
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 6/2 (132) 2024

74

to individuals, organizations, and critical infrastructure. Tradi-
tional Intrusion Detection Systems (IDS) frequently encoun-
ter difficulties in effectively detecting and responding to these
threats, particularly in the face of novel and zero-day attacks.

EVALUATION AND OPTIMIZATION
OF THE NAIVE BAYES

ALGORITHM FOR INTRUSION
DETECTION SYSTEMS USING THE

USB-IDS-1 DATASET

N u r b e k K o n y r b a e v
PhD,	Associate	Professor,	Head	of	Department*

Y e v h e n i y N i k i t e n k o
Associate	Professor**

V a d y m S h t a n k o
PhD	Student**

V a l e r i i L a k h n o
Professor**

Z h a r a s b e k B a i s h e m i r o v
Corresponding author

PhD,	Professor	
Department	of	Mathematics	and	Mathematical	Modelling

Postdoctoral	Researcher
Department	of	Science	

Abai	Kazakh	National	Pedagogical	University
Dostyk	ave.,	13,	Almaty,	Republic	of	Kazakhstan,	050010

Professor	
School	of	Applied	Mathematics

Kazakh-British	Technical	University
Tole	bi	str.,	59,	Almaty,	Republic	of	Kazakhstan,	050010	

Е-mail:	zbai.kz@gmail.com	
S a b i t I b a d u l l a

PhD*
A s e m G a l y m z h a n k y z y

Master,	Teacher*
E r k e b u l a M y r z a b e k *

*Department	of	Computer	Science
Institute	of	Engineering	and	Technology

Korkyt	Ata	Kyzylorda	University
Aiteke	bi	str.,	29A,	Kyzylorda,	Republic	of	Kazakhstan,	120014

**Department	of	Computer	Systems,	Networks	and	Cybersecurity
National	University	of	Life	and	Environmental	Sciences	of	Ukraine

Heroiv	Oborony	str.,	15,	Kyiv,	Ukraine,	03041

This study takes a look into
the application of the Naive Bayes
machine learning algorithm to
enhance the accuracy of Intrusion
Detection Systems (IDS). The
primary focus is to assess the
algorithm's performance in detecting
various types of network attacks,
particularly Denial of Service (DoS)
attacks. This research proposes using
Naive Bayes to improve intrusion
detection systems that struggle to
keep pace with evolving cyber threats.
This study evaluated the efficiency
scores of the Naive Bayes classifying
model for two different dependency
scenarios and identified strong and
weak properties of this model. The
Naive Bayes classifier demonstrated
satisfactory results in detecting
network intrusions, especially in
binary classification scenarios
where the goal is to distinguish
normative and malicious traffic
due to its simplicity and efficiency.
However, its performance declined
in multi-class classification tasks,
where multiple types of attacks need
to be differentiated. The study also
highlighted the importance of data
quality and quantity in training
machine learning models because of
the impact of those parameters on
the model efficiency. The USB-IDS-1
dataset, while useful, has limitations
in terms of the variety of attacks.
Using datasets with a wider range
of attack types could significantly
improve the accuracy of IDS. The
findings of this research can be
applied to such domains as network
security, cybersecurity, and data
science. The Naive Bayes classifier
can be integrated into IDS systems
to enhance their ability to detect and
respond to cyber threats. However, it
is essential to consider the limitations
of the algorithm and the specific
conditions of its environment. To
maximize the effectiveness of the
Naive Bayes classifier, it could be
promising to optimize and normalize
the data to improve the accuracy of
the model and combine Naive Bayes
with the other machine learning
algorithms to address its limitations

Keywords: intrusion detection
systems (IDS), Naive Bayes method,
python, machine learning, Denial of
Service (DoS) attacks, USB-IDS-1
dataset

UDC 004.02

DOI: 10.15587/1729-4061.2024.317471

How to Cite: Konyrbaev, N., Nikitenko, Y., Shtanko, V., Lakhno, V., Baishemirov, Z., Ibadulla, S., Galymzhankyzy, A.,

Myrzabek, E. (2024). Evaluation and optimization of the naive bayes algorithm for intrusion detection systems using

the USB-IDS-1 dataset. Eastern-European Journal of Enterprise Technologies, 6 (2 (132)), 74–82.

https://doi.org/10.15587/1729-4061.2024.317471

Received 01.10.2024

Received in revised form 25.11.2024

Accepted 06.12.2024

Published 25.12.2024

Copyright © 2024, Authors. This is an open access article under the Creative Commons CC BY license

1. Introduction

In today’s rapidly evolving digital landscape, cyber threats
are becoming increasingly sophisticated, posing significant risks

Information technology

75

datasets for model training, imbalances within existing
datasets, the suboptimal performance of IDS in real-world
scenarios, and the high computational demands required to
deploy these systems effectively.

The issue of dataset relevance is examined in greater
depth in [2], where older datasets such as KDDCUP99 and
NSKDD are critically evaluated. These datasets are shown
to be outdated and insufficient for addressing the complex
requirements of contemporary IDS. To address these lim-
itations, [2] delves into the creation and characteristics of
the UNSW-NB15 dataset. The paper provides a meticulous
account of the algorithms and tools used for data collection,
as well as a detailed taxonomy of its features, including the
assignment of attack and normal traffic labels. A compar-
ative analysis between KDDCUP99 and UNSW-NB15
highlights the latter’s advantages, particularly its improved
relevancy, data balance, and feature richness, which col-
lectively contribute to better ML performance. All listed
datasets have extensive descriptions, but researchers don’t
provide any figures on how the latter and more extensive
ones affect the performance of machine learning models.
This research did not present efficiency scores because this
was not its main goal.

Further comparative work is presented in [3], where
the UNSW-NB15 dataset is evaluated alongside Bot-IoT
and CSE-CIC-IDS2018. This study examines the network
protocols utilized during data collection and the types of
attacks included. Despite their advancements, these data-
sets remain constrained by the environments in which they
were created, which limits their applicability in replicating
real-world attack scenarios. This observation underscores
the importance of designing datasets that more accurately
reflect the dynamic nature of real-world networks. In gen-
eral, this research provides extensive comparison data for
the efficiency scores between diverse datasets and various
machine learning algorithms. However, it lacks information
regarding the impact of dataset parameters on the efficiency
of the studied algorithms.

The literature also highlights the value of specialized
datasets for IDS. For instance, [4] investigates the AWID3
dataset, which is tailored for IEEE 802.11 wireless networks.
This dataset includes data on attacks specific to wireless
environments, such as the recently discovered Krack and
Kr00k vulnerabilities. These datasets emphasize the impor-
tance of contextual specificity in IDS training, as wireless
networks present unique challenges compared to traditional
wired environments. As this study reviews the variance of
the attacks, the key features and scenarios of their appear-
ance, do not contain any information about appliance of
those data for the machine learning.

In the realm of Internet of Things (IoT) security, the
work in [5] utilizes the CIC IDS 2017 dataset to assess the
efficacy of deep learning methods, including CNNs, RNNs,
and LSTMs. While these advanced models demonstrate
strong detection capabilities, their high computational re-
quirements pose a barrier to deployment in resource-con-
strained environments, such as IoT devices. This research
compares the efficiency scores of multiple machine learning
models using various training datasets, but it lacks informa-
tion about how the structure of the aforementioned dataset
affects machine learning model efficiency.

Synthetic datasets like USB-IDS-1, discussed in [6], rep-
resent another avenue for progress. This dataset integrates
data from multiple OSI model layers and simulates diverse

Traditional intrusion detection systems are limited by
their reliance on predefined signatures and rules, which are
easily circumvented by attackers. There is a growing need
for advanced, adaptive IDS solutions that can automatically
learn and adapt to new attack patterns.

Machine learning and deep learning present promising
prospects for the development of intelligent IDS. However,
these techniques often require significant computational
resources and large amounts of training data. This may pose
a challenge, particularly for environments with limited re-
sources or real-time applications.

Therefore, there is a pressing need to explore machine
learning algorithms that are both effective and efficient in
detecting network intrusions. By identifying algorithms
that can accurately classify network traffic with minimal
computational overhead, it will be possible to develop more
robust and scalable IDS solutions.

Accordingly, research focused on developing efficient,
adaptive Intrusion Detection Systems using machine learn-
ing methods is especially relevant. As cyber threats con-
tinue to evolve, it becomes increasingly important to seek
solutions that not only enhance detection accuracy but also
reduce computational demands, making intelligent IDS
more applicable across various environments, including re-
source-constrained and real-time settings.

2. Literature review and problem statement

Intrusion Detection Systems (IDS) play a pivotal role in
modern cybersecurity, attracting considerable interest from
both researchers and practitioners. A fundamental concern
in this domain is the ability of IDS to effectively detect
intrusions or suspicious activities within the networks they
are deployed in. While significant advancements have been
achieved, numerous unresolved challenges persist, making
this a fertile area for further investigation.

For instance, the research presented in [1] provides
an extensive exploration of machine learning (ML) and
deep learning (DL) techniques as applied to IDS. This
publication begins by defining foundational concepts and
categorizes IDS based on deployment (network-based and
host-based) and detection strategies (signature-based and
anomaly-based). The authors propose a structured pipeline
for employing ML in IDS, comprising three primary phases:
data preprocessing, training, and testing. A diverse array of
algorithms is explored, ranging from classical models like
decision trees, K-nearest neighbors, and support vector ma-
chines to advanced DL architectures such as convolutional
neural networks (CNN), recurrent neural networks (RNN),
and long short-term memory networks (LSTM). In addition
to this broad algorithmic coverage, the work examines per-
formance evaluation metrics and synthesizes insights from
multiple comparative analyses conducted by other experts in
the field. However, there is insufficient discussion regarding
how dataset configurations, such as size, diversity, or pre-
processing techniques, impact learning models performance.
The research lacks a deep dive into the specifics of each
reviewed machine learning model. This limitation indicates
that further investigation into the dependency between
dataset properties and IDS learning efficient is needed.
Moreover, the authors draw attention to several broader
challenges that hinder the adoption of ML-based IDS. These
include the scarcity of relevant and systematically organized

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 6/2 (132) 2024

76

To achieve this aim, the following objectives are set:
– evaluation of the performance of the Naive Bayes machine

learning model in dependence on data quantitative properties
such as amount of data entries using the USB-IDS-1 dataset;

– evaluation of the performance of the Naive Bayes
machine learning model in dependence on data qualitative
properties such as data variance using the USB-IDS-1
dataset.

4. Materials and methods

4. 1. Object and hypothesis of the study
The object of this study is a Naive Bayes machine learn-

ing model. This model is based on the Bayes theorem, which
is a fundamental tool in probability theory. The word “naive”
in the name of this model refers to the use of the normal
distribution law to calculate posterior Bayesian probability.

The main hypothesis of this research is that the Naive
Bayes model has low efficiency for large, homogenous data-
sets that contain multiple data classes. However, due to the
mathematical principles upon which this model is based
(calculation of the probability of data belonging to a specific
data class), its efficiency may increase with the decrease
in the data classes. It could be assumed that with less data
classes, the model will be able to make more accurate clas-
sifying decisions, as it will have less number of probability
values to compare.

This research assumes that the data features of the train-
ing dataset are independent of one another. This simplifica-
tion allows for the use of the Naive Bayes learning model,
though it is not reflecting real data scenarios, as the features
of the network data could have dependency in a real world.
For example, the transfer duration of a packet may depend
on its size. Furthermore, this model uses normal data dis-
tribution, which has limitations in the representation of real
network traffic. In reality, traffic patterns can vary across
various networks, such as wireless networks, local networks
with particular security settings, Internet of Things net-
works, etc.

Let’s consider the formulation of Bayes’ theorem: Let
A and B be two arbitrary events, with Р(В)≠0. Then, the
conditional probability of event A, given that event B has
occurred, is expressed by the formula:

() () ()
()

|
| ,

P A P B A
P A B

P B

×
= (1)

where P(A|B) is the conditional probability of event A given
that event B has occurred (posterior probability);

P(B |A) is the conditional probability of event B given
that event A has occurred (likelihood probability);

P(A) is the prior probability of event A (initial estimate
of probability);

P(B) is the prior probability of event B (marginal prob-
ability).

Let’s also briefly review the formula for the normal
Gaussian distribution, which is another important compo-
nent of this model:

()
2()

221
,

2

x a

f x e
−

−

σ=
σ π

 (2)

DDoS attack scenarios under varying server configurations.
By capturing both protected and unprotected network node
conditions, USB-IDS-1 provides valuable insights into at-
tack dynamics. This research establishes a new dataset with
extensive network data that includes traffic for various net-
work scenarios. It requires a closer look and detailed study
to understand how machine learning models will behave
on such detailed data. Follow-up work in [7] leverages this
dataset to investigate feature selection techniques using
genetic algorithms. The results demonstrate that reducing
the feature space can significantly enhance computational
efficiency without sacrificing classification accuracy, offer-
ing a pathway to more scalable IDS solutions. This study
examines the effectiveness scores of various machine learn-
ing models based on the number of features used for classifi-
cation. It contains efficiency scores for specific combinations
of data types, which are very variable. These suggest further
research related to the efficiency of the machine learning
model based on the specifics of the USB-IDS-1 dataset.

The field has also seen significant focus on individual
machine learning methodologies. For example, [8] provides
an in-depth analysis of RNNs, highlighting their capability
to model sequential data patterns effectively. This research
includes a systematic study of the RNN machine learning
model, provides data about feature optimization algorithm,
and includes data about feature selection. Furthermore, in
contrast to the previous studies, this study comprises data
regarding the duration of model training. Similar to [7], it
also emphasizes the dependence of the model on the quantity
of features. There was no investigation into the efficiency
dependence on the other data parameters, except for feature
enhancement. Similarly, [9] explores the twin support vector
machine framework, emphasizing its high precision and suit-
ability for specific classification tasks. However, this model
is quite complex and requires additional implementation
efforts, which could be a crucial drawback when building an
IDS machine learning framework.

Taken together, these findings reveal a critical need
to advance research in two key directions. First, there is a
pressing requirement to develop and utilize datasets that are
not only relevant and comprehensive but also reflective of
real-world network dynamics. Characteristics such as data-
set balance, richness of features, and diversity of attack sce-
narios play a pivotal role in determining IDS performance.
Second, the exploration of scalable and computationally
efficient ML techniques is vital, particularly for applications
in environments with limited resources. Addressing these
challenges will enable the development of IDS that are ro-
bust, adaptable, and capable of effectively countering the
ever-evolving landscape of cyber threats.

3. The aim and objectives of the study

The aim of this study is to determine the effectiveness
of the Naive Bayes machine learning algorithm in enhanc-
ing Intrusion Detection Systems (IDS) by improving their
ability to detect various network attacks, including Denial
of Service (DoS) attacks. The establishment of relationships
between the algorithm’s performance and the quantitative
and qualitative features of the training dataset will allow
understanding limitations and possible appliance scenarios
of the Naive Bates model for the intrusion detection system’s
machine learning.

Information technology

77

where x is the value of the random variable;
a is the expected value (mean);
σ is the standard deviation.
This method is quite simple because all the necessary

parameters of the machine learning model are calculated
using simple formulas, making this model easy to implement.

Another advantage is its computational efficiency, as
the complexity of training such a model is linear in relation
to both the number of training examples and the number
of data features. In turn, the complexity of classification
is linear with respect to the number of features and does
not depend on the number of training examples. Another
advantage of this method is the easy scalability of training:
Naive Bayes works with low-order probability estimates
derived from training data, and these estimates are quite
simple to update as new training data becomes available.
This method always uses all attributes for all predictions,
making it relatively insensitive to noise in the classified
examples [10].

The Naive Bayes model assumes that each feature in the
data is independent of the others and submits a normal dis-
tribution within each class.

The principle of work of the Naive Bayes classifier is to
select the class or category of data for which the posterior
probability is the highest for the object being classified.

Since this classifier uses normal distribution to calculate
posterior probability, training such a machine learning mod-
el involves calculating the parameters of the normal distri-
bution, i.e. the means and standard deviations for the classes
for which the classification is performed.

The mean value is calculated using the formula:

1

1
,

n

i
i

x x
n =

= ∑ (3)

where n is the number of entries in the dataset.
For the standard deviation calculations, the following

formula was used:

()2

1

1
,

1

n

i
i

x x
n =

σ = −
− ∑ (4)

where n is the number of the entries in the dataset;
x is the mean value calculated by the formula mentioned

before.
During classification, based on the calculated means and

standard deviations, the probability of the object belonging
to a particular class is determined. These results are easy to
interpret, as the outcome is the probability that the object
belongs to one data class or another.

To evaluate the model’s performance, the accuracy and
precision metrics was used.

Accuracy was calculated by the formula:

,
TP TN

Accuracy
TP TP FP FN

+=
+ + +

. (5)

And precision was calculated using the following formula:

,
TP

Precision
TP FP

=
+

 (6)

where TP (true positive) is the number of the attack data
entries classified as attacks;

TN (true negative) is the number of normal traffic entries
classified as normal traffic;

FP (false positive) is the number of the normal entries
classified as attacks;

FN (false negative) is the number of attack data entries
classified as normal traffic.

Accuracy reflects the ratio of correctly classified records
to the total number of records. Precision is the ratio of cor-
rectly classified records assigned to a particular class to all
records assigned to that class [11, 12].

4. 2. Rationale for selecting the dataset
As mentioned above, the network dataset used for train-

ing and evaluating intrusion detection systems is extremely
important. Datasets like KDD Cup 99, NSL-KDD, DARPA
1998, and UNSW-NB15 are quite common for training and
evaluating IDS, but they have certain drawbacks, such as
being imbalanced or outdated. In this article, let’s examine
the USB-IDS-1 dataset. This dataset is relatively new (data
collected in 2021) [6] and consists of 16 separate CSV files
containing data on 4 different types of Denial of Service
attacks, such as HULK, Slowloris, TCP-Flood, and Slow-
httptest [13].

For each type of attack, data is collected under different
network configurations, for example, the file HULK-NoDe-
fence.csv contains data for a network without any security
measures, whereas HULK-Reqtimeout.csv contains net-
work data for this type of attack on a server protected by
reqtimeout settings. Such data represents various network
conditions, so they are quite relevant for IDS evaluation.

USB-IDS-1 also includes a separate file with network
data collected under normal traffic conditions, i.e. the net-
work is not subjected to any attacks. In total, this dataset
contains more than 4.5 million records, each characterized
by 82 features, such as the sender’s IP address, the receiv-
er’s IP address, connection duration, the number of packets
transmitted during the session, and timestamps that contain
information about the session start time, etc. In fact, all the
features are metadata of network packets rather than the
packets themselves, as the payload in modern networks is
usually encrypted, making it unsuitable for processing. The
vast majority of the mentioned features are numerical, mak-
ing this dataset well-suited for processing using the Naive
Bayes method.

An undeniable advantage of this dataset is that all re-
cords include labels for the corresponding type of attack or
indicate that the data is normal, therefore, USB-IDS-1 can
be used for training and evaluating IDS without the need
for additional data processing related to data labeling. This
significantly speeds up the process of preparing data for use
in machine learning models.

4. 3. Software tools
One of the most widely used programming languages for

machine learning is Python. Among its advantages are the
simple structure of the code and the speed of development.
On the other hand, as an interpreted language, it has slower
application execution speed in comparison with compiled
languages like Java or C++. Furthermore, as a language
without static typization, Python code could contain errors
that are detectable only in application runtime. From a ma-
chine learning perspective, its advantage is the large number
of specialized Python libraries, such as NumPy, Pandas,
Scikit-learn, TensorFlow, and PyTorch. These libraries pro-

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 6/2 (132) 2024

78

vide ready-made tools for data processing, model building, and
their evaluation, which greatly simplify the work of researchers
and developers. In overall the reason for the choosing of the
Python language for the research mainly are: development
speed and extensive support of various machine learning and
data processing libraries, which allow the writing of simple and
efficient code. Let’s take a closer look at some of the aforemen-
tioned libraries, as to use them later for writing code.

Scikit-learn is one of the most popular Python libraries
for machine learning. It offers a wide range of tools for data
preprocessing, classification, regression, clustering, dimen-
sionality reduction, and other machine learning tasks. Its
features include standardization, normalization, encoding
categorical variables, and other methods of preparing data for
model training. The library also implements linear regression,
logistic regression, support vector machines, decision trees,
random forests, neural networks, and many more. Additional-
ly, it allows the calculation of various accuracy metrics and the
evaluation of machine learning model quality.

The NumPy library is one of the core Python libraries
used for scientific computing. It provides a powerful N-di-
mensional array object, which forms the foundation for
many other libraries, including Scikit-learn. It includes the
capability to create, manipulate, and compute large multidi-
mensional arrays.

The Pandas library, in turn, is designed for high-level
data analysis and is built based on NumPy. It offers tools
for working with tabular data, such as tables and series.
Its features include working with DataFrame class objects,
which are data structures that represent tabular data with
rows and columns. It also simplifies working with various
data formats, such as CSV, Excel, SQL, and others. Pandas
allows performing various data manipulations, such as sort-
ing, filtering, merging, and aggregating data.

Matplotlib is a library for creating static, animated, and
interactive data visualizations in Python. It offers a wide
range of chart types, from simple line graphs to complex
three-dimensional plots. It allows displaying function plots,
scatter plots, visualizing data distribution, and more.

4. 4. Description of the data processing algorithm
For the Naive Bayes method, as with other machine

learning methods, there is a specific set of standard actions
performed during model training. The first step is reading
data from a storage medium, such as a file. In this case, let’s
use reading data from .csv files, as the USB-IDS-1 dataset
consists of such data (Fig. 1).

Since the data in the network dataset have different nature,
for example, it contains timestamps in the form of formatted
dates, IP address ranges, individual IP addresses, NaN (not a
number) values, and Infinity, and they require transformation
or removal from the dataset, as they are unsuitable for numer-
ical calculations. Thus, the first step in data preparation is re-
moving features with non-numeric values (NaN and Infinity).
Timestamps can easily be converted into millisecond values
using Python, which are numeric and therefore meet the mod-
el’s requirements. Additionally, for the model to work correctly,
it is necessary to remove records with empty values from the
dataset, as well as features that do not vary within a class. This
is because it is impossible to perform calculations on empty
values, and it is impossible to compute model parameters for
non-varying features, such as the expected value and standard
deviation for each feature within a class. The same applies to
non-numeric values, as mentioned above.

Fig.	1.	General	algorithm	for	data	processing	using	the	Naive	
Bayes	method

Thus, after the previous data preparation, it is possible to
obtain a dataset with 52 features, in comparison to the total
of 82 features present in the initial dataset.

For additional randomization, the prepared dataset was
shuffled to avoid sequential processing of records with the
same labels. The complete input data preparation algorithm
is shown in Fig. 2.

Fig.	2.	Training	data	preparation	algorithm	

After the data preparation, the model is ready for train-
ing. Since the effectiveness (accuracy and precision) of the
model was examined based on the amount of input data and
the number of data classes, two groups of calculations with

Information technology

79

different initial conditions were conducted. The first group of
calculations processed data from all files in the training set for
each iteration, i. e., considering all 16 blocks of attack data and
1 block of normal traffic data. The variable parameter for these
calculations was the number of records, which was randomly
selected using the Python random module within the range
from 0 to 4500000 (the total number of records in the dataset).
To establish the statistical dependence of the model’s effective-
ness on the number of records, the training and testing of the
model was performed over 300 iterations (Fig. 3). Generally,
the first group of calculations represents multi-class classifica-
tion with the number of classes of 17 (16 attack related and one
is for normative traffic). This experiment ignored data classes
as the main its goal was to detect dependency on data number.

The second group of calculations had the following initial
conditions: each iteration processed at least two blocks of
training data, one of which had to be the block with normal
traffic. A maximum of 17 blocks of data were used in a single
iteration, which included 16 blocks of attack data and the block
of normal traffic. For each iteration, the attack classes were
randomly selected using the random module. Additionally, for
each iteration, training and testing of the model were repeat-
ed 100 times. This group of calculations represented multi-class
classification as well, but the number of classes was variable for
each calculation. It varied from 2 up to 17. Data amount was
ignored in this scenario. Moreover, the case with only two data
classes was a partial case also known as binary classification.
Binary classification for Naïve Bayes is no different from multi-
class classification, as the probability of data entry is calculated
for each class by the same formula. The only variable in those
calculations was the number of classes for each iteration.

Let’s take a closer look at how the model was trained and
tested, as well as how it was evaluated for each individual
calculation.

After the input data was prepared for each individual calcu-
lation, the labels were converted from text format to numerical
format and recorded into a separate data array. Then, the data
was split into training and test sets. When splitting the data, the
labels were removed from the test data, so they no longer con-
tained information about their class. Twenty percent of the orig-
inal dataset was allocated to the test data, while the remaining
80 % was used for training. For the portion of the data allocated
for training, the model parameters described in section 3 of this
article – mean and standard deviation – were calculated.

Fig.	3.	Model	training	and	testing	algorithm	

After training the model, it was tested. For each record
in the test data, the posterior probability of belonging to
each of the classes used in the calculation was computed.
The calculated probability indicated the class to which the
record belonged, after which the test data was labeled with
the corresponding tags, completing the classification. After
classification, using the tools from the scikit-learn library,
the model was evaluated for each individual calculation by
calculating the model’s accuracy and precision. For both
groups of calculations, the accuracy and precision values
were recorded in separate .csv files, along with the initial
conditions: the number of records and the number of attack
classes, respectively.

The Naive Bayes algorithm was implemented to assess its
performance in various classification scenarios for intrusion
detection. Evaluation focused on metrics such as accuracy
and precision.

5. Research results of the effectiveness of the Naive
Bayes machine learning algorithm in enhancing Intrusion

Detection Systems (IDS)

5. 1. Evaluation of the model performance in depen-
dency of data amount

To investigate how data volume affects model perfor-
mance, the dataset size was systematically varied during
training and testing iterations.

Results:
– Accuracy dependency on the data amount: the model

achieved an accuracy range between minimal value of 32 %
and max value of 42 % with the regression approximately
to 33–34 % as displayed in Fig. 4.

– Precision dependency on the data amount: model
demonstrated precision values scatter between minimal
value of 32 % and max value of 52 % with the regression
approximately to 42–45 % as displayed in Fig. 5.

Fig.	4.	Graph	of	the	model	accuracy	dependence	on	the	
amount	of	data

The results presented in Fig. 4, 5 demonstrate that the
model’s performance, in terms of accuracy and precision,
generally not depends on the amount of data used for train-
ing. Linear regression coefficient of 2∙10-10 display minimal
dependency on the data volume for the accuracy. Similarly,
the precision’s linear regression coefficient was 2.08∙10-9
which also indicates insignificant value of dependency of the
precision on the data amount.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 6/2 (132) 2024

80

Fig.	5.	Graph	of	the	model	precision	dependence	on	the	
amount	of	data

Furthermore, it was noticed that in the Fig. 4 data
points form two big groups. One of the groups contains
points under accuracy value of approximately 35 %. An-
other group contains points over the accuracy value of
approximately 38 %. This could be explained by data
inconsistency. Despite that data was selected from a ho-
mogenous dataset that included all 16 types of attack data
and data for normative traffic, data selection was ran-
domized. This suggests that certain parts of the datasets
impacted on the algorithm in terms of increasing accuracy
values. These observations underline the need of feature
engineering, data balancing and structuring or advanced
algorithms to improve detection capabilities in diverse
traffic scenarios.

5. 2. Evaluation of the model performance in depen-
dency of data variance

The impact of data diversity, measured by the number
of attack classes in the dataset, was analyzed to evaluate
the algorithm’s robustness in multi-class scenarios.

Results:
– Accuracy: a negative linear regression coefficient

of −3,9∙10−2 was observed. Maximum accuracy (more
than 95 %) was achieved for datasets with normative
traffic and a single attack class, while accuracy dropped
to 33 % for datasets containing 16 attack classes (Fig. 6).

– Precision: precision exhibited similar trends, with
a regression coefficient of −2,9∙10−2 . Precision values
peaked at more than 95 % for datasets with fewer attack
classes and declined to 40 % for datasets with 16 attack
classes (Fig. 7). These results underscore the model’s lim-
itations in handling diverse datasets with multiple attack
scenarios.

The trends depicted in Fig. 6, 7 clearly illustrate the
limitations of the Naive Bayes algorithm in handling data-
sets with increasing diversity. As the number of attack
classes rises, both accuracy and precision show a marked
decline, evidenced by negative regression coefficients.
These results highlight that the algorithm performs well
in scenarios with low data diversity, such as datasets with
normative traffic and a single attack class, achieving ac-
curacy and precision levels exceeding 95 %. However, the
dramatic performance drop when working with 16 attack
classes underscores the algorithm’s inability to capture
complex relationships in high-dimensional, heterogeneous
data. This finding suggests the importance of either adopt-

ing more advanced machine learning models or improving
data preprocessing methods to enhance performance in such
challenging scenarios. In addition, distinctive data points
grouping was observed in the Fig. 6, 7 both for accuracy and
precision scores. Instead of data points distribution around
some core value similar to normal distribution, for scenarios
with 2–4 attacks type it was detected few scattering cores.
This could be explained by random selection of datasets with
different attack types. Thus, some attack types are classified
with higher efficiency than other ones, so this confirms once
again that the nature of the data affects Naïve Bayes algo-
rithm efficiency.

6. Discussion of research results ability the Naive Bayes
to detect various network attacks

The results obtained in this study demonstrate that
the accuracy and precision of the Naive Bayes model are
largely independent of the size of the training dataset
when the data are homogeneous (Fig. 4, 5). For instance,
the linear regression coefficient for accuracy is 2∙10−10,
and for precision, it is 2,8∙10−9, indicating negligible
improvements with an increase in the dataset size. This
suggests that for homogeneous data, increasing the data-
set size does not significantly impact the model’s perfor-
mance. However, the number of data classes significantly
affects these scores.

Fig.	6.	Graph	of	the	model	accuracy	dependence	on	the	
number	of	data	categories

Fig.	7.	Graph	of	the	model	precision	dependence	on	the	
number	of	data	categories

Information technology

81

The findings indicate that the Naive Bayes algorithm
performs well in binary classification, achieving accu-
racy and precision exceeding 95 % for normative traffic
and single-attack classifications (Fig. 6). However, as
the number of attack classes increases, both accuracy
and precision decline. For 16 attack types and normative
traffic, the model’s accuracy drops to nearly a third of
its binary classification performance, with a negative
linear regression coefficient of −3,9∙10−2 for accuracy
and −2,9∙10−2 for precision. This decline is likely due to
the limitations of the Naive Bayes algorithm in handling
diverse, multi-class data effectively. Also, for binary
classification, two distinct groups of precision scores
emerge (Fig. 7): one clustering around 95 % and another
around 60 %. The latter may result from random data se-
lection or imbalance in the dataset, which adversely affects
performance.

Unlike previous studies such as [1, 3], which focused
on evaluating machine learning models on homogeneous
data, this research explores the impact of data diversity
on the Naive Bayes model. The study identifies a notable
pattern: the model’s efficiency decreases with an increase
in data diversity. This insight underscores the trade-off
between the simplicity and speed of the Naive Bayes mod-
el and its limitations, such as its reliance on all features
and the assumption of normal distribution.

All of the above points lead to the point that the Naive
Bayes model for IDS machine learning has some strong
points, such as:

– simplicity and promptness of implementation;
– low computational requirements make it suitable for

systems with limited resources;
– scalability for basic classification tasks.
However, it does possess certain limitations, such as:
– reduced effectiveness in multi-class scenarios due to

oversimplified assumptions;
– inability to fully leverage more complex datasets;
– sensitivity to data diversity can result in perfor-

mance degradation with heterogeneous datasets.
These observations indicate that, although Naive

Bayes is effective for lightweight applications, its utility
in complex IDS environments is limited.

These findings contribute to the growing body of
knowledge on the applicability of the Naive Bayes algo-
rithm for intrusion detection systems (IDS). In general, it
is possible to say that Naive Bayes model testing resulted
in a wide range of efficiency score values, such as accura-
cy and precision. This suggests inconsistent work of the
model. Therefore, it is imperative to conduct additional
research in the areas of data optimization and balancing,
as well as the utilization of diverse datasets for the evalu-
ation of Naive Bayes model efficiency.

The findings of this research can be applied to various
fields, including network security, cybersecurity, and data
science. In the fields of network security and cybersecu-
rity, these insights can be used to develop more robust
and resilient IDS. Additionally, within data science,
the findings can contribute to the development of novel
algorithms and techniques for feature engineering and
datasets optimization.

This study has several limitations. First, it evaluates
the model using only accuracy and precision metrics,
omitting critical measures such as recall, false alarm rate,

true negative rate, and F-score. This omission limits the
comprehensiveness of the performance evaluation. The
research is based solely on the USB-IDS-1 dataset, re-
stricting the generalizability of the findings to datasets
of similar characteristics. The reproducibility of results
may also vary with changes in data distribution and class
imbalance.

One notable disadvantage of this study is the limited
scope of metrics used, which could obscure other aspects
of the model’s performance. This can be addressed by in-
corporating additional metrics to provide a more holistic
evaluation. Another drawback is the focus on a single
dataset, which may not fully capture the Naive Bayes
model’s behavior across different data environments. Fu-
ture research could extend this study by testing the model
on diverse datasets and investigating its adaptability to
varying data types.

To address the limitations and disadvantages, future
studies could explore combining the Naive Bayes algo-
rithm with other machine learning methods to compen-
sate for its weaknesses. For example, hybrid approaches
could balance the algorithm’s tendency to misclassify
in multi-class scenarios. Additionally, investigating the
model’s stability under varying data conditions and ex-
panding the scope of evaluation metrics could provide a
deeper understanding of its potential for IDS develop-
ment. Challenges in this development may include opti-
mizing the computational complexity of hybrid models
and ensuring the reproducibility of results across diverse
datasets.

7. Conclusions

1. Through extensive experimentation, the effects of
data volume on the effectiveness of the model were evalu-
ated. Both accuracy and precision scores demonstrate con-
sistent behavior for any size of the training dataset, with
accuracy fluctuating between 33 % and 35 % and precision
ranging between 40 % and 45 %. For some scenarios, the
accuracy score improves significantly up to 38–40 %, sug-
gesting that the model may be more efficient for optimized
datasets.

2. The influence of training data variance on the model
performance was examined. The best results were observed
when classifying a single attack class alongside norma-
tive traffic, achieving an accuracy above 95 % with high
precision. When multiple attack classes were introduced,
performance decreased notably, with accuracy dropping
to 30–35 % and precision falling to 40–45 %. This demon-
strates the strengths of Naive Bayes in binary classifica-
tion tasks. However, the model demonstrated significant
limitations in multi-class scenarios, requiring significant
refinement to improve its scalability and effectiveness for
complex datasets.

Conflict of interest

The authors declare that they have no conflict of interest
in relation to this research, whether financial, personal, au-
thorship or otherwise, that could affect the research, and its
results presented in this paper.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 6/2 (132) 2024

82

Financing

This research was funded by the Science Committee of
the Ministry of Science and Higher Education of the Repub-
lic of Kazakhstan (Grant No. AP14869851).

Data availability

Data cannot be made available for reasons disclosed in
the data availability statement.

Use of artificial intelligence

The authors confirm that they did not use artificial intel-
ligence technologies when creating the current work.

Acknowledgements

This research has been funded by the Science Committee
of the Ministry of Science and Higher Education of the Re-
public of Kazakhstan (Grant No. AP14869851).

References

1. Ahmad, Z., Shahid Khan, A., Wai Shiang, C., Abdullah, J., Ahmad, F. (2020). Network intrusion detection system: A systematic study

of machine learning and deep learning approaches. Transactions on Emerging Telecommunications Technologies, 32 (1). https://

doi.org/10.1002/ett.4150

2. Moustafa, N., Slay, J. (2015). UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15

network data set). 2015 Military Communications and Information Systems Conference (MilCIS), 1–6. https://doi.org/10.1109/

milcis.2015.7348942

3. Dwibedi, S., Pujari, M., Sun, W. (2020). A Comparative Study on Contemporary Intrusion Detection Datasets for Machine

Learning Research. 2020 IEEE International Conference on Intelligence and Security Informatics (ISI). https://doi.org/10.1109/

isi49825.2020.9280519

4. Chatzoglou, E., Kambourakis, G., Kolias, C. (2021). Empirical Evaluation of Attacks Against IEEE 802.11 Enterprise Networks:

The AWID3 Dataset. IEEE Access, 9, 34188–34205. https://doi.org/10.1109/access.2021.3061609

5. Jose, J., Jose, D. V. (2023). Deep learning algorithms for intrusion detection systems in internet of things using CIC-IDS 2017

dataset. International Journal of Electrical and Computer Engineering (IJECE), 13 (1), 1134. https://doi.org/10.11591/ijece.v13i1.

pp1134-1141

6. Catillo, M., Del Vecchio, A., Ocone, L., Pecchia, A., Villano, U. (2021). USB-IDS-1: a Public Multilayer Dataset of Labeled

Network Flows for IDS Evaluation. 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks

Workshops (DSN-W), 1–6. https://doi.org/10.1109/dsn-w52860.2021.00012

7. Özsarı, M. V., Özsarı, Ş., Aydın, A., Güzel, M. S. (2024). USB-IDS-1 dataset feature reduction with genetic algorithm.

Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, 66 (1), 26–44. https://

doi.org/10.33769/aupse.1320795

8. Kasongo, S. M. (2023). A deep learning technique for intrusion detection system using a Recurrent Neural Networks based

framework. Computer Communications, 199, 113–125. https://doi.org/10.1016/j.comcom.2022.12.010

9. Zou, L., Luo, X., Zhang, Y., Yang, X., Wang, X. (2023). HC-DTTSVM: A Network Intrusion Detection Method Based on Decision

Tree Twin Support Vector Machine and Hierarchical Clustering. IEEE Access, 11, 21404–21416. https://doi.org/10.1109/

access.2023.3251354

10. Sammut, C., Webb, G. I. (2010). Encyclopedia of Machine Learning. Springer New York, 1031. https://doi.org/10.1007/978-0-387-

30164-8

11. Gushin, I., Sych, D. (2018). Analysis of the Impact of Text Preproccessing on the Results of Text Classification. Young Scientist,

10 (62), 264–266. Available at: https://molodyivchenyi.ua/index.php/journal/article/view/3755

12. Shkarupylo, V., Lakhno, V., Konyrbaev, N., Baishemirov, Z., Adranova, A., Derbessal, A. (2024). Hierarchical model for building

composite web services. Journal of Mathematics, Mechanics and Computer Science, 122 (2), 124–137. https://doi.org/10.26577/

jmmcs2024-122-02-b10

13. USB-IDS Datasets. Universita Degli Studi del Sannio. Available at: https://idsdata.ding.unisannio.it/datasets.html

