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1. Introduction 

Absolutely elastic rods are used in various mechanisms and 
devices. After the termination of the applied force, they acquire 
their original shape. They can perform the function of switches 
with sufficient force acting on them, in measuring devices, in 

the automotive industry in suspension systems, etc. They play 
a particularly important role in agricultural machines, which 
generate vibrations and pulsating loads [1, 2]. Owing to elastic 
elements, the stability of the unit’s operation is achieved, its os-
cillations are reduced, and damping from vibration and shocks 
that occur during operation is provided [3, 4].
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The object of this study is the defor-
mation of an elastic axis with a large 
deflection of a cantilever clamped abso-
lutely elastic rod under the action of an 
applied concentrated force. The rod in 
the free state can have a rectilinear or 
curved elastic axis. This fact implies a 
difference in the analytical description 
of the bending process. However, there is 
a factor by which some similarity can be 
found between the bending of rectilinear 
and curved rods. This factor is the cur-
vature of the elastic axis of the rod in a 
free state. According to this feature, they 
can be divided into rods of constant and 
variable curvature of the elastic axis. The 
former include rectilinear rods and those 
that in the free state have the shape of an 
arc of a circle, and the latter – rods with 
a variable curvature of the elastic axis. 
There is a difference between the bending 
of these groups of rods: in the first case, 
the deformation of the elastic axis of the 
rod during its bending will be the same 
regardless of which end will be cantile-
ver pinched.

A distinctive feature of the current 
research is that the bending of rods with 
variable curvature of the elastic axis 
was carried out by alternate pinching of 
their opposite ends. Moreover, the rods 
of constant and variable curvature were 
of the same length s=0.314 m, the same 
cross-section of 0.005×0.02 m. That has 
made it possible to visually show the dif-
ference between the shape of the elas-
tic axis of the bent rod under the action 
of the same force when the pinch end 
is changed. When attached to the rods 
of the working bodies of agricultural 
machines, pulsating dynamic loads are 
smoothed out due to their elasticity. It is 
important for practice to be able to cal-
culate the value of their deviation, which 
should be within the given limits.

The results are explained by the fact 
that in the analytical description of the 
shape of the elastic axis of a curved rod, 
a technique was proposed in which the 
length of the axis can start counting both 
from one end and from the opposite end
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The elastic axis of rods in the free state can be straight 
or curved. Accordingly, the analytical description of their 
deformation under the action of the applied force will differ. 
However, there is a certain similarity between the bending 
of rods with a rectilinear elastic axis in the free state and a 
curved one in the form of an arc of a circle. When changing 
the pinching ends of such rods, their shape after deformation 
with the same force will also be the same. It will be different 
for curved rods of variable curvature. This means that when 
the pinching end is changed under the action of the same 
force, the shape of the elastic axis will be different, so the 
deflections will also be of different magnitudes. Bending of 
absolutely elastic rods does not take this fact into account; 
however, it is important in the operation of such elements. 
Therefore, it is a relevant task to consider general approaches 
to bending absolutely elastic rods and the peculiarities of 
bending rods of variable curvature.

2. Literature review and problem statement

In [5], a mechanical model of an elastic rod fixed at the 
base and placed in a viscoelastic medium is proposed. The 
rod is subjected to an axial force and a local horizontal load 
distributed along it. This study provides a deep theoretical 
basis for the analysis of the displacement of elastic rods in a 
viscoelastic medium. However, in the study, only the recti-
linear axis of the rod is taken into account, which limits the 
application of the model to cases with complex geometry.

Study [6] considered the process of bending a strip with 
an initial curvature to a spiral shape. Similar to [5], the strip 
is fixed at the lower point, and a certain force acts on its up-
per end. The authors note that as the applied force and strip 
length increase, the amount of deflection increases, and the 
strip can take on a spiral shape. However, the study focused 
exclusively on this strip shape, without considering other 
possible configurations.

Questions related to the complex analysis of the defor-
mation of rods and strips with initial curvature remain un-
resolved. The likely reason is difficulties associated with the 
complexity of mathematical modeling of such problems, as 
well as the expense part, which makes experimental studies 
impractical. The construction of an integrated model that 
takes into account the initial curvature of the rod may be an 
option for overcoming related difficulties.

When bending rods with a large deflection, nonlinear 
bending theory is used to find the shape of the elastic 
axis. The action of the forces applied to the rod can be of 
various nature, accordingly different approaches to solving 
such problems are devised. For example, work [7] reports 
analysis of geometrically nonlinear behavior of composite 
laminated beams with large displacements and post-crit-
ical state. Questions related to the adaptation of similar 
models for practical engineering tasks remain unresolved. 
The likely reason is the significant computational costs 
required to solve the nonlinear equations describing such 
problems, as well as the difficulty of simplifying the models 
without losing their accuracy. An option to overcome relat-
ed difficulties may be the construction of simplified models 
or numerical algorithms that reduce the computational 
complexity without significantly reducing the accuracy of 
the results.

Study [8] reports experimental and theoretical analy-
sis of the large deflection of fixed curved beams subjected 

to bending and tensile loads under various conditions of 
fixation. Specimens are fixed with different torque values 
and arranged in vertically concave and convex orientations, 
which creates different combinations of bending and plane 
loads. Unsolved questions remain regarding the universal-
ization of models for analyzing the behavior of curved beams 
under combined loads, especially under different anchoring 
conditions. The reason for this is the complexity of calcula-
tions resulting from geometric nonlinearities and the insuf-
ficient consideration of local effects, which can significantly 
affect the accuracy of calculations. An option to overcome 
these difficulties may be the construction of models with 
simplified geometric assumptions or improved numerical 
modeling algorithms that provide more accurate accounting 
of local deformations.

Work [9] considers modeling of compliant mechanisms, 
which, unlike conventional rigid-body mechanisms, trans-
mit motion, force, and energy through the deformation of 
flexible elements. The paper reviews the modeling methods 
of such elements, mainly based on the geometrically non-
linear Euler-Bernoulli beam theory, which is a boundary 
value problem for an ordinary differential equation. Com-
mon numerical methods for solving modeling problems of 
straight and curved beams are presented. The same authors 
in [10] considered five typical cases of bending of beams and 
also proposed a new type of mechanisms – pre-deformed 
bistable mechanisms that combine the properties of rigid 
and compliant systems. Issues related to the development of 
effective methods for modeling compliant mechanisms that 
would take into account complex geometry and material 
properties while maintaining computational efficiency re-
main unsolved. The reason for this is the complexity of non-
linear analysis and the significant resources required for the 
numerical solution of such problems. An option to overcome 
these difficulties may be the implementation of simplified 
analytical models for typical bending cases.

Paper [11] investigates large plane deflections of flat 
curved beams made of functional gradient materials. The 
exact geometric theory of the beam is used, where the 
properties of the material change depending on the position 
on the cross section of the beam. The results presented for 
different material gradients demonstrate deflections and 
deformation patterns of beams, including buckling and loss 
of stability for hinged arches. Unsolved questions remain 
regarding the universalization of models for the analysis 
of beams from functional gradient materials, especially 
for structures with more complex geometry and gradients 
of material properties. The reason for this is the increased 
requirements for modeling accuracy and the growing 
complexity of computational processes when taking into 
account complex changes in material characteristics. A 
likely option for overcoming these difficulties is to devise 
adaptive methods of numerical analysis that would make it 
possible to take into account greater variability of material 
properties or the construction of simplified models for typ-
ical structures.

Work [12] investigates the dynamics of the trailed har-
rowing section for soil processing in the longitudinal-verti-
cal plane. The results could be used to calculate the devia-
tion of the section and other elastic elements from the initial 
position, which is important to ensure the depth of the stroke 
within the given limits.

In works [13, 14] it is stated that it is possible to increase 
the reliability of the working elements of machines under 
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the conditions of typical use by applying a special coating, 
without significantly changing their geometric parameters. 
The issues of integration of different approaches to increase 
the reliability of machine elements remain unresolved as the 
use of only one method may not be sufficient. The reason is 
the difficulty of ensuring an optimal balance between mate-
rial properties, element geometry, and coating technology, 
which requires a complex analysis. An option to overcome 
these difficulties may be the implementation of a combined 
approach, which combines the optimization of the geometry 
of elements at the design stage with the selection of special 
coatings adapted to operating conditions.

Based on the above, related studies consider different 
approaches to modeling the deformation of elastic rods and 
beams and their calculation with possible errors. Various 
approaches are used to this end but there is no emphasis on 
bending rods with variable curvature. To solve this problem, 
it is proposed to apply the classical approach of finding the 
elastic axis of the rod, which in the free state has an initial 
constant or variable curvature. This makes it possible to find 
the shape of the elastic axis of a curved rod after applying a 
tracking force to one or the opposite end of it. For curved 
rods with variable curvature of the elastic axis, this shape 
will be different.

3. The aim and objectives of the study

The purpose of our study is to analytically describe 
the bending of cantilever-fixed absolutely elastic rods of 
constant and variable curvature by a concentrated tracking 
force. This will make it possible to smooth out pulsating 
loads when they are attached to the working bodies of agri-
cultural machines.

To achieve the goal, the following tasks were set:
– using an example of a perfectly elastic strip of rectan-

gular cross section, find the shape of its elastic axis after the 
action of the applied force, the curvature of which in the free 
state has a constant value;

– using an example of a similar strip with an elastic axis of 
variable curvature and the same length, show the differences 
in its deformation under the action of a similar applied force.

4. The study materials and methods

The object of our study is the deformation of an elastic 
axis with a large deflection of the cantilever clamped abso-
lutely elastic rod under the action of the applied concentrat-
ed force. The hypothesis of the study was to apply the reverse 
countdown of the length of the arc of the elastic axis of 
curved rods with variable curvature for further calculations. 
The accepted assumption is the constant stiffness of the rod.

Research methods are based on the provisions of the the-
ory of resistance of materials when the elastic axis of the rod 
has significant deflections. In this case, a non-linear theory 
of bending is used, in contrast to construction mechanics 
with a linear theory, in which the deflection of beams is in-
significant compared to their length. According to the theo-
ry of materials resistance, the curvature k=k(s) of the elastic 
axis of a rod or strip is directly proportional to the applied 
moment M=M(s) and inversely proportional to the stiffness 
E·I of the rod (strip):

( ) ( )
,

M s
k s

EI
= 				    (1)

where the independent variable s is the arc length of the 
elastic axis. The stiffness E·I of the strip is the product of 
the moment of inertia I of the cross section of the strip by 
the Young’s modulus E. For a strip with a rectangular cross 
section, the moment of inertia is determined from formu-
la I=а3·b/12, where а and b are the sides of the rectangle, 
and the smaller side is the side a since we bend the strip in 
such a way that it offers less resistance to bending (using 
the example of a metal ruler). Considering the fact that the 
moment of inertia I and the Young’s modulus are constant 
values, the stiffness of the strip will also be a constant value. 
Curvature k is a variable value and is defined as k=dα/ds, 
where dα is the increment of the angle by which the arc ds 
of the elastic axis was bent due to the action of the applied 
moment. Thus, the angle between the tangents at the initial 
and current point of the elastic axis can be determined by the 
following integral:

( )d .k s sα = ∫ 				    (2)

If dependence (2) is known, then the curve of the elastic 
axis can be found using the well-known formulas from dif-
ferential geometry:

( )cos d ;x s s= α∫ 				    (3)

( )sin d .y s s= α∫
Even for the simplest cases of bending (for example, the 

bending of a straight strip by a concentrated force), equa-
tions (3) require numerical methods of integration.

5. Results of investigating the elastic axis of  
a fixed strip under the action of a concentrated 

tracking force

5. 1. Bending of a cantilevered strip, the elastic axis of 
which in the free state has a constant curvature

Curvature is the inverse of the radius of curvature of 
the curve at the current point. If it is constant, then the 
radius is also constant and the same at all points of the 
curve, that is, the curve is an arc of a circle. A cantile-
vered strip was considered, the elastic axis of which in the 
free state is an arc of a circle. The applied concentrated 
force P is considered tracking, that is, one that remains 
perpendicular to the elastic axis during its deformation. 
Depending on the direction in which its action is directed, 
the curvature of the elastic axis can increase (Fig. 1, a) or 
decrease (Fig. 1, b).

Between the tangents at the ends of the elastic axis in 
the free state (marked by number 1) there is an angle α. 
Depending on the direction of force P, it can increase 
to α+α1 (Fig. 1, a) or decrease to α–α2 (Fig. 1, b) in the 
process of axis deformation. For the first case, the curva-
ture k of the elastic axis after its bending can be written 
as follows:

( ) ( ) ( )( ) ( ) ( )1 0 1 ,
d

k s s s k s k s
ds

= α +α = + 		  (4)
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where ko(s) is the curvature of an elastic axis in the free state;
k1(s) is the additional curvature of an elastic axis caused 

by the action of moment M from the applied force P.

Accordingly, in the second case (Fig. 1, b), it is possible 
to write: k=ko–k2. Since the elastic axis of the strip in the 
free state is an arc of a circle, then ko=1/r, where r is the radi-
us of this arc. Additional curvatures k1 and k2 are caused by 
the force P and are determined from formula (1).

The moment of force M(s) is defined as the product of 
the concentrated force P by the length of the arc s from the 
point of applied force P to the current point of the elastic 
axis: M=Ps. When substituting expression (1) into expres-
sion (4), it should be borne in mind that the curvature 
component k1(s) is caused by the action of the applied mo-
ment, i.e., instead of k1(s), expression (1) with the moment 
M=Ps should be substituted into expression (4). Then the 
equations of the curvature of an elastic axis for the first 
case (Fig. 1, a) take the form:

( ) 0 ,k
Ps

s k
EI

= +   				    (5)

or:

0 .
d Ps

k
ds EI
α
= +

By integrating expression (5), the angle α from the point 
of force application to the current point of the elastic axis:

2

0 .
2
Ps

k s
EI

α = + 				   (6)

Substitution (6) in (3) gives the equation of the elastic 
axis of the strip for the first case when its curvature increas-
es. For the second case, the direction of force P changes to 
the opposite, which means changing the sign of “+” to “–” 
in expressions (5), (6). This corresponds to the previously 
derived expression k=ko–k2.

Example. Let the curved strip in the form of a quarter 
arc of a circle have radius r=0.2 m, which corresponds 
to the change in the length of the elastic axis in the 
range s=0...0.314 m. The rectangle of the cross-section of the 
strip has dimensions of 0.005×0.02 m. The strip material is 
spring steel, for which Young’s modulus is E=2.2·1011 N/m2.  
Thus, the stiffness of the strip is E·I=45.83 N·m2. The 
curvature of the strip in the free state is ko=1/r=5 m-1. 

In Fig. 2, a, the results of numerical integration of equa-
tions (3) for the first case are shown (Fig. 1, a). It should 
be borne in mind that the moment increases as the arc s 
grows, that is, the construction of the elastic axis is car-
ried out from the point of applied force to the fixed end. 
Because of that, the curves in Fig. 2, a are depicted so that 
the free end is common, which does not correspond to the 
physical model, for which the fixed end of the strip is com-
mon. In Fig. 2, b, elastic axes for a given force P in newtons 
are depicted according to the physical model. To this end, 
formula (6) was used to determine the required angle of 
rotation of the elastic axis and parallel transfer along the 
axes was carried out.

If ko=0 is given in equations (4) to (6), then the elastic 
axis of the strip in the free state will be rectilinear. Fig. 3 
shows the corresponding results of calculations of the defor-
mation of the elastic axis at ko=0, and the dimensions of the 
strip, including its length, remained unchanged.

When the direction of action of the tracking force P 
changes, the elastic axes of the strip will be symmetrical rel-
ative to its initial position in the free state. A peculiarity of 
the bending of perfectly elastic strips of constant curvature 
is that the shape of their elastic axis will not change under 
the action of the same force P if the free end and the end 
of the attachment are interchanged. In this sense, strips of 
variable curvature have significant differences.

Fig. 1. Elastic axis of the strip before the action of the 
applied force – 1, and after the action of the applied force 
P – 2: a – moment from the applied force P increases the 
curvature of the elastic axis; b – moment from the applied 

force P reduces the curvature of the elastic axis

α
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2 1 
Р α 

α–α2 

2
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Fig. 2. Deformation of the elastic axis of the strip, which 
in the free state has a constant curvature, under the action 

of the applied tracking force P of different magnitudes: 
a – points of application of the force P are common, the 
points of attachment of the strip are different; b – points 
of application of the force P are different, the points of 

attachment of the strip are common
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5. 2. Comparative bending of a cantilevered strip, the 
elastic axis of which in the free state has a variable cur-
vature and the same length

The elastic axis of the strip of variable curvature is given 
by dependence α=α(s). With a linear dependence according 
to k=dα/ds, the curvature is a constant value, which was con-
sidered in the previous subsection. A strip whose elastic axis 
has a variable curvature is known as a curve – a logarithmic 
spiral. The dependence α=α(s) for it takes the following form:

ln ,a sα = 				    (7)

where a is a constant value.
Integrating expressions (3) after substituting depen-

dence (7) into them makes it possible to obtain the equation 
of the elastic axis of the strip in the free state:

( ) ( )2
cos ln sin ln ;

1
s

x a s a a s
a

 = + +
		  (8)

( ) ( )2
sin ln cos ln .

1
s

y a s a a s
a

 = − +

For comparison with the arc of a quarter circle, it is nec-
essary to take the section of the curve when s changes within 
s=0.1...0.414, that is, as in the previous cases, the length of 
the elastic axis is equal to 0.314 m. By turning and by parallel 
transfer of this part of the curve, it is brought to the position 
where its beginning (point A) is tangent to the x-axis and 
coincides with the beginning of the arc of the circle (Fig. 4, a).

By differentiating dependence (7), the expression of the 
curvature ko=ko(s) can be derived:

0 .
a

k
s

= 				    (9)

With the accepted value of the constant a=1.1, the cur-
vature of the curve at point A (that is, at s=0.1) has a value of 
ko=11 and at point B (that is, at s=0.414) – ko=2.66. If in the 
curves (Fig. 4, a) the starting and ending points are swapped, 
the curves will coincide for the arc of a circle, but not for the 
involute of a circle (Fig. 4, b). Accordingly, when bending 
the strip, in which the elastic axis has a variable curvature, 
its deformation when the cantilever fixing of the opposite 
ends will differ. The moment M=P·s as the length of the arc 
s increases from the initial value s1 to the final value s2. The 
length of the arc of the elastic axis of the strip will be sо=s2–s1.  
For a constant band of curvature (a straight line and an arc of 
a circle), the start of the reference s1 is irrelevant. If the end of 
the fastening of the strip with variable curvature of the elastic 
axis is changed, then it is necessary to ensure the increase 
of the moment by increasing the length of the arc, starting 
from the value of s2. To this end, in equations (7) to (9), it is 
necessary to write ‘’s1+s2–s’’ instead of the symbol ‘’s’’. For 
the example in question, this would be “0.514-s”. The lim-

Fig. 3. Deformation of the elastic axis of the strip, which 
is straight in the free state, under the action of the applied 

tracking force P of different magnitudes: a – points 
of application of the force P are common, the points 
of attachment of the strip are different; b – points of 
application of the force P are different, the points of 

attachment of the strip are common
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of a logarithmic spiral when opposite ends are combined
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its of changing the parameter s remain 
the same: s=s1…s2, i.e., s=0.1...0.414. The 
constant a=1.1 and the limits of change 
of the parameter s are selected in such a 
way that the angle between the tangents 
at the end points, as for the arc of a circle, 
is a straight line.

Let the strip be fixed at point B, and 
the counting of the arc starts from point A. 
According to (5), we write:

( ) .
d a Ps

k s
ds s EI
α

= = + 		  (10)

To find dependence α=α(s), expres-
sion (10) must be integrated:

2

ln .
2
Ps

a s
EI

α = + 		  (11)

Further construction of the elastic 
axes of the strip, which bends under the 
action of the tracking force P, is carried out by numerical 
integration of equations (3) while substituting expres-
sion (11) into them. Fig. 5, a shows results of integration 
with a common reference point of the arc from the free end, 
and Fig. 5, b – according to the physical model with a com-
mon attachment point.

Let the strip be fixed at point A, and the counting of the arc 
starts from point B. In this case, equation (6) takes the form:

( )
2

ln 0.514 .
2
Ps

a s
EI

α = − + 			   (12)

Further construction occurs similarly with the substi-
tution of dependence (12) in equation (3). The length of the 
elastic axis varies within the same limits: s=0.1...0.414. Fig. 6 
shows the curves of the elastic axes plotted when the strip is 
fixed at the opposite end, that is, at point A.

Fig. 5, 6 make it possible to compare the shape of the elas-
tic axis of a strip of variable curvature in the form of an arc of 
a logarithmic spiral when loaded with the same forces if the 
cantilever attachment points of the ends are interchanged.

6. Discussion of results based on bending a cantilevered 
strip with an elastic axis of constant and variable curvature

Our results based on determining the shape of an elastic 
axis during bending of the rods are explained by the fact that 
the length of the axis was taken as an independent variable 

when calculating the deformation of the 
axis. The curvature k of the elastic axis 
of the cantilevered strip (5) is the sum of 
two curvatures: the initial curvature k of 
the elastic axis of the strip in the free state 
and the additional curvature due to the 
bending of the strip by the applied force P. 
If the force P is positive, then the curvature 
of the elastic axis increases and, accord-
ingly, the angle α between tangent at the 
extreme points of the axis (Fig. 1, a). If the 
force P is taken with a negative sign, then 
the curvature of the elastic axis of the strip 
decreases and the angle α decreases ac-
cordingly (Fig. 1, b). This makes it possible 
to use formula (6) to find the dependence 
of angle α=α(s) for both cases. Finding 
the shape of the elastic axis is carried out 
by numerical integration of equations (3), 
while the parameter s varies within the 
length of the elastic axis of the strip. This 

approach makes it possible to find the shape of the elastic axis 
of the strip using the same algorithm for partial cases:

1) kо=0, that is, the elastic axis in the free state is recti-
linear (Fig. 3, b);

2) kо=const, that is, the elastic axis in the free state is an 
arc of a circle (Fig. 2, b);

3) kо=kо(s) is a variable value, which is shown on the ex-
ample of a logarithmic spiral (Fig. 5, b). In addition, for a strip 
with a variable curvature of the elastic axis, its shape during 
bending depends on which end it is attached to. When chang-
ing the fixing end, the growth of the arc s occurs in the oppo-
site direction, which is predicted by formula (12). The result 
of bending the elastic axis for this case is shown in Fig. 6, b.

Various approaches are used in corresponding studies 
on this topic. Work [12], in which the angular movement of 

Fig. 5. Deformation of the elastic axis of the strip, which in its free state takes 
the form of a logarithmic spiral and is cantilever fixed at point B: a – points of 

application of the force P are common, the points of attachment of the strip are 
different; b – points of application of the force P are different, the points of 

attachment of the strip are common
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Fig. 6. Deformation of the elastic axis of the strip, which in its free state takes 
the form of a logarithmic spiral and is cantilever fixed at point A: a – points of 

application of the force P are common, the points of attachment of the strip are 
different; b – points of application of the force P are different, the points of 

attachment of the strip are common
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the harrow link is considered, is related in terms of topic. 
At the same time, it is assumed that the angle of its rotation 
is small (up to 8°); the correspondingly constructed mathe-
matical model works correctly in this range. In contrast to 
that work, there are no restrictions on the size of the angle 
in our study. In [15], a power law model is used to describe 
the properties of the material in the axial direction. In our 
research, the physical and mechanical properties are constant. 
In contrast to works [16, 17], in which the deflection of a beam 
of round cross-section, which consists of two parts of different 
diameters is considered, a strip of rectangular cross-section is 
considered. In the above studies, the curvature of the elastic 
axis is not investigated, and the main attention is paid to the 
determination of beam deflections. However, strips with elas-
tic axes of variable curvature in the free state have their own 
bending characteristics. The curvature of their ends takes a 
different value, and it is this fact that affects the formation 
of the elastic axis from the action of the same force when 
changing the ends of the cantilever fastening of the strip. Our 
approach has made it possible to obtain the shape of the elastic 
axes of a strip of variable curvature when changing the ends of 
its fixation. This is the scientific novelty of the current work. 
The results could be used to determine the deviation of the 
loaded end of the rod under the action of a given force, or vice 
versa – to determine the force by a given deviation. The latter 
may apply to measuring devices.

The proposed approach has certain limitations. While 
any dependence α=α(s) can be assigned, then this dependence 
cannot be derived in reverse order for some known curves. For 
example, it does not exist for an ellipse since it is impossible to 
find an expression for the length of the arc in the final form. 
The disadvantage is that the proposed approach assumes 
only a constant stiffness of the rod, that is, the shape of the 
elastic axis cannot be calculated for a two-step strip. Further 
development of our research may involve finding the shape of 
an elastic axis of the strip due to the action of variable forces 
depending on the length of the elastic axis.

7. Conclusions

1. The curvature of the elastic axis of the strip is the sum 
of the initial curvature of its axis in the free state and the ad-
ditional curvature under the action of the applied force. The 
additional curvature is equal to the moment from the applied 
concentrated force to the free end of the strip. The moment 
itself is defined as the product of force by the arc length of 
the elastic axis from the point of applied force to the current 
point of the axis. The shape of the elastic axis is determined 
by the means of differential geometry according to the well-
known formulas of transition from the dependence of the 
curvature of the curve to its parametric equations. The shape 
of the elastic axis depends on the sign before the value of the 
force, that is, on the direction of its action. In one case, as a 
result of the action of the force, the curvature of the elastic 
axis increases, in the other, it decreases. If the initial curva-
ture is zero, then the formulas are valid for bending a straight 
strip. With a constant value of the initial curvature of the 
elastic axis (a straight line or an arc of a circle), the shape of 

the elastic axis does not change when the ends of the strip’s 
cantilever attachment are changed under the action of the 
same applied forces. A gradual deformation of the elastic axis 
of the rod in the form of a segment of a straight line or a circle 
as the applied force increases was found.

2. If the elastic axis of the strip in the free state has a 
variable curvature, then the shape of the elastic axis of the 
bent strip under the action of force depends on the end of the 
cantilever mount. This is explained by the fact that the ends 
of the elastic axis of the strip in the free state have different 
values of curvature. Accordingly, the total curvature at its 
ends due to the bending of the strip will also be different. 
All the dependences by which the elastic axis of the strip of 
constant curvature was found are also valid for the strip of 
variable curvature. However, when changing the cantilever 
fastening of the end of the strip, it is necessary to ensure that 
the arc length increases in the opposite direction. To this 
end, in all dependences, the symbol “s” must be replaced with 
“s1+s2–s”, where s1 is the initial value of the arc length, s2 is 
the final value of the arc length. The limits of changing the 
parameter s remain the same as in the previous case: s=s1…s2. 
The difference sо=s2–s1 is the length of the elastic axis of the 
strip. The choice of s1 and s2 affects the location of the arc of 
a given length on the curve and, accordingly, the value of the 
curvature at its ends. A gradual deformation of the elastic 
axis of the rod in the form of an arc of a logarithmic spiral as 
the applied force increases has been found.
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