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The object of this study is complex networks whose model 
is undirected weighted ordinary (without loops and multiple 
edges) graphs. The task to detect communities, that is, par-
tition the set of network nodes into communities, has been 
considered. It is assumed that such communities should be 
non-overlapped. At present, there are many approaches to 
solving this task and, accordingly, many methods that imple-
ment it. Methods based on the maximization of the network 
modularity function have been considered. A modified modu-
larity criterion (function) has been proposed. The value of this 
criterion explicitly depends on the number of nodes in the com-
munities. The partition of network nodes into communities with 
maximization by such a criterion is significantly more prone 
to the detection of small communities, or even singleton-node 
communities. This property is a key characteristic of the pro-
posed method and is useful if the network being analyzed really 
has small communities. In addition, the proposed modularity cri-
terion is normalized with respect to the current number of com-
munities. This makes it possible to compare the modularity of 
network partitions into different numbers of communities. This, 
in turn, makes it possible to estimate the number of communi-
ties that are formed, in cases when this number is not known  
a priori. A method for partitioning network nodes into commu-
nities based on the criterion of maximum modularity has been 
devised. The corresponding algorithm is suboptimal, belongs 
to the class of greedy algorithms, and has a low computatio
nal complexity – linear with respect to the number of network 
nodes. As a result, it is fast, so it can be used for network parti-
tioning. The method devised for detecting network communities 
was tested on classic datasets, which confirmed the effective-
ness of the proposed approach

Keywords: network modularity, node communities, network 
partitioning, assortativeness, problems of high dimensionality

UDC 004.03
DOI: 10.15587/1729-4061.2024.318452

How to Cite: Shergin, V., Grinyov, S., Chala, L., Udovenko, S. (2024). Network 

community detection using modified modularity criterion. Eastern-European 

Journal of Enterprise Technologies, 6 (4 (132)), 6–13.  

https://doi.org/10.15587/1729-4061.2024.318452

Received 11.09.2024

Received in revised form 01.11.2024

Accepted 11.12.2024

Published 30.12.2024

1. Introduction

It is well known that real-world networks are not ho-
mogeneous. Network nodes are structured into more or 
less well-defined communities. For example, communities 
in social networks [1, 2], which can be based on the com-
monality of location, language, interest domain, cultural 
aspects [3]. Communities in citation networks reflect the 
industry specialization of scholars. An important example is 
also communities in biological networks [4], which reflect 
the functionality of elements, as well as biological-ecological 
communities [5], etc. A common feature of such communities 
is that the nodes of the network are more closely connected 
to the nodes of their own community than to the nodes of 
other communities. In other words, the density of connec-
tions of any node with nodes belonging to the same commu-
nity is higher than the average for that node.

Grouping detection is one of the most important tasks 
of complex network analysis. Thus, dividing the network 
into communities makes it possible to scale the network by 
matching the nodes of the new network to the communities 

of the original network and thus proceed to consider the 
network on a larger scale. At the same time, the structure of 
connections between network elements is specified and clar-
ified, and the scale of communities is revealed. In addition, 
partitioning the network into communities makes it possible 
to identify atypical nodes and connections that are critically 
important from the point of view of the integrity of the net-
work, the dissemination of information in it, etc. and. Thus, 
devising methods for detecting communities in networks is 
an urgent practical task.

At the same time, despite the high practical significance 
of the problem under consideration, there are currently no 
universal, scientifically based methods for solving it. First of 
all, this is due to the applied, engineering nature of the prob-
lem itself, which usually does not involve a single formalized 
statement of the problem, as well as the lack of well-founded 
quality criteria for partitioning the network into commu-
nities. The second reason is the wide variety of networks 
themselves. Thus, the use of some formalized criterion and 
the development of appropriate methods and algorithms for 
network partitioning can be scientifically based, recognized, 
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and used by application specialists. However, over time, these 
methods and algorithms are "refuted" by a counterexample, 
i.e., the presence of such a network for which the proposed 
division will be far from optimal. In addition, an important 
property of the considered problem is its high computation-
al complexity, which makes it impossible to solve it by the 
method of complete enumeration even for networks of low 
dimensionalities. For this reason, some methods, despite  
a strong mathematical justification, are not used in practice. 
Conversely, there are, and are successfully applied, semi-em-
pirical methods and approaches that do not have a strict 
justification but show effectiveness in solving practical tasks. 
One can say that the inconsistency of the statement and the 
intractability of the general problem of optimal partitioning 
of network nodes into communities are the reason and justifi-
cation for the relevance of scientific research aimed at solving 
the problems of community detection in complex networks.

2. Literature review and problem statement

The task of partitioning a network into communities is 
very general. Accordingly, there are many different nuances 
in the statement of this problem, which reflect the expected 
properties of the object (that is, the features of the connec-
tions in the network and the requirements for the quality of 
its partitioning). Thus, connections in the network can be 
directed or undirected; have an arbitrary real weight or, for 
example, only integral or only binary (0/1); multiple connec-
tions and loops may or may not be allowed.

A characteristic classification requirement for partition 
properties is the admissibility or inadmissibility of intersec-
tions of selected communities. Thus, a person, as a node of 
a network of social ties, simultaneously joins various com-
munities formed by territorial, linguistic, professional, or 
other characteristics. On the other hand, the intersection of 
communities may reflect the fact of unclear classification. The 
simplest for analysis (but also the most practically important) 
is the case of dividing network nodes into pairwise non-in-
tersecting sets, which is the main subject of further analysis.

For the considered problem, there are three main fami-
lies of solution methods: based on the maximum likelihood 
method (MLE), based on centrality, and based on modularity 
maximization. Methods based on maximum likelihood have 
a strict statistical justification: they boil down to the maxi-
mization of the Kullback-Leibler measure [6] (differences in 
the distribution between the partitioning of nodes by com-
munities being formed) and some null model describing the 
random partitioning. An important advantage of such methods 
is a strict justification of both the methods themselves and the 
properties of the null model [7], against which the partitioning 
is carried out. The most important drawback of methods based 
on maximum likelihood is the rather high computational com-
plexity of the corresponding algorithms [8], which limits their 
practical applicability. It is important that in all cases the prob-
lem of identifying groups of network nodes has a high compu-
tational complexity, so its optimal solution for large networks 
is impossible. This creates the need to use various suboptimal, 
usually greedy, algorithms [10]. In addition, the variability of 
the mathematical description of null models is not high [7], 
and the influence of the used model on the properties of the 
resulting network division options is not always obvious.

The Girvan-Newman method [4] implements network 
partitioning by step-by-step removal of edges that have the 

greatest influence on centrality (in the sense of mediation). 
This method has a high computational complexity (O(m2n), 
where m is the number of edges and n is the number of nodes 
in the network) and is therefore not applicable to most real- 
world networks.

In the applied aspect, the most common methods for divid-
ing network nodes are methods based on modularity maximi-
zation [9], in particular, the Louvain algorithm [10]. Their 
main advantage is the relative simplicity of implementation 
and, accordingly, high productivity. Network modularity is 
an indicator of the tendency of nodes to group into clusters, 
also called communities. Typically, networks are heteroge-
neous, so nodes in the same community are strongly con-
nected to each other, while connections between nodes from 
different communities are rare. In this case, the modularity 
indicator is high, otherwise it is low.

The determination of network modularity is based on the 
use of a random graph as a null model, preserving the degrees 
of the nodes (that is, the weights of the connections) of the 
analyzed network. The problem is that the null model (ran-
dom graph) used in the classical approach does not assume 
the presence of communities. Moreover, the modularity of 
communities does not directly depend on the number of 
nodes in these communities. In this regard, it is proposed to 
modify the definition of modularity of individual network 
communities and the network as a whole. The proposed 
changes will reflect the influence of the number of nodes 
in the communities, accordingly, maximizing the modified 
modularity will make it possible to detect small communities 
if they are present in the network.

The modularity of the network Q(G) is defined as the 
sum of the modularities of all communities of this network. 
Thus, the network modularity index is additive with respect 
to communities and is quite simply calculated. This leads 
to the widespread use of the modularity index to assess the 
quality of the division of community network nodes.

At the same time, solving the inverse problem (detecting 
communities and dividing nodes into communities) by max-
imizing network modularity is associated with known prob-
lems. The first is the impossibility of maximizing Q(G) with 
respect to Cu by a complete search due to high (subfactorial) 
complexity, which reaches O n n n(( / log ) ). The general prob-
lem of high-dimensional experiment planning is considered 
in [11]. Suboptimal greedy algorithms are usually used to 
partition nodes into communities by maximizing modularity, 
the most known of which is the Louvain algorithm [8, 10].

The second problem is the limited resolution [12] of 
grouping search algorithms based on modularity. This means 
that they tend to form communities that are close in size and 
therefore poorly distinguish communities consisting of few 
nodes, whereas in real networks such may exist. To overcome 
this shortcoming, an additional parameter is introduced into 
the community modularity definition formula – the resolu-
tion factor γ > 0 (by default 1). If γ < 1, then the algorithm 
prefers larger communities, otherwise – smaller ones. It is 
important to note that the value γ ≠ 1 violates the statistical 
meaning of modularity as a deviation of the actual number of 
connections within the community from the expected one. 
Moreover, varying the value of the resolution factor does not 
always make it possible to distinguish small communities.

In addition, in traditional methods of partitioning 
nodes by maximizing the modularity criterion (for exam-
ple, the Louvain algorithm [10]), due attention is not paid 
to the validity of the choice of the value of the number of  
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communities (K). The simplest approach is that communi-
ties stop merging when the modularity of the network stops 
growing. This approach to choosing the number of communi-
ties is not statistically justified.

Thus, the methods for detecting communities in the 
network, based on the maximization of modularity, al-
though they are the most promising, have serious drawbacks: 
the presence of statistically unjustified tuning parameters, the  
unreasonableness of the number of communities, and the 
reluctance to select small communities.

3. The aim and objectives of the study

The purpose of our study is to devise a method for parti-
tioning network nodes into communities based on a modified 
modularity criterion. This will make it possible to use it for 
large networks for their further scaling (zooming), analysis 
of community structure, anomalous nodes, and other tasks.

The set goal can be achieved by solving the following 
problems:

– to devise a modified modularity criterion;
– to develop an algorithm for partitioning network nodes 

into communities based on the maximization of the modified 
modularity criterion, evaluate the computational complexity 
of the proposed algorithm;

– to perform an experimental test of the performance of 
the proposed partitioning method on known test datasets of 
networks and analyze the quality of the partitioning.

4. The study materials and methods

The object of our research is complex networks whose 
mathematical model is an undirected weighted graph G(V,E).

The task is to partition a set of network nodes into commu-
nities. It is assumed that these communities do not intersect 
in pairs, so the partition into communities Cu, u = 1,…,K is 
called admissible if these communities form a complete group: 

Nodes Cu
u

K

=
=1


, ∀ ≠ = ∅u v C Cu v: .  The number of communi-

ties to be searched for (K) is generally assumed to be unknown.
The solution to the given problem is based on the maxi

mization of the objective function Q(G,C1,…,Ck), which is 
termed modularity.

This paper provides a definition of the proposed crite-
rion of modularity, different from the traditional criterion. 
The value of this criterion depends on the properties of the 
network and the current division of this network into com-
munities. An analysis of this dependence is carried out, which 
allows us to draw preliminary conclusions about the pro
perties and advantages of the modified modularity criterion.

Since the number of partitions of a set of n elements (known 
as the Bell number) grows very quickly (subfactorially) with 
increasing n, the search for the maximum of the objective 
function (modularity) by the method of direct selection is 
impossible in the general case. Therefore, two suboptimal 
methods based on the use of greedy algorithms are proposed 
to solve the problem of partitioning network nodes. This 
makes it possible to preserve the main property of network 
partitioning methods based on modularity – low computa-
tional complexity. The Python programming language in the 
Spyder environment was used for programmatic implementa-
tion of the proposed methods.

Experimental verification of the performance of the pro-
posed partitioning methods is carried out using test datasets 
of networks: Zachary karate club [4] and Newman’s Pol-
books [13], which are well-known datasets used for testing 
methods, algorithms, and programs for partitioning networks 
into communities.

5. Results of research on identifying communities  
in networks using a modified modularity criterion

5. 1. Modified modularity criterion
In a random undirected graph G(V,E) of order N = order(G) 

for nodes with weights ki, i = 1,…,N, the expected weight of an 

edge between nodes i, j is equal to k k mi j / ,2( )  where m ki
i

N

=
=
∑1

2 1

 

is the total weight of network edges.
It should be noted that for unweighted networks, the 

weights of vertices are equal to their powers ki = deg(i), the 
weight of the entire network is equal to the number of edges  
m = size(G), and the expected weight of an edge between 
nodes i, j is equal to the probability of the presence of this edge.

For each pair of nodes i, j, it is possible to calculate the 
deviation of the actual weight of the connection between 
them (that is, the element of the adjacency matrix Ai,j of the 
weighted graph) from the expected weight of the connection:

∆ i j i j
i jA

k k

m, , .= −
2

	 (1)

Community modularity (Cu) is equal to the sum of va
lues (1) taken from all nodes included in this community:

q
m

A
k k

m m
L

L

mu i j
i j

i j C
u
in u

tot

u

= −




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= −
( )








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1
2 2

2

,
,

,	 (2)

where Lu
in is the weight of all links in the community u (for 

an unweighted graph), which is equal to twice the number of 

edges, both ends of which belong to the community; L ku
tot

i
i Cu

=
∈
∑  

is the total weight of all nodes included in the community Cu.
To increase the resolution [12] of algorithms for finding 

groups based on modularity, an additional parameter is in-
troduced into the community modularity definition formu-
la (2) – the resolution coefficient γ > 0 (by default γ = 1):

q
m
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m m
L
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i j C
u
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,
,

γ γ
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.	 (3)

If γ < 1, then the algorithm prefers larger communities, 
otherwise – smaller ones.

Then the formula for calculating network modularity 
takes the following form:

Q G q
m

L
L

mu
u

K

u
in u

tot

u

K

( ) = = −
( )









= =

∑ ∑
1

2

1

1
2 2

γ .	 (4)

It is important to note that the value γ ≠ 1 violates the 
statistical meaning of modularity as a deviation of the ac-
tual number of connections within the community from the 
expected one. Moreover, varying the value of the resolution 
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factor does not always make it possible to distinguish small 
communities.

Suppose that the network is divided into K non-intersect-
ing communities Cu with nu nodes in each of them. The nu-
merical values of K and nu are assumed to be unknown. Let the 

total number of network nodes equal N nu
u

K

=
=

∑
1

. According to 

the null model, any node i∈Cu is connected to other network 
nodes with equal probability. Then the probability of linking 
node i with node j from the same community Cu is equal to:

p j C i C
n
Nu u u

u= ∈ ∈( ) =
−
−

Pr | .
1
1

	 (5)

Therefore, the expected weight of connections between 
node i and other nodes of the class Cu is Ε L i p ku

in
u i( ){ } = . A na

tural measure of the modularity of a node can be the difference 
between the actual weight of the connections of the current 
node i with the nodes of the class Cu and the expected value:

∆ ΕL i L i L i L i p ku
in

u
in

u
in

u
in

u i( ) = ( ) − ( ){ } = ( ) − .	 (6)

It is worth noting that a model similar to (6) was used 
in [14] to estimate network assortativeness. In addition, the 
task to measure assortativeness [15–17] is closely related to 
the problem of community detection [1, 18].

As in the case of the traditional definition, the modularity 
of the entire community is equal to the normalized sum of the 
modularities of all nodes in that community:

µu u
in

u
in

i C
u
in

u u
tot

m
L i L i

m
L p L

u

= ( ) − ( ){ }( ) = −( )
∈
∑1

2
1

2
Ε .	 (7)

To estimate the modularity of the entire network, we sum 
up the local modularities (7) over all the communities of the 
network:

µ µG
m

L p Lu
u

K

u
in

u u
tot

u

K

( ) = = −( )
= =

∑ ∑
1 1

1
2

.	 (8)

It is easy to see that the obtained modularity coefficient (7) 
is defined for any nonempty communities. The lower limit of 
the modularity of the network (8) corresponds to the case 
∀ =u Lu

in: 0 and cannot be less than –1, while the upper limit, 
achievable for an ideal partition ∀ =( )u L Lu

in
u
tot: , does not ex-

ceed +1. Therefore, –1 ≤ μ(G) ≤ +1.
Comparing the proposed definition of modularity (7), (8) 

with the traditional definition (3), (4), we can conclude that 
the only (but very significant) difference is due to the method 
for estimating the expected value of the weight of all links in 
the u-th community Ε{ }.Lu

in  According to the traditional ap-
proach it is equal to γ( ) / ( ),L mu

tot 2 2  while in our method this 
estimate is equal to p Lu u

tot . Given the definition pu (5), it can 
be concluded that these estimates coincide when using the 
resolution parameter γ, which is equal to:

γ u u
u
tot

u
tot

u u

p
m

L
m

N
L

n
k

k
= =

− −
≈

2 2
1 1

/ ,	 (9)

where k , ku are the average weights of nodes in the entire 
network and in community u, respectively.

Thus, the proposed method for calculating the modula
rity of the network, on the one hand, is statistically justified 
through the probabilistic model (5), and on the other hand, 

it can be considered as a variant of the conventional method 
using individual settings of the resolution parameter (9). In 
both versions, conventional (4) and proposed (8), network 
modularity is the sum of deviations of the actual number 
of connections in communities Lu

in from the expected one. 
According to both null models for random distributions of 
random networks, Lu

in is a random variable with an expected 
value γ( ) / ( )L mu

tot 2 2  and p Lu u
tot , accordingly, a finite variance. 

It follows that the variance of the sum of these devia-
tions (that is, the variance of the value of the modularity of 
the entire network) is also finite and grows in proportion to 
the number of terms, that is, communities (K). In addition, 
as will be demonstrated below, the use of the modularity 
coefficient in the conventional (unaveraged) form (8) leads 
to the premature termination of greedy algorithms with the 
formation of communities of single nodes. Therefore, it is 
proposed to normalize the modularity of the network (8) by 
dividing its value by K :

µ µG
K m K

L p Lu
u

K

u
in

u u
tot

u

K

( ) = =
⋅

−( )
= =

∑ ∑1 1

21 1

.	 (10)

The proposed normalization makes it possible to compare 
the modularity of network partitioning for different numbers 
of communities.

5. 2. Algorithms for partitioning network nodes into 
communities based on the maximization of the modified 
modularity criterion

Detecting communities by maximizing modularity (8) or 
(10) for large values of k and Ci using exhaustive sorting is 
not possible due to the high complexity of the computations 
required. Two variants of greedy algorithms were proposed: 
"moderately greedy" and "very greedy". Their pseudocodes are 
shown in Fig. 1, 2, respectively. In both algorithms, each node is 
initially considered as a separate community, that is, the initial 
modularity values are zero: .µ µG G( ) = ( ) = 0  In both algorithms, 
the findbestcomm4U(u,Comm) procedure is used to select the 
community Cv to which the current node u is added. In this 
procedure, all nodes v that are adjacent to u are sorted, and such  
a community Cv∈v is selected, the joining of u to which maxi
mizes the overall modularity (8) of the network. The current 
value of the total modularity of the network is denoted as gainU.

algorithm medium_greedy(G):
iterate for u in Nodes: 

comm[u] = C[u] = set(u) 
end_of_iterate 
mod_prev = -inf 
mod_curr = 0 
while mod_curr > mod_prev: 

random_permutation(comm) 
iterate for u in comm: 

gainU, v = findbestcomm4U(u, C) 
Exclude(u, C[u]) 
C[v] = union(C[v], C[u]) 

end_of_iterate 
mod_prev = mod_curr 
mod_curr = modularity(C) 
comm = C 

end_of_while 
return C

Fig. 1. Pseudocode of the "moderately greedy" algorithm

In the moderate-greedy algorithm, in a loop through 
the primary communities u = 1,…,kiter, immediately after the 
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current community u ∈Cu is found (by calling findbest-
comm4U(u,Comm)) such a community Cv, joining u to 
which maximizes gainU, the operations of joining u to 
Cv (Cv = Cv∪{u}) and removing u from Cu(Cu = Cu\\{u}) are 
performed. At the same time, the community Cu may or may 
not become empty. After the loop completes, the list of com-
munities is updated, and the next iteration of the outer loop 
is executed. Therefore, this option essentially coincides with 
the Louvain algorithm [10] with the replacement of the con-
ventional modularity criterion (4) with criterion (8) or (10).

According to a very greedy algorithm (Fig. 2), a pair of 
communities Cu, Cv is selected in the community cycle so 
that their merger leads to the maximum possible increase in 
criterion (8) or (10). After the loop completes, Cv is updated 
as Cv = Cv∪Cu, and Cu is removed from the community list. 
Thus, after each iteration, the number of communities is 
reduced by one. This process (for the outer loop) continues 
as long as there are possible mergers (that is, as long as the 
modularity of the network increases).

algorithm very_greedy(G)
iterate for u in Nodes: 

comm[u] = C[u] = set(u) 
end_of_iterate  
mod_prev = -inf 
mod_curr = 0 
while mod_curr > mod_prev: 

ubest = u[1] 
gainbest = -inf 
iterate for u in comm: 

gainU, v = findbestcomm4U(u, C) 
if gainU > gainbest: 

gainbest = gainU 
ubest = u 
vbest = v 

end_of_iterate 
Exclude(ubest, C[ubest]) 
C[vbest] = union(C[vbest], C[ubest]) 
mod_prev = mod_curr 
mod_curr = modularity(C) 
comm = C 

end_of_while 
return C

Fig. 2. Pseudocode of the "very greedy" algorithm

As can be seen from the pseudocodes shown in Fig. 1, 2, 
the more complex and most deeply nested part of both algo-
rithms is the findbestcomm4U function call. This function 
iterates through communities that have common edges with 
the nodes of the current community, so its computational 
complexity is O(k), where k ≤ d_max,k ≤ kiter, kiter is the current 
number of communities dmax is the maximum power of the 
primary community (if we consider it as a node). Thus, the 
complexity of the moderately greedy algorithm is equal to:

T O N k1 = ⋅( ), k d K= { }max , ,max 	 (11)

that is, it is linear with respect to the number N of network 
nodes.

The computational complexity of one iteration of the 
very greedy algorithm is O(nk), where n is the current num-
ber of communities, n = N, N–1,…, K. Thus, the complexity of 
the very greedy algorithm is:

T O N k2
2= ⋅( ), k d K= { }max , .max 	 (12)

It is evident that the moderately greedy algorithm is 
much faster than the very greedy one but its result (both the 

modularity value and the configuration of communities) de-
pends on the order of traversal of the communities in the loop 
at u = 1,…,kiter. On the other hand, a very greedy algorithm, 
which is independent of the random order of communities, 
allows tracking the change of network modularity in a step-
by-step fashion.

5. 3. Experiments on test networks
In this chapter, the proposed network partitioning meth-

od is investigated on test datasets. The first of them is the 
well-known network dataset of the karate club studied by 
Zachary [4]. It is an undirected weighted network containing 
N = 34 nodes that have a total weight of 2m = 462. This data 
set, with a known partition into two groups, is widely used 
in studying the community structure of networks. The nodes 
of the groups are labeled as "Mr. Hi" and "Officer", and each 
group consists of 17 nodes.

Maximization of the unaveraged modularity criterion (8) 
using a very greedy algorithm leads to the division of this 
network into three large communities (of 14, 10, and 5 nodes) 
and 5 single nodes (‘J’, ‘S’, ‘c’, ‘L’ , and ‘R’). The achieved va
lue of the criterion μ(G) = 0.4773. The dendrogram is shown 
in Fig. 3. For clarity of visualization of the dendrogram, the 
digital signs of the nodes (1, ..., 34) are replaced by the let-
ters A, ..., Z, a, ..., h. The values of the height axis on the den-
drogram correspond to the values of the modularity criterion.

Fig. 3. Dendrogram of karate_club network partitioning 
by unaveraged modularity criterion (8) using a very greedy 

partitioning algorithm

It is important to note that the dependence of the un-
averaged modularity (8) of the network on the number of 
communities (Fig. 4) is flat, that is, its maximum is weakly ex-
pressed. Thus, the obtained value for the number of communi-
ties (k = 8) is largely determined by the properties of the very 
greedy algorithm used. When using another partitioning al-
gorithm, one can expect a value of k in the range from 3 to 12.

According to the numerical experiment, the maximiza-
tion of the same unaveraged modularity criterion (8) using 
a moderately greedy algorithm leads to the division of this 
network into two communities (with 16 and 18 nodes). 
Compared to the partitioning by the very greedy algo-
rithm (Fig. 3), nodes ‘J’, ‘S’, ‘c’ are merged into a community 
of 14 nodes ("Officer"), nodes ‘L’ and ‘R’ joined communities 
with 10 and 5 nodes ("Mr.Hi"), but node ‘I’ moved from 
community "Officer" to "Mr. Hi", which is incorrect. This 
node ‘I’ (#9) is known to be problematic for many of the 
classification procedures tested on this dataset. Thus, the 
moderately greedy algorithm creates a partition that is close 
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to ideal, reaching a high value of the criterion μ(G) = 0.4185 
and is significantly faster than the very greedy variant of the 
proposed algorithm.

Fig. 4. Dependence of the unaveraged modularity of the 
karate_club network on the number of detected communities 

by the very greedy partitioning algorithm

Maximization of the average modularity (10) by a very 
greedy algorithm leads to the division of this network into 
two communities (17 nodes each). It is worth noting that this 
section fully corresponds to the initial node labels ("Mr. Hi" 
and "Officer"), that is, the resulting partition shown in Fig. 5 
is ideal. The achieved value of the criterion µ G( ) = 0 2877. , 
corresponds to the unaveraged value μ(G) = 0.4069 and is 
slightly less than for the non-ideal distribution 16/18.

Fig. 5. Dendrogram of karate_club network partitioning 
according to the average modularity criterion (10) using 	

a very greedy partitioning algorithm

The second test dataset used to investigate the proposed 
network partitioning method is the popular Newman’s Pol-
books [13]. The nodes of this set are books on US politics 
sold by the online bookseller Amazon.com. Nodes (books) 
are connected by an edge if these books were ordered by the 
same customer. Nodes are labeled with the letters "c", "l ",  
and "n" (49, 43, and 13 nodes, respectively) to indicate 
whether they are conservative, liberal, or neutral in their re-
spective political views. Mark Newman assigned these labels 
separately based on reading the descriptions and reviews of the 
books posted on Amazon [19]. The network contains 105 nodes 
and 441 edges, and the maximum degree of a node is 25.

Maximization of the unaveraged modularity criterion (8) 
by a very greedy algorithm leads to the division of this 
network into six communities (with 4, 38, 37, 10, 4, and 
12 nodes). The achieved value of the criterion μ(G) = 0.5628. 

The dendrogram of the distribution of the network is shown 
in Fig. 6, and the dependence of the used criterion on the 
number of detected communities (Fig. 7) is similar to the 
corresponding dependence for the karate club (Fig. 4).

At the same time, partitioning according to the norma
lized modularity criterion (10) leads to the division of the 
network into three communities (Fig. 8) with 38, 41, and 
26 nodes, respectively.

Fig. 6. Dendrogram of partitioning the polbooks network 
according to the unaveraged modularity criterion (8) using 	

a very greedy partitioning algorithm

Fig. 7. Dependence of the unaveraged modularity of the 
polbooks network on the number of detected communities 

by the very greedy partitioning algorithm

Fig. 8. Dendrogram of partitioning the polbooks network 
according to the normalized modularity criterion (10) using 	

a very greedy partitioning algorithm

The resulting partitioning cannot be called exact: half of the 
nodes assigned to community "n" actually belong to classes "c" 
and "l". At the same time, the number of communities (K = 3)  
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corresponds to the actual value. It is worth noting that the 
original ("real") marking of nodes is subjective. Therefore, 
the quality of partitioning of the polbooks network by the 
proposed method can be considered moderate.

6. Discussion of results of research on the detection  
of communities in networks using a modified  

modularity criterion

The modified modularity criterion (10) proposed in this 
study is based on the null model of the network, according to 
which the probability (5) of a node connecting with another 
node of its community clearly depends on the number of 
nodes in this community. The proposed network modularity 
assessment method differs from the conventional method [9],  
in which the specified probability depends only on the de-
grees of connected nodes. As a result, the community detec-
tion method based on the maximization of modified modu-
larity has a greater tendency to detect small communities, 
including single-node ones. This property determines the 
practical significance of our work. It meets the initial re-
quirements for the devised method and is its advantage over 
conventional methods [10, 12] with the limitation that the 
network does contain small communities.

The effectiveness of the proposed method was tested on 
widely known network datasets. The results of partition-
ing the network into communities, shown on the dendro-
grams (Fig. 5, 6, 8), confirm the efficiency of the proposed 
method: the obtained partitioning is natural and justified, 
it reflects the objectively existing structure of relationships 
between the nodes of the analyzed networks.

In addition, the problem of determining the optimal 
number of communities (K) has been considered. To en-
sure comparability of modularity values for different K, 
it has been proposed to normalize the modularity of the 
network (equal to the sum of modularity of communities) 
by dividing by the root of K, which was not done in conven-
tional algorithms [8, 10]. The proposed approach partially 
solves the specified problem (which also has practical signif-
icance), but in general it tends to underestimate the number 
of communities. However, this drawback is common to all 
community detection methods based on modularity maximi-
zation. Therefore, in the practical application of the proposed 
method, it is recommended to analyze not only the last parti-
tioning of network nodes generated by the algorithm but also 
previous ones (with larger K values).

It is evident that the task of estimating the optimal 
number of network communities remains open for further 
theoretical research.

7. Conclusions

1. A modified modularity criterion has been devised, which 
clearly depends on the number of nodes in each community. 
This property increases the tendency to detect small commu-
nities (up to single-node communities). In addition, the pro-
posed modularity function is normalized with respect to the 
number of communities, which makes it more relevant in the 
case where the number of communities is unknown a priori.

2. Two algorithms for partitioning network nodes into com-
munities using a modified modularity function as an objective 
function for maximization have been developed. The "very 
greedy" algorithm has a quadratic complexity with respect to the 
number of nodes and is used for detailed analysis of the commu-
nity detection process, as well as for constructing dendrograms. 
The "moderately greedy" community detection algorithm is 
much faster (it has a linear complexity with respect to the num-
ber of nodes) and is the main variant of the proposed method.

3. The proposed community detection method was tested 
on widely known network datasets. The results of the expe
riment as a whole confirm the effectiveness of the proposed 
method (all karate club nodes and 91 % of polbooks nodes 
are classified correctly) and the compliance of its properties 
with the original requirements for computational complexi-
ty (it is linear).
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