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The subject of this study is the process of anoma-
ly detection in high-load complex computer sys-
tems (HLCCSs). The task addressed in the paper is 
the lack of real-time anomaly detection models in 
HLCCS with a specified accuracy. A set of mathema-
tical models for real-time anomaly detection has been 
built and investigated. This set includes a mathe-
matical model for detecting anomalous connections 
between components of computer system (DACCCSs) 
and a mathematical model for assessing current state 
of computer system (CSACS).

The results of models tests showed the following 
efficiency metrics. For a DACCCS model: accuracy – 
84 %, positive predictive value – 87 %, recall – 74 %, 
and weighted average accuracy (WAA) – 78 %. For 
a CSACS model: accuracy – 91 %, positive predictive 
value – 82 %, recall – 68 %, and WAA – 67 %.

The positive results of the study can be attribu-
ted to the following factors. A DACCCS model uses 
projection matrices and orthogonal vector func-
tions to analyze anomalies. This enables the creation  
of spatial decompositions that reveal complex inter-
relationships between system components using 
only eigenvalues and eigenvectors. A CSACS model 
applies the singular value decomposition method, 
which implies solving a system of scalar equations 
to determine the current state of the system. This 
approach minimizes computational costs compared 
to methods requiring the solution of complex matrix 
equations. Thus, the model could be applied for real-
time data analysis and anomaly detection under con-
ditions of limited resources and high system load.

The practical application scope includes HLCCS, 
such as banking transaction servers and cloud plat-
forms, in which it is essential to enable stable opera-
tion under high request amount and to minimize the 
risk of data loss or service failure
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1. Introduction 

High-load web services and computer systems are a key part 
of modern infrastructure as they enable the stable operation 
of banking services, commercial platforms, online educational 
resources, social networks, and many other critical industries. 
Given the significant load that these systems withstand on 
a daily basis, it is necessary to comply with high requirements 
for security and reliability indicators for their stable operation.

One of the main challenges for such systems is detecting 
anomalies in real time. Anomalies can signal system mal-
functions, process inconsistencies, or potential cyber attacks. 
Highly loaded systems are particularly sensitive to even 
minor failures as they can cause significant delays or total 
unavailability of service for many users at the same time, 
resulting in financial losses and loss of customer trust.

Modern web services face such challenges as DDoS attack  
attempts, significant drops in user requests, database con-

nectivity issues, memory leaks, and the impact of unexpected 
changes in network or hardware configuration. Therefore, 
ensuring the timely detection of anomalies is a critically 
important aspect of the security of highly loaded systems. 
Automation of the analysis process and timely identification 
of potential problems in real time make it possible to reduce 
risks and minimize downtime.

Highly loaded systems are characterized by complex process 
dynamics and a large number of components, which requires 
the use of tools for deep analysis of the interaction between 
them. One of the promising approaches is the use of models for 
detecting anomalous connections between system components, 
which makes it possible to evaluate the stability of behavior, 
taking into account complex dependences between the load on 
the processor, memory, and network components.

Considering these requirements, the development of 
a mathematical model for detecting anomalies in highly 
loaded web services aims not only to increase the detection 
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accuracy but also to ensure a timely response to potential 
threats. This makes it possible to avoid significant financial 
losses and increase the level of trust of users in such services.

Therefore, it is a relevant task to build mathematical 
models for the detection of anomalies in highly loaded com-
plex computer systems, which have the capability to obtain 
results in real time with a predefined accuracy.

2. Literature review and problem statement

Study [1] analyzed the use of in-memory computing tech-
nologies to speed up the operation of highly loaded deep learn-
ing systems. Special emphasis is on the prospects of improving 
energy efficiency and reducing delays when processing large 
volumes of data, which is especially relevant for scalable com-
puter systems that serve numerous requests at the same time. 
The authors provide an overview of modern trends and forecasts 
of technology development. In the conclusions, the authors 
emphasize the relevance of research into highly loaded complex 
computer systems in various directions, including security and 
reliability. However, given the generalized nature of the work, 
the authors do not provide results of practical experiments and 
do not specify the achieved advantages of the research.

Paper [2] describes modern trends in the development of 
network intrusion detection systems, which are critically im-
portant for the protection of highly loaded complex computer 
systems from cyber threats. The authors describe in detail the 
current state of methods for detecting anomalies in network 
flows and discuss the need to create adaptive and scalable 
real-time solutions that will help ensure the reliable operation 
of such systems even during peak loads. However, there are 
still unresolved issues regarding the coordination of different 
methods of anomaly detection and the adaptation of these 
methods to new threats. The main reason for this is the lack of  
a single standard for evaluating and comparing the performance 
of different models, as well as the high demands on computing 
resources required to implement these approaches in real time.

Paper [3] describes the main interconnection networks 
used in supercomputing systems, such as NVIDIA InfiniBand, 
Intel Omni-Path, and Cray Slingshot, and presents their evo-
lution and development trends under conditions of decreasing 
Moore’s law. Special attention is paid to the performance of 
networks, as well as the speed of reaction to possible impacts. 
The authors emphasize that these characteristics are key to 
increasing the efficiency of parallel computing in high-perfor-
mance computers. This is important for understanding future 
challenges in the development of network solutions for highly 
loaded systems. However, several unsolved issues remain, 
such as ensuring the scalability of these networks to further 
improve performance. This is related to issues of technical 
limitation, architectural features of modern network solutions 
and requirements for computing resources.

Our review of the literature [4–8] showed that a num-
ber of scientific works report the mathematical modeling of 
processes in highly loaded systems with an emphasis on the 
possibility of data protection. So, for example, in paper [4], 
the authors propose a mathematical model for detecting 
anomalies in complex computer systems. The authors empha-
size the need for a universal and scientifically based approach 
to monitoring the behavior of a highly loaded system. The 
research aims to establish a general criterion for identifying 
anomalous activity based on the homogeneity of input data 
samples. By improving the sampling homogeneity criteria 

and isolating observations indicating anomalous behavior, 
the proposed model aims to improve the reliability and se-
curity of computer systems. However, the model is designed 
only for processing series from small samples. In addition, the 
model has a high computational complexity.

Paper [5] offers methods for probabilistic analysis and 
modeling of the dynamics of complex systems, which can be 
used for modeling highly loaded complex computer systems 
and analyzing their reliability and behavior under condi-
tions of abnormal changes. This meets the goals of building 
models to detect anomalies in the behavior of systems, es-
pecially with an emphasis on modeling and understanding 
the dynamics of transitions between states. The authors pro-
posed a mathematical model for calculating the conditional 
probabilities that the system would be in a certain state at 
a specific time, provided that the system was in any of the 
possible states at the initial moment. But the limitation of 
the provided graphical modeling approach, which assumes 
the presence of only three states, reduces the practical value 
of the proposed model under the conditions of complication 
of the security situation in real time.

In paper [6], mathematical modeling of the process of 
system security testing was carried out using a proven graph 
modeling method with the addition of elements from the 
theory of fuzzy logic. That made it possible to mathemati-
cally formalize a complex process and obtain mathematical 
expressions for calculating probability-time characteristics. 
A similar approach is reported in [7]. But the authors of the 
models did not verify them on highly loaded complex com-
puter systems. Therefore, it is possible to draw conclusions 
about the expediency of other approaches to the mathemati-
cal formalization of complex technical systems.

One of these approaches is described in paper [8]. In it, 
the authors recommend mathematically formalizing anomaly 
detection systems using the basic principles of dynamic chaos 
theory. In particular, the authors suggest using the BDS sta-
tistic (Brock-Dechert-Sheinkman statistic) as the main indi-
cator. This is a modern mathematical apparatus for detecting 
anomalies in time series, which can be used when describing 
the indicators of information processes. In general, the ma-
thematical apparatus from the theory of dynamic chaos has 
prospects in the formalization of particularly complex highly 
loaded complex computer systems. However, the authors of 
the paper did not analyze the complexity and speed of the 
anomaly detection process.

The authors of [9] consider the development of comput-
ing paradigms, in particular cloud, edge, and fog computing, 
in the context of highly loaded systems. It focuses on trans-
forming cloud technologies into more distributed approaches, 
such as Edge Computing, to improve data processing effi-
ciency, reduce latency, and optimize resource management. 
The study discusses the current challenges and prospects for 
implementing machine learning to improve system perfor-
mance. The paper highlights the need to use ML (Machine 
Learning) to optimize speed, accuracy, security, and low power 
consumption. This is important for highly loaded systems 
that must ensure minimal delays and stable operation under 
conditions of large amounts of data. At the same time, the 
authors do not provide quantitative indicators of speed.

The authors of paper [10] propose an approach to dynamic 
load balancing in cloud computing that uses deep learning. 
The authors explore a method that combines neural net-
works and reinforcement learning with hybrid optimization 
algorithms to improve the efficiency of load balancing and 
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task management. The study confirms the importance of re-
ducing latency, optimizing CPU (Central Processing Unit), 
and memory usage to improve the performance of high-load 
systems. This emphasizes the importance of these indicators 
when detecting anomalous system behavior. However, several 
unsolved issues remain, such as ensuring the scalability of 
these approaches for large cloud systems and accounting for 
unpredictable changes in load. The main reason for this is 
the complexity of dynamic cloud environments, in which it 
is necessary to adapt to constantly changing conditions and 
various load characteristics.

Another example of the use of artificial intelligence in 
modeling complex computer systems is [11]. The paper dis-
cusses the optimization of the large BERT (Bidirectional 
Encoder Representations from Transformers) language model 
to run on multi-core CPUs. The study shows how porting and 
parallelizing BERT to a multi-core ARM (Advanced RISC 
Machine) processor can significantly reduce model training 
time, in particular through the use of multithreading. The 
paper investigates the effect of parameters such as batch size 
and learning rate on model performance in various natural 
language processing tasks. But it does not show the possibility 
of using the model in real time.

Paper [12] discusses the use of machine learning tech-
nologies to improve the efficiency of resource management 
in heterogeneous cloud computing systems. It describes 
approaches to the allocation of resources and optimization of 
calculations, which is related to the problems of highly loaded 
complex computer systems. Optimizing resource manage-
ment, especially in cloud systems, is an important part of en-
suring the reliability and efficiency of such systems. However, 
the authors of the paper focused on certain reliability indica-
tors without taking into account possible cybernetic influ-
ences on the system from the outside. And this is one of the  
requests for the future.

Based on our review of the literature [1–12], several crit-
ical unresolved issues that require further research were iden-
tified. First of all, one of the key challenges is to increase the 
speed of anomaly detection, taking into account the accuracy 
requirements for HLCCSs. This is especially relevant under 
the conditions of performance of tasks by such systems in 
real time. Also, the issues of scalability of anomaly detection 
methods, which must work effectively with a large amount of 
data and change according to the dynamic conditions of the 
environment, remain unsolved. The lack of a single standard 
for evaluating the effectiveness of different approaches makes 
it difficult to objectively compare the results, which creates 
barriers to the introduction of new methods in industrial 
applications. But it can be noted that the processes of scal-
ability of new methods depend to a large extent on the speed 
of task execution.

Another important issue is the adaptation of existing 
models to dynamic conditions, which can significantly affect 
their accuracy and speed of calculations. Further research 
should focus on the development of more flexible models 
that can quickly adapt to environmental changes, which will 
reduce delays in the system’s response to potential threats.

3. The aim and objectives of the study

The purpose of our work is to build a set of mathematical 
models for detecting anomalies in highly loaded complex 
computer systems based on the provisions from the theory 

of dynamic chaos. This will make it possible to increase the 
speed of detection of anomalies in the behavior of highly 
loaded complex computer systems, which, in turn, should 
increase their security.

To achieve the goal, the following tasks were set:
– to investigate a generalized model for determining the 

stochastic sensitivity of cycles for highly loaded web services 
and complex computer systems;

– to build and research a mathematical model for de-
tecting anomalous connections between computer system 
components;

– to develop and examine a mathematical model for as-
sessing the state of the computer system at a current time 
point or at short time intervals.

4. The study materials and methods

The object of our study is the process of detecting ano-
malies in HLCCS. The subject of research is a set of mathe-
matical models for detecting anomalies in real time.

The application of a comprehensive approach, which in-
cludes mathematical models built on the basis of the theory of 
dynamic chaos, as well as machine learning methods, will make 
it possible to significantly increase the speed of detecting anom-
alies while ensuring the necessary accuracy, which is cri tically 
important for the effective operation of real-time systems.

It is assumed that computer systems have a sufficient 
number of sensors to collect data about the state of com-
ponents. It is also assumed that abnormal changes in the 
behavior of the system can be detected based on the analysis 
of deviations in the interaction between components.

To simplify the simulation, it is assumed that all anomalies 
have time-independent characteristics, and the system ope-
rates under conditions of constant average load, and short-
term peaks have little effect on the stability of the system.

Mathematical models were used to detect anomalies in 
highly loaded complex computer systems, which make it 
possible to analyze system dynamics, assess sensitivity, and 
detect possible deviations in system behavior. The theoreti-
cal basis of the research is the use of fundamental principles 
from the theory of dynamic chaos to model sensitivity, as well 
as the use of statistical methods to identify anomalies in the 
behavior of the system.

Python software (version 3.9) with a set of libraries was 
used for simulation and analysis: Scikit-Learn for machine 
learning and data processing, TensorFlow for creating neural 
networks, Pandas for table processing, and Matplotlib for 
visualizing results. Libraries for solving differential equa-
tions (SciPy) were also used.

The experiment was conducted under conditions of high 
load on the servers, with the simulation of various scenarios 
of network activity and processor operation. Data from the 
public dataset CIC-IDS-2018, which contains information 
on normal and abnormal network activity, was used. The 
system worked in real time, which allowed us to evaluate its 
performance and ability to detect anomalies.

The following configuration was used during the expe-
riment. The network was built according to a star topology, 
where a central server acted as a coordinator and provided 
communication with several client nodes. A high-performance 
server based on an Intel Core i5-10400 processor was used. 
The server functioned as a coordinator for traffic management 
and request processing. 10 client nodes were connected, each 
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of which was a PC with an ARM architecture processor. Each 
of the nodes carried out a simulation of the user load, which 
included the generation of requests to the central server. The 
TP-Link TL-SG108E router was used, which ensured reliable 
distribution of traffic between clients. Managed switches 
with QoS (Quality of Service) support were used to connect 
all client nodes. All connections were made using Catego-
ry 6 Ether net cables (Cat6), which provided a data transfer 
rate of up to 1 Gbit/s. The router was connected to the main 
server and provided access to the Internet, which allowed 
testing under conditions of mixed traffic (local and external).

During the simulation, it was assumed that all client 
nodes have the same performance and load, which allowed us 
to evaluate general trends in the system’s operation. It was 
also assumed that there are no significant delays in the net-
work and that the network connections are stable through-
out the duration of the experiment.

After obtaining the initial data, their pre-processing, 
including standardization and normalization, was carried 
out. The data were divided into training and test samples in 
the ratio of 70:30. To ensure the balance of the classes, the 
SMOTE (Synthetic Minority Over-sampling Technique) 
algorithm was used, which makes it possible to increase the 
number of examples for the less represented class.

To check the adequacy of the models built, cross-valida-
tion methods were used, as well as accuracy metrics, such as 
accuracy, completeness (recall), prediction accuracy (pre-
cision), and F1-measure. A comparative analysis of models 
with different approaches to anomaly detection (Isolation 
Forest, Autoencoder, One-Class SVM) was also conducted.

5. A set of mathematical models for detecting anomalies 
in a computer system based on the sensitivity  

of 3D cycles

5. 1. A generalized model for determining the stochas-
tic sensitivity of cycles for highly loaded web services and 
complex computer systems

We consider the case when the invariant multi-species M 
of the system is a limit cycle. Such a cycle can be given by some 
τ-periodic solution x = ξ(t), where x0 = ξ(0) is a fixed point of 
the cycle. The solution on the interval [0, τ) specifies the natu-
ral parameterization of the cycle points: M = {ξ(t)|0 ≤ t ≤ τ}. It is 
assumed that the cycle M is E-stable. In this case, a stationary  
distributed bundle of random trajectories of a complex sys-
tem is formed around the cycle. At the same time, analysis 
of the stochastic sensitivity of the multispecies M according 
to the general theory for a complex system is reduced to the 
construction and study of the τ-periodic solution W(t) of the 
matrix equation:

V F t V VF t P t S t P tT= ( ) + ( ) + ( ) ( ) ( ), (1)

with T-periodic coefficients:

F t f x t( ) = ∂ ∂ ( )( )/ ,ξ  S t G t G tT( ) = ( ) ( ),

G t t( ) = ( )( )σ ξ , P t P t( ) = ( )ξ .

The matrix W(t) – the stochastic sensitivity function 
of the cycle M – is the only solution to equation (1) in the 
space Σ of symmetric n × n matrices defined and sufficiently 
smooth on R1 with periodicity conditions:

∀ ∈ +( ) = ( )t R V t V t1 : ,τ  (2)

and innateness:

∀ ∈ ( ) ( ) =t R V t r t1 0: , .r t f t( ) = ( )( )ξ  (3)

The matrix W(t) here has the following probabilistic 
interpretation.

A stochastic system is considered:

dy F t ydt P t G t dw t= ( ) + ( ) ( ) ( ). (4)

This system has a certain periodic regime associated with 
the solution y t( ). Covariance matrix of a periodic random 
process y t( ) is the desired solution W(t) to system (1) to (4), 
which corresponds to the stable state of the system. It is the 
result of the asymptotic behavior of the process and provides 
a characteristic of the connections between the components 
of the system in the long term.

Random trajectories of a linear complex system are formed 
around a cycle of bundles that lie in a certain inva riant neigh-
borhood for a complex system of domain U. Let PLt be a hy-
perplane orthogonal to the cycle at the point ξ(t) (0 ≤ t ≤ Q).  
The neighborhood of the point ξ(t) lying in PLT is denoted  
by Ut : Ut = U ∩ PLt. It is assumed that Ut ∩ Us = ∅ if t ≠ s.

It is convenient to associate the probabilistic descrip-
tion of random trajectories in the beam with the vector 
function Xt. The Xt values are the intersection points of the 
random trajectories of the linear complex system in Ut. The 
probability distribution of trajectories in the beam stabilizes 
over time, so the random variable Xt in the neighborhood Ut 
has a certain stationary distribution with density ρt(x, ε).

The noise function ρt(x, ε) near the cycle has exponential 
Gaussian asymptotic ρ εt x* , :( )

ρ ε ρ ε
ξ ξ

εt t

T

x x K
x t W t x t

, , ,*
exp( ) ≈ ( ) − − ( )( ) ( ) − ( )( )











+

2 2

with the mean value mt = ξ(t) and the covariance matrix mt = ξ(t) 
given by the stochastic sensitivity function W(t).

This distribution, concentrated in the PLt hyperplane, 
is singular rankD(t, ε) ≤ n–1. For non-degenerate noi-
ses (det σ(x)|M ≠ 0) rankD(t, ε) ≤ n–1 is considered. The co-
variance matrix D(t,ε) characterizes the spread of intersec-
tion points of random trajectories with the hyperplane PLt.

The eigenvalues λ1 ≥ λ2 ≥ … ≥ λn ≥ 0 and the eigenvectors 
v1, v2, …, vn of the matrix W(t) are considered. Due to the 
degeneracy of W(t), the eigenvalue is λn = 0. The remaining 
eigenvalues and their corresponding eigenvectors charac-
terize the spread of the beam in the hyperplane PLt, i.e., its 
magnitude and direction.

5. 2. Mathematical model for detecting anomalous con-
nections between computer system components

The dynamics of computer system behavior in the three-di-
mensional case are considered. This is a typical example of 
evaluating three main characteristics: processor load, memory 
load, network device load. To this end, we shall use the main 
provisions from the theory of dynamic chaos [13, 14].

When studying the spread of random trajectories around  
a cycle, one can use a visual geometric description. Fig. 1 shows 
the points of intersection (asterisks) of random trajectories 
with the intersecting plane PLt, orthogonal to the cycle at the 
point ξ(t). The covariance of the distribution of these points, 
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given by the matrix W(t) is a function of the stochastic sensiti-
vity of the cycle. It is the only solution to the system (1) to (4).

 
Fig.	1.	Intersection	points	(asterisks)	of	random		

trajectories	with	the	hyperplane	PLt	orthogonal	to	the	cycle	
at	the	point	ξ(t )

In the studied three-dimensional case (n = 3), we shall 
use the singular expansion to construct the solution V(t) to 
equation (1):

V t t v t v t

t v t v t t v t v t

T

T T

( ) = ( ) ( ) ( )+

+ ( ) ( ) ( ) + ( ) ( ) ( )
λ

λ λ
1 1 1

2 2 2 3 3 3 ,

where λ1(t) ≥ λ2(t) ≥ λ3(t) are the eigenvalues, and v1(t), v2(t), 
v3(t) are the eigenvectors of the matrix V(t). It follows from 
condition (3) that for any t the matrix V(t) is degenerate (the 
distribution of intersection points is concentrated in the 
plane) PLt. This means that λ3(t) = 0 and the corresponding  
eigenvector v3(t) = r(t)/||r(t)|| is tangent to the cycle. As a re-
sult, the expansion of the matrix V(t) takes the following form:

V t t v t v t t v t v tT T( ) = ( ) ( ) ( )+ ( ) ( ) ( )λ λ1 1 1 2 2 2 . (5)

Here V(t) is given by scalar functions λ1(t), λ2(t) and 
vectors v1(t), v2(t). In the case of non-degenerate noises, the 
functions λ1(t), λ2(t) are strictly positive and determine at 
any t the variance in random trajectories of the cycle along 
vectors v1(t), v2(t). The λ1(t), λ2(t) values specify the size, 
and v1(t), v2(t) specify the direction of the axes of the scat-
tering ellipse of the points of intersection of random trajec-
tories with the plane PLt. The equation of this ellipse in the 
plane PLt takes the following form:

x t W t x t k
T

− ( )( ) ( ) − ( )( ) =+ξ ξ 2 2,

where the parameter k sets the confidence probability P = 1–e–k.
We denote by u1(t), u2(t) some orthonormal basis of the 

plane PLt. This basis can be easily found from the known 
τ-periodic solution ξ(t). The eigenvectors v1(t), v2(t) can be 
obtained by rotating the basis u1(t), u2(t) at some angle j(t):

v t u t t u t t1 1 2( ) = ( ) ( )+ ( ) ( )cos sin ,j j  (6)

v t u t t u t t2 1 2( ) = − ( ) ( ) + ( ) ( )sin cos .j j  (7)

As a result, the expansion of (5) to (7) makes it possible 
to express the unknown solution to the system (1) to (3) in 
terms of three scalar functions λ1(t), λ2(t), j(t).

It is denoted:

P t v t v tT
1 1 1( ) = ( ) ( ), .P t v t v tT

2 2 2( ) = ( ) ( )

It is noted that Pi(t) (i = 1, 2) are projection matrices:

P v vi i i= , ,P v i ji i = ≠( )0  .P P P= +1 2  (8)

The expansion of (5) is represented in the form:

V t t P t t P t( ) = ( ) ( ) + ( ) ( )λ λ1 1 2 2 .

The following assumption is accepted. The following 
identities hold for orthonormal vector functions vi(t) and 
projection matrices P t v t v ti i i

T( ) ( ) ( )=  (i = 1,2):

v t P t v tT
1 1 1 0( ) ( ) ( ) ≡ , (9)

v t P t v tT
1 2 1 0( ) ( ) ( ) ≡ , (10)

v t P t v tT
2 1 2 0( ) ( ) ( ) ≡ , (11)

v t P t v tT
2 2 2 0( ) ( ) ( ) ≡ , (12)

v t P t v t t u t u tT T

1 1 2 1 2( ) ( ) ( ) = ( ) + ( ) ( )� � �j . (13)

v t P t v t t u t u tT T

1 2 2 1 2( ) ( ) ( ) = ( ) + ( ) ( )� � �j . (14)

It is possible to prove this assumption as follows. Identi-
ty (9) follows directly from the relation:

v P v v v v v v v v v v v

v v

T T T T T T
1 1 2 1 1 1 1 1 1 1 1 1

1 1

1
� �� �

�

= 





= +





=

=

TT T Tv v v v+ = 



 ≡� �

1 1 1 1 0.  (15)

Identity (12) is proved in the same way. Identity (10) fol-
lows from:

v P v v v v v v v v v v v v v v vT T T T T T T T
1 2 2 1 2 2 2 1 2 1 1 2 2 1 1 22
� �� � �= +





= + ≡ 00. (16)

Identity (11) is proved in the same way.
Using equations:

v u u v   

1 1 2 2= + +cos sin ,j j j

u u
T


1 1 0≡ , u u
T


2 2 0≡ , −( ) =u u u u
T T


1 2 1 2.

After that, one can form the following expression:
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(13) follows from these relations. Identity (14) is proved 
similarly.

The proven assumption provides a set of identities for  
orthonormal vector functions and projection matrices. 
These identities make it possible to significantly simplify 
calculations related to the analysis of sensitivity of cycles 
and interactions between vector projections in a complex 
technical system. Since the Pi(t) matrices are projective 
and orthogonal, their use helps separate vector analysis in 
different directions, allowing for more efficient modeling 
and calculation.

Using projection matrices and orthogonal vectors to 
study the behavior of system components is a different 
approach from existing anomaly analysis models, such as 
correlation analysis or clustering-based analysis. Model (9) 
to (16) provides an opportunity to evaluate changes in the 
orthogonality of vectors, which makes it possible to detect 
complex interactions between components.

Orthogonal projections are the basis for detecting anom-
alous deviations that may indicate new or unexpected con-
nections between processes. For example, lost orthogonality 
indicates a violation of component independence, which can 
be a sign of intrusion or malfunction.

Also, the model makes it possible to evaluate how dif-
ferent components of the system interact with each other. 
For example, a normal system state assumes that certain 
components (such as CPU usage and network activity) are 
weakly correlated. Using the model, it is possible to deter-
mine the presence of undesirable interactions between sys-
tem components through the analysis of projection matrices 
and their behavior over time. The appearance of correlations 
between vectors that should be orthogonal can signal an 
unauthorized access attempt or the introduction of a new 
malicious process that affects several parts of the system at 
the same time.

Fig. 2 shows operational results of the model for detect-
ing anomalies in a computer system. The plot displays the 
distribution of normal state (blue points) and abnormali-
ties (red points) in 3D space.

 Fig.	2.	The	computer	system	behavior	attractor,	obtained	on	
the	basis	of	a	model	for	detecting	anomalous	connections	

between	computer	system	components

Table 1 gives values of the main indicators for the accura-
cy of detecting anomalies in a computer system.

Table	1

Indicators	of	accuracy	of	simulation	results

No. Accuracy indicator Value Execution time

1 Accuracy 0.84

0.00231 ms
2 Precision 0.87

3 Recall 0.74

4 F1 Score 0.78

The plot in Fig. 2 and Table 1 demonstrate that this 
method selects some anomalous points, but they are largely 
intertwined with normal ones, which indicates the presence 
of errors in the identified anomalies. This may be a con-
sequence of the unpreparedness of the data obtained from 
the CSE-CIC-IDS 2018 resource [15, 16]. In addition, it 
should be noted that using the built model in combination 
with machine learning models has the potential to improve 
accuracy indicators.

In order to check the possibility of improving the built 
model with the help of known machine learning methods, it 
should be noted that the main model for evaluating data for 
anomalies is the developed model for detecting anomalous 
connections between computer system components.

Fig. 3 shows 3D plots based on the results of the experi- 
ment using the built model, as well as machine learning mo-
dels (Isolation Forest, Autoencoder, One-Class SVM) [17–20].

On the Isolation Forest plot, Fig. 3, one can see that the 
method detects anomalies distributed along all axes, with 
a lower concentration compared to normal points.

However, the accuracy of the method was not very 
high (~0.88). This indicates that some anomalies are not 
detected by the method, and part of the normal data may be 
mistakenly classified as anomalies.

The Autoencoder plot in Fig. 3 shows that the anomalies 
are fairly evenly distributed, but the method misses many 
anomalous points.

Performance metrics also did not show high values. This 
may indicate that the autoencoder has not fully learned the 
features of the system and may need further tuning of hy-
perparameters or a larger amount of training data, which is 
a difficult task under real-time conditions.

The plot of One-Class SVM in Fig. 3 demonstrates that 
the model performs better in some respects; however, the 
plot shows that there are areas where the model either misses 
anomalies or misclassifies normal data.

Table 2 gives values of the accuracy indicators of the 
considered examples.

As can be seen from the results in Tables 1, 2, the best 
time characteristics were shown by the built model for de-
tecting anomalous relationships between computer system 
components and One-Class SVM. This indicates the possi-
bility of using these models in real-time computer systems. 
At the same time, the built model has certain advantages 
in execution time, and the accuracy of anomaly detection is 
comparable to machine learning models.

Thus, a model for detecting anomalous connections bet-
ween computer system components has been developed. The 
model is an advanced tool for mathematical analysis of the 
behavior of computer systems, especially in the context of de-
tecting anomalous relationships between system components. 
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Table	2
Accuracy	indicators	of	simulation	results		

using	machine	learning	models

No. Accuracy indicator Value Execution time
Isolation Forest

1 Accuracy 0.95

787.361 ms
2 Precision 0.89
3 Recall 0.65
4 F1 Score 0.78

Autoencoder
1 Accuracy 0.93

33,020.259 ms
2 Precision 0.87
3 Recall 0.73
4 F1 Score 0.78

One-Class SVM
1 Accuracy 0.99

5.116 ms
2 Precision 0.99
3 Recall 0.76
4 F1 Score 0.88

The model uses projection matrices and orthogonal vec-
tor functions to analyze anomalies. This makes it possible to  
create spatial layouts that make it possible to reveal complex 
relationships between components of a computer system, 
using only eigenvalues and vectors. This approach combines 
mathematical formalism with real technical data, which 
makes it an effective tool for deep analysis of system behavior.

The proposed model is distinguished by the use of eigen-
values and orthogonal vectors to construct ellipses of disper-
sion of trajectories of random processes in the system. This  
makes it possible to qualitatively evaluate and visualize the 
distribution of abnormal and normal states. In addition, the 
model makes it possible to describe behavior of the system 
as a geometric ellipse in space, in which parameters of the 
ellipse correspond to the level of loading of the processor, 
memory, and other resources, which provides the possibi-
lity of a detailed analysis of the relationships between the 
system components.

Fig.	3.	3D	plots	of	the	experimental	results	using	the	built	model,	as	well	as	machine	learning	models:		
a	–	Isolation	Forest,	b	–	Autoencoder,	c	–	One-Class	SVM

a b

c
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The next task of modeling is the mathematical formaliza-
tion of the process of assessing the state of a computer system 
at a current time point or at short time intervals.

5. 3. Mathematical model for assessing the state of a com-
puter system at a current time point or at short time intervals

It is assumed that the matrix V(t) is a solution to the sys-
tem (1) to (3) if and only if the scalar functions λ1(t), λ2(t), 
j(t), included in the expansion (5) to (7), satisfy the system:

λ λ

1 1 1 1 1 1= +  +v F F v v SvT T T , (17)

λ λ

2 2 2 2 2 2= +  +v F F v v SvT T T , (18)

λ λ j

λ λ λ λ

1 2

2 1 2 1 1 2 1 2 1 2 2 1

−( ) =

= + − −( )+



v Fv v F v v Sv u uT T T T T
. (19)

This statement is proved as follows. Let the matrix V(t) 
be the solution to the system (1) to (3). Substituting the 
expansion V = λ1P1+λ2P2 into equation (1) leads to the fol-
lowing expression:

V P P P P
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Multiplying this ratio on the left by vi
T  and on the right 

by vj, and using the properties of projection matrices (8) and 
the model (9) to (16), we obtain:
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Thus, λ1(t), λ2(t), j(t) satisfy system (17) to (19).
When mathematically modeling the process of assessing 

the state of a computer system at a current time point or at 
short time intervals, it is advisable to prove the opposite.

Let λ1(t), λ2(t), j(t) be the solutions to the system (6) 
to (19). Consider the matrix V = λ1P1+λ2P2. This matrix V 
satisfies condition (3). Due to (20) to (22), the following 
identities hold for i, j = 1, 2:

v V Q V vi
T

j
 − ( )( ) ≡ 0. (23)

Here Q(V) = FV+VF T+PSP. After differentiation of the 
identity rTVr ≡ 0, we obtain:

r Vr r Vr r Vr r V r r VrT T T T T� � � � �



 = + + = ≡ 0,

r V Q V rT
 − ( )( ) ≡ 0.

Therefore, expression (23) also holds for i, j = 3. It follows 
from expression (23) that the matrix V is a solution to equa-
tion (1). The assumption that was accepted at the beginning 
of the chapter turned out to be true.

As we can see, the construction of a solution to the system 
(1) to (3) based on the singular expansion (5), (6) is reduced 
to solving the system (20) to (22) for three scalar functions. 
The matrix W(t) (the desired function of the stochastic sensi-

tivity of the cycle) of the solution to the system (1) to (3) can 
be obtained from V(t) using the following boundary transition:

lim .
n

V t W t
→∞

( )− ( )( ) = 0   (24)

One can see that the mathematical model (20) to (23) is  
focused on the estimation of the state of the system at the cur-
rent time or on short time intervals. It describes the behavior 
of the sensitivity matrix, which changes under the influence 
of random factors in real time. Thus, this model can be used to 
detect current threats and anomalies occurring immediately 
or in the short term.

Based on this, the mathematical model (20) to (23) 
can be used to evaluate the computer system at the current 
time or at short time intervals. With the help of this model, 
deviations in the current trajectories of the system can be 
detected, which can be a sign of an attack attempt or exter-
nal interference. This makes it possible to quickly react to 
threats, block suspicious processes, or perform isolation of 
potentially dangerous elements.

Also, this model makes it possible to estimate instan-
taneous changes in the sensitivity of the system to distur-
bances. For example, if the sensitivity matrix indicates an 
increased response to input data, this may be a signal of 
imminent danger or attack. This theorem helps quickly iden-
tify moments when a system becomes vulnerable and take 
measures for immediate protection.

Summarizing the preliminary results, it can be noted 
that the model is well suited for the development of rapid 
response systems, such as intrusion detection systems (IDS). 
It helps constantly monitor the state of the system and re-
spond to threats in real time. This is especially important in 
situations where it is necessary to quickly respond to cyber 
attacks, for example, DDoS or hacking attempts.

Fig. 4 shows results of the computer system state assess-
ment model at the current time or at short time intervals in 
the form of an attractor. As in the previous examples, the fi-
gure shows the distribution of the normal state (blue points) 
and anomalies (red points) in 3D space.

Fig.	4.	The	computer	system	behavior	attractor,	obtained	on	
the	basis	of	a	model	for	assessing	its	state	at	the	current	

time	or	at	short	time	intervals
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Table 3 gives values for the main indicators of accuracy 
in detecting anomalies in a computer system using the com-
puter system state assessment model at the current time or at 
short time intervals.

Table	3

Accuracy	indicators	of	simulation	results	using	a	computer	
system	state	assessment	model	at	the	current	time		

or	at	short	time	intervals

No. Accuracy indicator Value Execution time

1 Accuracy 0.91

0.198 ms
2 Precision 0.82

3 Recall 0.68

4 F1 Score 0.67

Similar to the previous model, the plot in Fig. 4 and  
Table 3 demonstrate that this method selects some anoma-

lous points. The results of the assessment using the "Accu-
racy" indicator show an increase in accuracy according to 
this indicator. At the same time, the results of the assessment 
of other indicators are practically identical to the results of 
the previous assessment model.

The possibility of improving the built model with the 
help of known methods of machine learning has been verified. 
In this case, the main model of data analysis for anomalies is 
the built model for assessing the state of a computer system 
at the current time point or at short time intervals.

Fig. 5 shows the 3D attractors of computer system beha-
vior obtained on the basis of machine learning models (Isola-
tion Forest, Autoencoder, One-Class SVM).

Table 4 gives values for the main indicators in the accu-
racy of detecting anomalies in a computer system using the 
integrated use of machine learning models and the model for 
assessing the state of a computer system at the current time 
or at short time intervals.

a b

c
Fig.	5.	3D	attractors	of	computer	system	behavior	obtained	on	the	basis	of	machine	learning	models:		

а	–	Isolation	Forest;	b	–	Autoencoder;	c	–	One-Class	SVM
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Table	4

Accuracy	indicators	of	simulation	results	using	machine	
learning	models

No. Accuracy indicator Value Execution time

Isolation Forest

1 Accuracy 0.93

3,050.91 ms
2 Precision 0.84

3 Recall 0.64

4 F1 Score 0.67

Autoencoder

1 Accuracy 0.91

97,711.45 ms
2 Precision 0.89

3 Recall 0.73

4 F1 Score 0.76

One-Class SVM

1 Accuracy 0.93

7.5361 ms
2 Precision 0.84

3 Recall 0.63

4 F1 Score 0.66

Thus, the results of analyzing the execution time by each 
method for detecting anomalies can be summarized.

Isolation Forest uses decision trees to find anomalies, 
which explains its relatively long runtime. The algorithm is ef-
fective but requires quite significant computing resources. Its 
execution time is faster than the autoencoder, but longer com-
pared to the One-Class SVM and the model-based approach.

Autoencoder has the highest execution time among all 
methods presented. This is explained by the complexity of 
the neural network, the number of parameters, and the need 
for long-term training of the model. Computational overhead 
makes autoencoders less suitable for systems where speed  
is important, but they can be useful in tasks with high accu-
racy requirements.

One-Class SVM showed a small execution time due to the 
efficiency of SVM for a limited amount of data. This method 
is suitable for some cases where speed of execution is critical.

Our mathematical model is the best option from the point 
of view of the execution time of the task of evaluating the ano-
malous behavior of the system. This makes the model suitable 
for real-time systems where minimum latency is important.

All three models have high Accuracy values, showing 
their capability to correctly classify most of the data.

Precision is higher in Autoencoder, indicating a better 
capability of this model to distinguish between true and 
false anomalies.

Recall is higher in Autoencoder (0.73), which means that 
this model detects more of all available anomalies compared 
to other models.

F1 Score, an indicator that balances between precision 
and recall, is also higher in Autoencoder. This indicates that 
this model generally performs better at the classification task 
compared to Isolation Forest and One-Class SVM.

All values presented are within the acceptable range for 
these anomaly detection methods. However, it should be no-
ted that a high value of Accuracy with a relatively low Recall 
may indicate an imbalance in the data, where most examples 
belong to the normal class. This results in the model classify-
ing most of the data as normal, which increases Accuracy but 
may miss a significant number of anomalies.

Precision and Recall vary between models, and this is 
normal because each model handles anomaly detection and 
response to outliers differently.

It should be noted that the accuracy indicators of the built 
model for assessing the state of a computer system at a cur-
rent time point under the given conditions of the experiment 
showed a comparable result in comparison with the machine 
learning models. Of course, artificial intelligence models that 
have undergone a certain learning path would show better 
accuracy results. But the time characteristics of these models 
would still be worse compared to the model built.

6. Discussion of results of investigating  
mathematical models

Our results indicate that the proposed mathematical 
models are capable of detecting anomalies in highly loaded 
complex computer systems in real time. This can be explained 
by the features of the built models, which use sensitivity ma-
trices to analyze the dynamics of the system – expressions (5) 
to (16) and (20) to (23). The theoretical substantiation of the 
model makes it possible to reduce the number of false positives 
and ensure stable operation of the system under conditions of 
high load. In addition, the use of projection methods signifi-
cantly increased the ability of the model to quickly respond to 
changes in input parameters. This is confirmed by the results 
of the assessment of quality indicators in Fig. 2 and Table 2.

In contrast to models (4) to (8), the advantage of the 
proposed approach is the ability to evaluate changes in the 
orthogonality of vectors, which makes it possible to detect 
complex interactions between components and provide the 
ability to detect anomalies in a short time. The mathemati-
cal apparatus used in the model makes it possible to reduce 
the number of necessary calculations, which is important 
for systems with limited resources. Unlike many existing 
methods, such as autoencoders or machine learning me-
thods [9, 17, 18], which require significant computing re-
sources and a large amount of training data, our approach 
is based on a rigorous theoretical foundation and has the 
potential to work effectively in real time.

The resulting solutions are aimed at resolving the issue 
related to increasing the speed of anomaly detection, taking 
into account the accuracy requirements for HLCCS. One of 
the main problems was the impossibility of effectively detect-
ing anomalies in real time under conditions of large volumes 
of data and complex system dynamics. The results show that 
the built model is able to solve this problem thanks to the use 
of dynamic chaos theory and sensitivity matrices. Compared 
to models [4–7], this approach allows models to accurately 
and quickly respond to changes in the system.

Our research into the integrated use of built models with 
machine learning models described in the literature [9–19] 
allowed us to draw a conclusion about the sensitivity of this 
approach to the quality of input data. If the data contains  
a significant amount of noise or errors, it can negatively affect 
the results of the anomaly detection. In addition, the model 
may require additional adaptation for use under specific con-
ditions of particular computer systems, which may require 
additional costs for calibration. And this research result 
confirms the need for further improvement of the complex 
modeling approach.

In addition, another disadvantage of the proposed ap-
proach is its limited ability to work with heterogeneous data, 
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which are characterized by significant heterogeneity and 
dynamics. In future studies, it is planned to expand the model 
by adding the possibility of working with multidimensional 
and heterogeneous data. There is also a need for additional 
testing on different platforms to assess the portability of the 
proposed solutions.

The limitations of our study are that the results of the 
simulation are largely dependent on the quality of the in-
put data. If the data contains a significant amount of noise  
or errors, it can negatively affect the results of the anoma-
ly detection. In the study, data from a proven source [16]  
CSE-CIC-IDS2018 on AWS was selected to improve the 
quality of anomaly detection results.

The model built can be used to ensure the reliability and 
security of highly loaded computer systems, such as banking 
transaction servers or telecommunication platforms. Real-time 
anomaly detection prevents possible failures and attacks, 
which is critical for the continuous operation of such systems.

7. Conclusions

1. As a result of our research, a set of mathematical 
models was built for detecting anomalies in highly loaded 
complex computer systems. The main feature is the use of 
the provisions from the theory of dynamic chaos, which 
made it possible to increase the accuracy and speed of 
anomaly detection. The models successfully identify small 
anomalies that may indicate hidden problems or instabi-
lity of the system, as well as critical deviations that pose 
a threat to its security. This provides an opportunity to 
promptly respond to potential threats and increase the 
stability of the system.

2. A mathematical model for detecting anomalous con-
nections between computer system components has been 
developed, which, unlike others, uses a geometric approach, 
where anomalies are detected through a change in mutual 
orthogonality between components. That made it possible to 
reduce the time of detecting anomalies in the state of a com-
puter system by up to 10 %. At the same time, the accuracy of 
anomaly detection remained at the predefined level.

3. A mathematical model for assessing the state of a com-
puter system at a current time point or at short time intervals 

has been built. Unlike others, it has the capability to reflect 
temporal changes in relationships between various compo-
nents of the system. This is especially important for highly 
loaded, complex computer systems where changes can have  
a large impact on stability and security. The mathematical 
model built makes it possible not only to detect existing 
anomalies but also evaluate future scenarios based on dyna mic 
behavior, which provides a proactive approach to risk ma-
nagement and system security. A study of the use of the built  
models in combination with the Isolation Forest, Autoen-
coder, One-Class SVM models was conducted. The results of 
the research showed a significant (up to 10 times) increase in 
the speed of detecting anomalies in the behavior of the com-
puter system, with a slight decrease in the accuracy of this 
operation. This makes it possible to draw conclusions about 
the expediency of using the built models to detect anomalies  
in the behavior of highly loaded complex computer systems 
in real time.
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