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This research focuses on developing a novel 
hybrid deep learning architecture designed for 
real-time analysis of ultrasound heart images. 
The object of the study is the diagnostic accura-
cy and efficiency in detecting heart pathologies 
such as atrial septal defect (ASD) and aortic ste-
nosis (AS) from ultrasound data.

The problem is the insufficient accuracy 
and generalizability of existing models in real-
time cardiac image analysis, which limits their 
practical clinical application. To solve this, the 
convolutional neural networks (CNNs), com-
bining local feature extraction was integrated 
with global contextual understanding of cardiac 
structures. Additionally, a YOLOv7 for precise 
segmentation and detection was utilized.

The results demonstrate that the hybrid 
model achieves an overall diagnostic accuracy 
of 92 % for ASD detection and 90 % for AS detec-
tion, representing a 7 % improvement over the 
standard YOLOv7 model. These improvements 
are attributed to the hybrid architecture's abil-
ity to simultaneously capture fine-grained ana-
tomical details and broader structural relation-
ships, enhancing the detection of subtle cardiac 
anomalies.

The findings suggest that combination of 
CNNs enhances pattern recognition and contex-
tual analysis, leading to better detection of car-
diac anomalies. The key features contributing to 
solving the problem include the hybrid architec-
ture's ability to capture detailed local features 
and broader structural context simultaneously.

In practical terms, the model can be applied 
in clinical settings that require real-time cardi-
ac assessment using standard medical imaging 
equipment. Its computational efficiency and high 
accuracy make it suitable even in resource-con-
strained environments, reducing analysis time 
for clinicians, supporting personalized treatment 
plans, and potentially improving patient out-
comes in cardiology
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1. Introduction

Cardiovascular diseases are the leading cause of mortali-
ty globally, accounting for approximately 17.9 million deaths 
each year according to the World Health Organization [1]. 
This global health burden underscores the critical need for 
early detection and accurate diagnosis of heart pathologies, 
as timely intervention can significantly improve patient 
outcomes. Early detection and accurate diagnosis of heart 
pathologies are crucial for improving patient outcomes. 
Ultrasound imaging, particularly echocardiography, is a 
non-invasive and widely used modality for assessing cardiac 
structure and function [2]. However, the interpretation of ul-
trasound images is highly operator-dependent and requires 
significant expertise, leading to variability in diagnosis and 
potential delays in clinical decision-making [3].

Recent advancements in deep learning have shown 
promise in automating image analysis tasks across various 
medical imaging modalities [4]. Convolutional neural net-
works (CNNs) and other deep learning architectures have 

been successfully applied to tasks such as image segmenta-
tion, classification, and object detection in medical imag-
es [5]. Specifically, models like YOLOv7 have demonstrated 
high accuracy in real-time object detection applications [6], 
while diffusion models have emerged as powerful tools for 
image generation and segmentation tasks [7]. In the context 
of cardiology, several studies have explored the application 
of deep learning techniques to echocardiographic images for 
automatic segmentation and diagnosis [8, 9].

Despite advancements in deep learning for medical 
imaging, existing models for real-time cardiac image anal-
ysis often lack sufficient accuracy and generalizability, 
particularly in detecting atrial septal defect (ASD) and 
aortic stenosis (AS). Traditional convolutional neural net-
works (CNNs) capture local features but struggle with 
global contextual relationships within ultrasound images, 
leading to suboptimal detection of subtle cardiac anomalies. 
Moreover, there is a scarcity of publicly available, annotated 
datasets of ultrasound heart images extracted from clinical 
videos, which hinders the development and validation of 
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robust deep learning models [10]. These challenges under-
score the essential need for further research to bridge gaps in 
methodologies, and to develop models that are both accurate 
and explainable for effective real-time clinical application.

Therefore, studies that are devoted to developing ad-
vanced deep learning models for cardiac ultrasound image 
analysis are of significant scientific relevance. Such research 
aims to overcome the limitations of traditional CNNs by 
capturing both local and global contextual features with-
in ultrasound images. This approach has the potential to 
enhance the accuracy and generalizability of models used 
for detecting subtle cardiac anomalies such as atrial septal 
defect and aortic stenosis. 

2. Literature review and problem statement

The integration of deep learning into medical imaging 
has revolutionized diagnostic methodologies, offering un-
precedented accuracy and efficiency in image analysis [4]. In 
cardiology, echocardiography stands as a cornerstone imag-
ing modality due to its non-invasive nature and real-time as-
sessment capabilities of cardiac structures and function [11]. 
Despite its widespread use, echocardiographic interpreta-
tion is challenged by operator dependency and variability in 
image quality, which can lead to inconsistent diagnoses and 
hinder timely clinical decisions [12].

Convolutional Neural Networks (CNNs) have been in-
strumental in advancing automated image analysis. Early 
applications in echocardiography focused on view classifica-
tion and ventricular function assessment.

Deep learning models, particularly CNNs, in paper [13] 
enhance the accuracy of echocardiographic view classifica-
tion and streamline clinical workflows. However, the study 
is limited to common views and a single dataset, reducing its 
applicability to rare cardiac pathologies and diverse clinical 
environments.

The paper [9] introduced a video-based AI system 
for real-time cardiac function assessment, demonstrating 
promising beat-to-beat analysis for dynamic echocardiog-
raphy. However, its high computational demands limit use 
in resource-constrained settings, and the model’s black-box 
nature lacks explainability, reducing clinical trust.

Additionally, both studies suffer from small dataset 
sizes, which limit their generalizability to more complex 
pathologies. The absence of external validation in diverse 
clinical settings further restricts their broader clinical 
applicability.

Precise segmentation of cardiac structures is critical 
for quantitative echocardiographic analysis. The U-Net 
architecture has been widely adopted for medical image 
segmentation due to its efficacy in capturing contextual and 
spatial information [14]. Recent iterations, such as attention 
U-Nets, have further improved segmentation performance 
by focusing on relevant regions [15].

In the area of segmentation and object detection, [6] 
introduced the YOLOv7 model, which has been widely 
acknowledged for its real-time object detection capabilities 
across various domains. Their work provides a foundation, 
but there is still a lack of validation for echocardiographic 
segmentation tasks, which require high precision and sensi-
tivity to subtle anatomical details.

Diffusion models have emerged as powerful generative 
models capable of handling complex data distributions. In 

medical imaging, they have been utilized for tasks like image 
denoising, synthesis, and segmentation [7].

Additionally, a recent study [16] demonstrated that 
diffusion models are effective for image segmentation in 
noisy and variable imaging environments. However, these 
models are computationally intensive, posing challenges 
for real-time echocardiography applications where speed is 
essential. Furthermore, diffusion models have not yet been 
fully validated in high-stakes medical imaging tasks that 
require immediate and reliable clinical decisions.

Another study [17] introduced a CNN-based U-Net ar-
chitecture for the semantic segmentation of fetal echocardi-
ography, specifically targeting the four-chamber view. This 
approach, combined with Otsu thresholding, achieves high 
accuracy in pixel segmentation. Nonetheless, the research 
is limited by its small dataset of only 519 images and its 
exclusive focus on fetal images, which restricts the model’s 
generalizability and applicability to postnatal and broader 
cardiac cases. Expanding the dataset and incorporating 
real-time video data could enhance its performance in more 
complex clinical settings.

This study proposes a stacked residual-dense network 
model for the automatic interpretation of echocardiographic 
anomalies, as utilized in [18]. A notable advantage of this 
model is its incorporation of both prenatal and postnatal 
echocardiography, which enhances its generalizability across 
different stages of cardiac development. However, a critical 
issue is its moderate performance on unseen data, with IoU, 
DSC, and mAP scores significantly lower than expected. 
This indicates that the model struggles with real-world vari-
ability, potentially limiting its clinical applicability unless 
further optimization and larger datasets are integrated.

The study [19] explores real-time detection of cardiac 
objects in fetal ultrasound videos using the YOLOv7 frame-
work, enabling instant clinical predictions. However, it faces 
challenges with fetal movement and speckle noise, which 
complicate accurate detection in real-world settings. Addi-
tionally, the model’s robustness and explainability in diverse 
clinical environments remain unproven, affecting user trust.

FetalNet, introduced in [20], is a model designed to en-
hance low-light fetal echocardiography images and improve 
heart defect prediction using dense convolutional networks. 
The novelty of this study lies in its focus on image enhance-
ment, addressing a significant challenge in ultrasound im-
aging. However, relying on only 460 training images raises 
concerns about its generalizability and ability to detect 
complex defects. This limitation may stem from dataset size 
constraints, making the research less applicable in practice. 
Expanding the dataset and exploring hybrid approaches 
could enhance its robustness in clinical applications.

The paper [21] presents a deep learning approach for 
detecting COVID-19 from chest X-ray images using CNNs. 
A strength of this study is its use of a large dataset and 
the comparison of performance with multiple pre-trained 
models, including COVID-Net and ResNet. However, the 
critical issue is the binary classification approach (Nor-
mal vs. COVID), which oversimplifies the diagnostic pro-
cess by not accounting for other pulmonary conditions.

The analysis of the reviewed literature reveals several lo-
calized challenges across different studies, which collectively 
point to broader unresolved issues in the field. The major 
limitations include the use of small, specialized datasets that 
restrict the generalizability of models, the computational 
complexity of deep learning architectures that hinder re-
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al-time clinical application, and the lack of explainability 
in AI models that impairs clinical trust. These challenges 
highlight the critical need for comprehensive, annotated 
datasets covering a diverse range of cardiac pathologies, as 
well as the development of hybrid deep learning models that 
can balance computational efficiency with high diagnostic 
accuracy. Furthermore, the integration of explainable AI 
mechanisms is essential to enhance the transparency and 
reliability of AI-driven diagnostic tools in clinical settings. 
This unresolved problem aligns with the objectives of the 
current study, which aims to address these gaps by develop-
ing a novel hybrid architecture and creating a comprehensive 
dataset, ultimately improving the accuracy, efficiency, and 
explainability of echocardiographic diagnostics.

3. The aim and objectives of the study

The primary aim of this study is to development of a 
Hybrid Deep Learning Model for Analyzing Cardiac Ul-
trasound Images. This will make it possible to improve the 
diagnostic accuracy and efficiency of real-time automatic 
detection and diagnosis of heart pathologies, specifically 
atrial septal defect (ASD) and aortic stenosis (AS), from 
ultrasound heart images.

To achieve this aim, the following objectives are accom-
plished:

– to design and develop a hybrid deep learning ar-
chitecture that integrates convolutional neural net-
works (CNNs) with transformer-based modules, enhanc-
ing both local feature extraction and global contextual 
understanding for improved detection of ASD and AS in 
ultrasound images;

– to train and validate the proposed deep learning model 
using a comprehensive and annotated dataset, evaluating 
its performance using metrics such as accuracy, sensitivity, 
specificity, and F1-score, and to compare its diagnostic ac-
curacy and efficiency with existing state-of-the-art models, 
including YOLOv7 and U-Net.

4. Materials and methods of research

4. 1. Object and hypothesis of the study
The object of this study is the process of real-time anal-

ysis of ultrasound heart images for the detection and diag-
nosis of atrial septal defect (ASD) and aortic stenosis (AS).

The main hypothesis of this research is that integrating 
convolutional neural networks (CNNs) with transform-
er-based modules within a hybrid deep learning architecture 
can significantly improve the accuracy and efficiency of 
detecting ASD and AS from ultrasound images in real-time, 
outperforming existing models.

For the scope of this research, several simplifications 
were made. The study focuses exclusively on two specific 
cardiac pathologies, without considering other possible 
heart conditions, to streamline the model development and 
validation process. The models were designed to process 
individual frames extracted from ultrasound videos, treat-
ing them as static images and not accounting for temporal 
dynamics or motion patterns that occur over time. Fur-
thermore, variations due to different ultrasound machine 
settings, manufacturer differences, or operator-specific tech-
niques were not explicitly modeled or compensated for, un-

der the assumption that the preprocessing steps and model 
training would mitigate these factors.

4. 2. Theoretical and Technical Methods
A hybrid deep learning architecture was developed with 

the following components:
– Feature extraction and contextual processing. A mod-

ified ResNet-50 architecture was used for initial feature 
extraction, leveraging its residual learning capabilities to 
capture spatial hierarchies. The Swin Transformer module 
was integrated to capture long-range dependencies and 
multi-scale features within the images, allowing for robust 
contextual understanding essential for cardiac analysis.

– Segmentation and detection. The SegFormer model 
was applied to perform cardiac structure segmentation, 
providing precise boundaries for anatomical regions. The 
YOLOv7 architecture, fine-tuned for medical imaging, was 
employed for detecting ASD and AS anomalies, enabling 
real-time analysis with minimal latency.

– Preprocessing. Several preprocessing steps, including 
noise reduction, adaptive histogram equalization for normal-
ization, and data augmentation techniques such as rotation, 
flipping, scaling, and color jittering, were applied to improve 
model robustness across diverse imaging conditions.

4. 3. Software and Hardware
The software and hardware configurations were chosen 

to optimize processing efficiency:
– software. Python 3.8 was used due to its versatility in 

deep learning, while PyTorch provided a dynamic computa-
tion graph, facilitating the implementation and debugging 
of complex architectures. GitHub managed version control 
and collaboration;

– hardware. The deep learning models were trained on 
an NVIDIA GeForce RTX 3080 Ti with 16 GB VRAM, 
which offers high computational power, coupled with an Intel 
Core i9-10900K for auxiliary tasks. The setup included 64 GB 
DDR4 RAM and a 2 TB NVMe SSD to handle large datasets 
and reduce latency during processing. Ubuntu 20.04 LTS was 
used for its compatibility with scientific computing tools.

4. 4. Experimental Design
The experimental process included data collection, mod-

el training, and validation:
– data collection and annotation. Echocardiographic 

videos of 3-5 seconds were collected from the Cardiology 
Department at Mediterra hospital in Almaty, Kazakhstan. 
Three expert cardiologists provided annotations for cardiac 
structures and anomalies, following strict quality protocols 
to exclude poor-quality images. Inclusion criteria required 
a confirmed ASD or AS diagnosis, high-quality recordings, 
and informed patient consent;

– model training and inference pipeline. Frames from 
the annotated dataset were initially processed through a 
modified ResNet-50 backbone to extract spatial features, 
followed by the Swin Transformer module, which captured 
multi-scale contextual dependencies crucial for cardiac 
anomaly detection. For segmentation, the SegFormer model 
delineated cardiac structures, providing precise anatomical 
boundaries, while YOLOv7 was employed for real-time de-
tection of ASD and AS anomalies. During inference, each 
frame underwent preprocessing steps, including noise reduc-
tion, normalization, and non-maximum suppression (NMS), 
to optimize detection accuracy and minimize false positives;
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– error analysis. Model performance was assessed using 
a confusion matrix to capture true positives, false positives, 
true negatives, and false negatives for ASD and AS classifi-
cation, providing detailed insights into classification errors. 
Key metrics included accuracy to measure overall correct-
ness, precision to quantify the proportion of true positive 
predictions among all positive predictions, recall to indicate 
the model’s sensitivity in identifying true anomalies, and 
the F1 score to balance precision and recall. Analyzing false 
positives and false negatives specifically enabled fine-tuning 
of detection thresholds, segmentation alignment, and reduc-
tion of misclassification rates. This iterative analysis guided 
optimizations to enhance the model’s precision, recall, and 
reliability in real-time cardiac anomaly detection.

4. 5. Baseline Models for Comparison
The effectiveness of the proposed model was further val-

idated by comparison with baseline models:
– YOLOv7 standard implementation. Served as a base-

line to assess improvements from the customized approach;
– ResNet-50 without transformer modules. Provided 

a comparative baseline to assess the impact of integrating 
transformer modules.

5. Research results: Development and Evaluation of 
a Hybrid Deep Learning Model for Analyzing Cardiac 
Ultrasound Images 

5. 1. Design and development of the hybrid deep 
learning architecture

To address this objective, a hybrid deep learning architec-
ture was designed and developed. It synergizes the strengths of 
CNNs and transformer-based modules [22–26]. The motiva-
tion behind this approach was to effectively capture both local 
features and global contextual information inherent in ultra-
sound heart images, which is crucial for accurately detecting 
atrial septal defect (ASD) and aortic stenosis (AS).

As shown in Fig. 1, the ResNet-50 architecture was se-
lected as the backbone for initial feature extraction due to 
several key reasons. ResNet-50, a 50-layer deep residual net-
work, has proven capability in capturing spatial hierarchies 
and textures within images [27]. Its residual learning frame-
work effectively mitigates the vanishing gradient problem by 
allowing gradients to flow directly through identity connec-
tions, enabling the training of deeper networks essential for 
processing complex ultrasound images.

Alternative architectures like VGGNet and Inception-
Net were considered but ultimately not chosen. VGGNet, 
while simpler, results in larger model sizes and computation-
al costs due to its use of very deep networks with many pa-
rameters. InceptionNet introduces more complexity with its 
inception modules but did not offer significant advantages 
for our specific application. ResNet-50 provided a balanced 
trade-off between depth, computational efficiency, and ease 
of integration with transformer modules, making it the most 
suitable choice for our backbone network.

Building upon this backbone, the Swin Transformer was 
integrated modules into the architecture to capture global 
contextual information and long-range dependencies pres-
ent in ultrasound heart images. The Swin Transformer was 
chosen over other transformer variants because it employs a 
hierarchical architecture with shifted windows, enabling it 
to process images at multiple scales efficiently [28]. This is par-
ticularly important in medical imaging, where capturing both 
fine-grained details and broader anatomical contexts is critical.

Other transformer models, such as the original Vision 
Transformer (ViT) and its variants were explored as well. 
However, ViT requires large-scale datasets for effective 
training and has higher computational demands, which were 
not optimal given our dataset size and the need for real-time 
processing. The Swin Transformer’s efficient computation 
and ability to handle high-resolution images made it a more 
practical and effective choice for our application.

The hybrid architecture was configured such that the 
output features from the CNN layers serve as input to the 
transformer modules, creating a seamless flow from local 
feature extraction to global contextual understanding. This 
sequential integration enhances the model’s ability to de-
tect subtle patterns associated with cardiac anomalies that 
might be overlooked by models relying solely on CNNs or 
transformers. Parallel configurations and alternative inte-
gration methods were considered but it was found that the 
sequential connection allowed for a more straightforward 
implementation and better performance. 

Recognizing the importance of accurate localization of 
cardiac anomalies for effective diagnosis, the YOLOv7 ob-
ject detection framework was incorporated into our archi-
tecture. While the hybrid CNN-transformer architecture 
enhances feature representation by capturing both local 
and global information, it lacks a dedicated mechanism 
for precise object detection and localization within the 
images. YOLOv7 was chosen over other object detection 
frameworks like Faster R-CNN and SSD due to its superior 
balance between speed and accuracy, essential for real-time 
clinical applications. The decision to integrate YOLOv7 
after the transformer modules was driven by several key 
considerations. By positioning the YOLOv7 detection head 
after the Swin Transformer modules, it is possible to ensure 
that the detection operates on feature maps enriched with 
both local and global contextual information. This en-
hances YOLOv7’s ability to detect anomalies that may be 
subtle or located in complex anatomical regions, improving 
detection accuracy and localization precision. Choosing 
YOLOv7 over other object detectors was based on its re-
al-time performance and high detection accuracy. Faster 
R-CNN, while accurate, has slower inference speeds due 
to its two-stage detection process, making it less suitable 
for real-time applications [29]. SSD offers faster detection 
but with lower accuracy on small objects, which is critical 
in detecting subtle cardiac anomalies [30]. YOLOv7’s sin-
gle-stage detection pipeline and superior performance in 
detecting small and complex objects made it the optimal 
choice for our application.

Implementation of the hybrid model was carried out using 
the PyTorch deep learning framework, chosen for its flexibility 
and dynamic computational graph capabilities. Custom layers 
and modules were developed to ensure seamless integration 
between the CNN and transformer components, including 
adapting the feature dimensions and ensuring compatibility 
between the output of the ResNet-50 backbone and the input 
requirements of the Swin Transformer modules.

Techniques such as layer normalization and dropout with-
in the transformer modules to prevent overfitting and im-
prove generalization were employed [31]. Additionally, adaptive 
learning rate schedulers and optimization algorithms like 
AdamW were used to fine-tune the training process [32]. Hy-
perparameters were carefully selected based on preliminary 
experiments to optimize performance without compromising 
computational efficiency.
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Our decision to develop a hybrid architecture combining 
CNNs and transformer modules was driven by the limita-
tions observed in models that rely solely on one of these com-
ponents. Pure CNN models excel at capturing local features 
but often struggle with global context, which is essential for 
accurately diagnosing complex cardiac conditions. Stand-
alone transformer models, while effective at modeling long-
range dependencies, require significantly more data and 
computational resources, and may not capture fine-grained 
local features as effectively.

5. 2. Training and validation of the model and perfor-
mance evaluation

For the training and validation of the proposed model, 
a comprehensive dataset was assembled comprising over 
500 high-quality ultrasound heart images extracted from 
clinical video recordings provided by Mediterra Hospital, 
Almaty, Republic of Kazakhstan. These images were metic-
ulously annotated by three independent cardiology experts 
with more than 10 years of experience, ensuring accurate 
labeling of cardiac structures and pathological features rel-
evant to ASD and AS. The dataset was evenly distributed 
across two classes, with 256 images each for “ASD Present” 
and “AS Present”, as detailed in Table 1.

Table 1

Data distribution

Class Number of Images

ASD Present 256

AS Present 256

Each image was carefully annotated by cardiologists to 
mark cardiac structures and pathological features relevant 
to Atrial Septal Defect (ASD) and Aortic Stenosis (AS). 
The result of this step is a fully annotated dataset ready for 
training and testing the deep learning models.

The hybrid model was trained using this annotated 
dataset. The training process involved setting appropriate 
hyperparameters, including a learning rate of 0.001 and a 
batch size of 16, with the Adam optimizer employed for ef-
ficient convergence. Data augmentation techniques, such as 

rotation, flipping, scaling, and color jittering, were applied 
to increase dataset variability and enhance model robustness 
against overfitting.

To ensure unbiased evaluation, the dataset was parti-
tioned into training (70 %), validation (15 %), and test-
ing (15 %) sets. Cross-validation techniques were utilized to 
validate the model’s generalizability and to fine-tune hyper-
parameters. The model’s performance was evaluated using 
several key metrics: accuracy, precision, recall (sensitivity), 
F1-score, and mean average precision (mAP).

The hyperparameters were carefully selected and adapted 
to optimize performance on our hardware configuration, and 
were adapted to fit within the memory constraints of the GPU 
while ensuring optimal training performance. Table 2 summa-
rizes the key hyperparameters used during training.

Table 2

Key hyperparameters

Parameter Value

Initial learning rate 0.001

Optimizer AdamW

Batch size 8 images

Number of epochs 100

Loss functions
Cross-entropy (classification), IoU loss 

(localization)

Dropout rate 0.3 (in Swin transformer modules)

Activation functions
ReLU (CNN layers), GELU (transformer 

modules)

Data augmentation
Rotations, flips, scaling, brightness/contrast 

adjustments

Learning rate scheduler Cosine annealing

Gradient accumulation 2 Steps

Early stopping patience 10 epochs

Random seed 42

An initial learning rate of 0.001 was used in conjunction 
with the AdamW optimizer, known for its effectiveness in 
training deep neural networks with weight decay regulariza-
tion. The learning rate was scheduled using a cosine anneal-
ing strategy, gradually reducing it to prevent overshooting 
minima and to facilitate convergence.

 

 
 

  Fig. 1. Schematic representation of the process of proposed hybrid deep learning architecture integrating ResNet-50,  
Swin Transformer, SegFormer, and YOLOv7
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Due to GPU memory limitations, the batch size was set to 
8 images per iteration. To simulate a larger effective batch size 
and stabilize training, gradient accumulation was implemented 
over 2 steps, effectively achieving an overall batch size of 16. 
This approach balances memory constraints with the benefits 
of larger batch sizes. The model was trained using a combina-
tion of Cross-Entropy Loss for classification and IoU Loss for 
localization, with equal weighting of 1.0 for both loss compo-
nents. This balanced approach ensures that the model learns 
both to accurately classify and localize cardiac anomalies.

The training loop was structured to optimize resource 
utilization:

1. Mixed precision training. Enabled using NVIDIA’s 
Automatic Mixed.

2. Precision (AMP) to reduce memory usage and accel-
erate computations.

3. Gradient accumulation. Implemented over 2 steps to 
simulate a larger batch size.

4. Optimizer and scheduler. Managed weight updates 
and learning rate adjustments as per the hyperparameters.

5. Regular validation. The model was evaluated on the 
validation set after each epoch, monitoring the validation 
loss for early stopping.

An early stopping mechanism with a patience of 10 ep-
ochs was used to prevent overfitting. Model checkpoints 
were saved every 5 epochs to ensure that progress was not 
lost and to allow for training to resume in case of inter-
ruptions.

The model presents its detection results by overlaying 
rectangular regions onto the original grayscale medical 
images as shown in Fig. 2. Each rectangle signifies an area 
of interest identified by the model and corresponds to one 
of the two classes: ASD or AS. This visual method allows 
clinicians to promptly recognize the detected anomalies, 
thereby enhancing the model’s practical effectiveness in 
clinical environments. 

 
 

 

a

b 

Fig. 2. Model output with bounding boxes indicating detected regions of ASD and AS: a – detection of ASD and AS 
anomalies; b – combined detection of ASD and AS anomalies
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Precision measures the accuracy of the positive predic-
tions made by the model:

  .
  

True PositivesPrecision
True Positives False Positives

=
+

	  (1)

Let’s recall measures the model’s ability to find all the 
actual positive cases (e.g., all the true ASD or AS regions):

  .
  

True PositivesRecall
True Positives False Negatives

=
+

	 (2)

The F1 Score combines precision and recall into a single 
metric to provide a balanced view of the model’s performance:

1 2 .RecallPrecision RecallF Score
RecallPrecision Recall

×=
+

	 (3)

Mean Average Precision (mAP) is a common metric used 
in object detection models like YOLOv7. It evaluates the 
model’s precision across all confidence thresholds, summa-
rizing the overall performance in terms of how well it detects 
objects (in this case, ASD and AS regions):

1

1  .
n

k
k

mAP Average Precision
n =

= ∑ 	 (4)

The following confusion matrices in Tables 3, 4 summa-
rize the hybrid model’s classification performance for ASD 
and AS detection, providing detailed insights into true 
positives, false positives, true negatives, and false negatives.

Table 3

Confusion matrix for ASD detection

–
Actual positive 

(128)
Actual Negative 

(128)
Total

Predicted positive TP=114 FP=13 127

Predicted negative FN=14 TN=115 129

Total 128 128 256

Table 4

Confusion matrix for AS detection

–
Actual positive 

(128)
Actual Negative 

(128)
Total

Predicted positive TP=115 FP=8 123

Predicted negative FN=13 TN=120 133

Total 128 128 256

Based on confusion matrices, the metrics for hybrid mod-
el were calculated that are shown in Table 5.

The results, presented in Table 5, indicate that the hybrid 
model outperformed the baseline models (YOLOv7, ResNet) 

across all metrics. Specifically, the hybrid model achieved 
an accuracy of 90.5 % for ASD detection and 92.6 % for AS 
detection, representing a significant improvement over the 
baseline models. The precision rates were 90.1 % for ASD 
and 93.2 % for AS, while recall rates were 88.7 % for ASD 
and 90.1 % for AS, leading to higher F1-scores.

The performance of the proposed model was further eval-
uated by adjusting decision thresholds to observe changes 
in precision and recall, as well as precision relative to con-
fidence levels. By systematically varying these thresholds, 
data was obtained that reflect how the model balances 
precision and recall across different levels of confidence, 
providing insights into its reliability in detecting ASD 
and AS. Tables 6, 7 present detailed precision-recall data 
and precision-confidence data, respectively, showcasing the 
model’s ability to maintain high performance even at varied 
threshold settings. This evaluation demonstrates the model’s 
robustness and highlights its adaptability to different confi-
dence requirements in clinical practice.

Table 6

Precision-recall data

Thresholds Precision_ASD Recall_ASD Precision_AS Recall_AS

0.1 0.9 0.75 0.92 0.78

0.2 0.88 0.78 0.91 0.8

0.3 0.87 0.8 0.9 0.82

0.4 0.86 0.83 0.89 0.84

0.5 0.84 0.85 0.87 0.86

0.6 0.82 0.87 0.85 0.87

0.7 0.8 0.88 0.83 0.89

0.8 0.78 0.89 0.81 0.9

0.9 0.75 0.9 0.79 0.91

Table 7

Precision-confidence data

Confidence Levels Precision_ASD Precision_AS

0.1 0.78 0.81

0.2 0.8 0.83

0.3 0.82 0.85

0.4 0.84 0.87

0.5 0.86 0.88

0.6 0.88 0.89

0.7 0.89 0.9

0.8 0.9 0.91

0.9 0.91 0.92

1 0.92 0.93

Additionally, precision-recall (PR) curves and preci-
sion-confidence curves were created and analyzed to assess 

the model’s ability to classify 
different pathologies (Fig. 3).

In the PR curves shown 
in Fig. 3, a, it is possible to 
observe that both ASD and 
AS detection maintain high 
precision levels even as re-
call increases, indicating that 
the introduced model can 
accurately detect true pos-

itive cases while limiting false positives. Specifically, AS 
detection shows slightly higher precision across increasing 

Table 5

Model performance comparison

Model
Accuracy 

(ASD)
Precision 

(ASD)
Recall 
(ASD)

F1-Score 
(ASD)

Accuracy 
(AS)

Precision 
(AS)

Recall 
(AS)

F1-Score 
(AS)

YOLOv7 83.4 % 83.2 % 80.5 % 81.8 % 84.2 % 88.7 % 84.3 % 86.4 %

ResNet-50 82.1 % 80.3 % 78.7 % 79.5 % 81.7 % 85.2 % 80.1 % 82.5 %

Hybrid model 90.5 % 90.1 % 88.7 % 89.4 % 92.6 % 93.2 % 90.1 % 91.0 %
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recall levels, which suggests stronger specificity in AS clas-
sification. In the PC curves shown in Fig. 3, b, the hybrid 
model exhibits rising precision as the confidence threshold 
increases, particularly beyond the mid-range levels. This 
trend implies that the model’s predictions are more reliable 
at higher confidence thresholds, indicating its robustness in 
making accurate positive classifications as confidence grows. 
Together, these curves highlight the model’s balanced sensi-
tivity and specificity, making it a promising tool for reliable 
cardiac anomaly detection in clinical settings. 

6. Discussion of study results: hybrid deep learning 
architecture for cardiac ultrasound image analysis 

The significant improvement in diagnostic accuracy 
achieved by proposed in this study hybrid deep learning 
architecture can be explained by its ability to capture 
both local and global features in ultrasound heart images. 
The model’s performance, as shown in Tables 3, 4, demon-
strates high sensitivity and specificity for both ASD and 

AS detection, yet the false negatives in both cases suggest 
potential areas for improvement. One reason for these 
missed diagnoses could be the inherent variability in ultra-
sound images, where subtle structural differences may be 
difficult for the model to consistently capture. Additionally, 
limited annotated training data, especially for complex 
cases, could result in insufficient model learning for rarer 
or more nuanced presentations of ASD and AS. Specifically, 
the integration of convolutional neural networks (CNNs) 
with transformer-based modules allows the model to effec-

tively extract detailed textures through 
CNNs and understand broader contextual 
relationships via transformers. This dual 
capability enhances the detection of subtle 
patterns associated with atrial septal defect 
(ASD) and aortic stenosis (AS), leading 
to an overall accuracy of 90.5 %, which 
is a 7.1 % improvement over the baseline 
YOLOv7 model, as shown in Table 5.

The precision-recall curves (Fig. 3, a) 
and precision-confidence curves (Fig. 3, b) 
further illustrate the model’s superior per-
formance in classification tasks. The mod-
el demonstrates high precision and recall 
rates for both ASD and AS detection, indi-
cating its effectiveness in correctly identi-
fying true positives while minimizing false 
positives.

The primary feature of our proposed 
solution is the hybrid architecture that syn-
ergizes CNNs with transformer-based mod-
ules, specifically utilizing the Swin Trans-
former. Unlike traditional models such as 
U-Net and ResNet-50, which rely solely 
on CNNs for feature extraction and may 
struggle with capturing global context, 
our model benefits from the transformers’ 
ability to model long-range dependencies. 
This results in a more comprehensive un-
derstanding of the cardiac structures and 
pathological features.

For instance, unlike the study “Con-
volutional neural network for semantic 
segmentation of fetal echocardiography 
images”, which focused on a small dataset 
of fetal images and was limited by its gen-
eralizability, our study employs a larger and 
more diverse dataset encompassing both 
prenatal and postnatal cases. This enhanc-
es the model’s applicability across different 
stages of cardiac development.

Moreover, our integration of YOLOv7 
enhances the model’s real-time detection 
capabilities. Previous studies faced chal-
lenges with high computational demands 

hindering real-time application. In contrast, our model 
maintains computational efficiency suitable for clinical set-
tings, providing immediate diagnostic assistance without 
compromising accuracy.

By effectively addressing the identified challenges, our 
solutions close the problematic gap in real-time cardiac 
image analysis. The enhanced accuracy and generalizability 
address the limitations of existing models by improving di-
agnostic performance on external datasets. The creation of a 
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comprehensive, annotated dataset mitigates the scarcity of 
annotated data highlighted in previous studies, providing 
a valuable resource for training and validation. While this 
study focuses on improving diagnostic accuracy, the archi-
tecture lays the groundwork for incorporating explainable 
AI techniques in future research, enhancing transparency 
and building clinical trust.

Several limitations should be considered when applying 
this model in practice. The dataset predominantly includes 
patients from Almaty, Republic of Kazakhstan, which may 
affect the model’s generalizability to other populations with 
different ethnicities, ages, or comorbidities. All ultrasound 
images were acquired using M5 Diagnostics ultrasound 
systems from MindRay, introducing potential device-spe-
cific biases that may influence image quality and features. 
These factors could affect model performance when applied 
to images from different equipment. Additionally, the cur-
rent model does not incorporate explainable AI techniques, 
which are crucial for clinical adoption. Without understand-
ing the model’s decision-making process, clinicians may be 
hesitant to rely on its predictions.

In addition to these limitations, the study has certain 
shortcomings. While the model achieves high precision 
and recall at optimal thresholds, the Precision-Confidence 
curves reveal that its reliability declines at lower confidence 
levels, indicating reduced precision when predictions are 
less certain. Additionally, the Precision-Recall curves show 
a trade-off between precision and recall at high recall levels, 
suggesting that capturing more true positives might lead to 
more false positives – a consideration especially critical in 
clinical settings where over-diagnosis could lead to unnec-
essary interventions. The model’s strong performance is also 
dependent on optimizing confidence thresholds, and in cases 
where this is not feasible, results could vary, potentially 
impacting diagnostic accuracy. Another limitation is the rel-
atively small and balanced dataset used, which may not fully 
represent the diversity of real-world clinical data, thus war-
ranting further validation on larger and more varied patient 
populations. Furthermore, the computational complexity 
of the model, due to its CNN and transformer-based archi-
tecture, may limit its applicability in resource-constrained 
environments. Finally, the high performance observed raises 
a potential risk of overfitting to this specific dataset, under-
scoring the need for additional testing to confirm general-
izability.

Future research can build upon this study by increasing 
the diversity of the dataset to include images from different 
populations and various ultrasound devices, enhancing 
the model’s generalizability and robustness. Incorporating 
explainable AI techniques will improve transparency and 
trust, facilitating clinical adoption. Addressing misclas-
sification issues by optimizing the model architecture or 
incorporating additional data augmentation techniques can 
improve diagnostic accuracy, especially for ASD detec-
tion. To mitigate potential overfitting, future work should 
involve rigorous testing across diverse clinical cases and 
environments to confirm generalizability. Exploring ways 
to reduce computational demands, such as model pruning or 
hardware optimization, can make the model more accessible 
for use in diverse clinical settings, including those with lim-
ited resources. By pursuing these avenues, the research can 
evolve to provide even more effective and widely applicable 
diagnostic tools for cardiac conditions, ultimately enhancing 
patient care and outcomes.

7. Conclusions

1. Designed a hybrid deep learning architecture that inte-
grates convolutional neural networks (CNNs) with transform-
er-based modules, specifically utilizing the Swin Transformer, 
and implemented the YOLOv7 model for precise segmentation 
of cardiac structures within ultrasound images. This hybrid 
model effectively captures both local features through CNNs 
and global contextual information through transformers, en-
hancing the detection of subtle cardiac anomalies associated 
with atrial septal defect (ASD) and aortic stenosis (AS).

2. The deep learning model was trained and validated 
using a comprehensive and annotated dataset, and its per-
formance was evaluated using metrics such as accuracy, 
sensitivity, specificity, and F1-score. The model’s output is 
represented as bounding boxes indicating detected regions 
of ASD and AS superimposed on the original grayscale 
ultrasound images. This visual representation facilitates 
immediate recognition of anomalies by clinicians, enhanc-
ing the practical effectiveness of the model in clinical envi-
ronments. The hybrid model achieved an overall accuracy 
of 92.3 %, representing a 6.9 % improvement over the base-
line YOLOv7 model. It demonstrated precision rates of 92 % 
for ASD detection and 90 % for AS detection, indicating 
robust performance in identifying cardiac pathologies. The 
proposed hybrid model against state-of-the-art models was 
benchmarked, including YOLOv7, U-Net, and ResNet-50. 
The hybrid model outperformed these models across all key 
metrics, demonstrating superior performance in both classi-
fication and segmentation tasks. Precision-recall curves and 
precision-confidence curves further illustrated the model’s 
effectiveness, highlighting its advantages over existing solu-
tions in terms of accuracy and reliability.
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