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The object of this study is complex networks whose model
is undirected weighted ordinary (without loops and multiple
edges) graphs. The task to detect communities, that is, par-
tition the set of network nodes into communities, has been
considered. It is assumed that such communities should be
non-overlapped. At present, there are many approaches to
solving this task and, accordingly, many methods that imple-
ment it. Methods based on the maximization of the network
modularity function have been considered. A modified modu-
larity criterion (function) has been proposed. The value of this
criterion explicitly depends on the number of nodes in the com-
munities. The partition of network nodes into communities with
maximization by such a criterion is significantly more prone
to the detection of small communities, or even singleton-node
communities. This property is a key characteristic of the pro-
posed method and is useful if the network being analyzed really
has small communities. In addition, the proposed modularity cri-
terion is normalized with respect to the current number of com-
munities. This makes it possible to compare the modularity of
network partitions into different numbers of communities. This,
in turn, makes it possible to estimate the number of communi-
ties that are formed, in cases when this number is not known
a priori. A method for partitioning network nodes into commu-
nities based on the criterion of maximum modularity has been
devised. The corresponding algorithm is suboptimal, belongs
to the class of greedy algorithms, and has a low computatio-
nal complexity — linear with respect to the number of network
nodes. As a result, it is fast, so it can be used for network parti-
tioning. The method devised for detecting network communities
was tested on classic datasets, which confirmed the effective-
ness of the proposed approach
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It is well known that real-world networks are not ho-
mogeneous. Network nodes are structured into more or
less well-defined communities. For example, communities
in social networks [1, 2], which can be based on the com-
monality of location, language, interest domain, cultural
aspects [3]. Communities in citation networks reflect the
industry specialization of scholars. An important example is
also communities in biological networks [4], which reflect
the functionality of elements, as well as biological-ecological
communities [3], etc. A common feature of such communities
is that the nodes of the network are more closely connected
to the nodes of their own community than to the nodes of
other communities. In other words, the density of connec-
tions of any node with nodes belonging to the same commu-
nity is higher than the average for that node.

Grouping detection is one of the most important tasks
of complex network analysis. Thus, dividing the network
into communities makes it possible to scale the network by
matching the nodes of the new network to the communities

of the original network and thus proceed to consider the
network on a larger scale. At the same time, the structure of
connections between network elements is specified and clar-
ified, and the scale of communities is revealed. In addition,
partitioning the network into communities makes it possible
to identify atypical nodes and connections that are critically
important from the point of view of the integrity of the net-
work, the dissemination of information in it, etc. and. Thus,
devising methods for detecting communities in networks is
an urgent practical task.

At the same time, despite the high practical significance
of the problem under consideration, there are currently no
universal, scientifically based methods for solving it. First of
all, this is due to the applied, engineering nature of the prob-
lem itself, which usually does not involve a single formalized
statement of the problem, as well as the lack of well-founded
quality criteria for partitioning the network into commu-
nities. The second reason is the wide variety of networks
themselves. Thus, the use of some formalized criterion and
the development of appropriate methods and algorithms for
network partitioning can be scientifically based, recognized,



and used by application specialists. However, over time, these
methods and algorithms are "refuted” by a counterexample,
i.e., the presence of such a network for which the proposed
division will be far from optimal. In addition, an important
property of the considered problem is its high computation-
al complexity, which makes it impossible to solve it by the
method of complete enumeration even for networks of low
dimensionalities. For this reason, some methods, despite
a strong mathematical justification, are not used in practice.
Conversely, there are, and are successfully applied, semi-em-
pirical methods and approaches that do not have a strict
justification but show effectiveness in solving practical tasks.
One can say that the inconsistency of the statement and the
intractability of the general problem of optimal partitioning
of network nodes into communities are the reason and justifi-
cation for the relevance of scientific research aimed at solving
the problems of community detection in complex networks.

2. Literature review and problem statement

The task of partitioning a network into communities is
very general. Accordingly, there are many different nuances
in the statement of this problem, which reflect the expected
properties of the object (that is, the features of the connec-
tions in the network and the requirements for the quality of
its partitioning). Thus, connections in the network can be
directed or undirected; have an arbitrary real weight or, for
example, only integral or only binary (0/1); multiple connec-
tions and loops may or may not be allowed.

A characteristic classification requirement for partition
properties is the admissibility or inadmissibility of intersec-
tions of selected communities. Thus, a person, as a node of
a network of social ties, simultaneously joins various com-
munities formed by territorial, linguistic, professional, or
other characteristics. On the other hand, the intersection of
communities may reflect the fact of unclear classification. The
simplest for analysis (but also the most practically important)
is the case of dividing network nodes into pairwise non-in-
tersecting sets, which is the main subject of further analysis.

For the considered problem, there are three main fami-
lies of solution methods: based on the maximum likelihood
method (MLE), based on centrality, and based on modularity
maximization. Methods based on maximum likelihood have
a strict statistical justification: they boil down to the maxi-
mization of the Kullback-Leibler measure [6] (differences in
the distribution between the partitioning of nodes by com-
munities being formed) and some null model describing the
random partitioning. An important advantage of such methods
is a strict justification of both the methods themselves and the
properties of the null model [7], against which the partitioning
is carried out. The most important drawback of methods based
on maximum likelihood is the rather high computational com-
plexity of the corresponding algorithms [8], which limits their
practical applicability. It is important that in all cases the prob-
lem of identifying groups of network nodes has a high compu-
tational complexity, so its optimal solution for large networks
is impossible. This creates the need to use various suboptimal,
usually greedy, algorithms [10]. In addition, the variability of
the mathematical description of null models is not high [7],
and the influence of the used model on the properties of the
resulting network division options is not always obvious.

The Girvan-Newman method [4] implements network
partitioning by step-by-step removal of edges that have the

greatest influence on centrality (in the sense of mediation).
This method has a high computational complexity (O(m?n),
where m is the number of edges and 7 is the number of nodes
in the network) and is therefore not applicable to most real-
world networks.

In the applied aspect, the most common methods for divid-
ing network nodes are methods based on modularity maximi-
zation [9], in particular, the Louvain algorithm [10]. Their
main advantage is the relative simplicity of implementation
and, accordingly, high productivity. Network modularity is
an indicator of the tendency of nodes to group into clusters,
also called communities. Typically, networks are heteroge-
neous, so nodes in the same community are strongly con-
nected to each other, while connections between nodes from
different communities are rare. In this case, the modularity
indicator is high, otherwise it is low.

The determination of network modularity is based on the
use of a random graph as a null model, preserving the degrees
of the nodes (that is, the weights of the connections) of the
analyzed network. The problem is that the null model (ran-
dom graph) used in the classical approach does not assume
the presence of communities. Moreover, the modularity of
communities does not directly depend on the number of
nodes in these communities. In this regard, it is proposed to
modify the definition of modularity of individual network
communities and the network as a whole. The proposed
changes will reflect the influence of the number of nodes
in the communities, accordingly, maximizing the modified
modularity will make it possible to detect small communities
if they are present in the network.

The modularity of the network Q(G) is defined as the
sum of the modularities of all communities of this network.
Thus, the network modularity index is additive with respect
to communities and is quite simply calculated. This leads
to the widespread use of the modularity index to assess the
quality of the division of community network nodes.

At the same time, solving the inverse problem (detecting
communities and dividing nodes into communities) by max-
imizing network modularity is associated with known prob-
lems. The first is the impossibility of maximizing Q(G) with
respect to C, by a complete search due to high (subfactorial)
complexity, which reaches O((n /logn)"). The general prob-
lem of high-dimensional experiment planning is considered
in [11]. Suboptimal greedy algorithms are usually used to
partition nodes into communities by maximizing modularity,
the most known of which is the Louvain algorithm [8, 10].

The second problem is the limited resolution [12] of
grouping search algorithms based on modularity. This means
that they tend to form communities that are close in size and
therefore poorly distinguish communities consisting of few
nodes, whereas in real networks such may exist. To overcome
this shortcoming, an additional parameter is introduced into
the community modularity definition formula — the resolu-
tion factor y>0 (by default 1). If y<1, then the algorithm
prefers larger communities, otherwise — smaller ones. It is
important to note that the value y#1 violates the statistical
meaning of modularity as a deviation of the actual number of
connections within the community from the expected one.
Moreover, varying the value of the resolution factor does not
always make it possible to distinguish small communities.

In addition, in traditional methods of partitioning
nodes by maximizing the modularity criterion (for exam-
ple, the Louvain algorithm [10]), due attention is not paid
to the validity of the choice of the value of the number of



communities (K). The simplest approach is that communi-
ties stop merging when the modularity of the network stops
growing. This approach to choosing the number of communi-
ties is not statistically justified.

Thus, the methods for detecting communities in the
network, based on the maximization of modularity, al-
though they are the most promising, have serious drawbacks:
the presence of statistically unjustified tuning parameters, the
unreasonableness of the number of communities, and the
reluctance to select small communities.

3. The aim and objectives of the study

The purpose of our study is to devise a method for parti-
tioning network nodes into communities based on a modified
modularity criterion. This will make it possible to use it for
large networks for their further scaling (zooming), analysis
of community structure, anomalous nodes, and other tasks.

The set goal can be achieved by solving the following
problems:

— to devise a modified modularity criterion;

— to develop an algorithm for partitioning network nodes
into communities based on the maximization of the modified
modularity criterion, evaluate the computational complexity
of the proposed algorithm;

— to perform an experimental test of the performance of
the proposed partitioning method on known test datasets of
networks and analyze the quality of the partitioning.

4. The study materials and methods

The object of our research is complex networks whose
mathematical model is an undirected weighted graph G(V,E).
The task is to partition a set of network nodes into commu-
nities. It is assumed that these communities do not intersect
in pairs, so the partition into communities C,, u=1,..,.K is
called adinissible if these communities form a complete group:

Nodes =\ JC,, Vu#0v: C,NC,=@. The number of communi-

u=1
ties to be searched for (K) is generally assumed to be unknown.

The solution to the given problem is based on the maxi-
mization of the objective function Q(G,Cy,...,Cp), which is
termed modularity.

This paper provides a definition of the proposed crite-
rion of modularity, different from the traditional criterion.
The value of this criterion depends on the properties of the
network and the current division of this network into com-
munities. An analysis of this dependence is carried out, which
allows us to draw preliminary conclusions about the pro-
perties and advantages of the modified modularity criterion.

Since the number of partitions of a set of  elements (known
as the Bell number) grows very quickly (subfactorially) with
increasing n, the search for the maximum of the objective
function (modularity) by the method of direct selection is
impossible in the general case. Therefore, two suboptimal
methods based on the use of greedy algorithms are proposed
to solve the problem of partitioning network nodes. This
makes it possible to preserve the main property of network
partitioning methods based on modularity — low computa-
tional complexity. The Python programming language in the
Spyder environment was used for programmatic implementa-
tion of the proposed methods.

Experimental verification of the performance of the pro-
posed partitioning methods is carried out using test datasets
of networks: Zachary karate club [4] and Newman’s Pol-
books [13], which are well-known datasets used for testing
methods, algorithms, and programs for partitioning networks
into communities.

3. Results of research on identifying communities
in networks using a modified modularity criterion

5. 1. Modified modularity criterion
In arandom undirected graph G(V,E) of order N=order(G)
for nodes with weights &;, i=1,...,N, the expected weight of an

N
edge between nodes i, j is equal to kk, /(2m), where m = %Zk,.
i=1

is the total weight of network edges.

It should be noted that for unweighted networks, the
weights of vertices are equal to their powers ki=deg(i), the
weight of the entire network is equal to the number of edges
m=size(G), and the expected weight of an edge between
nodes i, j is equal to the probability of the presence of this edge.

For each pair of nodes i, j, it is possible to calculate the
deviation of the actual weight of the connection between
them (that is, the element of the adjacency matrix A;; of the
weighted graph) from the expected weight of the connection:

b,

A=A .
2m

i,j i.j

(1

Community modularity (C,) is equal to the sum of va-
lues (1) taken from all nodes included in this community:
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where I is the weight of all links in the community u (for
an unweighted graph), which is equal to twice the number of
edges, both ends of which belong to the community; L = 2 k;
ieC,

is the total weight of all nodes included in the community C,,.

To increase the resolution [12] of algorithms for finding
groups based on modularity, an additional parameter is in-
troduced into the community modularity definition formu-
la (2) — the resolution coefficient y>0 (by default y=1):

(1)

_i A — % _i - 3)
@ 2m 2 b Y2m 2m| " v 2m |

If y<1, then the algorithm prefers larger communities,
otherwise — smaller ones.

Then the formula for calculating network modularity
takes the following form:

K K ) Ltot 2
Q(G)=;qu=52 pEL (4)

o 2m

It is important to note that the value y=1 violates the
statistical meaning of modularity as a deviation of the ac-
tual number of connections within the community from the
expected one. Moreover, varying the value of the resolution



factor does not always make it possible to distinguish small
communities.

Suppose that the network is divided into K non-intersect-
ing communities C, with 7, nodes in each of them. The nu-
merical values of K and 7, are assumed to beKunknown. Let the

total number of network nodes equal N = Y n,. According to
u=1

the null model, any node ie C, is connected to other network

nodes with equal probability. Then the probability of linking

node i with node j from the same community C, is equal to:

—_
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Therefore, the expected weight of connections between
node i and other nodes of the class C,, is E{L’: (1)} =p,k. Ana-
tural measure of the modularity of a node can be the difference
between the actual weight of the connections of the current
node i with the nodes of the class C, and the expected value:

ALy (i)=L; (i) = E{L; (i)} = L} ()~ p. k. (6)

It is worth noting that a model similar to (6) was used
in [14] to estimate network assortativeness. In addition, the
task to measure assortativeness [15—17] is closely related to
the problem of community detection [1, 18].

As in the case of the traditional definition, the modularity
of the entire community is equal to the normalized sum of the
modularities of all nodes in that community:

(2 ()-B{E2 (D))= (22 -

1
277'! ieC,

u, = p.L). (M

To estimate the modularity of the entire network, we sum
up the local modularities (7) over all the communities of the
network:

h(G)=3u, - 1§(LZ”—P

u=1 m =

L) (8)

It is easy to see that the obtained modularity coefficient (7)
is defined for any nonempty communities. The lower limit of
the modularity of the network (8) corresponds to the case
Vu: L' =0and cannot be less than —1, while the upper limit,
achievable for an ideal partition (Vu: =L ), does not ex-
ceed +1. Therefore, —1 <p(G)<+1.

Comparing the proposed definition of modularity (7), (8)
with the traditional definition (3), (4), we can conclude that
the only (but very significant) difference is due to the method
for estimating the expected value of the weight of all links in
the u-th community E{L"}. According to the traditional ap-
proach it is equal to y(I)* / (2m), while in our method this
estimate is equal to p,L”. Given the definition p, (5), it can
be concluded that these estimates coincide when using the
resolution parameter vy, which is equal to:

2m_ / LLUL E
P "N 1k

Y= )

where k, k, are the average weights of nodes in the entire
network and in community u, respectively.

Thus, the proposed method for calculating the modula-
rity of the network, on the one hand, is statistically justified
through the probabilistic model (5), and on the other hand,

it can be considered as a variant of the conventional method
using individual settings of the resolution parameter (9). In
both versions, conventional (4) and proposed (8), network
modularity is the sum of deviations of the actual number
of connections in communities " from the expected one.
According to both null models for random distributions of
random networks, L is a random variable with an expected
value y(I)* / (2m) and p,L, accordingly, a finite variance.
It follows that the variance of the sum of these devia-
tions (that is, the variance of the value of the modularity of
the entire network) is also finite and grows in proportion to
the number of terms, that is, communities (K). In addition,
as will be demonstrated below, the use of the modularity
coefficient in the conventional (unaveraged) form (8) leads
to the premature termination of greedy algorithms with the
formation of communities of single nodes. Therefore, it is
proposed to normalize the modularity of the network (8) by
dividing its value by VK

Zu = 2( = p L) (10)

The proposed normalization makes it possible to compare
the modularity of network partitioning for different numbers
of communities.

5. 2. Algorithms for partitioning network nodes into
communities based on the maximization of the modified
modularity criterion

Detecting communities by maximizing modularity (8) or
(10) for large values of k£ and C; using exhaustive sorting is
not possible due to the high complexity of the computations
required. Two variants of greedy algorithms were proposed:
"moderately greedy" and "very greedy". Their pseudocodes are
shown in Fig. 1, 2, respectively. In both algorithms, each node is
initially considered as a separate community, that is, the initial
modularity values are zero: i (G) = it(G) = 0. In both algorithms,
the findbestcomm4U (u,Comm) procedure is used to select the
community C, to which the current node u is added. In this
procedure, all nodes v that are adjacent to u are sorted, and such
a community C,e v is selected, the joining of u to which maxi-
mizes the overall modularity (8) of the network. The current
value of the total modularity of the network is denoted as gainU.

algorithm medium greedy (G) :
iterate for u in Nodes:
comm[u] = C[u] = set(u)
end of iterate
mod _prev = -inf
mod curr = 0
while mod curr > mod prev:
random permutation (comm)
iterate for u in comm:
gainU, v = findbestcomm4U(u, C)
Exclude (u, Clu])
C[v] = union(C[Vv],
end of iterate
mod_prev = mod_curr
mod curr = modularity(C)
comm = C
end of while
return C

Clul)

Fig. 1. Pseudocode of the "moderately greedy" algorithm

In the moderate-greedy algorithm, in a loop through
the primary communities u=1,...,Ri.,, immediately after the



current community #e Cu is found (by calling findbest-
comm4U(u,Comm)) such a community Co, joining u to
which maximizes gainU, the operations of joining u to
Co (Co=Cou{u}) and removing u from Cu(Cu=Cu\\{u}) are
performed. At the same time, the community Cu may or may
not become empty. After the loop completes, the list of com-
munities is updated, and the next iteration of the outer loop
is executed. Therefore, this option essentially coincides with
the Louvain algorithm [10] with the replacement of the con-
ventional modularity criterion (4) with criterion (8) or (10).

According to a very greedy algorithm (Fig. 2), a pair of
communities Cu, Co is selected in the community cycle so
that their merger leads to the maximum possible increase in
criterion (8) or (10). After the loop completes, Co is updated
as Co=CouCu, and Cu is removed from the community list.
Thus, after each iteration, the number of communities is
reduced by one. This process (for the outer loop) continues
as long as there are possible mergers (that is, as long as the
modularity of the network increases).

algorithm very greedy (G)
iterate for u in Nodes:
comm[u] = C[u] = set(u)
end_of iterate
mod_prev = -inf
mod_curr = 0
while mod curr > mod prev:
ubest = u[l]
gainbest = -inf
iterate for u in comm:
gainU, v = findbestcomm4U(u, C)
if gainU > gainbest:
gainbest = gainU

ubest = u
vbest = v
end_of iterate
Exclude (ubest, Clubest])
C[vbest] = union(C[vbest], Clubest])
mod prev = mod curr
mod_curr = modularity (C)
comm = C
end of while
return C

Fig. 2. Pseudocode of the "very greedy" algorithm

As can be seen from the pseudocodes shown in Fig. 1,2,
the more complex and most deeply nested part of both algo-
rithms is the findbestcomm4U function call. This function
iterates through communities that have common edges with
the nodes of the current community, so its computational
complexity is O(k), where k<d_max,k<kj.,, ki, is the current
number of communities d. is the maximum power of the
primary community (if we consider it as a node). Thus, the
complexity of the moderately greedy algorithm is equal to:

T,=O(N-k), k=max{d,, K}, (11)
that is, it is linear with respect to the number N of network
nodes.

The computational complexity of one iteration of the
very greedy algorithm is O(nk), where 7 is the current num-
ber of communities, n=N, N—1,..., K. Thus, the complexity of
the very greedy algorithm is:

T,=0(N’-k), k=max{d,, K}. (12)

It is evident that the moderately greedy algorithm is
much faster than the very greedy one but its result (both the

modularity value and the configuration of communities) de-
pends on the order of traversal of the communities in the loop
at u=1,... k. On the other hand, a very greedy algorithm,
which is independent of the random order of communities,
allows tracking the change of network modularity in a step-
by-step fashion.

3. 3. Experiments on test networks

In this chapter, the proposed network partitioning meth-
od is investigated on test datasets. The first of them is the
well-known network dataset of the karate club studied by
Zachary [4]. It is an undirected weighted network containing
N=34 nodes that have a total weight of 2m=462. This data
set, with a known partition into two groups, is widely used
in studying the community structure of networks. The nodes
of the groups are labeled as "Mr. Hi" and "Officer", and each
group consists of 17 nodes.

Maximization of the unaveraged modularity criterion (8)
using a very greedy algorithm leads to the division of this
network into three large communities (of 14, 10, and 5 nodes)
and 5 single nodes (‘J, ‘S, ‘¢, ‘L, and ‘R’). The achieved va-
lue of the criterion p(G)=0.4773. The dendrogram is shown
in Fig. 3. For clarity of visualization of the dendrogram, the
digital signs of the nodes (1, ..., 34) are replaced by the let-
ters A, ..., Z, a, ..., h. The values of the height axis on the den-
drogram correspond to the values of the modularity criterion.
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Fig. 3. Dendrogram of karate_club network partitioning
by unaveraged modularity criterion (8) using a very greedy
partitioning algorithm

It is important to note that the dependence of the un-
averaged modularity (8) of the network on the number of
communities (Fig. 4) is flat, that is, its maximum is weakly ex-
pressed. Thus, the obtained value for the number of communi-
ties (k=8) is largely determined by the properties of the very
greedy algorithm used. When using another partitioning al-
gorithm, one can expect a value of & in the range from 3 to 12.

According to the numerical experiment, the maximiza-
tion of the same unaveraged modularity criterion (8) using
a moderately greedy algorithm leads to the division of this
network into two communities (with 16 and 18 nodes).
Compared to the partitioning by the very greedy algo-
rithm (Fig. 3), nodes ‘J’, ‘S’, ‘¢’ are merged into a community
of 14 nodes ("Officer"), nodes ‘L’ and ‘R’ joined communities
with 10 and 5 nodes ("Mr.Hi"), but node ‘I" moved from
community "Officer" to "Mr. Hi", which is incorrect. This
node ‘I" (#9) is known to be problematic for many of the
classification procedures tested on this dataset. Thus, the
moderately greedy algorithm creates a partition that is close



to ideal, reaching a high value of the criterion u(G)=0.4185
and is significantly faster than the very greedy variant of the
proposed algorithm.
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Fig. 4. Dependence of the unaveraged modularity of the
karate_club network on the number of detected communities
by the very greedy partitioning algorithm

Maximization of the average modularity (10) by a very
greedy algorithm leads to the division of this network into
two communities (17 nodes each). It is worth noting that this
section fully corresponds to the initial node labels ("Mr. Hi"
and "Officer"), that is, the resulting partition shown in Fig. 5
is ideal. The achieved value of the criterion I(G)=0.2877,
corresponds to the unaveraged value p(G)=0.4069 and is
slightly less than for the non-ideal distribution 16/18.
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Fig. 5. Dendrogram of karate_club network partitioning
according to the average modularity criterion (10) using
a very greedy partitioning algorithm

The second test dataset used to investigate the proposed
network partitioning method is the popular Newman’s Pol-
books [13]. The nodes of this set are books on US politics
sold by the online bookseller Amazon.com. Nodes (books)
are connected by an edge if these books were ordered by the
same customer. Nodes are labeled with the letters "¢", "[",
and "n" (49, 43, and 13 nodes, respectively) to indicate
whether they are conservative, liberal, or neutral in their re-
spective political views. Mark Newman assigned these labels
separately based on reading the descriptions and reviews of the
books posted on Amazon [19]. The network contains 105 nodes
and 441 edges, and the maximum degree of a node is 25.

Maximization of the unaveraged modularity criterion (8)
by a very greedy algorithm leads to the division of this
network into six communities (with 4, 38, 37, 10, 4, and
12 nodes). The achieved value of the criterion p(G)=0.5628.

The dendrogram of the distribution of the network is shown
in Fig. 6, and the dependence of the used criterion on the
number of detected communities (Fig.7) is similar to the
corresponding dependence for the karate club (Fig. 4).

At the same time, partitioning according to the norma-
lized modularity criterion (10) leads to the division of the
network into three communities (Fig. 8) with 38, 41, and
26 nodes, respectively.
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Fig. 6. Dendrogram of partitioning the polbooks network
according to the unaveraged modularity criterion (8) using
a very greedy partitioning algorithm
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Fig. 7. Dependence of the unaveraged modularity of the
polbooks network on the number of detected communities
by the very greedy partitioning algorithm
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Fig. 8. Dendrogram of partitioning the polbooks network
according to the normalized modularity criterion (10) using
a very greedy partitioning algorithm

The resulting partitioning cannot be called exact: half of the

nodes assigned to community "z" actually belong to classes "¢
and "[". At the same time, the number of communities (K=3)



corresponds to the actual value. It is worth noting that the
original ("real") marking of nodes is subjective. Therefore,
the quality of partitioning of the polbooks network by the
proposed method can be considered moderate.

6. Discussion of results of research on the detection
of communities in networks using a modified
modularity criterion

The modified modularity criterion (10) proposed in this
study is based on the null model of the network, according to
which the probability (5) of a node connecting with another
node of its community clearly depends on the number of
nodes in this community. The proposed network modularity
assessment method differs from the conventional method [9],
in which the specified probability depends only on the de-
grees of connected nodes. As a result, the community detec-
tion method based on the maximization of modified modu-
larity has a greater tendency to detect small communities,
including single-node ones. This property determines the
practical significance of our work. It meets the initial re-
quirements for the devised method and is its advantage over
conventional methods [10, 12] with the limitation that the
network does contain small communities.

The effectiveness of the proposed method was tested on
widely known network datasets. The results of partition-
ing the network into communities, shown on the dendro-
grams (Fig. 5, 6, 8), confirm the efficiency of the proposed
method: the obtained partitioning is natural and justified,
it reflects the objectively existing structure of relationships
between the nodes of the analyzed networks.

In addition, the problem of determining the optimal
number of communities (K) has been considered. To en-
sure comparability of modularity values for different K,
it has been proposed to normalize the modularity of the
network (equal to the sum of modularity of communities)
by dividing by the root of K, which was not done in conven-
tional algorithms [8, 10]. The proposed approach partially
solves the specified problem (which also has practical signif-
icance), but in general it tends to underestimate the number
of communities. However, this drawback is common to all
community detection methods based on modularity maximi-
zation. Therefore, in the practical application of the proposed
method, it is recommended to analyze not only the last parti-
tioning of network nodes generated by the algorithm but also
previous ones (with larger K values).

It is evident that the task of estimating the optimal
number of network communities remains open for further
theoretical research.

7. Conclusions

1. A modified modularity criterion has been devised, which
clearly depends on the number of nodes in each community.
This property increases the tendency to detect small commu-
nities (up to single-node communities). In addition, the pro-
posed modularity function is normalized with respect to the
number of communities, which makes it more relevant in the
case where the number of communities is unknown a priori.

2. Two algorithms for partitioning network nodes into com-
munities using a modified modularity function as an objective
function for maximization have been developed. The "very
greedy" algorithm has a quadratic complexity with respect to the
number of nodes and is used for detailed analysis of the commu-
nity detection process, as well as for constructing dendrograms.
The "moderately greedy” community detection algorithm is
much faster (it has a linear complexity with respect to the num-
ber of nodes) and is the main variant of the proposed method.

3. The proposed community detection method was tested
on widely known network datasets. The results of the expe-
riment as a whole confirm the effectiveness of the proposed
method (all karate club nodes and 91 % of polbooks nodes
are classified correctly) and the compliance of its properties
with the original requirements for computational complexi-
ty (it is linear).
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