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The object of this study is the methods and algorithms for 
computing, evaluating, and comparing DNA-based pseudoran-
dom sequences (PRSs) and random sequences (RSs). This paper 
addresses the task of extracting (P)RSs with the required sto-
chastic and statistical properties from a DNA noise source, 
experimentally validating these properties in compliance with the 
requirements of current international standards, as well as eval-
uating and comparing the sequences obtained for different DNA 
samples. The results are the developed algorithms for generat-
ing DNA-based (P)RSs, improved algorithms for their compari-
son, and proposals for the process of evaluating their properties. 
For the output of implemented algorithms, more than 96 % of the 
bit streams of sequences successfully pass all statistical tests, and 
the entropy per bit for RSs is close to 1. A special feature of the 
developed generation algorithms is the use of validated condition-
ing component – block cipher in CTR mode – which explains the 
possibility of obtaining unique random data with required prop-
erties. The peculiarity of the proposed evaluation algorithm is 
the complexity of the tests and checks used: complete assessment 
of statistical properties and entropy values. Special features of 
the improved comparison algorithms are resource saving and the 
ability to evaluate much larger data sets. This is due to the use of 
structures and data types that are better in terms of memory usage 
and flexible cryptographic primitives with different modes.

The results could be practically applied to constructs where 
randomness is required: for computing the keys and system-wide 
parameters, when performing transformations as part of hash 
functions, while obtaining sequences of an arbitrary alphabet, 
in zero-knowledge protocols, etc.

Keywords: DNA, random sequences, randomness extractors, 
statistical testing, similarity evaluation, k-mers, MinHash

UDC 004.056.5
DOI: 10.15587/1729-4061.2024.314808

How to Cite: Gorbenko, I., Derevianko, Y. (2024). Generation, evaluation and 

comparison of DNA-based (pseudo) random sequences. Eastern-European Journal 

of Enterprise Technologies, 6 (9 (132)), 6–24.  

https://doi.org/10.15587/1729-4061.2024.314808 

Received date 16.08.2024

Received in revised form 07.10.2024

Accepted date 25.10.2024

Published date 12.11.2024

1. Introduction 

Providing users with services of confidentiality, integ-
rity, availability, non-repudiation, and crypto survivability, 
which directly depend on the cryptographic properties of 
the structures used, is the main requirement for modern in-
formation systems. They, in turn, clearly depend on the prop-
erties and quality of pseudo-random sequences (PRSs) and 
random sequences (RSs) used in crypto transformations. 
That is, an important feature of most crypto primitives, 
which is justified by the necessity of randomness, is the man-
datory use of PRS and RS. Depending on the purpose, they 
are used to generate asymmetric and symmetric key pairs, to 
calculate parameters during the execution of algorithms and 
transformations, such as nonce or seed values, etc. [1].

Hereafter, the following definitions of RS, PRS, as well 
as the definition of a random number (RN) were used [1]. 
RS is a sequence of independent and equally distributed 
variables. PRS is a sequence of symbols obtained using a 
deterministic algorithm, which is computationally indis-
tinguishable from a random one. RN are discrete values 
(bits, bit strings, integers) that are obtained from a noise 
source (NS) at separate time points.

Work and development in the direction of improving the 
randomness generation process is actively conducted at the 
international and national levels and requires special attention. 
The relevance of research and implementation of new algo-

rithms for obtaining randomness is justified by the fact that the 
non-compliance of random data with modern requirements can 
with a high probability significantly weaken or compromise any 
cryptographic transformation or its components.

The US National Institute of Standards and Technolo-
gy (NIST) and the German Federal Office for Information 
Security (BSI) emphasize the importance of developing 
algorithms, methods, and means for generating/calculating 
random data. They determine the relevance of building new 
structures to obtain randomness due to the need to improve 
cryptographic primitives that use random data (keys and pa-
rameters) and strengthen their security in order to counter 
existing and new attacks in the post-quantum period.

Considering the current state of development of cryp-
tography in the field of randomness, there is a need both for 
new sources of randomness generation (noise sources), and 
for algorithms and tools that can obtain sequences with good 
randomness properties from samples from such sources. The 
urgency of building such structures is determined by the fact 
that usually the sample from NS does not have the necessary 
properties, for example, uniformity, and needs improvement.

Thus, certain physical or non-physical phenomena can be 
used as a source of randomness. In particular, DNA cryptog-
raphy is an interesting area related to the new NS. However, 
scientific research on this topic is not very popular and de-
veloped, and even within it, obtaining data based on DNA is 
of secondary importance.
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sequence as a key. However, issues related to checking the 
properties of such a key remained unresolved. The described 
method for obtaining the key is questionable since the sta-
tistical properties of the raw DNA sequence do not meet 
modern requirements, in particular [5], so that it can be used 
as an encryption key. Using key data with inappropriate 
properties could lead to the weakening of the cryptosystem 
or its complete breaking.

The criterion for evaluating the compliance of a certain 
statistical property is the P-value, which summarizes the 
strength of the evidence against the null hypothesis, which 
in the case of statistical testing is that the sequence being 
tested is random. The p-value is calculated as a specific 
function (depending on the test) of the test statistic. Test 
statistics are calculated differently for each test. The value 
of the test statistic is compared with the critical value. If 
the value of the test statistic exceeds the critical value, the 
null hypothesis of randomness is rejected. For example, for 
a monobit test that tests the ratio of zeros to ones, the test 
statistic would be the absolute value of the sum of zeros (–1) 
and ones (1) in the sequence divided by the square root of 
the length of the sequence. The p-value will be calculated by 
applying the complementary error function (erfc) [5].

For statistical tests, each P-value is the probability that a 
perfect random number generator would produce a sequence 
less random than the one being tested. The level of signifi-
cance (α) is chosen for the tests. If the P-value ≥α, then the 
null hypothesis is accepted, that is, the sequence is random. 
If the P-value <α, then the null hypothesis is rejected, that 
is, the sequence is not random [5]. Usually, α is chosen in the 
range [0.001, 0.01].

A similar application example, which proposes obtaining 
secure keys using a DNA-based one-time pad (OTP) scheme, 
is provided in [8]. It is proposed to use the DNA of the se-
lected gene as a codebook. Although the work, in contrast 
to [7], reports the results of the received keys successfully 
passing tests from the FIPS 140-2 standard, the unprocessed 
DNA sequence is still used as keys. The selection of the key 
is more random than in [7] since the place in the gene from 
which the key will be obtained is chosen randomly, and the 
length of the key depends on the length of the plaintext. The 
disadvantage of the encryption method described in [8] is 
that it does not take into account the possible similarity of 
the plaintext data and the value from the codebook – the 
key. Since the XOR operation is used for encryption, in this 
case their partial or complete mutual elimination will occur 
and, as a result, the ciphertext will not meet the necessary 
security requirements. The latest AIS 20/AIS 31 revision [2] 
recommends not using XOR, for example as a state transi-
tion function, because such an operation is not considered 
cryptographic and therefore cannot be used to obtain ran-
dom or secret data. An option to overcome such a drawback 
is the use of more advanced or complex means of encryp-
tion: substitutions, permutations, etc. An important note 
regarding this method is also the need to use the key in the 
OTP scheme only once, which is quite difficult to achieve 
using DNA. This is due to the fact that different parts of the 
DNA sequences can be identical, and the same keys will be 
used to encrypt different messages. Another possible limita-
tion of this method is the size of the received data, since long 
DNA sequences are needed to obtain rather long keys, i. e., 
random data, which are used as codebooks.

A possible option for overcoming the non-compliance 
of statistical indicators with the requirements [5] is the use 

To make a decision about the need to improve the sample, 
as well as to be able to determine the degree of this improve-
ment, it is important to be able to correctly and fully assess 
its properties. Therefore, the current area of modern research 
is also construction of new comprehensive evaluation meth-
ods that would make it possible to clearly determine to what 
extent the properties of the sequences meet the require-
ments, whether they are safe enough for use, and whether 
they need improvement.

Therefore, taking into account the lack of research into 
this area, as well as the recommendations by the main inter-
national organizations in the industry, the implementation 
of RNG and obtaining PRS and RS, in particular on the 
basis of DNA, is an actual and promising direction. Research 
on this topic is important because the use of unverified data 
with inappropriate values of statistics such as uniformity 
and low entropy per bit values is highly likely to signifi-
cantly weaken or compromise cryptographic systems and 
primitives. This determines the need to calculate keys and 
parameters of cryptographic transformations based on the 
use of verified random data, the mandatory standardization 
and certification of algorithms and means for generating, 
evaluating, and comparing RS and RN.

The results of such studies are needed in practice as they 
could make it possible to create prerequisites for improving 
constructions that use randomness and improving their se-
curity. Also, owing to new advancements in this area, more 
accurate verification and standardization of received ran-
dom data would be possible for further use both in the field 
of information security and in other fields.

2. Literature review and problem statement 

The formation of RS is possible using both physical and 
non-physical NSs, and the formation of PRS occurs with the 
use of deterministic random number generators (DRNG), the 
input data for which are relatively short RSs [2]. Study [3] 
shows the theoretical possibility of using DNA as NS. Ac-
cording to [2], it can be classified as a non-physical NS, and 
therefore create a non-physical RNG.

In order to use the data obtained from NS or RNG, it 
is necessary to carry out their preliminary assessment. For 
a comprehensive and correct quantitative and qualitative 
assessment of randomness, it is suggested to use NIST rec-
ommendations [4, 5]. According to them, the sequence prop-
erties are divided into statistical and stochastic. Statistical 
ones include, for example, the uniformity of distribution, the 
presence of periodic patterns, the degree of compression, the 
frequency of sign changes, etc. The main stochastic indicator 
is a measure of the unpredictability of the information con-
tent, that is, in the case of sequences, the value of entropy 
per bit.

In the case of a partial non-compliance of sequence 
properties, for example, samples from NS, it is possible to 
use extraction [6] by means of encryption – block or stream 
ciphers [4].

Samples from DNA noise source have already been used 
as random data in some studies, but these works have some 
drawbacks. Paper [7] proposed the use of DNA as a random 
sequence, namely a random key for encryption using Rabin’s 
cryptosystem and Feistel’s design. The authors propose 
a simple conversion of a DNA sequence into a binary one 
according to a certain rule and the use of such a binary 
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of substitutions, where different binary combinations are 
matched to the nitrogenous base according to certain rules. 
This approach is used in [9] and was presented in [10]. How-
ever, using such an approach simply changes the combinations 
to which the different nitrogenous DNA bases correspond, 
without changing the distribution and structure of the binary 
data itself. If different combinations are used for the same 
nitrogenous bases in one sequence, then the very essence of 
obtaining binary data from DNA is lost. Also, an unresolved 
issue in [9] is the correctness of testing the received binary 
sequences. In the work, sequences are split into 100-bit bit 
streams for further evaluation using the NIST statistical test 
suite [5]. However, [5] implies the use of significantly longer 
sequence lengths for most tests in the set (103–107 and more). 
In addition, the reported research results lack data from some 
tests from the set. Thus, the results in [9] cannot be consid-
ered completely reliable, and the described transformation 
method is not capable of forming sequences with the required 
statistical properties, which will be shown in this work.

Regarding the comparison of DNA sequences and binary 
sequences, works [11, 12] present tools for comparison by pre-
liminary alignment. The method they use is called pairwise 
progressive sequence alignment. This heuristic method first 
performs a pairwise alignment of sequences for all pairs that 
can be constructed from a set of sequences. Then, a dendro-
gram (spanning tree) of sequences is constructed according 
to pairwise similarity. Finally, a multiple sequence alignment 
is constructed by aligning in the order defined by the tree.

Paper [13] also suggests the use of the Needle-
man-Wunsch algorithm [14] for preliminary alignment and 
comparison of sequences. The algorithm essentially divides 
a large problem (such as a complete sequence) into a number 
of smaller problems and uses the solutions of the smaller 
problems to find the optimal solution to the larger problem. 
It is also sometimes called the optimal matching algorithm 
and the global alignment technique.

The disadvantages of the comparison methods described 
above are the difficulties associated with the need for prelim-
inary alignment, which requires significant computational 
and time costs. The previous statement also implies a limit 
on the size of sequences that can be evaluated. Therefore, 
such methods should be improved and replaced with more 
modern and effective ones. An option to overcome these 
difficulties is to use methods without preliminary alignment.

This is the approach used in [15], in which a method for 
comparing two DNA sequences without preliminary align-
ment is proposed. The method is to calculate a score using 
fuzzy membership values that are generated automatically 
based on the number of matches and discrepancies. Although 
the results reported in [15] are indicated as unique and cor-
rect, preliminary analysis indicates that such a comparison is 
a simple element-by-element comparison of matches between 
two sequences. That is, the method counts the number of 
identical elements for identical sequence indices, and the 
“score” is nothing more than a normalized index of matches.

Another option is a method that makes it possible to quick-
ly compare sequence similarity without prior measurement by 
counting k-mer and calculating k-mer distances. This is the 
approach proposed in [16]. However, the algorithm proposed 
in the work calculates all possible k-mer of the 4k space, which 
causes a rather serious consumption of memory and hardware 
resources. This shortcoming needs further improvement.

An option is to use the MinHash algorithm to calculate 
sequence similarity, which is proposed in [17]. MinHash is a 

technique for quickly evaluating the similarity between two 
sets. For the first time, such a scheme was presented in [18]. 
Before the sequences can be compared, a “sketch” must first 
be created based on them, which gives a much-reduced rep-
resentation of them. Sketches are used by the MinHash al-
gorithm to quickly estimate the distance. To create a sketch, 
each k-mer in the sequence is hashed, which produces a pseu-
do-random identifier. After sorting the identifiers (hashes), a 
small subset from the top of the sorted list (min-hashes) can 
represent the entire sequence. The more similar the sequenc-
es are, the more common min-hashes they will have [17]. The 
limitation of this method is the use of hash functions with 
an output length of 32 and 64 bits, which, when applied to 
rather long k-mers, will not make it possible to uniformly 
map their entire space in the hash.

Systematizing the results of our review, one can state 
that the most critical shortcoming of all considered works 
related to obtaining random sequences based on DNA cryp-
tography [7–9] is the non-compliance of the statistical prop-
erties of the obtained data with the requirements from [5]. 
Important shortcomings include either the complete lack 
of assessment of the properties of these data, or the use of 
outdated or narrowly focused methods. Also, the size of the 
obtained data is a limitation of the above studies. The dis-
advantage of the considered sequence comparison tools, in 
particular [16, 17], is the insufficient optimization of the use 
of resources and the impossibility of assessing the similarity 
of rather long sequences.

Therefore, the problem solved in the study is the ex-
traction of PRSs and RSs with the required stochastic and 
statistical properties from the DNA noise source, experi-
mental confirmation of these properties according to the 
requirements of current international standards, as well as 
evaluation and comparison of the obtained sequences for 
DNA of different subjects.

The essence of the problem is the fact that sequences, 
when DNA is represented in binary form, do not have the 
necessary statistical properties, but have the necessary sto-
chastic (entropy) properties. Considering this, the required 
statistical properties can be obtained by applying encryption 
means using a standard block or stream cipher on session 
keys or long-term keys. In this study, for example, such an 
extractor has been implemented on the basis of DSTU 7624-
2014 (“Kalyna”) under the stream mode of operation (CTR).

Summarizing, to solve the task, the following is proposed:
– application of NIST-recommended conditioning com-

ponents to enhance sequence properties;
– the use of modern methods of evaluating sequences, 

which involve full statistical and stochastic (entropy) testing;
– improvement of resource management in comparison 

algorithms;
– the use of more universal crypto primitives.
Thus, the above analysis reveals the expediency of con-

ducting research in the area of implementing new algorithms 
for the generation and comparison of sequences based on 
DNA cryptography. The study and correct integrated ap-
plication of algorithms for evaluating the properties of such 
sequences are also important.

3. The aim and objectives of the study

The purpose of our study is to implement algorithms 
for generating DNA-based PRS and RS with the required 
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statistical properties and entropy indicators, to provide 
suggestions for an algorithm for correct evaluation of 
these properties, to implement more effective comparison 
algorithms, as well as to directly evaluate and compare 
the obtained sequences with implemented algorithms. The 
use of DNA as a noise source could open up new oppor-
tunities for obtaining random data (sequences, numbers) 
for use, for example, in the process of calculating keys 
and system-wide parameters of the latest national and 
international quantum-resistant transformations. This, 
in turn, would create prerequisites for improving con-
structions that use randomness and improving their se-
curity. The implementation of evaluation and comparison 
algorithms, in turn, could make it possible to judge with 
high probability how uniform, unpredictable, and unique 
random data are and how safe they are for use in the re-
quired tasks. Given this, more accurate verification and 
standardization of received random data will be possible.

To achieve the goal, the following tasks were set:
– to choose a technique for obtaining binary data from 

DNA for use in calculating pseudo-random and random 
sequences and propose a procedure for their further eval-
uation;

– to implement the possibility of randomness ex-
traction from DNA based on block encryption (using a 
national standard based on the crypto primitive recom-
mended by NIST);

– to perform an analysis of the stochastic properties of 
RS based on DNA using appropriate methods;

– to analyze statistical properties of obtained on the 
basis of DNA PRS and RS using standardized methods 
(standards and recommendations);

– to improve and implement sequence similarity assess-
ment algorithms (DNA, PRS, and RS), verify the possibility 
and expediency of their practical application.

4. The study materials and methods

The object of our study is the processes and algorithms 
for calculating, evaluating, and comparing pseudo-random 
and random sequences based on DNA.

The main hypothesis of the research assumes the possi-
bility of using DNA as a noise source for further obtaining 
randomness, as well as the possibility of correct quantitative 
and qualitative assessment of this randomness using appro-
priate entropy (for example, Shannon entropy, min-entropy, 
and collision entropy), and statistical methods.

The research assumes the sufficiency of entropy in the 
noise source in the form of DNA for the possibility of apply-
ing randomness extraction-type transformations in order to 
further obtain PRS and RS with the required properties. An 
assumption is also adopted about the possibility of a suffi-
ciently accurate representation of the sequence in the form 
of a set of substrings or their hashes.

AIS 20/AIS 31 [2], NIST 800-90A [19], and NIST 800-
90B [4] were selected as the basic standards and recommen-
dations for this study, which define requirements for the 
construction, evaluation, and improvement of generators of 
various types and species, as well as requirements for noise 
sources and their entropy.

In [2], the distribution of generators by classes of func-
tionality is provided. The paper covers DRNGs (deter-
ministic RNGs), PTRNGs (physical true RNGs), and 

NPTRNGs (non-physical true RNGs). Functionality classes 
formulate the general requirements that an RNG must meet. 
The requirements are technologically neutral, so they leave 
room for new designs. This will contribute to research and 
new developments in this field [2].

In addition to the functionality class requirements, there 
are other aspects and features that also affect the security 
of random number generation, such as choosing the right 
crypto primitive to build the generator. A detailed descrip-
tion and justification of the requirements for such crypto 
primitives is provided in [19].

Requirements for noise sources and their entropy, which 
are defined in [4], are also important for the construction of 
generators. An integral part of obtaining randomness is its 
correct quantitative and qualitative assessment. To this end, 
it is implied to use the estimation of the values of various 
types of entropy (min-entropy, Shannon entropy, collision 
entropy) and statistical testing of random sequences at the 
output of generators. A detailed description of assessment 
methods is reported in [20].

When evaluating the similarity of sequences, research and 
application of k-mer counting and k-mer distance calculation 
were chosen as the main direction [16, 17]. The main advan-
tage of such methods over other comparison methods is the 
simplicity of implementation due to the absence of the need 
for preliminary alignment of sequences for correct evaluation.

Thus, the following methods were used to perform re-
search:

– application of the basics of bioinformatics and DNA 
mathematics to represent DNA sequences in binary form;

– extraction of randomness using a secure block cipher in 
CTR mode to obtain PRS and RS;

– evaluation of statistical properties of samples and se-
quences at the output of the generator using a set of tests [5];

– estimation of stochastic (entropy) properties of both 
noise source in the form of DNA and RS at the output of 
the generator using min-entropy [4], Shannon entropy, and 
collision entropy;

– comparison of DNA sequences, PRS and RS based on 
them using the k-mer distance and MinHash distance calcu-
lation methods.

The following software tools were used during develop-
ment and testing:

– universal, procedural, imperative general-purpose pro-
gramming language C (United States of America);

– high-level general-purpose programming lan-
guage C++ (United States of America);

– programming language for statistical calculations and 
data visualization R (New Zealand);

– symmetric block transformation algorithm 
DSTU 7624:2014 “Kalyna” (Ukraine) (analog: AES (Unit-
ed States of America));

– cryptographically protected Linux system generator 
(Finland) /dev/random [21];

– software implementation of a set of NIST tests: “NIST 
STS” (United States of America) and “IIT. Statistical test-
ing of PRS” (Ukraine);

– software implementation of the entropy assessment 
tool according to [4]: SP800-90B_EntropyAssessment 
(United States of America);

– software implementations of Shannon entropy and 
collision entropy evaluation tests (Ukraine);

– the hash function DSTU 7564:2014 “Kupyna” 
(Ukraine) (analog: SHA (United States of America)).
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5. Results of research into the possibility of using DNA 
cryptography in the field of randomness

5. 1. Technique for obtaining binary data from DNA 
for use in the calculation of pseudorandom and random 
sequences and the procedure for their further evaluation

The initial data for solving this task is DNA, which is 
proposed to be used as a NS for obtaining samples. Solving 
the task involves:

– obtaining various DNA samples from relevant databas-
es and DNA banks;

– selection of the technique for their representation in 
the form of binary data for further use in the process of cal-
culating PRS and RS;

– providing proposals regarding the order of their eval-
uation. 

As a result of solving the task, the possibility of obtain-
ing DNA samples in binary form is assumed, as well as the 
possibility of determining further actions with these samples 
based on the obtained evaluation values.

At its lowest level, DNA is made up of four types of ni-
trogenous bases: adenine (A), cytosine (C), guanine (G), and 
thymine (T). For the possibility of using DNA in solving the 
tasks, in particular, in the generation of PRS and RS, such a 
sequence must be represented in binary form. To this end, a 
technique was chosen that involves replacing these nitroge-
nous bases with the corresponding binary combinations. The 
representation of DNA in the form of a coding sequence of 
nitrogenous bases is shown in Fig. 1.

Fig. 1. Deoxyribonucleic acid (coding sequence) in the form 
of nitrogenous bases

To uniquely map the DNA alphabet into a binary alphabet, 
one must use combinations of length 2, since 22=4, where 4 is 
the power of the DNA alphabet, 2 is the power of the binary 
alphabet, and the power is the length of the combinations to 
uniquely map the larger alphabet into the smaller one.

Thus, the representation follows the rules given in Table 1. 
Such binary combinations have been proposed because in this 
representation the nitrogenous bases are arranged alphabetical-
ly (A, C, G, T), and the values are in ascending order, respec-
tively (0, 1, 2, 3). So, the earlier the combination occurs in the 
alphabet, the smaller the value it will correspond to.

DNA from the example 
in Fig. 1 (GTCTGGGACAT)  
after representation in bi-
nary form according to 
the rules from Table 1 will 
take the following form – 
10110111101010 0 0 010 011. 
The described rules make it 
possible to obtain binary se-
quences from DNA sequences 
of any length. It should be not-
ed that the length of the binary 
sequence will be twice as long.

Table 1

Binary combinations to represent the DNA alphabet

Nitrogenous base in DNA Binary combination to represent it

A 00

C 01

G 10

T 11

DNA sequences of various organisms can be obtained 
at the website of the National Library of Medicine (United 
States of America) in the gene bank [22]. There one can 
perform a search both by the organism as a whole and by a 
specific gene. At the same time, the DNA bank of Japan (Ja-
pan) [23] implements a more convenient search, which makes 
it possible to sort the results by organism, molecular type, 
DNA sequence length, date of receipt, etc. Each of the above 
services has advantages and disadvantages. DNA samples for 
calculating PRS and RS were obtained from [23] since it is 
easier to find DNA of the required length there. Samples for 
similarity calculation were taken from [22], as specific genes 
of organisms were chosen for this purpose.

Our paper reports the results of research only for human 
DNA sequences since the results for other organisms are 
similar, which additionally indicates the same nature of the 
origin of DNA, and therefore the possibility of considering 
DNA as a non-physical noise source. Also, as already noted 
above, DNA is unique and PRS or RS obtained on its basis 
can be used as unique data. So, having received a sample of 
one’s own DNA, a person can use it to obtain, for example, 
unique secret keys, etc.

Human DNA, namely chromosome 14 from Homo sa-
piens CHM13, was used as the main DNA sequence in this 
study. This sequence is available in [22, 23] under the ID 
CP068264. The length of this DNA sequence is 101161492 
nitrogenous bases. Fig. 2 shows a fragment of this sequence.

From the selected human DNA according to the rules 
from Table 1 we received binary data (a sequence in .dat 
format with binary data) for further use when solving the 
set tasks. When calculating PRS and RS, from the received 
binary sequence 3 fragments of 1 MB length will be selected 
from random areas in DNA.

To use sequences, it is necessary to be able to evalu-
ate their properties. Depending on the obtained values, 
the sample can either be immediately used as random 
data, or it may require improvement using, for example, 
extraction [6], or it is rejected as completely non-random. 
This study proposes a properties estimation algorithm 
that is relevant for any binary data. The execution of the 
algorithm involves carrying out stochastic and statistical 
testing of sequences as follows:

 

 
  

 

 
  

Fig. 2. Fragment of Homo Sapiens DNA sequence
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EvaluateSeq algorithm.
Input:
A binary sequence (in .dat, .bin, etc.) whose properties 

one wants to investigate.
Output:
The value of min-entropy estimates by appropriate meth-

ods;
The value of Shannon entropy estimates by appropriate 

methods;
The value of collision entropy estimates by appropriate 

methods;
Statistical test values from the NIST STS.
Or
Statistical test values from the NIST STS:
1. Determination of the type of sequence under investi-

gation
2. Carrying out necessary assessments
if (pseudo-random sequence)

	 Evaluation of statistical properties according to 
the recommendations of NIST 800-22 [5]

else
	 Entropy estimation (min-entropy according to 

NIST 800-90B [4], 
	 Shannon entropy according to [24] and collision 

entropy according to [25])
	 if (entropy values meet the requirements)
		  Evaluation of statistical properties ac-

cording to the recommendations of NIST 800-22 [5]
	 else
		  Application of randomness extractor
end if
3. Derivation of the obtained values of the estimates.

For a clearer representation of the proposed algorithm 
for evaluating the properties of the sequences, Fig. 3 shows 
its block diagram. 

 
  Fig. 3. Block diagram of the algorithm for evaluating sequence properties
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Fig. 3 demonstrates that the verification 
of stochastic properties includes the evalua-
tion of three types of entropy: min-entropy, 
which is described in detail in [4], Shannon 
entropy, and collision entropy. Estimating 
min-entropy involves the use of many meth-
ods. Each of the evaluation methods in [4] 
uses one of two approaches. The first ap-
proach is based on entropy statistics, and 
the second is based on predictors. In general, 
the following estimations are provided: most 
common value, collisions, Markov, compres-
sion, t-tuple, longest repeated substring, most 
common values in window prediction, lag 
prediction, MultiMMC, and LZ78Y. To es-
timate the Shannon entropy and collision 
entropy, correction methods are used to ob-
tain the unshifted entropy obtained by the 
corresponding formulas for their estimation.

The evaluation of statistical properties involves the use 
of a set of tests from [5]. The set contains 16 statistical tests, 
which are designed to test the hypothesis about the ran-
domness of binary sequences of arbitrary length. The tests 
contained in the set can be found in detail in [5]. In fact, 
depending on the input parameters, 189 probability values 
are calculated, which can be considered as the result of the 
work of individual tests. All tests are aimed at detecting 
various defects of randomness. The set makes it possible 
to determine to what extent the sequence generated by the 
studied primitive is statistically safe.

Thus, the proposed evaluation algorithm makes it possible, 
depending on the type of the studied sequence, to obtain the 
values of its entropy and statistical indicators. Based on these 
assessments, it is possible to determine a further action plan for 
the sequence (acceptance, further improvement, or rejection).

The results of stochastic and statistical testing of the 
“raw” sequence from Homo Sapiens (human) DNA are given 
in Table 2, and in Fig. 4, respectively. A sequence fragment of 
1 MB length (in binary representation) is used to check en-
tropy indicators, and a fragment of 13 MB length (in binary 
representation) is used for statistical testing.

Our results indicate that the statistical properties of 
such sequences do not meet the requirements – almost all 
statistical tests fail. This may be a sign of significant devia-
tion of DNA sequences from uniformity, which is explained 
by their structure and features.

The results of stochastic testing indicate the presence of 
some entropy in the sequences, and therefore it is possible 
to try to perform randomness extraction, for example, by 
applying block symmetric transformations.

5. 2. Implementing the possibility of randomness ex-
traction from DNA based on block encryption

The initial data for solving this task are samples obtained 
from DNA in binary representation. Solving the given task 
involves the application of extraction to these samples using 
block symmetric encryption. As a result of solving the prob-
lem, the PRS and RS with the necessary stochastic and sta-
tistical properties calculated by the implemented algorithms 
are assumed.

The generation of PRS and RS in our work is per-
formed using the extractor implementation based on the 
DSTU 7624:2014 block symmetric encryption standard 
in CTR mode. The use of such a cryptographic transfor-

mation to calculate PRS and RS is substantiated 
in NIST 800-90A [19] and NIST 800-90B [4].

To generate sequences using the standard, the 
input data are the encryption key, the nonce, and 
the plaintext that will be the basis. To calculate 
PRS, the standard suggests setting the key and 
nonce as a hash of the internal state of the gener-
ator, and for calculating RS – the use of random 
strings of the appropriate length. Such strings 
can be obtained using, for example, trusted 
PTRNGs (Quantis QRNG (Switzerland) [26], 
Gryada-3 (Ukraine) [27]), or NPTRNG [22]. 
The structural diagram of the sequence cal-
culation process using the extractor is shown 
in Fig. 5.

The ComputePRS algorithm makes it possible 
to calculate PRS of a given length based on binary 
fragments of DNA sequences (or any binary data, 
formats .dat, .bin, etc.) and a given key and nonce. 
The initial values of keys, nonce, and fragments 
of DNA sequences for calculating PRS are given 
in Table 3.
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Fig. 4. A statistical portrait of sequence from Homo Sapiens DNA

Table 2

Results of sequence from Homo Sapiens DNA testing using 	
entropy methods

Estimating the min-entropy  
using [4]

Estimating Shannon entropy by 
methods from [24]

MCVBitTest 0.992654 MaxLikehood 0.968398

CollisionTest 0.791030 MM 0.968413

MarkovTest 0.884869 UnveiIJ 0.968422

CompressionTest 0.328646 BUB 0.968413

MMCinWindowBitTest 0.273780 Bayes a=1.0 0.968413

LagPredictionBitTest 0.038148 Bayes a=1/k 0.968398

MultiMMCPredictionBitTest 0.179322 Bayes a=sqrt(n)/k 0.968460

LZ78YPredictionBitTest 0.202291 CS 0.968205

TupleTest 0.032402 SHR 0.968434

LRSTest 0.000022 SHU 0.968420

Estimating collision entropy using [25]

Naive 0.936559

Unbiased block=1 0.936590

Unbiased block=10 0.870314



13

Information and controlling system

Table 3

Value of the input data of the PRS calculation algorithm

Key (256 bits) Nonce (256 bits)
A fragment of DNA in binary form, 

taken as a basis (length 1MB)

0xFF, 0x06, 
0x21, 0xA6, 

0xA0, 0x28, …, 
0x02, 0x4D

0x73, 0xA4, 
0x12, 0xEA, 

0xD0, 0x45, …, 
0xFE, 0x3F

0xD5, 0x76, 0x48, 0xF7, 0x10, 
0x02, 0x2E, 0xFD, …

0x80, 0xFA, 0x43, 0x10, 0xF2, 
0x2F, 0xD1, 0x32, …

0x51, 0x4E, 0x7C, 0x9C, 0x3F, 
0xFB, 0x3F, 0xF2, …

The developed algorithm for obtaining pseudorandom 
sequences based on DNA is given below:

ComputePRS algorithm.
Input:
A file with a fragment of DNA sequence (in binary rep-

resentation, in .dat, .bin, etc. format) that will be used as a 
basis – 1 MB in length;

The key (in HEX representation) is 256 bits long;
Nonce (in HEX representation) is 256 bits long.
Output:
A file with pseudo-random sequence (in binary format, 

.dat, .bin, etc.) of a chosen length (multiples of 1 MB) based 
on the provided DNA:

1. Setting the size of the key, nonce, and plain/encrypted 
text (in bytes) and initializing the block cipher

#define KEY_SIZE 32;
#define NONCE_SIZE 32;
#define PT_SIZE 32;
#define CT_SIZE 32;
ctx=KalynaInit;
2. Initialization of the buffer into which the DNA se-

quence will be read (a fragment of the required size, for 
example, 1MB)

rawSeq[1MB/8];
3. Reading the DNA sequence in binary form
rawSeq[i]=bytes[i – i+8];
4. Calculation of the sequence of the selected length
while (selected sequence length not reached)

Key and nonce initialization
if (first iteration of encryption)
 Setting the key and nonce via input data
else
 initKey=internal state of the generator;
 nonce=internal state of the generator;
 uint64_t initKey [KEY_SIZE/8]=Hash32(initKey | 

0x01);
 uint64_t nonce [NONCE_SIZE/8]=Hash32(nonce | 

0x02);
end if
Encrypting the initial/already encrypted fragment
KalynaKeyExpand;
counter=0;
 for (i < rawSeqLen; i+=PT_SIZE/8)
 pt [PT_SIZE/8]={nonce[i] … nonce[i+PT_SIZE/8-1]};
 pt=pt^counter;
 counter++;
 KalynaEncipher(pt, ctx, ct);
 ct[i] … ct[i+CT_SIZE /8-1]=ct[i…i+…]^rawSeq[i…i+…];
 rawSeq [i] … rawSeq [i+CT_SIZE/8-1]=ct[i] … ct[i+…];
 end for
 Write the encrypted fragment to the output file
end while.

Using this algorithm, PRSs based on human DNA were 
obtained, which will be used for further testing.

Next, the algorithm for obtaining RS is given. In order to 
comply with the requirements of DSTU 7624:2014 regard-
ing generation, the key and nonce for each encryption iter-
ation are obtained using the /dev/random generator [22] on 
the kernel of the operating system version 5.4, for which this 
generator according to [2] belongs to the NTG.1 class, i.e., is 
non-physically true generator. DNA fragments for obtaining 
RS are the same as for PRS (Table 3):

ComputeRS algorithm.
Input:
A file with a fragment of DNA sequence (in binary rep-

resentation, in .dat, .bin, etc. format) that will be used as a 
basis – 1 MB in length;

 
  Fig. 5. The process of obtaining pseudorandom and random sequences
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Output:
A file with random sequence (in binary format, .dat, .bin, 

etc.) of a chosen length (multiples of 1MB) based on the 
provided DNA.

1. Setting the size of the key, nonce, and plain/encrypted 
text (in bytes) and initializing the block cipher

#define KEY_SIZE 32;
#define NONCE_SIZE 32;
#define PT_SIZE 32;
#define CT_SIZE 32;
ctx=KalynaInit;
2. Initialization of the buffer into which the DNA se-

quence will be read (a fragment of the required size, for 
example 1MB)

rawSeq[1MB/8];
3. Reading the DNA sequence in binary form
rawSeq[i]=bytes[i – i+8];
4. Calculation of the sequence of the selected length
while (selected sequence length not reached)
Key and nonce initialization
file=open(“/dev/random”, “r”);
read(file, initKey, KEY_SIZE);
read(file, nonce, NONCE_SIZE);
Encrypting the initial/already encrypted fragment
KalynaKeyExpand;
counter=0;
 for (i < rawSeqLen; i+=PT_SIZE/8)
 pt[PT_SIZE/8]={nonce[i] … nonce[i+PT_SIZE/8-1]};
 pt=pt^counter;
counter++;
 KalynaEncipher(pt, ctx, ct);
 ct[i] … ct[i+PT_SIZE/8-1]=ct[i…i+…]^rawSeq[i…i+…];
 rawSeq [i] … rawSeq [i+PT_SIZE/8-1]=ct[i] … ct[i+…];
 end for
 Writing the encrypted part to a file
end while.

This algorithm is similar to the previous one but owing 
to the use of a non-physically true generator, it makes it pos-
sible to obtain random sequences.

This technique has worse performance (the degree of 
deterioration depends on the performance of the TRNG 
used) due to the need to generate new keys and nonces 
using a third-party generator at each iteration. However, 
this provides better protection against cryptanalysis. This 
is explained by the fact that when these values are com-
promised, the attacker will be able to forge and reproduce 
the data that was generated only on this iteration from 
the current state. At the same time, s/he will not be able 
to calculate the previous and next values of the key and 
nonce, which, for example, is theoretically possible when 
using a hash to calculate the next state, which means 
that s/he will not be able to compromise the data obtained 
on their basis.

With the use of such an algorithm, RS based on human 
DNA were obtained.

5. 3. Analyzing stochastic properties of the obtained 
random sequences using appropriate methods

The initial data for solving this task are RS obtained 
by applying extraction. Solving the given problem in-
volves the use of the presented tests of entropy indicators 
(Shannon entropy, min-entropy, and collision entropy). 
The calculated values of the min-entropy, Shannon entro-

py, and collision entropy indicators of RS obtained on the 
basis of the DNA and decision-making about the success 
of the testing and the quality of their randomness are ex-
pected as the result of solving the problem.

Next, the results of the study of stochastic properties 
of RS, obtained using the ComputeRS algorithm, are 
reported. The proposed algorithm (Fig. 3) provides for 
the estimation of entropies: min [4], Shannon [24], and 
collision [25].

According to [4], stochastic research has two options: 
IID testing and non-IID testing, where IID means test-
ing independent and identically distributed variables. 
Since in this case the sequences at the output of the ex-
tractor are independent and identically distributed, the 
estimation of min-entropy will be carried out by means 
of IID-testing. The value of Shannon entropy and colli-
sion entropy will be estimated as a minimum value based 
on the results of all possible test options to evaluate  
them.

The results of RS testing by entropy methods are 
given in Table 4. Testing was performed on data in bi-
nary file format (.dat) with 13 MB (13,631,488 bytes or 
approximately 108 bits) and 120 MB (125,829,120 bytes 
or approximately 109 bits) sequences, as specified in the 
Sequence column.

Table 4

Results of RS testing using the entropy methods

Sequence Min-entropy
Shannon 
entropy

Collision 
entropy

13MB_RandSeq1 0.9959725 0.999983 0.999996

13MB_RandSeq2 0.9959991 0.998023 0.999997

13MB_RandSeq3 0.9962625 0.998302 0.999996

120MB_RandSeq1 0.9983775 0.994104 0.999998

120MB_RandSeq2 0.9986189 0.999989 0.999998

120MB_RandSeq3 0.9986769 0.999989 0.999998

The results indicate that the entropy indicators of the 
obtained RS fully meet the necessary requirements of unpre-
dictability. It should also be mentioned that the sequences 
not only pass IID tests for min-entropy, but also all others, 
such as, for example, the chi-square test [28], which indicates 
a high quality of their randomness.

Since the obtained sequences successfully pass the sto-
chastic testing, the next step of the evaluation algorithm is 
to evaluate the statistical properties using the NIST test 
suite [5]. Statistical testing was performed for both RS 
and PRS.

5. 4. Analyzing statistical properties of the obtained 
pseudo-random and random sequences using standard-
ized methods

The initial data for solving this task are PRS and 
RS obtained by applying the extraction. Solving the 
given task involves the application of statistical tests 
from the NIST STS [5] to these sequences. As a result 
of solving the problem, the calculated values of the pass 
rates of the tests from the set, as well as judgments about 
the success of the testing based on these values, are  
assumed.

The results of statistical testing are given in Ta-
bles 5, 6. The tables contain the following data: length 
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and sequence identifier; the number of tests from [5] for 
which more than 96 % of the bitstreams passed the test 
successfully (>96 %); the number of tests for which more 
than 99 % of the bitstreams passed the test successful-
ly (>99 %); the number of tests for which the value of 
p<0.001 (p<0.001); the status of passing the test (Status).

Testing was performed on data in binary file format (.dat) 
with 13 MB (13,631,488 bytes or approximately 108 bits) 
and 120 MB (125,829,120 bytes or approximately 109 bits) 
sequences, as specified in the Sequence column. The number 
of bit streams for each sequence is 100.

The tables above demonstrate that the results of test-
ing some sequences for the 96 % criterion (13MB_Pseu-
doRandSeq1, 13MB_RandSeq2, and 13MB_RandSeq3) 
indicate that not all tests from the set were passed. These 
results are due to the fact that the pass rate value for one 
of the set tests for these sequences is slightly less than 
the limit recommended by NIST for this number of bit-
streams.

NIST in [5] puts forward several proposals for the in-
terpretation of the obtained test results. Interpretation of 
empirical results involves different ways. Two approaches 
adopted by NIST include examining the proportion of 
sequences that pass a statistical test and the distribution 
of P-values to test for uniformity. In the case that none of 
these approaches work, additional experiments should be 
conducted on different samples of the generator to deter-
mine whether this phenomenon was a statistical anomaly 
or clear evidence of non-randomness [5].

Thus, the failure of some sequences of one test from the 
set can be considered a statistical error since the results 
for other sequences, in particular for larger sizes (which 
give a more accurate estimate), indicate a complete suc-
cess of the testing. It should also be taken into account 
that NIST in [5] indicates the approximation of this limit.

Additionally, as indicated above in [5], attention 
should also be paid to the statistics of P-values, in par-
ticular for failed tests. For example, for the failed test for 
13MB_PseudoRandSeq1, which was a Non-Overlapping 

Template Matching test, the pass rate is 0.9541 and the 
P-value is 0.7887, which is within the specified limits 
(greater than the chosen significance level of 0.001). 
This also applies to other sequences for which one test 
has failed. The pass value for one of the Non-Overlap-
ping Template Matching Tests for 13MB_RandSeq2 and 
13 MB_RandSeq3 is also 0.9541, with P-values of 0.2826 
and 0.0830, respectively. This additionally indicates the 
presence of a statistical anomaly.

Also, an additional factor that may moderate the 
judgment of non-randomness based on the failure of the 
Non-overlapping Template Matching test itself is the 
number of results of this test in the overall statistic. The 
total result contains 148 values of this test, and there-
fore it can be assumed that the value of the pass rate in 
general can be interpreted as the average value for all 
these 148 tests. If the pass rate of one of the tests deviates 
slightly from the limit, it will still mean compliance ac-
cording to the given criterion.

It is also important that when the sequence length is 
109 bits, such statistical errors are not observed for the 
96 % level. This may indicate that the length of 108 bits is 
insufficient to accurately perform such testing.

The statistics for the number of tests in which more 
than 96 % of the bitstreams passed the test are not dif-
ferent for sequences of different lengths, but for the 99 % 
pass rate, longer sequences show worse results. Despite 
this, the test pass rates for longer sequences have a more 
dense and uniform distribution, which can be observed in 
the statistical portraits in Fig. 6, 7.

The results of the statistical study indicate that the 
PRS and RS from DNA at the output of the extractor 
meet all the necessary requirements. Therefore, the PRSs 
obtained using the extractor successfully pass statistical 
testing, and the RSs pass both stochastic and statistical 
testing. Therefore, sequences obtained using the extractor 
have good properties of unpredictability and uniformity. 
This indicates the possibility of applying such sequences 
in the required tasks.

Table 5

Results of statistical testing of PRS

Sequence >96 % >99 % p<0.001 Status

13MB_PseudoRandSeq1 188 (99 %) 129 (68 %) 0 Success

13MB_PseudoRandSeq2 189 (100 %) 127 (67 %) 0 Success

13MB_PseudoRandSeq3 189 (100 %) 137 (72 %) 0 Success

120MB_PseudoRandSeq1 189 (100 %) 112 (59 %) 0 Success

120MB_PseudoRandSeq2 189 (100 %) 95 (50 %) 1 Success

120MB_PseudoRandSeq3 189 (100 %) 98 (52 %) 1 Success

Table 6

Results of statistical testing of RS

Sequence >96 % >99 % p<0.001 Status

13MB_RandSeq1 189 (100 %) 132 (70 %) 0 Success

13MB_RandSeq2 188 (99 %) 118 (62 %) 0 Success

13MB_RandSeq3 188 (99 %) 124 (66 %) 0 Success

120MB_RandSeq1 189 (100 %) 94 (50 %) 1 Success

120MB_RandSeq2 189 (100 %) 113 (60 %) 0 Success

120MB_RandSeq3 189 (100 %) 104 (55 %) 1 Success
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Fig. 6. Statistical portraits of pseudorandom and random sequences of length 13 MB: 	
a – 13 MB_PseudoRandSeq1, b – 13 MB_PseudoRandSeq2, c – 13 MB_PseudoRandSeq3, d – 13 MB_RandSeq1, 	

e – 13 MB_RandSeq2, f – 13 MB_RandSeq3
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Fig. 7. Statistical portraits of pseudo-random and random sequences of length 120 MB: a – 120MB_PseudoRandSeq1; 	
b – 120 MB_PseudoRandSeq2; c – 120 MB_PseudoRandSeq3; d – 120 MB_RandSeq1; e – 120 MB_RandSeq2; 	

f – 120 MB_RandSeq3
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5. 5. Improvement and implementation of sequence 
similarity assessment algorithms, verification of the 
possibility and expediency of their practical applica-
tion

The initial data for solving this task are existing algo-
rithms for evaluating the similarity of sequences, which 
have certain shortcomings in efficiency. Solving the given 
task involves eliminating the shortcomings by using more 
optimized structures and data types that give an advantage 
in the use of memory resources, and universal crypto primi-
tives that can work in different modes. As a result of solving 
the problem, algorithms improved in terms of efficiency are 
provided, which are capable of saving resources or have ex-
tended functionality.

A simple and effective way to assess sequence similarity 
without alignment is the method based on k-mer counting. 
The main application of this method was in the field of DNA, 
however, our paper attempts to use it when comparing bina-
ry PRS and RS. In bioinformatics, k-mers are substrings of 
a biological sequence of length k [29]. Relative to bit, byte, 
or other strings, k-mer will be substrings of bits, bytes, or 
characters.

As an example of counting k-mers in the DNA sequence, 
Table 7 will give all possible k-mers of length from 1 to 6, for 
a short DNA fragment of the sequence GTCAGC.

Table 7

Values of possible k-mers of different lengths for a DNA 
sequence fragment

Sequence: GTCAGC

Length of k-mer k-mers

1 G, T, C, A, G, C

2 GT, TC, CA, AG, GC

3 GTC, TCA, CAG, AGC

4 GTCA, TCAG, CAGC

5 GTCAG, TCAGC

6 GTCAGC

Also, for a more visual demonstration, Fig. 8 provides a 
graphical representation of the division of the sequence pro-
posed as an example into k-mers of length 3.

Fig. 8. Splitting a DNA sequence fragment into k-mers 	
of length 3

Splitting into k-mers makes it possible to analyze a set of 
fragments of a certain size, rather than the entire sequence 
as a whole. The effectiveness of such a method is further 
substantiated by the speed and simplicity of operations with 
sets, as well as the availability of many algorithms and meth-
ods for working with them.

To correctly choose the length of k-mers, it is important 
to rely on the length of the sequences and their alphabet. 
In [17] it is proposed to determine the required size from the 
following formula:
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where g corresponds to the size of the genome or sequence, 
and Σ is the alphabet of the sequence.

However, this formula is more suitable when applied to 
the binary alphabet or when using the MinHash algorithm. 
When comparing DNA using k-mer distances, it is possible 
to choose the length of k-mers so that their total space is 
larger than the size of the studied genome:
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Evaluation of the similarity of two sequences by the pro-
posed algorithm involves the following steps:

KmerDistCount algorithm.
Input:
Two sequences (DNA, PRS, RS in text file format .fasta, 

.fna, etc. for DNA/ in binary file format .bin, .dat, etc. for 
PRS and RS) for which a similarity score should be per-
formed.

Output:
Calculated k-mer distance, by which similarity is deter-

mined:
1. Decomposing the compared sequences into k-mers 

(the length is calculated using formula (1) or (2)).
2. Representation in binary form (according to the rules 

in Table 1) and conversion into 64-bit numbers.
3. Creation of their union to obtain a set of unique 

k-mers.
4. Initialization of the key-value structure for sequences.
5. Setting values from the union as keys.
6. Traversing the sequences, adding +1 to the value with 

the key that matches the k-mer found in the sequence.
7. Calculation of k-mer distance.

The first improvement over the existing algorithm pre-
sented in [16] is the conversion of k-mers into 64-bit num-
bers (Step 2). This makes it possible to significantly simplify 
the comparison process since it is much easier to compare 
integers than strings. This is because, for example, compar-
ing integers requires only one operation, while comparing 
strings requires a character-by-character similarity check, 
which is a long and expensive process. Also, owing to the 
64-bit string representation, significant memory savings are 
achieved, since storing 64-bit numbers requires significantly 
less resources than their corresponding 32-character strings. 
For example, storing a single k-mer of length 32 as an integer 
would require 8 bytes of memory, while storing it as a string 
would already require 32 bytes. It should be noted that the 
implementation of Step 2 is possible under the condition 
that k<33 when applied to DNA sequences and k<65 when 
applied to binary ones, because if the values are exceeded, the 
bit sequences will overflow the 64-bit numbers. In cases where 
it is necessary to use larger sizes of k, it is possible to use simple 
strings instead of 64-bit numbers (as it is done in [16]).

The second improvement relative to [16] is the forma-
tion of a key-value structure using the union of unique 
k-mers that are included either in one of the sequences or 
in both (Steps 3 and 4). Unlike in [16], in which such a 
structure is created for all k-mers of the space of the chosen 
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dimensionality, the proposed approach makes it possible not 
to store redundant k-mers, that is, those that are not part 
of any of the sequences. This allows for a significant reduc-
tion in memory usage, since there is no need to store a huge 
space of k-mers whose number of occurrences will be equal 
to 0 and which will not affect the similarity calculation. For 
example, to compare sequences with k=31, the algorithm 
from [16] will create an array of 4.618 elements, regardless of 
the length of the compared sequences, which is not possible 
on any modern computer. At the same time, the memory 
usage in the improved algorithm depends only on the length 
of the compared sequences. Thus, for example, when com-
paring DNA sequences with a length of 10,000 elements and 
a selected k-mer size of 31, the maximum possible number of 
unique k-mers will be 9,970 (sequence length minus k-mer 
size plus 1), and therefore a structure of 9,970 elements will 
be created. At that time, the algorithm from [16] will in any 
case create a structure for the full dimensionality of the 
space, i.e., 4k.

Thus, the proposed improvements solve the main prob-
lem of the existing algorithm.

The calculation of k-mer of the distance in Step 7 takes 
place using the formula used in [16]. Such a formula was 
proposed in [30]:

( ) ( ) ( )
( )1 2

log 0.1 log 1.1
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dist s s

+ −
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( ) ( )( )
( ) ( )( )

1 2
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p s p s
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len s len s k
=

− +∑ 		  (4)

where F is the fractional common k‐mer count, p(s) is the 
number of occurrences of a particular k-mer from the unique 
space to the corresponding sequence, and len(s) is the length 
of the compared sequences.

The research also considers the algorithm for compar-
ing sequences based on MinHash. The main improvement 
regarding the important theoretical shortcoming of the size 
of the k-mers that can be used for comparison is the use of 
a hash function with a longer output. The national hashing 
standard DSTU 7564:2014 is proposed as such a tool. Exist-
ing algorithm [17] uses hash sizes of 32/64 bits for k-mers of 
length up to 32/64 for binary and 16/32 for DNA alphabet. 
In contrast to [17], the use of an extended size of hashes will 
make it possible to use significantly larger sizes of k-mers (up 
to 512 for the binary alphabet and up to 256 for the DNA 
alphabet), preventing possible collisions.

Such an improvement could in theory be important since 
the development of computer systems in the future will make 
it necessary to compare much larger sets of data. At the same 
time, for example, when dividing the sequence into substrings 
of more than 64 bits, the hash function, which will have a 64-bit 
output, will not be able to uniformly map all their possible space 
into the hash space. This will cause collisions, that is, different 
substrings will be mapped to the same hashes, which in turn 
will significantly reduce the accuracy of the comparison.

The proposed improvement solves this problem and, ac-
cording to formula (1), makes it possible to compare data of 
practically infinite sizes.

The algorithm involves the following procedure:

MinHashDistCount algorithm.
Input:

Two sequences (DNA, PRS, RS in text file format .fasta, 
.fna, etc. for DNA/ in binary file format .bin, .dat, etc. for PRS 
and RS) for which a similarity score should be performed.

Output:
Calculated MinHash distance, by which similarity is 

determined:
1. Decomposition of the compared sequences into k-mers 

(the length is calculated using formula (1)).
For k<33 when applied to DNA and k<65 – for binary 

sequences:
2. Representation in binary form (according to the rules 

in Table 1) and conversion into 64-bit numbers.
For larger sizes of k-mers:
2. Representation in binary form (according to the rules 

in Table 1).
3. Hashing of the received values.
4. Sorting hashes in order of the increased value.
5. Selection of the necessary number of smallest hashes 

(sketch) to represent sequences.
6. Calculation of MinHash distance.

The more similar the sequences are, the more min-hashes 
they will have in common.

For hashing at Step 3 of the algorithm in this study, 
the “Kupyna” hash function is used. Since 8-byte hashes 
are enough to represent 64-bit numbers with appropriate 
sizes of k-mers, the 32-byte output of “Kupyna” will be 
truncated to 8 bytes. “Kupyna” is a cryptographic hash 
function and truncating the data to a certain size does not 
deteriorate their characteristics [31, 32]. Although when 
comparing short-length sequences, the use of larger hash-
es and subsequent truncation incurs performance costs, 
owing to this the universality of the presented algorithm 
is achieved.

The similarity of sets of hashes is determined using Jac-
card score. The Jaccard index for sets A and B is determined 
from the following formula [17]:

( ), ,s s
s s

A B
jaccard A B

s

∩
= 			   (5)

where As, Bs are sets of hashes such that the size of the inter-
section |As∪Bs| corresponds to the size of the sketch – s. The 
selected size affects the accuracy of the sequence display, but 
it depends on the number of resources used and the time of 
the comparison. The MinHash distance estimation error is 

defined as 1
s

 [17].

MinHash distance is calculated as follows [17]:

( ) ( )log 2.0 1.0
,
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k
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where k is the length of k-mers.
The presented algorithm makes it possible to quickly 

assess the similarity of two sequences with an accurate ap-
proximation, which is determined by the size of the sketch. 
At the same time, it requires significantly less resources, 
in particular memory, than methods with pre-alignment. 
Also, the algorithm gives an advantage in speed compared 
to the k-mer distance estimation method since its simplified 
representation in the form of a small set (sketch) of minimal 
hashes is used to represent the sequence.
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The accuracy assessment of the presented comparison 
algorithms is given below. They are suitable both for eval-
uating DNA sequences, which in this study act as samples, 
and binary sequences at the 
output of the extractor.

For a visual demonstra-
tion of the KmerDistCount 
algorithm, DNA sequenc-
es from the same genes (hu-
man and chimpanzee) are 
compared. The INSR (insu-
lin receptor) and VDR (vi-
tamin D receptor) genes are 
used in the comparison. The 
length of the DNA sequenc-
es for VDR is approximately 
63,000 elements, and for INSR 
from 181,000 to 183,000 ele-
ments. To evaluate the simi-
larity of sequences of this 
size according to formula (2),  
it is necessary to use k-mer of 
length 9. For practical evalu-
ation, the following lengths of 
k-mers were chosen: k=9, ac-
cording to the calculation, k=5 
(the default length in [16]), and 
k=7, 11 to more thoroughly test 
and track changes in accura-
cy with changes in k-mer size. 
Similarity is defined as one mi-
nus the k-mer distance.

The results of the calcula-
tion of k-mer distance by the 
KmerDistCount algorithm 
are given in Table 8.

Our values of the k-mer 
distance indicate that the im-
plemented algorithm makes 
it possible to correctly assess 
DNA similarity – the assess-
ment values are almost iden-
tical to those obtained using various evaluation tools with 
preliminary alignment [11–13]. The algorithm shows the most 
accurate estimate precisely when approaching the length of 
k-mers calculated for the corresponding length of the sequence. 
Thus, it is important to correctly calculate the length of k-mers 
according to the corresponding formula (2) since the accuracy 
of the estimate will depend on it.

To evaluate the similarity of DNA-based binary sequenc-
es, 2 sequences of different lengths were calculated: 2 MB, 
6 MB, and 13 MB. The choice of the length of the sequences 
is due to the necessary length of k-mers for their evaluation: 
31, 33, and 35, respectively. The results of the calculation of 
k-mer distance between RSs are given in Table 9. Lengths 
29 and 37 were examined to check the change in accuracy 
of the estimate.

The calculated values of the k-mer distance indicate that 
for the length of the k-mers, which best corresponds to the 
length of the sequences according to the corresponding for-
mula, the similarity of RS is estimated at 1.4–3.3 % (k-mer 
distance ≈0.97–0.986). This shows that the output sequenc-
es of the developed algorithms for calculating PRS and RS 
are almost completely unique.

Table 10 gives the results of calculating the MinHash 
distance for DNA sequences of various organisms using the 
MinHashDistCount algorithm.

Our MinHash distance values indicate that when k>=13, 
the accuracy of the estimate increases and (with a deviation 
within a few %) corresponds to the results obtained both by 
the algorithm for calculating the k-mer distance presented in 
the paper and by other means of comparison. The deviation 
in the accuracy of the estimate is explained by the use of a 
simplified representation of the sequence as a small set of 
min-hashes. In particular, the results correspond to those 
obtained for these sequences using the tool [17]. The main 
advantage of such an algorithm, despite the slightly lower 
accuracy (due to the use of a sketch of hashes to represent 
the sequence), is speed and more efficient use of computer 
resources. This is explained by the need to store only a small 
set of minimum hashes for each of the sequences.

The same sequences as in Table 9 were used to assess 
the similarity of RSs. The results of the MinHash distance 
calculation are given in Table 11.

The calculated MinHash distance values show that when 
using the required length of k-mers, the similarity of RSs is 
estimated to be approximately 82–85 %, although the Jac-
card index is almost zero (0.00099–0.005). Such indicators 
may indicate insufficient sensitivity of the algorithm when 

Table 8

Results of k-mer distance calculation for human and chimpanzee VDR and INSR DNA genes

Gene VDR

S1 S2
k-mer distance

k=5 k=7 k=9 k=11

Human DNA 1 Human DNA 2 0.0010403 0.0017395 0.0022834 0.0027967

Human DNA Chimpanzee DNA 0.0053960 0.0215622 0.0363721 0.0462452

Gene INSR

S1 S2
k-mer distance

k=5 k=7 k=9 k=11

Human DNA 1 Human DNA 2 0.0012025 0.0026962 0.0039040 0.0049289

Human DNA Chimpanzee DNA 0.0038318 0.0181211 0.0413278 0.0573898

Table 9

Result of calculating k-mer distance for random sequences

S1 S2
k-mer distance

k=29 k=31 k=33 k=35 k=37

2MB_RandSeq1 2MB_RandSeq2 0.885233 0.967787 0.991931 0.997763 0.999482

6MB_RandSeq1 6MB_RandSeq2 0.731474 0.910465 0.975394 0.993671 0.998408

13MB_RandSeq1 13MB_RandSeq2 0.571947 0.828794 0.948960 0.986212 0.996457

Table 10

Result of calculating the MinHash distance for human and chimpanzee VDR and INSR DNA genes

Gene VDR

S1 S2
MinHash distance 

k=7 k=9 k=11 k=13 k=31

Human DNA 1 Human DNA 2 0.000719685 0.000447128 0.00055041 0.000780952 0.000630904

Human DNA Chimpanzee DNA 0.00511872 0.00989287 0.0119934 0.0116824 0.0114459

Gene INSR

S1 S2
MinHash distance 

k=7 k=9 k=11 k=13 k=31

Human DNA 1 Human DNA 2 0.000143072 0.00101369 0.00101679 0.00134195 0.00133643

Human DNA Chimpanzee DNA 0.00309769 0.0120202 0.0158604 0.0155881 0.0155836
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applied to the binary alphabet. At the same time, increas-
ing the size of k-mers by one step gives an estimate of the 
distance between RSs of 100 %, which shows the complete 
difference between their sketches.

6. Discussion of results of research into the possibility of 
using DNA cryptography in the field of randomness

Presenting DNA as a source of randomness is possible be-
cause DNA is considered unique to each existing organism and 
is not repeated twice. Figure 1 shows that the DNA sequence 
alphabet consists of four possible values. This makes it possible 
to choose a way to simply replace these values with combina-
tions according to the rules from Table 1 to get binary data.

To use such data in required applications, it is important to 
be able to correctly and comprehensively evaluate their proper-
ties. The research proposes a properties estimation algorithm 
applied to binary data. Our algorithm (Fig. 3) involves the use 
of modern proven methods, owing to which it is possible to 
clearly determine to what extent the statistical and stochastic 
properties of the sequences meet the requirements and whether 
they are sufficiently safe for use in the required tasks.

Evaluation of the DNA sample using the algorithm 
showed that its statistical properties do not meet the re-
quirements (Fig. 4). This indicates a significant deviation of 
the DNA sequences from uniformity, which is explained by 
their structure and features. DNA carries information about 
the structure of RNA and proteins, which are usually repeat-
ed or clustered, and therefore cause the presence of patterns 
in the sequences. The results of stochastic testing (Table 2) 
indicate the presence of a certain amount of entropy in the 
sequences. This makes it possible to use such sequences to 
extract randomness and obtain PRS and RS based on them.

To solve the problems in existing works, our research pro-
poses the implementation of an algorithm that makes it possible 
to obtain PRS and RS based on a small amount of input data 
in the form of DNA. The algorithm is implemented on the ba-
sis of the DSTU 7624:2014 block symmetric encryption stan-
dard in CTR mode. A similar crypto primitive is recommend-
ed for use as an conditioning component in NIST 800-90A.  
The process of obtaining and the results are determined pre-
cisely by the features of the cryptographic design of such a 
transformation, which makes it possible to obtain long (pseu-
do) random sequences based on short input data.

The scheme presented in Fig. 6 describes the process of 
obtaining sequences based on DNA. In contrast to [7–9], 
in which “raw” DNA sequences with properties that do 
not meet modern requirements are obtained, the developed 
algorithms make it possible to obtain pseudo-random and 
random sequences based on DNA that meet the necessary 
requirements through randomness extraction. Also, the ad-

vantage of the developed algorithms over existing ones is 
the possibility of generating random data of almost infinite 
length based on short input data, which cannot be achieved 
using [7–9]. A feature of the formation of RS, which addi-

tionally increases the security of both the 
algorithm itself and the received data, is the 
use of random session keys and nonce ob-
tained using NPTRNG /dev/random. This 
provides improved protection against com-
promise, which is explained by the fact that 
at each iteration these values are generated 
in a completely random and independent 
manner and do not contain any information 
about previous values.

The results of RS testing by entropy 
methods (Table 4), as well as statistical 
testing of PRS and RS (Tables 5, 6) show 
that the obtained sequences, in contrast to 

works [7–9], are uniform, do not contain statistical flaws, 
and have high levels of unpredictability. Therefore, the 
implemented algorithms make it possible to eliminate the 
problem of non-compliance of the statistical properties of 
the data with the requirements and to prevent a significant 
weakening or compromise of cryptographic applications. 
This indicates the possibility of applying such sequences in 
the required tasks.

Our comparison algorithms make it possible to accurate-
ly approximate the similarity of DNA sequences. The ob-
tained estimates (Tables 8–11) correspond to the estimates 
of tools with preliminary alignment [11–13], as well as with-
out preliminary alignment [16, 17]. For the most accurate 
assessment, the size of k-mers should be calculated according 
to the size of the sequence and the alphabet according to 
formulas (1), (2).

The features of the proposed algorithm based on k-mers, 
owing to which it provides an advantage over the similar 
one in [16], are the use of 64-bit representations of k-mers 
and taking into account when counting only k-mers that are 
directly included in the sequences. Using 64-bit represen-
tations significantly simplifies the comparison process, and 
also provides significant memory savings, since storing 64-bit 
numbers requires significantly less resources. Unlike [16], in 
which all possible k-mers of the space of the chosen dimen-
sion are counted (which causes quite serious memory costs), 
the developed algorithm counts only k-mers present in the 
sequence. This makes it possible to compare sequences on 
large k-mer sizes. For example, to compare sequences at k=31, 
the algorithm from [16] will create an array of 4,618 elements, 
which is not possible on any of the modern computers. At the 
same time, the memory usage in the proposed algorithm de-
pends only on the length of the compared sequences.

A feature of the proposed algorithm based on MinHash, 
which provides an advantage in the size of the compared 
sequences, is the use of a hash function with a longer out-
put [23]. In theory, this will make it possible to use signifi-
cantly larger k-mer sizes, preventing possible collisions. Also, 
such an algorithm provides an advantage in speed and an 
additional advantage in the use of resources compared to the 
k-mer distance estimation method, since its simplified repre-
sentation in the form of a small set (sketch) of min-hashes is 
used to represent the sequence.

The limitations of this study include the following:
– the applied methods of stochastic and statistical re-

search are relevant only for the binary alphabet (and the 

Table 11

Result of calculating the MinHash distance for random sequences

S1 S2
MinHash distance (pre-calculated Jaccard index)

k=29 k=31 k=33 k=35 k=37

2MB_RandSeq1 2MB_RandSeq2
0.123774 
(0.014)

0.148715 
(0.005)

1.00 
(0.00)

1.00 
(0.00)

1.00 
(0.00)

6MB_RandSeq1 6MB_RandSeq2
0.086830 
(0.042)

0.120698 
(0.012)

0.150465 
(0.0035)

1.00 
(0.00)

1.00 
(0.00)

13MB_RandSeq1 13MB_RandSeq2
0.062814 
(0.088)

0.115789 
(0.014)

0.118848 
(0.010)

0.177876 
(0.00099)

1.00 
(0.00)
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alphabet of the power of two), so other methods should be 
used to evaluate the sequences of an arbitrary alphabet, for 
example, from [33];

– the implemented algorithms, in particular for obtain-
ing RS, are difficult to assess for the possibility of collisions 
or the period of repetition of sequences;

– the algorithm based on MinHash has insufficient eval-
uation sensitivity, in particular when applied to the binary 
alphabet.

The disadvantages of the study include the relative diffi-
culty of obtaining unique samples of human DNA since the 
same samples are present in most available databases, which 
makes the concept of randomness impossible. This can also 
be said about the need to obtain DNA as a whole, which is a 
rather complex process that occurs separately.

A further development of our research could be a more 
thorough evaluation of the developed DNA-based RNG, 
such as proving the characteristics of forward and backward 
secrecy and enhanced forward and backward secrecy. Also, 
a possible area of further research is the improvement of 
comparison algorithms: an additional increase in speed, an 
increase in the accuracy of the assessment, etc.

7. Conclusions 

1. DNA samples consist of an alphabet with 4 possible 
values: A, C, G, and T. The chosen technique for obtaining 
binary data from them involves replacing these values with 
the corresponding binary combinations. The use of such 
data requires a preliminary careful assessment of their 
statistical and stochastic properties. Our study proposes 
an evaluation algorithm that involves the use of modern 
proven methods of stochastic and statistical testing. Sta-
tistical evaluation of the DNA sample showed a significant 
deviation from uniformity, which is explained by the struc-
ture and features of DNA. The results of stochastic testing 
show the presence of a certain amount of entropy, which 
indicates the possibility of using such samples to obtain 
PRS and RS.

2. Extraction of randomness from DNA for the genera-
tion of PRS and RS in the study was performed using the 
conditioning component implemented on the basis of the 
block symmetric encryption standard DSTU 7624:2014. A 
special feature of the implemented generation algorithms 
is the possibility of generating pseudo-random and random 
data of arbitrary length with the required properties, in con-
trast to existing works in the area of obtaining randomness 
on the basis of DNA. The process of obtaining PRS and RS 
and the results are explained by using the NIST-recommend-
ed design (extractor), which makes it possible to calculate 
highly reliable data with appropriate indicators based on a 
short unique input.

3. The entropy indicators of RS obtained by the imple-
mented algorithms fully meet the necessary requirements. 
Sequences not only pass IID tests for minimum entropy but 
also all others, such as, for example, the chi-square test. The 
peculiarity of our study is obtaining the results of estimation 
of not only min-entropy, as recommended by NIST, but also 
estimation of Shannon entropy and collision entropy. When 
reviewing existing works, such a comprehensive approach to 
stochastic estimation was not encountered, which may have 
critical consequences when adopting sequences for use in 
real problems.

4. The obtained PRS and RS successfully pass statistical 
testing according to the recommendations of NIST 800-22. 
In contrast to the considered works, tests from the set were 
performed in full, on data sets that meet the requirements 
for correct testing. Our results indicate that the sequences 
calculated using the extractor, in contrast to the “raw” 
DNA, have the desired properties of randomness and do not 
contain statistically significant errors or flaws. In general, 
the passing of all the necessary checks by sequences makes 
it possible to judge the possibility of their application in the 
necessary crypto primitives or algorithms.

5. The reported improved comparison algorithms based 
on k-mer and MinHash distances allow for accurate similari-
ty assessment. A feature of the algorithm implemented on the 
basis of k-mers is a significant saving of hardware resources, 
in particular memory. Unlike existing ones, the algorithm 
presented in the study uses more economical data types 
and makes it possible to correctly assess similarity while 
working with much smaller arrays of information. A feature 
of the algorithm based on MinHash is the possibility for sig-
nificantly increasing the size of the compared sequences. In 
contrast to existing algorithms, the algorithm implemented 
in our study uses a hash function with a longer output, which 
makes it possible to compare larger arrays of data on larger 
dimensions of k-mers. The presented algorithms calculate 
the similarity of DNA sequences with an accurate approx-
imation, however, the evaluation of the similarity of binary 
sequences, especially using the MinHash distance, requires 
further research and development. Checking the calculated 
DNA-based PRS and RS using k-mer distances shows that 
with correctly selected k values, their similarity is minimal, 
and therefore the sequences are unique.
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