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The object of this study is the stressed-
strained state of contacting elements of
close-shaped machine-building struc-
tures. The presence and flexibility of sur-
JSace layers and coatings are modeled.
There are cases of the matching shape of
the contacting surfaces of bodies, as well
as the perturbation of the shape of these
surfaces. The task being solved relates to
the fact that the analysis methods of such
bodies contact interaction are not yet suf-
ficiently developed.

It was established that for the case of
the matching shape of contacting surfac-
es, the contact area does not depend on
the level of loads. In this case, the con-
tact pressure distribution is proportion-
al to the operating load. Such features of
the solution do not depend on the prop-
erties of the materials of surface layers.
A different case is when the shape of
the contacting surfaces of bodies is dis-
turbed. In particular, it was established
that the properties of the materials of
surface layers exert a strong influence
on the shape and dimensions of bodies
contact area, as well as on the distribu-
tion of contact pressure (the difference is
1.5-2.5 times or more).

The theory of variational inequali-
ties is used to model the stressed-strained
state of contacting bodies. As a result, the
problem about contact interaction of bod-
ies with surfaces of close shape is reduced
to the problem of minimizing the modified
energy functionality. The minimization is
carried out on a set of distributions of dis-
placements, which describes conditions
of bodies not penetrating each other. The
finite element method is used to discretize
the problem of determining the stressed-
strained state of contacting bodies. The
parametric model built makes it possible
to determine the stressed-strained state
of contacting bodies when the distur-
bance of the nominal shape of the bodies
and the properties of their surface layers
is varied
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1. Introduction

contact each other on surfaces that are nominally congru-

ent or close in shape. These are, in particular, elements of

Among the contacting elements of machine-building  dies, molds, machine tools, internal combustion engines,
structures, a significant share is occupied by parts that  gears, hydraulic transmissions, suspension systems, etc.
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The effort to approximate the shape of the surfaces of
contacting bodies is due to the desire to reduce the level
of contact pressure. However, the option with nominally
matching surfaces is not the most acceptable. In partic-
ular, this is hindered by macro deviations of the shape of
real parts from their design (nominal) shape. In this case,
the actual properties of the materials of the surface layers
or coatings become important [1,2]. Therefore, studies
aimed at analyzing the contact interaction between struc-
tural elements with varying properties of surface layers
are relevant.

2. Literature review and problem statement

In many structures, elements with nominally matching
(congruent) surfaces of contacting parts are used [3, 4]. It is
natural that in the calculation model of the stressed-strained
state (SSS) of these contacting structural elements, their
nominal geometric shape is assumed [2, 3]. In works [3, 5],
this case is considered as the contact of bodies of “coherent”
shape. Certain regularities are characteristic of this variant
of contacting structural elements. In particular, the indepen-
dence of the contact area on the load level is characteristic of
die elements [2, 6].

However, real structures have deviations from the nom-
inal form. This is not fully taken into account in [3, 5]. And
then, in contact, these bodies contact in the initial state not
along congruent surfaces [6]. In this case, the regularities
previously established [2, 6] for bodies with nominally coin-
cident surfaces are violated.

Another important factor, which is particularly import-
ant in the analysis of the contact interaction of bodies, is
the property of their surface layers (roughness, spraying,
coating, etc.) [3]. In this case, an elastic layer is placed be-
tween the contacting bodies, which also affects the distri-
bution of contact pressure and contact areas. For example,
in [6], the contact area increases while the contact pressure
level decreases. However, the model described in [6] needs
refinement.

Despite some progress in the construction of mathemati-
cal models of the contact interaction of bodies of parts [3, 5],
there is currently no unified approach for various cases of
contacting bodies.

Thus, there are a number of classical analytical models
such as the Hertz model [3, 5] for determining contact zones
and contact pressure. In the case considered in this work,
such a model is not applicable.

On the other hand [7, 8], direct application of such a
universal method as the finite element method is possible.
It would seem that this guarantees automatic consider-
ation of any factors. However, it should be noted that, for
example, taking into account disturbances in the shape of
surfaces, it is possible to accumulate uncontrolled errors
of approximation of the gap between contacting bodies
when using one or another type of finite elements [7].
This reduces the value of using the finite element method
according to works [7, 8].

Generalized problem statements about contact interac-
tion based on the theory of variational inequalities [9—11]
or Kalker’s variational principle [12] also attract attention.
Despite their fairly universal nature, they require adaptation
to take into account additional factors. For example, these

are the properties of the surface layers of contacting bodies.
In works [9, 10], for example, there is no consideration of
nonlinear properties of roughness. The same is characteristic
of papers [11, 12].

Regarding the properties of surface layers [13], models
of this type have the most different character. Thus, the
following are taken into account: fractal distribution of
roughness micro-uniformities [14], adhesive properties [15],
statistical models of micro-uniformities [16, 17], etc. Such
models have gained significant development. However, they
need a mechanism for integrating such micro-scale models
into macro-scale models of the contact interaction of bodies.
Thus, in [13], the “plane-ball” interaction model was used,
which is not always acceptable. Studies [14, 16] also used a
partial model, which is not universal. Works [15, 17] used
models that cover all important factors. However, such mod-
els are unsuitable for describing the properties of various
types of coating materials [18, 19]. In [20, 21], there are no
models describing the properties of coating materials. In
addition, there are a number of new techniques for strength-
ening the contacting elements of structures [22, 23], which
form surface layers of materials with fundamentally different
properties compared to both roughness and coatings. How-
ever, in [23, 24], models of surface layers are not sufficiently
developed.

Therefore, our review of related area of research re-
quires construction of improved models of the contact in-
teraction of structural elements, which are adapted for the
case of taking into account the disturbance of nominally
congruent contacting surfaces and the properties of the ma-
terials of the surface layers, etc. Moreover, these models are
required to take into account these factors not in isolation,
as in the considered works, but in their combination and
mutual influence. And already with their use, it is possible
to study the regularities of SSS of contacting bodies when
these factors are varied.

The results of our study have built on the data reported
in[t,2,6,22-24].

3. The aim and objectives of the study

The purpose of our work is to devise improved variation-
al statements of problems about the contact interaction of
bodies with surfaces of close shape and to study the stressed-
strained state of these bodies. This will make it possible to
determine the characteristics of contact pressure distribu-
tions between structural elements.

To achieve the goal, the following tasks were set:

— to build a mathematical model of the stressed-strained
state of contacting bodies with surfaces of close shape;

—to construct parametric numerical models of the
stressed-strained state of contacting bodies of close shape;

— to determine the regularities of the impact of the dis-
turbance of the shape of the surfaces of the contacting bodies
and the properties of the materials of the surface layers and
coatings on their stressed-strained state.

4. The study materials and methods

The object of our study is the SSS of contacting elements
of close-shaped machine-building structures. The presence



and flexibility of surface layers and coatings are modeled.
There are cases of coincident shape of the contacting sur-
faces of bodies, as well as perturbation of the shape of these
surfaces. The problem to be solved is that the methods for
analyzing the contact interaction of such bodies are not yet
sufficiently developed.

The study assumes the elastic nature of deformation of
contacting bodies.

In the work, the theory of variational inequalities
for the analysis of SSS of contacting bodies with sur-
faces of close shape has been supplemented. The finite
element method was applied. The finite element model
was built under a semi-automated mode taking into
account the axisymmetric statement. The LS-DYNA li-
censed software was used to analyze the stressed-strained
state. The reliability of the data obtained using this
software has been confirmed in the course of numerous
earlier studies.

5. Results of investigating the stressed-strained state of
contacting bodies with closely shaped surfaces

5. 1. Mathematical model of the stressed-strained
state of contacting bodies with closely shaped surfaces

The conventional classification of problems of contact
mechanics [3] provides for the selection of two heteroge-
neous typical options. The first of them is the contact of
bodies of an agreed (coinciding, congruent) form. The sec-
ond is the contact of bodies of inconsistent shape. Usually,
in this case, the normal (along the normal to the contact
surfaces) gap between the bodies is given as a quadratic
function of the coordinates in the tangent common plane.
As already mentioned, various methods of contact interac-
tion analysis have been devised for these cases: boundary
integral equations, the Hertz model, the theory of varia-
tional inequalities, etc. [3—12]. In many cases, bodies are
considered smooth.

At the same time, the real elements of structures, firstly,
are rough or with layers of coatings made of materials that
have properties that differ significantly from the properties
of the main materials. Second, even surfaces of consistent
shape have macro deviations from the nominal shape and
undulations. Therefore, we are not arguing about the con-
tact of bodies of nominally matching (congruent) shape

but about the contact of surfaces of disturbed shape. And,
finally, thirdly: the gap between the contacting surfaces can
take on a form that cannot be represented in the form of a
Taylor series [3].

Thus, the transition to the problem of contact interaction
of bodies, which does not follow conventional models, has
been made (Fig. 1).

Indeed, between bodies 1 and 2 along the normals 74, 79
to the surfaces Sy, S5 (Fig. 1 shows an extended view of the
surfaces), the gap 3 is given in the form of a distribution as a
function of coordinates x, y of the general form:

8=5(x,y). €))

Taking into account the fact that bodies 1 and 2 have
near-surface layers Q) and Q), according to the approach
from the theory of variational inequalities [9-11], the
problem is reduced to the minimization of the function-
al of the total internal energy J of this system of elastic

bodies:
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Here, a and b are quadratic and linear forms built on the
distributions of elastic displacements u(x1, x9, x3) (Fig. 1).
At the same time [25]:

2a(u,u)= _[ o, (u)e; (u)dQ, %)
©

b(u)= I Fuds, ®)
)

where o, € are the components of stress and strain tensors,
F are external forces (in Fig. 1, they are represented in the
form of compressive forces Q), Q is the combination of all
areas occupied by the elements of the system of bodies,
S'is the merging of all boundaries.

In expressions (4), (5) there is no binding of compo-
nents to a specific body. The general appearance of these
forms is meant.




If we refer to the individual components of functional J
in (2), we can write:

a=a,+a;+a,+ay; b=0b'+b,, (6)
a= [ ydo; a= [ ydo;
©) (@)
a, = I vdQ,; a,= I ydQ; (N
(Qy) (9)
(®)

b= [ @dS; b= [ dS,.
(81) Sy

(S2)
Here for each of the bodies:
v=0;-¢; ¢0=Fu

Taking into account the small thicknesses of the in-
termediate layers (¢; and ¢o, Fig. 1), terms a; and a, can be
represented in the form:

a = I ros b dS;

(81)

@ = [ h01,dS,, )
()

where 5, , o, are the normal stresses in layers Qf, Q);

M, Ao are the coefficients of contact compliance of the
layers, respectively (inversely proportional to the contact
stiffnesses ¢q and ¢y).

Due to proximity, when defining expressions (8), the
surfaces Sy and S] (as well as Sy and §,) are not distin-
guished.

Considering the peculiarities of the structure of qua-
dratic and linear forms (4) to (9), problem (2), (3) is re-
duced to a problem of quadratic programming. If we apply
the approximation of the sought SSS components u, € and
o in the form of a partial sum of the series according to cer-
tain basic functions [23, 24], then a discrete variant of such
a problem is obtained. For example, when applying the fi-
nite element method [8, 25], the approximate distributions
of the sought SSS components u, ¢ and ¢ are determined,
as well as the actual areas of contact S¢, S¢ and contact
pressure q(x,y)=q1=¢>.

When solving the resulting problem, it is possible to con-
sider the variations of the shapes of the surfaces Sy and 5,
as well as the contact stiffnesses ¢; and c¢y. This leads to
disturbances in the nominal distributions of the gap &, ¢
and ¢ (Fig. 1):

8(x,y)=8,(x,y)+A3(x,y), (10)
a(vy)=c(x,y)+Ac (xy);
¢, (x,y)=c; (x,y)+Ac, (x,y). (11)

Therefore, it is possible to determine the dependence
of solutions to the contact interaction problem on the
shape disturbances of the contacting bodies and the con-
tact stiffness of the near-surface layers. For this purpose,
problem (1) to (9) should be solved (for example, using
the finite element numerical method [8, 25]) taking into
account (10), (11).

5.2. Parametric numerical models of the stressed-
strained state of contacting bodies of close shape

The described methodology has been applied to solving
the given problem using an example of the contact inter-
action of the elements of separation dies (namely, punches,
matrices, and the material being stamped).

Fig. 2 shows a scheme of the studied system of bodies of
rotation with axisymmetric SSS (A — punch, B — stamped
material, C — matrix).

Punching force Q acts on the punch, which leads to dis-
placement of the loaded face by amount W. That is, one can
set force load Q or kinematic load W:

Q=Q(x); W=W(q), (12)
where 1€[0; 1] is some parameter.

The nominal version of the structure under study is shown
in Fig. 3. The finite-element model consists of eight-nodal fi-
nite elements (120,000 degrees of freedom in total).

Materials of all bodies are steel. The modulus of elasticity
of steel E=200 GPa, Poisson’s ratio v=0.3. Force Q=Q(1).
Maximum force Q(t=1)=4 kN, radius R=0.5 m, 7{=15-10"3 m,
75=2510"° m, H=102 m, H=2-102 m, =103 m, /=104 m,
R1=5-10'4 m.

Loads and boundary conditions are shown in Fig. 4. The
bottom edge is fixed. The upper one is loaded with force Q.
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a b
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Fig. 3. Geometrical and finite-element models of the studied system of bodies “punch — workpiece — matrix”: @ — geometric model;
b — finite element model; ¢ — disturbed profile of the matrix surface; d — a fragment of the disturbed surface

. Fixed Support
[BD Force: 4000, N

Fig. 4. Boundary conditions and loads of the studied system of
bodies “punch — workpiece — matrix”: @ — spaced elements;
b — applied force and fixation; ¢ — non-spaced view

In the case under consideration, the boundary of the
contacting surfaces of the bodies between the punch and the
workpiece are nominal:

§,=5,=const. 13)

On the other hand, shape Sy, of the surface varies in the
coupling of the workpiece and the matrix (Fig. 2—4):

Sys =const; S, =Sy +AS,,, (14)
where AS)s is the disturbance (variation) of the surface
shape (in the axial cross section — A, Fig. 2—4).

This perturbation is defined in this particular case by the
arc of a circle of radius R with radial coordinate p:

A=A(r,a,B), (15)
where 7 is the radial coordinate, a and B are dimensionless
parameters:

(X:(p_n). B= R ) (16)

(n=n) " (n-n)

As for contact rigidity, in this case:

7)

€y =Cp; Cy =€, 107,
where ¢g=10!> N/m? — some nominal stiffness.

5. 3. Patterns of influence of the disturbance of the
shape of surfaces of contacting bodies and the properties
of the materials of the surface layers and coatings on their
stressed-strained state

In the course of research, the influence of parameters a,
B, y on the contact interaction and the stressed-strained state
of the studied body system “punch — workpiece — matrix” is
determined.

In particular, when determining the dependence of char-
acteristics of the contact interaction and SSS of this system
on parameters a, y, R=0.5 m (i.e., B=50) is accepted. At the
same time, p takes a number of values: p=[10,4; 12.5; 15;
17.5; 19.6] mm (i.e., a=[4-10"%; 0.25; 0.5; 0.75; 0.96]), and the
contact stiffness varies by a set of values c=[10'1; 10'%; 10'3;
10%4; 10" N/m?, i.e., y=[~1; 0; 1; 2; 3].

Fig. 5-13 show some characteristic distributions of
equivalent Mises stresses for different p (i.e., a) and ¢ (i.e., 7).
It should be noted that here and further in the upper part of
the figure, the stress distributions in the zone near the junc-
tion of three contacting bodies are given, and in the lower
part of the figure — in the upper part of the matrix.

Fig. 14—16 show similar dependences obtained when vary-
ing R=[0.25; 0.5; 1.0] m at p=15-10 m (i.e., a=0.5) and at y=0.

Fig. 17 shows distributions of the same controlled values
for the case of matching (congruent) surfaces of the matrix
and material and at stiffness c=10' N/m? (y=0).

Fig. 18—21 show some integral dependences for the com-
ponents of the stressed-strained state of the studied system
of bodies on varied parameters a, B, .
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Fig. 9. Distributions of equivalent stresses according to Mises, MPa, at p=12.5 mm; ¢ =10"3 N/m3:
a—1=0.05; b—1=0.1; ¢ — 1=0.15; d — 1=0.2; e — t=0.25; f—1=0.4
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Fig. 10. Distributions of equivalent stresses according to Mises, MPa, at p=12.5 mm; ¢=10"> N/m3
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1,341
72,837
63,733
54,629
45,525
36421
77
18,213
59,1002
0,0051669

1,228
1,0866
0,95142
061624
0,68106
0,54588
04107
0,27553
0,14035
0,0051669

111,08
98,74
86,399
74,058
61,717
40,378
37,035
24,694
12,353
0011575

278
2,5040
2o
1,041
1,6261
1,3092
0,96031
06574
0,3340
0011575

131,87
722
102,36
&7,913
73,262
58,611
43,959
39,308
14,857
0,0039686

71840
6,372
5,5605
47919
3,002
3,1966
2,900
1,6013
080362
0,0050656

| o om ol



26,563 71,408
41,30 63475
36,217 55,541
1,043 47,608
25,67 39,679
20,607 3,742
15,523 23,300
10,35 15,876
53,1789 70426
00036226 0,0004245
1,408 2,064
1,2531 20423
1,0981 1,7882
0323 1,534
073831 1,28
06334 1,02509
047848 07
032357 051769
0,16855 26359
0,013734 0,005
a b
27,089 97784
77,365 26,485
67,696 76025
58,026 5166
48357 54307
30,607 e
0,08 32589
19,348 N7
9,676 10871
0,000002 0011824
3,0034 3,878
27507 34489
2408 3,033
2,0653 2,590
1,7226 2,159
1,3799 1,73
1,0372 1,3004
0,635 087082
03518 044122
0,000093 0011624
c d
105,67
93,091 120,59
72,191 107,19
70,451 93,704
58,711 80,397
46,971 66,909
3523 53,602
23,49 40,205
17 26,508
0,0009077 13411
0,013859
4733 7.7062
4,2278 68515
3,7008 50068
31733 51421
2,6461 42974
21180 34327
1,5917 2578
1,0604 1,7233
053722 086556
0,0099377 0,013859
e f

Fig. 12. Distributions of equivalent stresses according to Mises, MPa, at p=17.5 mm; ¢ =103 N/m3:
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Fig. 14. Distributions of equivalent stresses according to Mises at R=0.25 m:
a—1=0.05; b—1=0.1; ¢ — 1=0.15; d — 1=0.2; e — t=0.25; f— 1=0.4
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Fig. 15. Distributions of equivalent stresses according to Mises at R=0.5 m:
a—1=0.05; b—1=0.1; ¢ — 1=0.15; d — 1=0.2; e — t=0.25; f—1=0.4
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Fig. 16. Distributions of equivalent stresses according to Mises at R=1.0 m:
a—1=0.05; b—1=0.1; ¢ — 1=0.15; d — 1=0.2; e — t=0.25; f—1=0.4
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Fig. 17. Distributions of equivalent stresses according to Mises, MPa, the case of coincident surfaces:
a—1=0.1; b—1=0.2; c — 1=0.4; d — 1=0.6; e — 1=0.8; F— =1
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Fig. 19. The maximum contact pressure between the punch and the material being stamped (axes: pe[0; 1], ye[—1; 3], the
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Fig. 20. Dependence of the relative maximum of equivalent
stresses in the entire die (ordinate axis) on the radius of
rounding of the matrix surface (10-3 m) for different values of
the load parameter t
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Fig. 21. Dependence of the relative maximum of equivalent
stresses in the die matrix (ordinate axis) on the radius of
rounding of the matrix surface (103 m) for different values of
the load parameter t

Shown in Fig. 18-21, the results can be formed into spe-
cialized databases. However, even in this form, the given in-
formation serves as a basis for establishing certain patterns.

6. Discussion of results of investigating the contact
interaction and the stressed-strained state of the system
of contacting bodies

The results obtained and described in our work is ex-
plained by two circumstances. First, a new and improved
model of the stressed-strained state of contacting bodies has
been built. And secondly, in the course of numerical mod-
eling, new factors that had not been taken into account in
previous models have been considered.

Thus, the energy functional (2) is supplemented with
new terms of the type (9), which reproduce the properties of
the materials of the surface layers of the contacting bodies.
In addition, not only the nominal shape of the contacting
surfaces (1) is taken into account but also the perturbation of
this shape, which leads to the appearance of the correspond-
ing terms in (10). The perturbation and properties of the
materials of the surface layers of contacting bodies are also
considered in passing (11).

As a result of our studies on the stressed-strained
state of contacting bodies using the example of die el-
ements (punch-matrix-workpiece), the distributions of
contact pressure and equivalent stresses according to
Mises (Fig. 5-16) were obtained, which are significant-
ly different in nature from the case of contact of bod-
ies with nominal coincident surfaces of contacting bod-
ies (works [2, 6] and Fig. 17).

Thus, in conclusion, we have:

1) an improved model of contact interaction, which takes
into account, unlike the known ones [9-12], additional fac-
tors (roughness and disturbance of the shape of contacting
surfaces); at the same time, unlike single-factor models [13-21],
both factors are taken into account, and in aggregate;

2) by building on works [2, 6, 22-24], regularities of the
stress-deformed state of contacting bodies have been established;
thereby establishing not only qualitative features (Fig. 5-17)
but also quantitative dependences (Fig. 18—21).

If we analyze the results, the following features can be
noted:

1. At A=0, that is, at coincident conjugate surfaces of con-
tacting bodies, and A=0, that is, at zero contact compliance,
dependences are observed that correspond to the known
ones [2, 6]. Thus, the areas of the contact area, stress levels,
and contact pressure remain at approximately the same level
when the loads change. At the same time, the contact pressure
and stress are concentrated in the area of the cutting edges.

2. At AZ0, dependences of the area of the contact area,
stress levels, and contact pressure differ from those specified
in p. 1. In particular, it can be seen that the area of the contact
region, stress levels, and contact pressure are characterized
by an increasing tendency with decreasing y. For g and o, this
trend is the opposite.

3. Peculiarities of the contact interaction for a0 are the
displacement of the contact areas towards the cutting edge
as 7 increases. At the same time, the trends specified in p. 1
are disrupted.

4. When determining the effect of the rounding radius R
on the controlled values, it can be noted that when it in-
creases for low load levels, the nature of the contact pressure
distribution is dramatically different from that described
in p. 1. However, as t increases, the differences between these
distributions smooth out. And the larger the g parameter, the
faster this smoothing is felt.

It can also be seen that an increase in R, i.e., the pa-
rameter B, leads to a decrease in contact pressure levels,
equivalent to Mises stresses, and an increase in the size of
the contact area.

In addition, the fact that the case of contact of axisym-
metric bodies was considered is one of the shortcomings of our
research. In the future, it is planned to eliminate this shortcom-
ing by expanding the statement to a general spatial statement
about the stress-deformed state of non-contacting bodies.

Thus, as can be seen from the results of our research, the
varied parameters o, B, y exert a significant influence on the
stressed-strained state and the contact interaction of the
system of contacting bodies “punch — workpiece — matrix”.

In particular, with nominally matching surfaces and
zero contact stiffness, the contact area does not depend on
the level of loads, while the contact pressure distribution is
directly proportional to the operating load. The components
of the stressed-strained state are also directly proportional
to the load level.

The noted regularity is preserved when the surfaces of
the contacting bodies coincide but with non-zero contact
compliance. At the same time, the contact area increases
with a decrease in contact stiffness, and the level of contact
pressure and the component of the stressed-strained state of
the bodies decreases.

If the shape of the conjugate surfaces of the contacting
bodies is disturbed, then the above-mentioned property
of direct proportionality of the contact pressure and the



component of the stressed-strained state of the load level
is violated. At the same time, the tendency of the growth
of the contact zone and the decrease of the level of contact
pressure and the components of the stressed-strained state
is preserved.

The results of our work could be applied in mechanics
of contact interaction, mechanical science, and mechanical
engineering.

The limitations of the study are as follows: the applied
axisymmetric statement is partial relative to the full spatial
statement; the plastic deformation of the materials of the
body system, especially the workpiece, is not taken into
account; the process of separation of the workpiece material
during stamping is not simulated.

The current research will be extended by taking into
account the physically nonlinear properties of the surface
layers of contacting bodies.

7. Conclusions

1. An improved mathematical model of the stressed-
strained state of contacting bodies with closely shaped sur-
faces has been built. This model differs, firstly, by taking into
account the stiffness factors of the surface layers of the ma-
terials of the contacting bodies, as well as the disturbance of
the shape of the contacting bodies, and in the aggregate. Sec-
ondly, not a local but a variational statement of the problem of
contact interaction of bodies is applied. Such features and dif-
ferences create advantages compared to known models in the
study of the contact interaction of elements of real structures.

2. Parametric models of the stressed-strained state of
contacting bodies of close shape have been constructed using
an example of the elements of separation dies (punch — work-
piece — matrix). Such models make it possible to quickly
analyze the influence of varied parameters on the contact
interaction of these bodies.

3. The regularities in the influence of the disturbance
of the shape of the surfaces of contacting bodies and the
properties of the materials of the surface layers and coatings
on their stressed-strained state have been established. In

particular, the perturbation of the shape of the contacting
surfaces dramatically changes the character of the contact
pressure distribution and the component of the stressed-
strained state. This indicates the impossibility of using
conventional models using contact models of undisturbed
surfaces and additional correction factors. It was also estab-
lished that taking into account the material properties of
the surface layers has a smoothing effect. The contact area
expands, and the level of contact pressure and equivalent
stresses decreases: the difference is 1.5-2.5 times or more.
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