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This study addresses the Capacitated Vehicle Routing
Problem with Pickup and Delivery (CVRPPD), a core
challenge in urban logistics involving the optimization
of vehicle routes under dynamic constraints. Traditional
algorithms predominantly focus on static variables
like distance, failing to account for real-world factors
such as traffic congestion, adverse weather, and vehicle
capacity limitations. To solve this problem, the Adaptive
Heuristic-Based Ant Colony Optimization (AHB-ACO)
algorithm was developed, incorporating these dyna-
mic constraints into the routing optimization process.
The AHB-ACO algorithm minimizes total travel costs
while ensuring adherence to vehicle capacity limits and
improving route safety. Simulation tests were conduc-
ted on datasets with 50, 100, and 200 customers to eva-
luate performance under varying levels of complexity.
The results demonstrate that AHB-ACO outperforms
traditional ACO, particularly in dynamic scenarios,
achieving a total cost of 4155.82 with an execution
time of 1639.68 seconds for the 200-customer dataset.
The algorithm’s adaptive heuristic formula integrates
distance, traffic congestion, and weather penalties,
enabling the generation of safer and more realistic
routes. These results are explained by the algorithm’s
ability to dynamically adjust to constraints, ensur-
ing robust performance in complex environments. The
findings highlight AHB-ACO’s practical applicability
in urban logistics, offering scalability and adaptability
for real-world delivery and pickup challenges, especial-
ly in areas affected by fluctuating traffic and weather
conditions
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1. Introduction

In the era of modern logistics, optimizing vehicle routes has
become a critical challenge due to rapid urbanization, increas-
ing traffic volumes, and dynamic factors such as unpredictable
weather conditions and fluctuating road accessibility. Efficient
route optimization is essential for ensuring timely deliveries,
reducing operational costs, and enhancing service reliability
in urban logistics. One of the core problems in this domain is
the Capacitated Vehicle Routing Problem with Pickup and De-
livery (CVRPPD), which seeks to determine optimal routes for
vehicles tasked with picking up and delivering goods at various
locations. CVRPPD combines operational constraints, such as
vehicle capacity, with external factors like traffic congestion
and adverse weather conditions, making it a highly complex yet
fundamental problem in logistics operations [1, 2].

The growing demand for efficient logistics operations, espe-
cially in developing nations like Indonesia, has been fueled by
the rapid growth of e-commerce. Courier companies, such as
INE, J&T, Sicepat, Lion Parcel, and others, rely heavily on mo-
torcycles for delivery operations due to their ability to navigate
congested urban areas. However, these operations face unique
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challenges, including the need to account for weather condi-
tions, vehicle capacity, and traffic congestion. For instance,
during adverse weather conditions like heavy rain, couriers
are forced to halt operations to protect goods, increasing deli-
very delays. Furthermore, vehicle capacity limitations require
careful route planning to ensure that the total load does not
exceed the carrying capacity while simultaneously fulfilling
both pickup and delivery demands. Traffic congestion further
complicates route planning, requiring couriers to avoid heavily
congested routes to minimize delays [3, 4].

Despite significant research on CVRPPD, most existing
studies predominantly focus on static optimization variables,
such as distance between nodes [1, 2]. These approaches over-
look dynamic and real-world factors, such as congestion delays
or weather disruptions, which are critical in urban logistics.
Consequently, there is a pressing need for adaptive optimiza-
tion models that can account for dynamic constraints [5, 6].

Ant Colony Optimization (ACO) is a widely utilized algo-
rithm in routing problems, inspired by the behavior of ants
in finding optimal paths using pheromone trails. While ACO
has demonstrated success in addressing various routing chal-
lenges, existing applications to CVRPPD primarily focus on




optimizing static parameters like distance [7, 8]. For example,
studies have demonstrated improved ACO algorithms for path
planning but failed to address critical real-world factors such
as weather or traffic [4, 5]. Similarly, hybrid ACO approaches
have been implemented but lacked integration of external
constraints [6, 7]. These limitations reduce the applicability of
traditional ACO in urban logistics, where dynamic constraints
heavily influence operational efficiency.

Given the challenges posed by dynamic variables, such as
traffic congestion and adverse weather, the development of
adaptive models for CVRPPD is crucial to improving opera-
tional efficiency and reliability.

2. Literature review and problem statement

The study [8] developed a hybrid algorithm combining
Ant Colony Optimization (ACO) and Genetic Algorithm (GA)
to address the Capacitated Vehicle Routing Problem (CVRP).
Its primary focus was to overcome the limitations of traditio-
nal ACO, which often becomes trapped in local optima and
exhibits slow convergence in finding solutions. While effec-
tive in reducing travel distance and improving vehicle capaci-
ty utilization, the study did not consider dynamic factors such
as traffic congestion or adverse weather conditions, limiting
its applicability to real-world scenarios.

In contrast, [9] modified ACO to handle dynamic con-
straints such as variable speeds and bad weather, aiming
to optimize total travel time in real-time. However, their
approach remained heavily focused on minimizing travel
distance using the 2-Opt heuristic, leaving unaddressed the is-
sues of vehicle capacity and multi-constraint adaptation. Sim-
ilarly, [10] integrated taboo search and simulated annealing
into ACO for split pickup and delivery tasks, optimizing de-
livery costs while considering carbon emissions and penalties.
However, this approach lacked integration of real-time traffic
and weather constraints, which are critical in urban logistics.

Meanwhile, [11] explored the Feeder Vehicle Routing
Problem (FVRP), which requires coordination between large
trucks and small motorcycles. While their work emphasized
minimizing fixed and travel costs, it did not address dynamic
constraints, making it unsuitable for complex urban scenarios
with high variability. Similarly, [12] proposed a hybrid ACO-
GA algorithm to improve pheromone matrix adjustment and
prevent premature convergence but did not account for exter-
nal dynamic constraints.

Several studies have introduced strategies to enhance ACO’s
performance under specific conditions. For instance, [13]
applied hybrid immigrant schemes to ACO for the Dynamic
Vehicle Routing Problem (DVRP), balancing intensification
and diversification to adapt to customer demands. However,
this approach did not address external factors such as weather
and traffic. Similarly, [14] employed heuristic strategies such
as swap, reverse, and insert to minimize travel distances in
CVRP, but their work lacked mechanisms to adapt to real-
time changes.

Environmental considerations have also been explored in
routing problems. For example, [15] emphasized carbon emis-
sion reduction using a three-dimensional pheromone matrix
for Multi-Compartment VRP, and [16] developed an ACO-
based approach for Electric Vehicle Routing Problem (EVRP)
with battery and charging station constraints. However, these
studies focused on sustainability and did not address the
broader range of constraints faced in real-world CVRPPD.

Dynamic adaptations in ACO have been studied by [17],
who introduced the ACO-DR (Destroy and Repair) algorithm
for Vehicle Routing Problem with Simultaneous Pickup-De-
livery and Time Window (VRPSPDTW). This method incor-
porated destroy and repair mechanisms to enhance solution
diversification but lacked integration of external constraints
like weather and traffic. Similarly, [18] and [19] optimized ve-
hicle routes under time window and capacity constraints but
did not address the dynamic aspects of real-world logistics.

The studies [20-22] showcase the versatility of Ant Colo-
ny Optimization (ACO) in addressing diverse vehicle routing
problems but fall short of fully integrating dynamic constraints
relevant to modern urban logistics. In [20], ACO was applied to
dynamic waste collection management using smart bin tech-
nology. While the study demonstrated the algorithm’s capacity
to adapt to real-time data from sensor-equipped bins, it was
confined to a specific application, neglecting broader logistical
challenges such as traffic congestion or vehicle capacity limita-
tions. This narrow focus limits its applicability to general urban
logistics scenarios where dynamic factors play a crucial role.

In [21], ACO was utilized for multi-trip vehicle routing
problems, emphasizing the optimization of routes across
multiple trips to improve operational efficiency. However, this
approach did not account for dynamic constraints such as ad-
verse weather conditions or fluctuating traffic patterns. These
limitations reduce the practical utility of the model in com-
plex and variable urban environments where such constraints
are common and can significantly affect route efficiency.

Similarly, [22] investigated cumulative capacitated vehicle
routing problems (CVRP) with ACO, focusing on balancing
workloads and achieving route optimization. Although the study
highlighted the effectiveness of ACO in improving operational
balance, it lacked the inclusion of dynamic variables such as
traffic congestion or weather disruptions. This omission makes
it challenging to apply the findings to real-world urban logistics
where such constraints frequently influence decision-making.

These three studies underscore the adaptability and utility
of ACO in specific contexts but reveal a critical gap in address-
ing the holistic challenges of dynamic urban logistics. While
they explore important dimensions of vehicle routing, none of
the works effectively integrate multiple dynamic constraints
into the optimization process. This omission leaves unre-
solved questions about how ACO can be adapted to provide
a comprehensive solution for complex logistical scenarios.

These three studies emphasize the adaptability and utility
of Ant Colony Optimization (ACO) in specific contexts but re-
veal a critical gap in addressing the comprehensive challenges
of dynamic urban logistics. While each explores distinct
aspects of vehicle routing, none of the works effectively inte-
grate multiple dynamic constraints, such as traffic congestion,
adverse weather conditions, and vehicle capacity, into the
optimization process. This limitation underscores unresolved
questions about how ACO can be adapted to holistically ad-
dress these real-world constraints in urban logistics scenarios.

The local problems identified across the reviewed studies
can be summarized as follows:

- limited inclusion of dynamic variables, such as fluctuat-
ing traffic and weather, in existing ACO adaptations;

- insufficient consideration of vehicle capacity constraints
in multi-constraint routing scenarios;

—lack of scalable solutions that balance cost efficiency,
route safety, and adaptability to real-time changes. These gaps
highlight the necessity for an integrated approach to optimize
vehicle routing under dynamic constraints.



All this allows to assert that it is expedient to conduct
a study on developing a scalable and adaptive ACO-based mo-
del capable of incorporating dynamic variables, such as traffic
congestion, weather conditions, and vehicle capacity, into the
routing optimization process. Such a study promises to provide
a comprehensive solution for the Capacitated Vehicle Routing
Problem with Pickup and Delivery (CVRPPD), advancing the
state of the art and bridging the gap between theoretical ad-
vancements and practical urban logistics applications.

3. The aim and objectives of the study

The aim of the study is to develop a scalable and adaptive
ACO-based model that incorporates dynamic constraints,
such as traffic congestion, adverse weather conditions, and
vehicle capacity.

To achieve this aim, the following objectives are accom-
plished:

—to propose a conceptual framework of the CVRPPD
model integrating dynamic constraints such as traffic conges-
tion, adverse weather conditions, and vehicle capacity;

- to enhance the Ant Colony Optimization (ACO) algo-
rithm by incorporating adaptive heuristics that address the
dynamic constraints of the CVRPPD;

- to evaluate the performance of the proposed CVRPPD
model and the AHB-ACO algorithm by comparing them with
traditional methods on metrics such as route optimization,
travel cost, and execution time.

4. Materials and methods

4.1. Object and hypothesis of the study

The object of this study is the Capacitated Vehicle Routing
Problem with Pickup and Delivery (CVRPPD) under dynamic
constraints, including traffic congestion, adverse weather
conditions, and vehicle capacity limitations. This problem is
central to urban logistics, where the efficient routing of vehi-
cles is critical for optimizing delivery and pickup operations
in complex and variable environments.

The main hypothesis of the study is that the Adaptive Heu-
ristic-Based Ant Colony Optimization (AHB-ACO) algorithm,
with its integration of dynamic constraints, can significantly
outperform traditional ACO algorithms by providing safer,
more efficient, and scalable routing solutions for CVRPPD in
real-world scenarios.

Several assumptions were made to simplify the modeling
and ensure the feasibility of the study:

1. Traffic congestion and weather conditions are repre-
sented using penalty factors on specific routes.

2. Each vehicle starts and ends its route at a central depot
and adheres to strict capacity constraints.

3. Customers’ delivery and pickup demands are known
and constant during the simulation.

4. Weather and traffic conditions remain stable through-
out a single optimization process.

To make the problem computationally manageable, the
following simplifications were adopted:

1. Traffic congestion is modeled as a multiplier on travel time,
derived from predefined congestion levels (e.g., 1 to 5 scale).

2. Adverse weather is represented as an additional penal-
ty factor influencing route selection, without dynamically
changing during operations.

3. The model does not account for real-time route changes
due to unexpected events such as accidents or sudden weather
changes.

4. Vehicles are assumed to travel at a constant average
speed adjusted for traffic and weather conditions.

4. 2. Dataset

The dataset used in this study is simulated to reflect
real-world conditions. The system accepts various types of
input data to generate optimal routes. The distance matrix
includes the depot, customers requesting pickups, and cus-
tomers requesting deliveries, where each entry represents
the physical distance between nodes in kilometers. Traffic
information is incorporated as a multiplier on each edge to
account for congestion, influencing the travel time along the
route. Weather conditions, such as rain, are added to identify
routes with longer shelter times, encouraging the algorithm
to avoid such paths. Additionally, the maximum vehicle ca-
pacity, measured in kilograms, limits the amount of goods
that can be transported, ensuring efficient load distribution.
Pickup and delivery data include the weight of goods to be
collected or delivered at each customer location, ensuring that
vehicles comply with their capacity constraints while meeting
customer demands.

The system produces optimal routes for each vehicle, de-
tailing the sequence of customers to visit from the depot and
back. The best cost for each route is calculated by considering
distance, traffic congestion, and weather conditions, resulting
in routes with the lowest total cost. Furthermore, the system
computes the total travel distance required to complete these
routes. Vehicle status is also provided, showing the capacity
before and after each pickup or delivery, ensuring that vehicle
loads are distributed efficiently to meet customer demands
while maximizing capacity utilization. The dataset structure
used in this study is illustrated in Tables 1, 2, where Table 1
provides detailed customer information, as follows.

Table 1
Customer data

Customer ID X | Y | Delivery request Pickup request
Depot 50 | 50 0 0
C1 41 | 80 3 3
C2 99 | 21 5 2

The following explains the structure of the customer data
presented in Table 1:

- customer ID: this column contains the unique identifier
for each customer, including the depot;

- X and Y: these represent the coordinates of each custo-
mer, equivalent to latitude and longitude;

- delivery request: this indicates the quantity of goods to
be delivered to each customer, measured in kilograms;

- pickup request: this specifies the quantity of goods to be
picked up from each customer, also measured in kilograms.

Table 2 illustrates the structure of the edge data, which
forms the graph representing the CVRPPD problem:

Table 2
Data edges
From To Distance, km Traffic ‘Weather
Depot C1 31,32092 1 5
Depot c2 56,93856 2 1




The following describes the structure of the edge data
presented in Table 2:

— from: this column contains the source node for a given route;

- to: this column contains the destination node for a gi-
ven route;

- distance: this represents the distance between customers,
calculated using the Straight Line Distance method between
two customers based on their respective coordinates on the map;

- traffic: this is a multiplier factor that reflects the level
of traffic congestion on a given route. The traffic factor in-
creases the travel time for congested routes. In this study,
a scale of 1 to 5 is used to represent congestion levels, with
these values utilized in pheromone updates within the AHB-
ACO algorithm;

- weather: this represents the weather-related constraint
factor on a scale of 1 to 5, where these values are also used for
pheromone updates in the AHB-ACO algorithm.

4. 3. Methods

This study aims to develop an Ant Colony Optimization (ACO)
algorithm to address the Capacitated Vehicle Routing Problem
with Pickup and Delivery (CVRPPD) while incorporating
weather conditions and traffic congestion as key constraints. In
the CVRPPD case examined in this research, the model is de-
signed to account for weather conditions that may force couriers
to pause their journeys and traffic congestion that increases
travel time. The research workflow is illustrated in Fig. 1 below.

Initialization of
System Input and
Output

Data Generate

CVRPPD

Model Evaluati Lo
odel Evaluation Optimization

Fig. 1. Research methodology

Fig. 1 illustrates the workflow for optimizing the CVRPPD.
The process begins with the Initialization of System Input and
Output, where necessary parameters, data, and constraints are
defined. This is followed by the Data Generation phase, which
involves creating or simulating datasets for the problem. The
next stage, Model Design, focuses on formulating the opti-
mization model based on the generated data and problem
requirements. The model is then executed in the Model Im-
plementation phase, where it is applied to real-world scenar-
ios or simulations. The CVRPPD Optimization stage involves
running the optimization process to produce efficient routing
solutions. Finally, the results are validated and analyzed
during the Model Evaluation phase to assess the model’s per-
formance and effectiveness.

5. Research results of developing a scalable and
adaptive ACO-based model

5.1. Findings proposed conceptual framework for
the CVRPPD model

To address the CVRPPD problem, this study develops
the AHB-ACO, a model adapted from the traditional ACO
algorithm. AHB-ACO is designed to be more responsive to

Model Design

Model
Implementation

external conditions, such as weather and traffic congestion.
The conceptual framework of this model is illustrated in Fig. 2.

From Fig. 2, it can be observed that the focus of this study
lies in the development of the AHB-ACO model, which involves
several modifications to the traditional ACO algorithm. AHB-
ACO employs an adaptive heuristic function, as defined in (1):
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i in (1) represents the
formula for calculating the heuristic value for the edge from
node i to node j, where dj; is the distance between nodes i
and j, t; is the traffic factor, and s;; is the weather penalty. The
higher the traffic and weather factors, the more likely the ants
are to avoid the corresponding route. This adaptive heuristic
function is also incorporated into the AHB-ACO algorithm
to determine the routes chosen by the ants. The formula for
route determination is provided in 2:
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The adaptive heuristic function n%**™* is integrated into
the route determination formula in AHB-ACO, as shown in (2).
In this formula, PJ-‘ represents the probability for ant k to move
from node i to node j, 7;; denotes the pheromone
intensity on edge i, j which is updated during
each iteration. This pheromone reflects the
strength of the trail left by previous ants. The
parameter o controls the importance of the
pheromone in route selection. A higher value
of o increases the influence of pheromone on
route selection, with the condition o.>0. The pa-
rameter B controls the significance of the adap-
tive heuristic in route selection, where a higher
value of B increases the impact of distance and
external conditions on the route selection, with
the condition B>0.

AHB-ACO employs an objective function to identify the
optimal route using a multiple-vehicle approach. The formula
for this objective function is provided in 3:

Z=mini z di~~tij~(1+sij). 3)

v=1(i,j)eroute, ,

In (3), Z represents the objective function to be minimized,
which combines distance, traffic density, and weather conditions.
routey, refers to the route taken by vehicle v as determined by
ant k. m denotes the total number of vehicles involved in serving
all customers, and v represents the vehicle index (v=1,2,...,m).

In AHB-ACO, pheromone updates are performed using
the formula provided in (4):

Ty =(1-p) 1+ Y, > AT (4)

k=1v=1

In (4), Ty represents the pheromone intensity on edge i, j,
and p is the pheromone evaporation rate (0<p<1). The num-
ber of ants in an iteration is denoted by m. Arg"’ represents the
pheromone contribution by vehicle v from ant k on edge i, j. In
AHB-ACO, the pheromone contribution by vehicle v from ant k
is updated using Q/ Zy., if i, j, and updated to 0 otherwise.
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Fig. 2. AHB-ACO model

5.2. Enhanced route efficiency through adaptive
heuristics

Table 3 and Fig. 3 provide a comprehensive summary of
the route efficiency achieved by the AHB-ACO algorithm,
tested across datasets with varying customer sizes: 50, 100,
and 200 customers. The algorithm’s parameters include a ma-
ximum iteration limit of 100, 10 ants per iteration, pheromone
influence (o.=1), heuristic influence (3=2), and a pheromone
evaporation rate (p=0.1). Vehicle capacity is set at 20 kg
to ensure adherence to real-world constraints.

The results demonstrate that AHB-ACO efficiently distri-
butes customer demands across vehicles while maintaining opti-
mal route lengths. The consistent average number of customers
served per vehicle (ranging from 6.25 to 6.67) across datasets
indicates the algorithm’s capability to balance workloads effec-
tively despite increasing problem size. This uniformity high-
lights the robustness of AHB-ACO in addressing the CVRPPD.

The efficiency is not only reflected in the balanced distri-
bution of customers but also in the minimization of redundant
travel. For example, vehicles are allocated routes that minimize
overlap, reducing unnecessary mileage while ensuring all cus-

tomer demands are met within the capacity constraints. This
optimization is crucial in urban delivery settings, where con-
gestion and time-sensitive operations demand precise planning.

AHB-ACO also accounts for dynamic constraints such as
traffic congestion and adverse weather. By incorporating adap-
tive heuristics, the algorithm avoids heavily congested routes
and adjusts for penalties related to weather conditions. This
feature ensures that vehicles maintain efficient operation even
under challenging real-world conditions. The inclusion of
weather-related penalties, in particular, showcases AHB-ACO’s
adaptability in scenarios where stopping for shelter is necessary,
ensuring safety without compromising operational efficiency.

Table 3
Route efficiency metrics

. Number Total |Execution| Average costu-
Dataset size . . .
of vehicles | cost time (s) | mers per vehicle
50 costumers 8 1294.41| 113.05 6.25
100 costumers 15 2348.55| 452.94 6.67
200 costumers 30 4155.82| 1639.68 6.67
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Fig. 3. Vehicles route:
a— 50 costumers; b — 100 costumers; ¢ — 200 costumers

The gradual increase in total cost and exe-
cution time with larger datasets reflects the
inherent complexity of managing more cus-
tomers. For instance, in the 200-customer
dataset, the total cost rose to 4155.82 with
an execution time of 1639.68 seconds. How-
ever, these increases are proportional to the
dataset size, indicating the algorithm’s scal-
ability. Furthermore, the ability to maintain
consistent average customer service per ve-
hicle (6.67 for 100 and 200 customers) sug-
gests that AHB-ACO scales linearly in terms
of resource allocation.

The algorithm’s performance aligns with
its objective to optimize travel routes while
considering real-world constraints. Its adapt-
ability to varying customer demands, en-
vironmental factors, and vehicle capacity
makes AHB-ACO a reliable solution for
modern urban logistics. By integrating dy-
namic constraints into the routing process,
AHB-ACO not only reduces travel distances
but also enhances the safety and reliability of
delivery operations.

The modified Adaptive Heuristic-Based
Ant Colony Optimization (AHB-ACO) al-
gorithm employs a well-defined objective
function to minimize total travel costs. The
function is mention in (3). In formula (3),
Z represents the total travel cost, which
combines three critical factors: the distance
between locations dj;, traffic congestion ¢,
and weather conditions s;. By integrating
these elements, the function captures the
practical realities of routing problems, en-
suring that the optimization process ac-
counts for real-world challenges.

The distance dj forms the foundation
of the travel cost, representing the phys-
ical separation between nodes. However,
real-world conditions such as traffic con-
gestion and adverse weather significantly
impact travel efficiency. The traffic factor ¢;
adjusts the cost based on congestion levels,
while the weather penalty s; accounts for
additional delays or detours required during
adverse conditions. These dynamic factors
ensure that the algorithm avoids routes with
heavy congestion or severe weather, focus-
ing on safer and more efficient alternatives.

For instance, in the 200-customer da-
taset, AHB-ACO achieved a total travel
cost (Z) of 4155.82 with an execution time
of 1639.68 seconds. This result reflects the
algorithm’s capacity to effectively balance
distance, traffic, and weather penalties. The
breakdown of the cost distribution reveals
that avoiding congested or unsafe routes
slightly increased the total distance covered,
but significantly reduced overall travel time
and improved safety.

A comparison of routes selected un-
der varying conditions further illustrates
the efficiency of the objective function.



For aheavily congested route between nodes i and j with
t;=0.5 and s;=1.5, the adjusted cost is:

Zy=dy-2.5-(1+1.5)=5.75-d;. (5)

In contrast, for an alternative route with ;=1.2 and
5;=0.5, the cost is:

Zy=d;-1.2-(1+0.5)=1.8-d;. (6)

This comparison shows that the algorithm prioritizes
routes with lower congestion and weather penalties, even
if they are marginally longer in terms of distance, thereby
achieving a better balance of efficiency and safety.

The scalability of the algorithm is evident from its perfor-
mance across datasets. For 50 customers, the total travel cost
was minimized to 1294.41, while for 100 customers, the cost
was 2348.55. The nearly linear increase in costs with the num-
ber of customers highlights the algorithm’s ability to manage
growing problem scales without significant computational
overhead.

The AHB-ACO’s ability to minimize travel costs is particu-
larly relevant for urban logistics operations, where conditions
are highly dynamic. By effectively adapting to real-time traffic
and weather data, the algorithm ensures that vehicles not
only follow cost-efficient routes but also adhere to operational
constraints, such as vehicle capacity and delivery deadlines.
This adaptability makes AHB-ACO a valuable tool for logistics
companies aiming to optimize delivery and pickup operations
under varying real-world conditions.

5. 3. Evaluation of AHB-ACO performance against tra-
ditional methods under traffic and weather constraints

The performance evaluation of the Adaptive Heuris-
tic-Based Ant Colony Optimization (AHB-ACO) algorithm
focuses on its ability to address the limitations of traditional
ACO and its effectiveness in solving the Capacitated Vehicle
Routing Problem with Pickup and Delivery (CVRPPD) under
dynamic constraints. This section emphasizes the comparative
analysis of AHB-ACO in terms of optimal route discovery, tra-
vel time, and total distance traveled, particularly in scenarios in-
fluenced by traffic congestion and adverse weather conditions.

AHB-ACO introduces an adaptive heuristic that inte-
grates critical real-world factors such as traffic and weather
variables, which are typically overlooked in traditional ACO.
While traditional ACO often focuses solely on distance mini-
mization, AHB-ACO dynamically adjusts pheromone updates
and heuristic evaluations based on traffic delays and weather
penalties. This modification enables the identification of safer,
more efficient routes, resulting in superior performance in
terms of operational reliability and practicality.

For example, in the dataset with 50 customers, AHB-ACO
achieved a total travel cost of 1294.41, with vehicles successfully
navigating routes that avoided heavily congested areas and high-
weather-risk zones. Each of the 7 vehicles served between 6 and
8 customers, maintaining balanced delivery and pickup loads.

The algorithm was tested on datasets with 50, 100, and
200 customers, and its performance was assessed based on
metrics such as total travel cost, execution time, and the effi-
ciency of vehicle route allocation. The scalability and robust-
ness of AHB-ACO are evident in the results:

- 50-customer dataset: AHB-ACO optimized routes for 7 ve-
hicles with an average of 7.14 customers per vehicle, ensuring no
vehicle exceeded its 20 kg capacity. The total distance traveled

by all vehicles combined was significantly reduced compared to
benchmarks, and the execution time was 113.05 seconds;

- 100-customer dataset: the algorithm demonstrated its
capability to handle increased complexity by efficiently allo-
cating customers across 15 vehicles. Despite the larger data-
set, AHB-ACO maintained balanced vehicle loads, with each
vehicle serving an average of 6.67 customers. The total travel
cost was 2348.55, and the execution time was 452.94 seconds;

- 200-customer dataset: for the largest dataset, AHB-ACO uti-
lized 30 vehicles, serving an average of 6.67 customers per vehicle.
The total travel cost increased proportionally to 4155.82, while
the algorithm executed in 1639.68 seconds. The routes identi-
fied for each vehicle avoided bottlenecks and weather-related
delays, highlighting the algorithm’s adaptability and efficiency.

The analysis of vehicle routes across datasets shows that
AHB-ACO effectively minimizes travel costs by distributing
customer demands evenly among vehicles and optimizing
their travel paths. For example, in the 200-customer dataset,
Vehicle 1 serviced customers in a geographically clustered
area, reducing unnecessary travel between distant nodes.
Similarly, Vehicles 2-30 were assigned routes that prioritized
proximity and avoided areas flagged with high traffic or ad-
verse weather, reducing both total travel time and distance.

The results indicate that AHB-ACO consistently outperforms
traditional ACO by considering dynamic constraints, which are
critical in real-world logistics. This performance improvement is
particularly evident in urban scenarios where traffic congestion
and weather variability significantly impact route optimization.
By incorporating these factors, AHB-ACO achieves better route
efficiency, reduced travel costs, and enhanced safety.

The algorithm’s adaptability to real-world conditions also
underscores its potential for broader application in logistics
operations involving dynamic variables. The improvements
observed in minimizing travel costs and travel time make
AHB-ACO a practical solution for modern delivery systems,
especially in densely populated urban areas.

6. Discussion of results: adaptive heuristic-based model
for CVRPPD optimization under dynamic constraints

The results of this study demonstrate the efficacy of the
Adaptive Heuristic-Based Ant Colony Optimization (AHB-
ACO) model the conceptual structure of which is presented in
Fig. 2 in addressing the Capacitated Vehicle Routing Problem
with Pickup and Delivery (CVRPPD) under dynamic con-
straints such as traffic congestion, adverse weather, and vehicle
capacity. Across the datasets with 50, 100, and 200 customers,
the model consistently optimized routes while maintaining
operational efficiency and adhering to capacity limitations.

For the 50-customer dataset, the AHB-ACO model achieved
a total cost of 1294.41 with an execution time of 113.05 se-
conds, efficiently allocating customers to eight vehicles. On the
100-customer dataset, the total cost increased to 2348.55, with
a corresponding execution time of 452.94 seconds and efficient
utilization of 15 vehicles. For the 200-customer dataset, the
total cost was 4155.82, with an execution time of 1639.68 se-
conds, demonstrating scalability and efficient route allocation
using 30 vehicles (Table 3). These results align with the study’s
objectives, confirming the model’s ability to optimize routes,
minimize costs, and maintain scalability across varying prob-
lem complexities.

This study successfully addresses the critical gaps, par-
ticularly the limitations of traditional ACO approaches that



fail to consider dynamic constraints. Unlike prior models, the

adaptive heuristic function n?9P™

i integrates penalties for
traffic and weather, ensuring that routes are not only efficient
but also safe and realistic. The model’s ability to dynamically
adjust to external conditions directly addresses the complexi-
ties of real-world urban logistics, thereby fulfilling the study’s
aim of providing practical and scalable solutions for CVRPPD.

Compared to traditional ACO models, the AHB-ACO model
exhibits significant improvements in cost efficiency, scalability,
and adaptability. For instance, traditional ACO approaches
focus primarily on minimizing distance and overlook critical
dynamic variables, often resulting in suboptimal performance in
real-world scenarios. In contrast, the AHB-ACO model achieved
near-linear cost scaling with an increasing number of customers,
while traditional models typically face exponential cost increases.
This efficiency is attributable to the adaptive heuristic function
and the algorithm’s robust integration of real-world constraints.

Additionally, the results demonstrate that the AHB-ACO
model ensures equitable load distribution among vehicles, as
evidenced by no vehicle exceeding its capacity in any dataset.
This balanced allocation reduces the risk of delays and en-
hances overall system reliability, a significant advantage over
static optimization models.

Despite its effectiveness, the AHB-ACO model has limita-
tions that should be considered when applying it in practical
scenarios. The reliance on predefined datasets means that the
model does not yet account for real-time updates in traffic
and weather conditions, which are critical in highly dynamic
environments. Moreover, the computational time for larger
datasets, while reasonable, could be a limitation for applica-
tions requiring near-instantaneous decision-making.

From a practical perspective, the model offers significant
potential for urban logistics, particularly in courier services
that rely on motorcycles for delivery and pickup operations.
By integrating real-world constraints into the routing process,
the model ensures more reliable and efficient operations, re-
ducing costs and improving service quality.

Future research should focus on integrating real-time
data sources for traffic and weather updates to enhance the
model’s applicability in dynamic environments. Additionally,
hybridizing the AHB-ACO model with other optimization
techniques, such as machine learning or metaheuristic algo-
rithms, could further improve its efficiency and scalability.
Expanding the model to accommodate heterogeneous vehicle
fleets and exploring its performance under different logistical
scenarios would also provide valuable insights.

7. Conclusions

1. This study successfully proposed a conceptual frame-
work that incorporates dynamic constraints into the CVRPPD
model. By addressing key factors such as traffic congestion,
weather disruptions, and vehicle capacity, the model provides
a robust foundation for solving real-world routing challenges.
This framework goes beyond traditional CVRPPD models that

primarily focus on static variables, ensuring relevance and
applicability in urban logistics operations.

2. The Adaptive Heuristic-Based Ant Colony Optimiza-
tion (AHB-ACO) algorithm was developed as a core component
of the proposed framework. By introducing adaptive heuristics
that incorporate penalties for traffic and weather conditions,
the algorithm effectively minimizes total travel costs while
ensuring compliance with vehicle capacity constraints. For
example, the adaptive heuristic function n;-dap’ive dynamically
adjusts routing decisions, leading to safer and more efficient
routes. This enhancement addresses critical gaps in traditional
ACO algorithms that neglect dynamic constraints.

3. The proposed CVRPPD model and the AHB-ACO algo-
rithm were evaluated using simulation datasets with 50, 100,
and 200 customers, representing varying levels of complexity.
Comparative analysis demonstrated their superior perfor-
mance over traditional methods in terms of route optimization,
travel cost, and execution time. For the 200-customer dataset,
the AHB-ACO algorithm achieved a total cost of 4155.82 and
an execution time of 1639.68 seconds, showcasing its scal-
ability and efficiency. The model and algorithm also ensured
equitable customer distribution across vehicles, optimizing
resource utilization while adhering to capacity constraints.
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