Fig. 5. Convergence of the solution to inverse problem 2

q/
D

, m
-3

Fig. 6. Convergence of the solution to inverse problem 3

Fig. 7. Convergence of the solution to inverse problem 4

q/
EI

·1
06 , m

-2
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Problem 5. Bending of a beam with one fixed end in a 
geometrically nonlinear setting [8, 16]. The nonlinear differ-
ential equation in this case took the form:

( )
3/222

2
1 .

M xd w dw
dx EI dx

  = +     
   (10)

When solving the direct problem of beam bending with 
a concentrated load at the free end, the following parameters 
were used: length L=1 m, concentrated load force q=30 N, 
Young’s modulus E=70 GPa, diameter of the circular section 
d=0.01 m [8].

In this case, the inverse problem of determining two 
parameters of the beam – the q/EI ratio and the length L – 
was solved.

The change in the values of the unknown parameters of 
the ratio q/EI and the length L with an increase in the train-
ing epochs of the network is shown in Fig. 8.

Comparison of the values of parameters used when solv-
ing direct problems [8] and the values obtained when solving 
inverse statements is given in Table 1.

When performing computational experiments, neural 
networks of direct signal propagation with several internal 
layers (from 3 to 8) were used. The number of neurons in 

each layer varied from 8 to 16. Adam and LBFGS optimizers 
were used. The loss function is the root mean square error. 
Neural networks of this structure can learn effectively even 
in systems with only a central processor. The use of graphics 
processors significantly reduces the network training time. 
The models built were tested on a uniform grid of collocation 
points, but with a different step than during training.

6. Discussion of results based on applying the neural 
network methods for solving inverse elasticity problems

Our results of determining the parameters of structural 
elements when solving inverse problems testify to the satis-
factory convergence of predictions of physics-informed neu-
ral networks to the exact values of the parameters.

The relative error (Table 1) of all test problems is less 
than 3 %, that is, the proposed approach is accurate enough 
for engineering calculations. One should note a relatively 
high error for problem 1 (2.385 %) in the case of bending a 
round plate with a pinched contour. This may indicate the 
need to select more layers of the neural network to provide a 
better approximation of the unknown function or to tune the 
hyperparameters of the network. Satisfactory results of the 
application of this method for solving the inverse problem in 
the case of geometrically nonlinear bending of the beam (less 
than 2 %) were obtained. This may indicate the prospects of 
using this approach for structural elements modeled using 
other nonlinear theories of elasticity.

In the considered inverse problems, the parameters 
characterizing the physical or geometric properties of the 
systems are unknown. Fig. 4–8 demonstrate that the values 
stabilize at a certain level already after ten thousand epochs 
of learning the neural network and almost do not change 
further. Therefore, the proposed approach is computation-
ally robust. This can be explained by the effectiveness of 
methods for optimizing the weight coefficients of neural 
networks since the original inverse problem reduces to an 
optimization problem.

In contrast to [9, 11], our work uses a relatively simpler 
structure of physics-informed neural networks, which made 
it possible to obtain solutions of satisfactory accuracy for 
the considered classes of problems without the need to use 
additional resources for calculations.

The proposed software implementation of the method of 
physics-informed neural networks differs from [10] in that 
it has greater flexibility and the possibility of adaptation for 
solving specific boundary value problems. This is achieved 
by the fact that the classes implemented in the work use the 
PyTorch library directly. At the same time, the DeepXDE 
library offers its own interface for solving differential equa-

tions, which can be limited in settings.
In [12], neural operators were used, which make it 

possible to obtain a generalized solution to problems for 
arbitrary values of system parameters. However, informa-
tion about physical relationships is not used to train neu-
ral operators. This can lead to solutions that do not satisfy 
the physical meaning of the problem. The difference of 
this work is that the physical equations are part of the 
loss function of neural networks, which leads to a correct 
solution on a small data set. Thus, the training sample for 

the considered problems consisted of 200–500 data points.
In contrast to [13–15], our work solves problems related 

to the statics of plates and beams. This type of problem is 

Fig. 8. Convergence of the solution to inverse problem 5:  
a – parameter q/EI; b – parameter L

q/
EI

·1
06 , m

-2

a

q/
EI

·1
06 , m

-2

b

Table 1

Comparison of exact and approximate parameter values

Parameter\Problem No. 1 2 3 4 5

Unknown parameters q/D q/D E q/EI q/EI L

Exact value 2.600 2.600 72,020.0 0.00267 0.873 1.0

Approximate value 2.662 2.567 72,999.988 0.00266 0.887 0.989

Relative error, % 2.385 1.269 1.361 0.374 1.604 1.100
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important when designing structural elements. The result-
ing solution demonstrates how the structure will behave 
under constant loads, ensures optimal use of materials, and 
evaluates possible deformations.

The method of physics-informed neural networks has 
certain advantages compared to analytical and numerical 
approaches.

For many real-world problems, especially for nonlinear 
or multidimensional systems, an analytical solution can 
be extremely difficult or impossible. Therefore, analytical 
methods often work only for special classes of equations 
(linear or simple nonlinear), and they are less effective for 
problems with complex or nonlinear interactions, especially 
in problems with heterogeneous materials or geometries [19].

On the other hand, classical numerical methods, such as 
the finite element method or the finite difference method, 
can solve very complex problems, including nonlinear, in-
homogeneous, multidimensional systems, where analytical 
methods do not work. However, these algorithms are usually 
quite complex for software implementation and depend on 
the accuracy of discrete grids [20]. 

PINN combines neural networks and physical laws by 
integrating differential equations and boundary conditions 
directly into the learning process of neural networks. Un-
like [19], in which analytical approaches to solving inverse 
problems are considered, neural network methods have no 
theoretical limitations on the type and complexity of bound-
ary value problems. This is a new approach to solving both 
direct and inverse problems, the main advantage of which is 
its flexibility in solving linear and nonlinear problems. So, in 
particular, the same network can be used to solve different 
boundary value problems without changing the network ar-
chitecture. And the use of modern hardware capabilities, for 
example, graphics and tensor processors, make it possible to 
significantly increase the speed of algorithms. Unlike classical 
numerical methods [19], the possibility of parallelizing neural 
networks is already included in modern software libraries.

Therefore, the use of physics-informed neural networks 
for solving inverse problems related to the elasticity of plates 
and beams is effective in view of the obtained values of rel-
ative errors and the computational stability of the method.

Our results complement the application of the method for 
solving inverse problems described in the literature, in partic-
ular, in terms of determining the parameters for nonlinear sys-
tems. The introduction of physical dependences and unknown 
parameters into the network structure make it possible reduce 
the inverse problem to an optimization problem, which is effec-
tively solved by gradient descent methods. The software code 
published in the open repository can be freely implemented as 
modules of automated design systems or computer algebra.

Currently, the limitations of this work are the ability to 
solve only static problems in the theory of elasticity.

The disadvantage of the study is the lack of automated 
setting of hyperparameters of neural networks.

Further development of this method may involve its im-
plementation for solving problems of dynamics and stability 
with automatic adjustment of hyperparameters of neural 
networks.

7. Conclusions  

1. A software implementation of the physics-informed 
neural network method has been developed. The corre-
sponding classes of the definition of non-networks and the 
computational method make it possible to set a differential 
equation with boundary conditions and to determine the 
parameters when solving an inverse problem.

2. The method of neural networks has been used to solve 
inverse linear and nonlinear problems related to the mechan-
ics of elastic bodies. It should be noted that the transition 
from linear problems to a geometrically nonlinear statement 
did not require a significant change in the architecture of 
neural networks. The relative error in the predicted values 
of the unknown parameters is within 3 %. At the same time, 
neural networks of direct signal propagation were used with 
the number of internal layers from 3 to 8 and neurons from 8 
to 16. Such a relatively simple architecture is important for 
ensuring high calculation speed.
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