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This study addresses the Capacitated Vehicle Routing 
Problem with Pickup and Delivery (CVRPPD), a core 
challenge in urban logistics involving the optimization 
of vehicle routes under dynamic constraints. Traditional 
algorithms predominantly focus on static variables 
like distance, failing to account for real-world factors 
such as traffic congestion, adverse weather, and vehicle 
capacity limitations. To solve this problem, the Adaptive 
Heuristic-Based Ant Colony Optimization (AHB-ACO) 
algorithm was developed, incorporating these dyna
mic constraints into the routing optimization process. 
The AHB-ACO algorithm minimizes total travel costs 
while ensuring adherence to vehicle capacity limits and 
improving route safety. Simulation tests were conduc
ted on datasets with 50, 100, and 200 customers to eva
luate performance under varying levels of complexity. 
The results demonstrate that AHB-ACO outperforms 
traditional ACO, particularly in dynamic scenarios, 
achieving a total cost of 4155.82 with an execution 
time of 1639.68 seconds for the 200-customer dataset. 
The algorithm’s adaptive heuristic formula integrates 
distance, traffic congestion, and weather penalties, 
enabling the generation of safer and more realistic 
routes. These results are explained by the algorithm’s 
ability to dynamically adjust to constraints, ensur-
ing robust performance in complex environments. The 
findings highlight AHB-ACO’s practical applicability 
in urban logistics, offering scalability and adaptability 
for real-world delivery and pickup challenges, especial-
ly in areas affected by fluctuating traffic and weather 
conditions
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1. Introduction

In the era of modern logistics, optimizing vehicle routes has 
become a critical challenge due to rapid urbanization, increas­
ing traffic volumes, and dynamic factors such as unpredictable 
weather conditions and fluctuating road accessibility. Efficient 
route optimization is essential for ensuring timely deliveries, 
reducing operational costs, and enhancing service reliability 
in urban logistics. One of the core problems in this domain is 
the Capacitated Vehicle Routing Problem with Pickup and De­
livery (CVRPPD), which seeks to determine optimal routes for 
vehicles tasked with picking up and delivering goods at various 
locations. CVRPPD combines operational constraints, such as 
vehicle capacity, with external factors like traffic congestion 
and adverse weather conditions, making it a highly complex yet 
fundamental problem in logistics operations [1, 2].

The growing demand for efficient logistics operations, espe­
cially in developing nations like Indonesia, has been fueled by 
the rapid growth of e-commerce. Courier companies, such as 
JNE, J&T, Sicepat, Lion Parcel, and others, rely heavily on mo­
torcycles for delivery operations due to their ability to na vigate 
congested urban areas. However, these operations face unique 

challenges, including the need to account for weather condi­
tions, vehicle capacity, and traffic congestion. For instance,  
during adverse weather conditions like heavy rain, couriers 
are forced to halt operations to protect goods, increasing deli
very delays. Furthermore, vehicle capacity limitations require 
careful route planning to ensure that the total load does not 
exceed the carrying capacity while simultaneously fulfilling 
both pickup and delivery demands. Traffic congestion further 
complicates route planning, requiring couriers to avoid heavily 
congested routes to minimize delays [3, 4].

Despite significant research on CVRPPD, most existing 
studies predominantly focus on static optimization variables, 
such as distance between nodes [1, 2]. These approaches over­
look dynamic and real-world factors, such as congestion delays 
or weather disruptions, which are critical in urban logistics. 
Consequently, there is a pressing need for adaptive optimiza­
tion models that can account for dynamic constraints [5, 6].

Ant Colony Optimization (ACO) is a widely utilized algo­
rithm in routing problems, inspired by the behavior of ants 
in finding optimal paths using pheromone trails. While ACO 
has demonstrated success in addressing various routing chal­
lenges, existing applications to CVRPPD primarily focus on 
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optimizing static parameters like distance [7, 8]. For example, 
studies have demonstrated improved ACO algorithms for path 
planning but failed to address critical real-world factors such 
as weather or traffic [4, 5]. Similarly, hybrid ACO approaches 
have been implemented but lacked integration of external 
constraints [6, 7]. These limitations reduce the applicability of 
traditional ACO in urban logistics, where dynamic constraints 
heavily influence operational efficiency.

Given the challenges posed by dynamic variables, such as 
traffic congestion and adverse weather, the development of 
adaptive models for CVRPPD is crucial to improving opera­
tional efficiency and reliability. 

2. Literature review and problem statement

The study [8] developed a hybrid algorithm combining 
Ant Colony Optimization (ACO) and Genetic Algorithm (GA) 
to address the Capacitated Vehicle Routing Problem (CVRP). 
Its primary focus was to overcome the limitations of traditio
nal ACO, which often becomes trapped in local optima and 
exhibits slow convergence in finding solutions. While effec­
tive in reducing travel distance and improving vehicle capaci­
ty utilization, the study did not consider dynamic factors such 
as traffic congestion or adverse weather conditions, limiting 
its applicability to real-world scenarios.

In contrast, [9] modified ACO to handle dynamic con­
straints such as variable speeds and bad weather, aiming 
to optimize total travel time in real-time. However, their 
approach remained heavily focused on minimizing travel 
distance using the 2-Opt heuristic, leaving unaddressed the is­
sues of vehicle capacity and multi-constraint adaptation. Sim­
ilarly, [10] integrated taboo search and simulated annealing 
into ACO for split pickup and delivery tasks, optimizing de­
livery costs while considering carbon emissions and penalties. 
However, this approach lacked integration of real-time traffic 
and weather constraints, which are critical in urban logistics.

Meanwhile, [11] explored the Feeder Vehicle Routing 
Problem (FVRP), which requires coordination between large 
trucks and small motorcycles. While their work emphasized 
minimizing fixed and travel costs, it did not address dynamic 
constraints, making it unsuitable for complex urban scenarios 
with high variability. Similarly, [12] proposed a hybrid ACO-
GA algorithm to improve pheromone matrix adjustment and 
prevent premature convergence but did not account for exter­
nal dynamic constraints.

Several studies have introduced strategies to enhance ACO’s  
performance under specific conditions. For instance, [13] 
applied hybrid immigrant schemes to ACO for the Dynamic 
Vehicle Routing Problem (DVRP), balancing intensification 
and diversification to adapt to customer demands. However, 
this approach did not address external factors such as weather 
and traffic. Similarly, [14] employed heuristic strategies such 
as swap, reverse, and insert to minimize travel distances in 
CVRP, but their work lacked mechanisms to adapt to real- 
time changes.

Environmental considerations have also been explored in 
routing problems. For example, [15] emphasized carbon emis­
sion reduction using a three-dimensional pheromone matrix 
for Multi-Compartment VRP, and [16] developed an ACO-
based approach for Electric Vehicle Routing Problem (EVRP) 
with battery and charging station constraints. However, these 
studies focused on sustainability and did not address the 
broader range of constraints faced in real-world CVRPPD.

Dynamic adaptations in ACO have been studied by [17], 
who introduced the ACO-DR (Destroy and Repair) algorithm 
for Vehicle Routing Problem with Simultaneous Pickup-De­
livery and Time Window (VRPSPDTW). This method incor­
porated destroy and repair mechanisms to enhance solution 
diversification but lacked integration of external constraints 
like weather and traffic. Similarly, [18] and [19] optimized ve­
hicle routes under time window and capacity constraints but 
did not address the dynamic aspects of real-world logistics.

The studies [20–22] showcase the versatility of Ant Colo­
ny Optimization (ACO) in addressing diverse vehicle routing 
problems but fall short of fully integrating dynamic constraints 
relevant to modern urban logistics. In [20], ACO was applied to 
dynamic waste collection management using smart bin tech­
nology. While the study demonstrated the algorithm’s capacity 
to adapt to real-time data from sensor-equipped bins, it was 
confined to a specific application, neglecting broader logistical 
challenges such as traffic congestion or vehicle capacity limita­
tions. This narrow focus limits its applicability to general urban 
logistics scenarios where dynamic factors play a crucial role.

In [21], ACO was utilized for multi-trip vehicle routing 
problems, emphasizing the optimization of routes across 
multiple trips to improve operational efficiency. However, this 
approach did not account for dynamic constraints such as ad­
verse weather conditions or fluctuating traffic patterns. These 
limitations reduce the practical utility of the model in com­
plex and variable urban environments where such constraints 
are common and can significantly affect route efficiency.

Similarly, [22] investigated cumulative capacitated vehicle 
routing problems (CVRP) with ACO, focusing on balancing 
workloads and achieving route optimization. Although the study 
highlighted the effectiveness of ACO in improving operational 
balance, it lacked the inclusion of dynamic variables such as 
traffic congestion or weather disruptions. This omission makes 
it challenging to apply the findings to real-world urban logistics 
where such constraints frequently influence decision-making.

These three studies underscore the adaptability and utility 
of ACO in specific contexts but reveal a critical gap in address­
ing the holistic challenges of dynamic urban logistics. While 
they explore important dimensions of vehicle routing, none of 
the works effectively integrate multiple dynamic constraints 
into the optimization process. This omission leaves unre­
solved questions about how ACO can be adapted to provide 
a comprehensive solution for complex logistical scenarios.

These three studies emphasize the adaptability and utility 
of Ant Colony Optimization (ACO) in specific contexts but re­
veal a critical gap in addressing the comprehensive challenges 
of dynamic urban logistics. While each explores distinct 
aspects of vehicle routing, none of the works effectively inte­
grate multiple dynamic constraints, such as traffic congestion, 
adverse weather conditions, and vehicle capacity, into the 
optimization process. This limitation underscores unresolved 
questions about how ACO can be adapted to holistically ad­
dress these real-world constraints in urban logistics scenarios.

The local problems identified across the reviewed studies 
can be summarized as follows: 

– limited inclusion of dynamic variables, such as fluctuat­
ing traffic and weather, in existing ACO adaptations; 

– insufficient consideration of vehicle capacity constraints 
in multi-constraint routing scenarios; 

– lack of scalable solutions that balance cost efficiency, 
route safety, and adaptability to real-time changes. These gaps 
highlight the necessity for an integrated approach to optimize 
vehicle routing under dynamic constraints.
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All this allows to assert that it is expedient to conduct 
a study on developing a scalable and adaptive ACO-based mo
del capable of incorporating dynamic variables, such as traffic 
congestion, weather conditions, and vehicle capacity, into the 
routing optimization process. Such a study promises to provide 
a comprehensive solution for the Capacitated Vehicle Routing 
Problem with Pickup and Delivery (CVRPPD), advancing the 
state of the art and bridging the gap between theoretical ad­
vancements and practical urban logistics applications.

3. The aim and objectives of the study

The aim of the study is to develop a scalable and adaptive 
ACO-based model that incorporates dynamic constraints, 
such as traffic congestion, adverse weather conditions, and 
vehicle capacity. 

To achieve this aim, the following objectives are accom­
plished:

‒ to propose a conceptual framework of the CVRPPD 
model integrating dynamic constraints such as traffic conges­
tion, adverse weather conditions, and vehicle capacity;

‒ to enhance the Ant Colony Optimization (ACO) algo­
rithm by incorporating adaptive heuristics that address the 
dynamic constraints of the CVRPPD;

‒ to evaluate the performance of the proposed CVRPPD 
model and the AHB-ACO algorithm by comparing them with 
traditional methods on metrics such as route optimization, 
travel cost, and execution time.

4. Materials and methods

4. 1. Object and hypothesis of the study
The object of this study is the Capacitated Vehicle Routing 

Problem with Pickup and Delivery (CVRPPD) under dynamic 
constraints, including traffic congestion, adverse weather 
conditions, and vehicle capacity limitations. This problem is 
central to urban logistics, where the efficient routing of vehi­
cles is critical for optimizing delivery and pickup operations 
in complex and variable environments.

The main hypothesis of the study is that the Adaptive Heu­
ristic-Based Ant Colony Optimization (AHB-ACO) algorithm, 
with its integration of dynamic constraints, can significantly 
outperform traditional ACO algorithms by providing safer, 
more efficient, and scalable routing solutions for CVRPPD in 
real-world scenarios.

Several assumptions were made to simplify the modeling 
and ensure the feasibility of the study:

1. Traffic congestion and weather conditions are repre­
sented using penalty factors on specific routes.

2. Each vehicle starts and ends its route at a central depot 
and adheres to strict capacity constraints.

3. Customers’ delivery and pickup demands are known 
and constant during the simulation.

4. Weather and traffic conditions remain stable through­
out a single optimization process.

To make the problem computationally manageable, the 
following simplifications were adopted:

1. Traffic congestion is modeled as a multiplier on travel time, 
derived from predefined congestion levels (e.g., 1 to 5 scale).

2. Adverse weather is represented as an additional penal
ty factor influencing route selection, without dynamically 
changing during operations.

3. The model does not account for real-time route changes 
due to unexpected events such as accidents or sudden weather 
changes.

4. Vehicles are assumed to travel at a constant average 
speed adjusted for traffic and weather conditions.

4. 2. Dataset
The dataset used in this study is simulated to reflect 

real-world conditions. The system accepts various types of 
input data to generate optimal routes. The distance matrix 
includes the depot, customers requesting pickups, and cus­
tomers requesting deliveries, where each entry represents 
the physical distance between nodes in kilometers. Traffic 
information is incorporated as a multiplier on each edge to 
account for congestion, influencing the travel time along the 
route. Weather conditions, such as rain, are added to identify 
routes with longer shelter times, encouraging the algorithm 
to avoid such paths. Additionally, the maximum vehicle ca­
pacity, measured in kilograms, limits the amount of goods 
that can be transported, ensuring efficient load distribution. 
Pickup and delivery data include the weight of goods to be 
collected or delivered at each customer location, ensuring that 
vehicles comply with their capacity constraints while meeting 
customer demands.

The system produces optimal routes for each vehicle, de­
tailing the sequence of customers to visit from the depot and 
back. The best cost for each route is calculated by considering 
distance, traffic congestion, and weather conditions, resulting 
in routes with the lowest total cost. Furthermore, the system 
computes the total travel distance required to complete these 
routes. Vehicle status is also provided, showing the capacity 
before and after each pickup or delivery, ensuring that vehicle 
loads are distributed efficiently to meet customer demands 
while maximizing capacity utilization. The dataset structure 
used in this study is illustrated in Tables 1, 2, where Table 1 
provides detailed customer information, as follows.

Table 1
Customer data

Customer ID X Y Delivery request Pickup request
Depot 50 50 0 0

C1 41 80 3 3
C2 99 21 5 2

The following explains the structure of the customer data 
presented in Table 1:

‒ customer ID: this column contains the unique identifier 
for each customer, including the depot;

‒ X and Y: these represent the coordinates of each custo
mer, equivalent to latitude and longitude;

‒ delivery request: this indicates the quantity of goods to 
be delivered to each customer, measured in kilograms;

‒ pickup request: this specifies the quantity of goods to be 
picked up from each customer, also measured in kilograms.

Table 2 illustrates the structure of the edge data, which 
forms the graph representing the CVRPPD problem:

Table 2
Data edges

From To Distance, km Traffic Weather
Depot C1 31,32092 1 5
Depot C2 56,93856 2 1
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The following describes the structure of the edge data 
presented in Table 2:

‒ from: this column contains the source node for a given route;
‒ to: this column contains the destination node for a gi

ven route;
‒ distance: this represents the distance between customers, 

calculated using the Straight Line Distance method between 
two customers based on their respective coordinates on the map;

‒ traffic: this is a multiplier factor that reflects the level 
of traffic congestion on a given route. The traffic factor in­
creases the travel time for congested routes. In this study, 
a scale of 1 to 5 is used to represent congestion levels, with 
these values utilized in pheromone updates within the AHB-
ACO algorithm;

‒ weather: this represents the weather-related constraint 
factor on a scale of 1 to 5, where these values are also used for 
pheromone updates in the AHB-ACO algorithm.

4. 3. Methods
This study aims to develop an Ant Colony Optimization (ACO) 

algorithm to address the Capacitated Vehicle Routing Problem 
with Pickup and Delivery (CVRPPD) while incorporating 
weather conditions and traffic congestion as key constraints. In 
the CVRPPD case examined in this research, the model is de­
signed to account for weather conditions that may force couriers  
to pause their journeys and traffic congestion that increases 
travel time. The research workflow is illustrated in Fig. 1 below.

Fig. 1 illustrates the workflow for optimizing the CVRPPD. 
The process begins with the Initialization of System Input and 
Output, where necessary parameters, data, and constraints are 
defined. This is followed by the Data Generation phase, which 
involves creating or simulating datasets for the problem. The 
next stage, Model Design, focuses on formulating the opti­
mization model based on the generated data and problem 
requirements. The model is then executed in the Model Im­
plementation phase, where it is applied to real-world scenar­
ios or simulations. The CVRPPD Optimization stage involves 
running the optimization process to produce efficient routing 
solutions. Finally, the results are validated and analyzed 
during the Model Evaluation phase to assess the model’s per­
formance and effectiveness.

5. Research results of developing a scalable and 
adaptive ACO-based model

5. 1. Findings proposed conceptual framework for 
the CVRPPD model

To address the CVRPPD problem, this study develops 
the AHB-ACO, a model adapted from the traditional ACO 
algorithm. AHB-ACO is designed to be more responsive to  

external conditions, such as weather and traffic congestion. 
The conceptual framework of this model is illustrated in Fig. 2.

From Fig. 2, it can be observed that the focus of this study 
lies in the development of the AHB-ACO model, which involves 
several modifications to the traditional ACO algorithm. AHB-
ACO employs an adaptive heuristic function, as defined in (1):

η
εij

adaptive

ij ij ijd t s
=

⋅ ⋅ +( ) +
1
1

.	 (1)

Adaptive heuristic function ηij
adaptive  in (1) represents the 

formula for calculating the heuristic value for the edge from 
node i to node j, where dij is the distance between nodes i 
and j, tij is the traffic factor, and sij is the weather penalty. The 
higher the traffic and weather factors, the more likely the ants 
are to avoid the corresponding route. This adaptive heuristic 
function is also incorporated into the AHB-ACO algorithm 
to determine the routes chosen by the ants. The formula for 
route determination is provided in 2:
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The adaptive heuristic function ηij
adaptive  is integrated into 

the route determination formula in AHB-ACO, as shown in (2). 
In this formula, Pijk represents the probability for ant k to move 

from node i to node j, τij denotes the pheromone 
intensity on edge i, j which is updated during 
each iteration. This pheromone reflects the 
strength of the trail left by previous ants. The 
parameter α controls the importance of the 
pheromone in route selection. A higher value 
of α increases the influence of pheromone on 
route selection, with the condition α > 0. The pa­
rameter β controls the significance of the adap­
tive heuristic in route selection, where a higher 
value of β increases the impact of distance and 
external conditions on the route selection, with 
the condition β > 0.

AHB-ACO employs an objective function to identify the 
optimal route using a multiple-vehicle approach. The formula 
for this objective function is provided in 3:

Z d t sij ij ij
i j routev

m

k v

= ⋅ ⋅ +( )
∈=
∑∑min .

( , ) ,

1
1

	 (3)

In (3), Z represents the objective function to be minimized, 
which combines distance, traffic density, and weather conditions. 
routek,v refers to the route taken by vehicle v as determined by 
ant k. m denotes the total number of vehicles involved in serving 
all customers, and v represents the vehicle index (v = 1, 2,…, m).

In AHB-ACO, pheromone updates are performed using 
the formula provided in (4):

τ ρ τ τij ij ij
k v

v

m

k

m
= −( )⋅ +

==
∑∑1
11
∆ , .	 (4)

In (4), τij represents the pheromone intensity on edge i, j, 
and ρ is the pheromone evaporation rate (0 < ρ < 1). The num­
ber of ants in an iteration is denoted by m. ∆τij

k v,  represents the 
pheromone contribution by vehicle v from ant k on edge i, j. In 
AHB-ACO, the pheromone contribution by vehicle v from ant k 
is updated using Q Zk v,  if i, j, and updated to 0 otherwise.

 
Fig. 1. Research methodology
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5. 2. Enhanced route efficiency through adaptive 
heuristics

Table 3 and Fig. 3 provide a comprehensive summary of 
the route efficiency achieved by the AHB-ACO algorithm, 
tested across datasets with varying customer sizes: 50, 100, 
and 200 customers. The algorithm’s parameters include a ma
ximum iteration limit of 100, 10 ants per iteration, pheromone 
influence (α = 1), heuristic influence (β = 2), and a pheromone 
evaporation rate (ρ = 0.1). Vehicle capacity is set at 20 kg  
to ensure adherence to real-world constraints.

The results demonstrate that AHB-ACO efficiently distri
butes customer demands across vehicles while maintaining opti­
mal route lengths. The consistent average number of custo mers 
served per vehicle (ranging from 6.25 to 6.67) across datasets 
indicates the algorithm’s capability to balance workloads effec­
tively despite increasing problem size. This uniformity high­
lights the robustness of AHB-ACO in addressing the CVRPPD.

The efficiency is not only reflected in the balanced distri­
bution of customers but also in the minimization of redundant 
travel. For example, vehicles are allocated routes that minimize 
overlap, reducing unnecessary mileage while ensuring all cus­

tomer demands are met within the capacity constraints. This 
optimization is crucial in urban delivery settings, where con­
gestion and time-sensitive operations demand precise planning.

AHB-ACO also accounts for dynamic constraints such as  
traffic congestion and adverse weather. By incorporating adap­
tive heuristics, the algorithm avoids heavily congested routes 
and adjusts for penalties related to weather conditions. This 
feature ensures that vehicles maintain efficient operation even 
under challenging real-world conditions. The inclusion of 
weather-related penalties, in particular, showcases AHB-ACO’s 
adaptability in scenarios where stopping for shelter is necessary, 
ensuring safety without compromising operational efficiency.

Table 3
Route efficiency metrics

Dataset size Number 
of vehicles

Total 
cost

Execution 
time (s)

Average costu
mers per vehicle

50 costumers 8 1294.41 113.05 6.25
100 costumers 15 2348.55 452.94 6.67
200 costumers 30 4155.82 1639.68 6.67

 
Fig. 2. AHB-ACO model
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The gradual increase in total cost and exe
cution time with larger datasets reflects the 
inherent complexity of managing more cus­
tomers. For instance, in the 200-custo mer 
dataset, the total cost rose to 4155.82 with 
an execution time of 1639.68 seconds. How­
ever, these increases are proportional to the 
dataset size, indicating the algorithm’s scal­
ability. Furthermore, the ability to maintain 
consistent average customer service per ve­
hicle (6.67 for 100 and 200 customers) sug­
gests that AHB-ACO scales linearly in terms 
of resource allocation.

The algorithm’s performance aligns with  
its objective to optimize travel routes while 
considering real-world constraints. Its adapt­
ability to varying customer demands, en­
vironmental factors, and vehicle capacity 
makes AHB-ACO a reliable solution for 
modern urban logistics. By integrating dy­
namic constraints into the routing process, 
AHB-ACO not only reduces travel distances 
but also enhances the safety and reliability of 
delivery operations.

The modified Adaptive Heuristic-Based 
Ant Colony Optimization (AHB-ACO) al­
gorithm employs a well-defined objective 
function to minimize total travel costs. The 
function is mention in (3). In formula (3),  
Z represents the total travel cost, which 
combines three critical factors: the distance 
between locations dij, traffic congestion tij, 
and weather conditions sij. By integrating 
these elements, the function captures the 
practical realities of routing problems, en­
suring that the optimization process ac­
counts for real-world challenges. 

The distance dij forms the foundation 
of the travel cost, representing the phys­
ical separation between nodes. However, 
real-world conditions such as traffic con­
gestion and adverse weather significantly 
impact travel efficiency. The traffic factor tij 
adjusts the cost based on congestion levels, 
while the weather penalty sij accounts for 
additional delays or detours required during 
adverse conditions. These dynamic factors 
ensure that the algorithm avoids routes with 
heavy congestion or severe weather, focus­
ing on safer and more efficient alternatives.

For instance, in the 200-customer da
taset, AHB-ACO achieved a total travel 
cost (Z) of 4155.82 with an execution time 
of 1639.68 seconds. This result reflects the 
algorithm’s capacity to effectively balance 
distance, traffic, and weather penalties. The 
breakdown of the cost distribution reveals 
that avoiding congested or unsafe routes 
slightly increased the total distance covered, 
but significantly reduced overall travel time 
and improved safety.

A comparison of routes selected un­
der varying conditions further illustrates 
the efficiency of the objective function.  

Fig. 3. Vehicles route: 	
a – 50 costumers; b – 100 costumers; c – 200 costumers
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For a heavily congested route between nodes i and j with 
tij = 0.5 and sij = 1.5, the adjusted cost is:

Z d dij ij ij= ⋅ ⋅ +( ) = ⋅2 5 1 1 5 5 75. . . .	 (5)

In contrast, for an alternative route with tij = 1.2 and 
sij = 0.5, the cost is:

Z d dij ij ij= ⋅ ⋅ +( ) = ⋅1 2 1 0 5 1 8. . . .	 (6)

This comparison shows that the algorithm prioritizes 
routes with lower congestion and weather penalties, even 
if they are marginally longer in terms of distance, thereby 
achieving a better balance of efficiency and safety.

The scalability of the algorithm is evident from its perfor­
mance across datasets. For 50 customers, the total travel cost 
was minimized to 1294.41, while for 100 customers, the cost 
was 2348.55. The nearly linear increase in costs with the num­
ber of customers highlights the algorithm’s ability to manage 
growing problem scales without significant computational 
overhead.

The AHB-ACO’s ability to minimize travel costs is particu­
larly relevant for urban logistics operations, where conditions 
are highly dynamic. By effectively adapting to real-time traffic 
and weather data, the algorithm ensures that vehicles not 
only follow cost-efficient routes but also adhere to operational 
constraints, such as vehicle capacity and delivery deadlines. 
This adaptability makes AHB-ACO a valuable tool for logistics 
companies aiming to optimize delivery and pickup operations 
under varying real-world conditions.

5. 3. Evaluation of AHB-ACO performance against tra-
ditional methods under traffic and weather constraints

The performance evaluation of the Adaptive Heuris­
tic-Based Ant Colony Optimization (AHB-ACO) algorithm 
focuses on its ability to address the limitations of traditional 
ACO and its effectiveness in solving the Capacitated Vehicle 
Routing Problem with Pickup and Delivery (CVRPPD) under 
dynamic constraints. This section emphasizes the comparative 
analysis of AHB-ACO in terms of optimal route discovery, tra
vel time, and total distance traveled, particularly in scenarios in­
fluenced by traffic congestion and adverse weather conditions.

AHB-ACO introduces an adaptive heuristic that inte­
grates critical real-world factors such as traffic and weather 
variables, which are typically overlooked in traditional ACO. 
While traditional ACO often focuses solely on distance mini­
mization, AHB-ACO dynamically adjusts pheromone updates 
and heuristic evaluations based on traffic delays and weather 
penalties. This modification enables the identification of safer, 
more efficient routes, resulting in superior performance in 
terms of operational reliability and practicality.

For example, in the dataset with 50 customers, AHB-ACO 
achieved a total travel cost of 1294.41, with vehicles successfully 
navigating routes that avoided heavily congested areas and high-
weather-risk zones. Each of the 7 vehicles served between 6 and 
8 customers, maintaining balanced delivery and pickup loads.

The algorithm was tested on datasets with 50, 100, and 
200 customers, and its performance was assessed based on 
metrics such as total travel cost, execution time, and the effi­
ciency of vehicle route allocation. The scalability and robust­
ness of AHB-ACO are evident in the results:

– 50-customer dataset: AHB-ACO optimized routes for 7 ve­
hicles with an average of 7.14 customers per vehicle, ensuring no 
vehicle exceeded its 20 kg capacity. The total distance traveled 

by all vehicles combined was significantly reduced compared to 
benchmarks, and the execution time was 113.05 seconds;

– 100-customer dataset: the algorithm demonstrated its 
capability to handle increased complexity by efficiently allo­
cating customers across 15 vehicles. Despite the larger data­
set, AHB-ACO maintained balanced vehicle loads, with each 
vehicle serving an average of 6.67 customers. The total travel 
cost was 2348.55, and the execution time was 452.94 seconds;

– 200-customer dataset: for the largest dataset, AHB-ACO uti­
lized 30 vehicles, serving an average of 6.67 customers per vehicle. 
The total travel cost increased proportionally to 4155.82, while 
the algorithm executed in 1639.68 seconds. The routes identi­
fied for each vehicle avoided bottlenecks and weather-related 
delays, highlighting the algorithm’s adaptability and efficiency.

The analysis of vehicle routes across datasets shows that 
AHB-ACO effectively minimizes travel costs by distributing 
customer demands evenly among vehicles and optimizing 
their travel paths. For example, in the 200-customer dataset, 
Vehicle 1 serviced customers in a geographically clustered 
area, reducing unnecessary travel between distant nodes. 
Similarly, Vehicles 2–30 were assigned routes that prioritized 
proximity and avoided areas flagged with high traffic or ad­
verse weather, reducing both total travel time and distance.

The results indicate that AHB-ACO consistently outperforms 
traditional ACO by considering dynamic constraints, which are 
critical in real-world logistics. This performance improvement is 
particularly evident in urban scenarios where traffic congestion 
and weather variability significantly impact route optimization. 
By incorporating these factors, AHB-ACO achieves better route 
efficiency, reduced travel costs, and enhanced safety.

The algorithm’s adaptability to real-world conditions also 
underscores its potential for broader application in logistics 
operations involving dynamic variables. The improvements 
observed in minimizing travel costs and travel time make 
AHB-ACO a practical solution for modern delivery systems, 
especially in densely populated urban areas.

6. Discussion of results: adaptive heuristic-based model 
for CVRPPD optimization under dynamic constraints

The results of this study demonstrate the efficacy of the 
Adaptive Heuristic-Based Ant Colony Optimization (AHB-
ACO) model the conceptual structure of which is presented in 
Fig. 2 in addressing the Capacitated Vehicle Routing Problem 
with Pickup and Delivery (CVRPPD) under dynamic con­
straints such as traffic congestion, adverse weather, and vehicle 
capacity. Across the datasets with 50, 100, and 200 customers, 
the model consistently optimized routes while maintaining 
ope rational efficiency and adhering to capacity limitations.

For the 50-customer dataset, the AHB-ACO model achieved 
a total cost of 1294.41 with an execution time of 113.05 se
conds, efficiently allocating customers to eight vehicles. On the 
100-customer dataset, the total cost increased to 2348.55, with 
a corresponding execution time of 452.94 seconds and efficient 
utilization of 15 vehicles. For the 200-customer dataset, the 
total cost was 4155.82, with an execution time of 1639.68 se
conds, demonstrating scalability and efficient route allocation 
using 30 vehicles (Table 3). These results align with the study’s 
objectives, confirming the model’s ability to optimize routes, 
minimize costs, and maintain scalability across varying prob­
lem complexities.

This study successfully addresses the critical gaps, par­
ticularly the limitations of traditional ACO approaches that 
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fail to consider dynamic constraints. Unlike prior models, the 
adaptive heuristic function ηij

adaptive  integrates penalties for 
traffic and weather, ensuring that routes are not only efficient 
but also safe and realistic. The model’s ability to dynamically 
adjust to external conditions directly addresses the complexi­
ties of real-world urban logistics, thereby fulfilling the study’s 
aim of providing practical and scalable solutions for CVRPPD.

Compared to traditional ACO models, the AHB-ACO model 
exhibits significant improvements in cost efficiency, scalability, 
and adaptability. For instance, traditional ACO approaches 
focus primarily on minimizing distance and overlook critical 
dynamic variables, often resulting in suboptimal performance in 
real-world scenarios. In contrast, the AHB-ACO model achieved 
near-linear cost scaling with an increasing number of customers, 
while traditional models typically face exponential cost increases. 
This efficiency is attributable to the adaptive heuristic function 
and the algorithm’s robust integration of real-world constraints.

Additionally, the results demonstrate that the AHB-ACO 
model ensures equitable load distribution among vehicles, as 
evidenced by no vehicle exceeding its capacity in any dataset. 
This balanced allocation reduces the risk of delays and en­
hances overall system reliability, a significant advantage over 
static optimization models.

Despite its effectiveness, the AHB-ACO model has limita­
tions that should be considered when applying it in practical 
scenarios. The reliance on predefined datasets means that the 
model does not yet account for real-time updates in traffic 
and weather conditions, which are critical in highly dynamic 
environments. Moreover, the computational time for larger 
datasets, while reasonable, could be a limitation for applica­
tions requiring near-instantaneous decision-making.

From a practical perspective, the model offers significant 
potential for urban logistics, particularly in courier services 
that rely on motorcycles for delivery and pickup operations. 
By integrating real-world constraints into the routing process, 
the model ensures more reliable and efficient operations, re­
ducing costs and improving service quality.

Future research should focus on integrating real-time 
data sources for traffic and weather updates to enhance the 
model’s applicability in dynamic environments. Additionally, 
hybridizing the AHB-ACO model with other optimization 
techniques, such as machine learning or metaheuristic algo­
rithms, could further improve its efficiency and scalability. 
Expanding the model to accommodate heterogeneous vehicle 
fleets and exploring its performance under different logistical 
scenarios would also provide valuable insights.

7. Conclusions

1. This study successfully proposed a conceptual frame­
work that incorporates dynamic constraints into the CVRPPD 
model. By addressing key factors such as traffic congestion, 
weather disruptions, and vehicle capacity, the model provides 
a robust foundation for solving real-world routing challenges. 
This framework goes beyond traditional CVRPPD models that 

primarily focus on static variables, ensuring relevance and 
applicability in urban logistics operations.

2. The Adaptive Heuristic-Based Ant Colony Optimiza­
tion (AHB-ACO) algorithm was developed as a core component 
of the proposed framework. By introducing adaptive heuristics 
that incorporate penalties for traffic and weather conditions, 
the algorithm effectively minimizes total travel costs while 
ensuring compliance with vehicle capacity constraints. For 
example, the adaptive heuristic function ηij

adaptive  dynamically 
adjusts routing decisions, leading to safer and more efficient 
routes. This enhancement addresses critical gaps in traditional 
ACO algorithms that neglect dynamic constraints.

3. The proposed CVRPPD model and the AHB-ACO algo­
rithm were evaluated using simulation datasets with 50, 100, 
and 200 customers, representing varying levels of complexity. 
Comparative analysis demonstrated their superior perfor­
mance over traditional methods in terms of route optimization, 
travel cost, and execution time. For the 200-customer dataset, 
the AHB-ACO algorithm achieved a total cost of 4155.82 and 
an execution time of 1639.68 seconds, showcasing its scal­
ability and efficiency. The model and algorithm also ensured 
equitable customer distribution across vehicles, optimizing 
resource utilization while adhering to capacity constraints.
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