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1. Introduction

The global challenges of climate change and environ-
mental pollution create a need for sustainable methods of 

agricultural management. Conventional chemical methods 
of crop protection, although effective, contribute significantly 
to greenhouse gas emissions, soil degradation, and biodiver-
sity loss.
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The object of this study is the pro-
cesses of sunflower disease identifica-
tion using neural networks and their 
impact on the efficiency and envi-
ronmental sustainability of biologi-
cal protection methods. The research 
addresses the task of improving the 
diagnosing accuracy of sunflower dis-
ease under conditions of limited real-
world data. Specifically, this paper 
focuses on finding ways to enhance 
neural network design methods in 
data-scarce environments to improve 
the environmental sustainability of 
sunflower protection methods. A key 
feature of the results is the ability of the 
synthetic data integration algorithm 
to achieve high accuracy even with a 
limited amount of real data, which 
provides a significant advantage over 
conventional methods requiring large 
volumes of information.

The application of mathematical 
modeling and Few-shot learning algo-
rithms, combined with Generative 
Adversarial Networks (GANs) for gen-
erating synthetic images, improved 
diagnostic accuracy to 93–95 %, even 
with small datasets. This was achieved 
due to the model’s high generalization 
capacity, trained on diverse synthetic 
data that accounted for varying field 
conditions.

The findings make it possible to 
effectively apply biological protection 
methods by optimizing disease diagno-
sis based on mathematical modeling of 
the relationships between environmen-
tal conditions and biological agents.

The practical significance of the 
results is the ability for agricultur-
al practitioners to employ innovative 
diagnostic methods to enhance sun-
flower yield and reduce dependence 
on chemical protection agents. The 
proposed approaches contribute to the 
implementation of international envi-
ronmental standards and could be 
integrated into agricultural decarbon-
ization programs. The implementa-
tion of biological protection methods 
reduces environmental risks, saves 
resources, and maintains agroecosys-
tem productivity
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Given this, the biological method becomes a natural alter-
native that reduces the carbon footprint and meets modern 
environmental standards. Its versatility makes it possible to 
adapt this approach to different agro-climatic conditions and 
crops, ensuring efficiency and environmental safety.

A biological method based on natural processes, such as 
the use of Trichoderma fungi or Bacillus thuringiensis bac-
teria, is an environmentally safe solution. It not only fights 
pests but also maintains balance in the soil and the ecosys-
tem in general. Previously, its effectiveness was limited by the 
complexity of diagnosis and insufficient accuracy of applica-
tion. However, neural networks are able to eliminate these 
obstacles, automating the analysis of field data and ensuring 
the most efficient use of biological agents. This makes the bi-
ological method competitive even with chemical protection, 
which has long dominated due to ease of use.

Research in the field of diagnosing plant diseases, in 
particular sunflower, in this context acquires special im-
portance. It create the basis for devising new technologies 
and methods that make it possible not only to quickly detect 
diseases but also to effectively fight them. The use of such 
approaches as artificial intelligence opens up new perspec-
tives for the development of diagnostic techniques. They 
significantly increase accuracy even when data is scarce. 
This approach allows saving resources and time, which is 
critically important under conditions of lack of information.

In addition, the increase in the scale of production and the 
growing demand for agricultural crops make the problem of 
diseases even more urgent. Farmers have to find new ways to 
protect against pests and diseases that are constantly evolving, 
becoming resistant to conventional methods of processing. 
This forces farmers to actively look for innovative solutions 
that would not only increase the effectiveness of protection but 
also reduce the costs of pesticides and other chemicals.

The use of identification of sunflower diseases with the 
help of neural networks made it possible to establish the 
biological method of protection as advanced due to the com-
bination of technological accuracy and ecological efficiency. 
Neural networks provide early and accurate disease detection 
using innovative algorithms such as Few-shot learning and 
generative adversarial networks (GANs). This makes it pos-
sible to identify diseases even in the cases of limited data or 
difficult field conditions. Such accuracy allows the use of bio-
logical agents in the early stages of the disease when they are 
most effective and do not require the use of chemical drugs.

The combination of neural networks for accurate diagno-
sis with environmentally friendly biological methods creates 
a new paradigm in agriculture that ensures high produc-
tivity, economic feasibility, and resilience to environmental 
changes. This makes the biological method not only an al-
ternative but also an advanced solution among all available 
approaches to plant protection.

The practical results of such research could be useful to 
farmers who seek to implement effective sunflower protec-
tion strategies. New technologies could make it possible to 
reduce the use of chemicals, which would contribute to the 
improvement of the environmental situation in the growing 
regions. Moreover, the developed methods could be adapted 
to other crops, which would expand their application and 
benefit the agricultural sector in general.

Global problems of food security are also an important 
argument in favor of research on this topic. Considering the 
growing number of the world’s population and limited re-
sources, the need to minimize the loss of agricultural products 

becomes even more urgent. Thus, innovative methods for 
diagnosing diseases could significantly increase the efficiency 
of production and save crops, which is especially important for 
countries dependent on the agro-industrial complex.

The topic of diagnosis of sunflower diseases remains 
extremely important for agriculture. New approaches such 
as mathematical modeling and artificial intelligence could 
significantly improve agronomic practices. They would not 
only help preserve crops but also make agriculture more sus-
tainable and efficient.

Hence, research in this field is an urgent need. It will con-
tribute to the improvement of agricultural indicators and ensure 
the sustainable development of the agro-industrial complex, 
contributing to the growth of food security and the stability of 
food supply chains.

2. Literature review and problem statement

Diagnosing diseases of agricultural crops is a key area of 
research in the agricultural sector. The use of deep learning 
methods significantly improves the ability to recognize diseas-
es under conditions of limited data sets. Thus, a well-known 
study [1] proposes a hybrid model based on VGG-16 and Mo-
bileNet for categorization of sunflower diseases. The model 
shows a significant improvement in accuracy compared to 
conventional approaches. Despite the achieved high results, 
an unsolved problem of the model is the insufficient amount of 
training data to ensure the universality of the model, which lim-
its its application under real conditions. The reasons for this are 
related to the high costs of collecting large volumes of data. The 
authors compare the results with other deep learning models 
and achieve high accuracy in disease categorization. The main 
problem is a decrease in the accuracy of the model under con-
ditions of changes in lighting and low image quality. The model 
does not adapt well to data with noise or changes in texture, 
which limits its use in real field conditions. Therefore, larger and 
more diverse datasets are needed to ensure better generalizabil-
ity. Since the model is based on pre-trained architectures that 
do not adapt well to changes in image quality, there is a need to 
build models that are robust to these variations.

Paper [2] proposed a method of sunflower seed categoriza-
tion using multispectral and textural data. It was found that the 
use of convolutional neural networks (CNNs) makes it possible 
to achieve a categorization accuracy of up to 98.2 %. However, 
the model faces difficulties in classifying late-stage diseases due 
to the limited amount of training data. The study also highlights 
the early diagnosis of sunflower diseases using deep learning, 
noting that the application of CNN provides categorization ac-
curacy of up to 92 %. However, the model’s robustness to chang-
ing lighting conditions and image quality remain unresolved. 
This is due to the limitations of the data used, which do not take 
into account a variety of conditions. To improve the results, it is 
suggested to use more diverse datasets and adaptive algorithms.

The DenseNet model developed in [3] shows high accuracy 
in recognizing corn leaf diseases, demonstrating its advantag-
es for agricultural tasks. The model effectively classifies corn 
leaf images into different disease categories. However, this 
model has difficulty generalizing when the image data does 
not meet ideal conditions. The model has problems adapting to 
uncontrolled conditions, for example, when lighting changes or 
the presence of noise in images. Although the model is effective 
under controlled conditions, its ability to generalize under real 
conditions remains limited due to the lack of a large amount 
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of diverse data. The model shows high accuracy for specific 
diseases but decreases performance when trying to recognize 
rare or less common diseases. Despite the achievement of high 
accuracy for individual diseases, the overall performance of the 
model in the context of data diversity still needs improvement. 
Data sets should be larger and more balanced for better model 
performance. The use of real-world data and adaptation to dif-
ferent disease classes remain key challenges. This suggests the 
need to improve image processing technologies and design more 
adaptive architectures that can work with small datasets.

In [4], a review of deep learning methods for detecting plant 
diseases emphasizes that modern models demonstrate high 
results in highly specialized tasks. The review covers several 
approaches such as CNNs and hybrid models (GANs) used for 
plant image analysis. The paper emphasizes the importance of 
using balanced and diverse datasets to improve the generaliza-
tion ability of models. It is noted that most existing models have 
a limited ability to work with data from various sources. Deep 
learning methods in the field of plant disease detection show 
significant progress in the application of neural networks for 
image processing, but a number of challenges remain. Among 
them is the lack of universal models that could work under dif-
ferent agricultural conditions and with different types of crops. 
The main problem is the insufficient number of balanced data 
sets and the limited ability of the models to generalize the results 
to different crops. The authors call for the development of more 
robust models that can effectively work with hyperspectral data.

The authors of study [5] use convolutional neural networks 
(CNNs) to detect three specific sunflower diseases. The use of 
small data sets remains a key challenge, which can be solved 
through the generation of synthetic images to display symp-
toms in late stages of diseases. This will allow the model to be 
recognized better. Despite the achieved accuracy of 92 %, the 
model has difficulties in classifying diseases in later stages, 
when symptoms are less pronounced. This is due to the lack of 
images of late stages of diseases for model training. The model 
also shows reduced efficiency when working with low-quality 
images or when lighting conditions change. Improvements in 
data processing and adaptation of models to different types of 
diseases are needed.

In [6], a study is reported that demonstrates the benefits 
of adding attention blocks to CNNs to improve sunflower 
disease categorization. The main problem of the study is 
the complexity of the model, which makes it less suitable for 
application under real conditions due to high requirements 
for computing resources. The paper explores different deep 
learning approaches for sunflower disease categorization 
using Squeeze and Excitation blocks in Convolutional Neural 
Networks (CNNs). The authors show that adding attention 
mechanisms increases the accuracy of the model. The main 
problem is that the complexity of the model increases along 
with its accuracy, which makes it less suitable for real-world 
conditions, especially at farms with limited resources. Also, 
the model may not work well under uncontrolled field condi-
tions due to the need for large computing resources.

Paper [7] investigates the application of transferred learn-
ing to detect sunflower diseases. In particular, it is deter-
mined that it makes it possible to improve categorization 
results, especially for problems with limited data, achieving 
high accuracy (up to 97 %).

Using the transfer learning technique helps improve the 
categorization performance with a small amount of training 
data. Disadvantages and unsolved issues: The main problem 
is the high demand for computing resources, which can be-

come a limitation at farms with insufficient technical base. 
Transferred learning requires large computing resources, 
which limits the possibilities of its application under real field 
conditions. Therefore, there is a need for deeper research to 
adapt this method to the real conditions of agricultural farms. 
In addition, the transferred training is not yet fully adapted 
to work with various types of diseases that occur in the field.

The hybrid model of deep learning presented in [8] for 
detecting sunflower diseases offers high accuracy and clarity 
of results with the help of artificial intelligence. Visibility of 
AI results is a critical aspect for practical implementation, but 
more attention needs to be paid to optimizing models for work-
ing with small datasets and synthetic images, which would 
increase their versatility. Despite its high accuracy, the model 
still faces difficulties when working with low-quality data and 
in real-world environments. In addition, the visibility of results 
is still limited, and more interactive tools for non-technical 
users need to be designed.

Paper [9] reports an automatic system for segmentation 
and categorization of sunflower leaf diseases using Mask 
R-CNN and Faster R-CNN methods. The model shows high 
accuracy for image segmentation and disease detection. This 
study highlights that segmentation remains a challenging 
task when it comes to weak symptoms on plant leaves. The 
main problem is low efficiency in detecting diseases that have 
weak or blurred visual signs, such as powdery mildew. This 
is due to the limited ability of segmentation models to work 
effectively with visually invisible diseases. The model also 
needs to be improved to deal with large arrays of field data, 
and in cases where complex conditions are present, such as 
damaged leaves or foreign objects in the images.

In [10], a three-dimensional analysis method for detecting 
sunflower diseases was studied. The method uses 3D analysis 
of morphological changes in the early stages of invasion. Despite 
the high efficiency, the method is expensive and technically 
complex, which limits its widespread use. The main problem is 
the high cost of the method, which makes it unsuitable for wide 
use under real conditions. In addition, significant computing 
resources and specialized equipment are required for data col-
lection, which limits the application of the technology.

In [11], a neural network is used to classify sunflower leaves 
based on computer vision analysis. The model demonstrates 
high accuracy in the categorization of healthy and damaged 
leaves under controlled conditions. However, the model does not 
show adequate accuracy under conditions of damaged or par-
tially protected leaves. This reduces the effectiveness of its use 
under field conditions where leaf damage is a common problem.

Work [12] investigates the application of sparse convolu-
tional neural networks for the categorization of sunflower 
seeds in a multitasking environment. The model demon-
strates high efficiency in categorization under controlled 
conditions. Problems arise when applying the model under 
real conditions, where seeds may have various damages or 
contamination. This reduces the generalizability of the model 
and requires improved data processing techniques to deal 
with such cases. Lack of data from real field conditions is a 
key obstacle to effective seed categorization.

Paper [13] proposed the use of deep convolutional neural 
networks for the categorization of sunflower seeds. The mod-
el successfully classifies seeds based on high-quality images. 
However, the main problem of this study is the reduction 
of the efficiency of the model when working with damaged 
seeds, which limits its accuracy under real conditions. Lack of 
sufficient training data to train on different types of damage re-
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duces the effectiveness of the model. To improve model results, 
training datasets should be expanded, and image reprocessing 
techniques should be implemented to improve model accuracy.

The model presented in [14] allows sorting sunflower seeds 
using convolutional neural networks. Under controlled condi-
tions, the model demonstrates high efficiency. However, when 
moving to real conditions, where seeds can be damaged or con-
taminated, the accuracy of the model decreases significantly. 
In addition, large requirements for computing resources com-
plicate its implementation at production facilities.

To solve it, it is necessary to construct flexible models of 
the architecture of neural networks, capable of working with 
low-quality data.

Our review of the literature [1–14] has made it possible to 
identify common limitations and obstacles of existing models:

– problems with generalization: most models work well in 
controlled settings or with specific data sets, but their gener-
alizability to different types of diseases remains limited. This 
means that such models are often unable to adapt to different 
field conditions;

– dependence on large volumes of data: most of the models 
reported in the above papers demonstrate high accuracy in 
the presence of large and balanced data sets. The problem of 
the lack of large sets of high-quality images is one of the main 
problems that limits the versatility and adaptability of models;

– sensitivity to environmental conditions: models show 
significant difficulties when working with, for example, 
damaged or low-quality images. All authors point out that 
changes in lighting, damage to leaves or extraneous objects 
significantly reduce the accuracy of the models.

These factors limit the effectiveness of existing catego-
rization methods. In the context of limited data sets and 
diverse field conditions, this is a serious barrier to the intro-
duction of such technologies into agricultural practice.

The problems point to the need for further research 
aimed at improving the robustness of the models to real con-
ditions and optimizing their computational needs.

It can be argued that there is a large body of research that 
focuses on the diagnosis of sunflower diseases in the early 
stages using machine learning methods. However, the accu-
racy of disease identification under difficult conditions (for 
example, with low image quality or in the late stages of the dis-
ease) remains unsolved. Lack of adaptive models and limited 
data reduce the effectiveness of current solutions. This allows 
us to state that it is appropriate to conduct research aimed at 
devising more stable and adaptive methods of disease identifi-
cation based on expanded data and new architectures of neural 
networks. The development of Few-shot learning (FSL) tech-
niques and the use of generative adversarial networks (GANs) 
could solve these problems, allowing models to work more ef-
ficiently under uncontrolled conditions and with limited data.

Based on analysis, we can conclude that there is an ur-
gent need to devise methods that would effectively work with 
small data sets and generate synthetic images for training 
models. The use of Few-shot learning (FSL) and generative 
adversarial networks (GAN) could solve these problems, 
allowing to build more adaptive models for diagnosing sun-
flower diseases, even under data-poor conditions.

3. The aim and objectives of the study

The purpose of our research is to improve the methods of 
building neural networks under the conditions of limited real 

data to increase the environmental friendliness of sunflower 
protection methods. This will contribute to increasing the 
accuracy of disease detection, which in turn will reduce the 
need for chemical protection agents and improve the environ-
mental sustainability of agricultural production.

To achieve the goal, the following tasks were set:
– to develop an algorithm for integrating synthetic data 

into the diagnostic process to increase the accuracy of disease 
detection based on small data sets;

– to carry out numerical modeling regarding the optimal 
conditions for applying biological methods of protection and 
comparing them with conventional methods in terms of fi-
nancial and environmental indicators.

4. The study materials and methods

The object of our study is the identification of sunflow-
er diseases using neural networks and their impact on the 
effectiveness and environmental friendliness of biological 
protection methods.

The research hypothesis assumes that the effectiveness 
of sunflower protection largely depends on the accuracy of 
disease diagnosis, which can be significantly improved by 
applying neural networks using synthetic data. The integra-
tion of synthetic data into the diagnostic process could make 
it possible to increase the accuracy of disease identification 
even under conditions of limited real data, which would con-
tribute to the optimization of protection methods, reducing 
the need for chemical agents and improving the environmen-
tal sustainability of agricultural production.

The choice of generative adversarial networks (GANs) is 
due to their ability to generate synthetic data that realistical-
ly simulates the original set. GANs provide image diversity, 
which is critical for models working with small real-world 
data sets. Compared to other approaches, GANs make it pos-
sible to preserve the important features of disease symptoms, 
avoiding over-generalization or loss of image relevance.

The simulation was carried out using the software envi-
ronment MATLAB R2014a (developed by MathWorks, USA) 
and OpenCV (developed by Intel Corporation, USA) for the im-
plementation of neural networks, image processing, and model 
quality analysis. The algorithm for integrating synthetic data 
into the process of diagnosing plant diseases consists of five 
main steps. The first step involves generating synthetic images 
using generative adversarial networks (GANs). The second 
step involves pre-processing the images to ensure data com-
patibility. In the third step, an extended training set is formed, 
which includes real and synthetic images. The fourth step is 
to train the diagnostic model on the combined data. The final 
step involves evaluating the accuracy of the created model. The 
integration of synthetic data will help increase the accuracy of 
diagnostics with limited amounts of real data.

For the purposes of comparison of protection methods, a 
comparative assessment was carried out according to finan-
cial and environmental indicators in two stages:

Stage 1. Environmental assessment of CO2 emissions. 
The comparison was based on taking into account the four 
main stages of the life cycle of protective equipment: produc-
tion, transportation, application, and disposal.

At the stage of production of chemical preparations, the 
energy costs associated with the synthesis of active sub-
stances, including their purification and formation of the 
final product, were estimated. Standard indicators of energy 
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consumption and coefficients of energy conversion into car-
bon equivalent were used for calculations. For the chemical 
method, the energy consumption of production was 16 MJ/kg 
of active substance. In the biological method, the energy costs 
for fermentation of microorganisms were taken into account, 
which were significantly lower – only 4 MJ/kg.

Transportation was evaluated taking into account average 
fuel costs for freight transport. For chemicals requiring larger 
volumes for treatment (3.5 kg/ha), transport emissions were al-
most twice as high as for biological agents (1.5 kg/ha). A typical 
transport distance of 500 km, which is standard for distribution 
networks in the agricultural sector, was also taken into account.

At the stage of application, emissions from the operation 
of agricultural machinery were included in the calculations. 
For the chemical method, three treatments per season were 
planned, which included spraying with the use of self-pro-
pelled sprayers. The biological method required two treat-
ments due to the longer period of activity of the biological 
agents, which reduced the total emissions. 

At the disposal stage, chemicals generated additional emis-
sions due to the need to dispose of containers. This contribution 
to total emissions was small, but for large areas (5000 ha) had a 
significant cumulative effect. In biological methods, this prob-
lem was less relevant due to minimal packaging.

Stage 2. Economic assessment of costs. Costs were esti-
mated as a combination of three components: cost of materi-
als, costs of transportation, and costs of maintenance.

For the chemical method, the cost of materials took into 
account the average price of pesticides (25 USD/ha) and the 
volume of their application (3.5 kg/ha). The biological meth-
od took into account the lower cost of biological prepara-
tions (15 USD/ha) and the smaller volume (1.5 kg/ha).

Transportation costs depended on the area, since larger 
areas make it possible to reduce logistics costs due to the 
purchase of large batches of drugs. For example, for an area of 
100 ha, transportation costs were 2 USD/ha for the chemical 
method and 1 USD/ha for the biological method, while for an 
area of 5000 ha, they decreased to 1.2 USD/ha and 0.8 USD/ha,  
respectively.

Maintenance costs took into account the number of treat-
ments and equipment maintenance costs. For the chemical 
method, the service cost was 3 USD/ha, and for the biological 
method – 2 USD/ha.

For mixed methods, cost and emissions were calculated 
as weighted averages depending on the proportions of the 
components. 

Stage 3. Integrated modeling of dependences. Mathe-
matical modeling in MATLAB R2014a was used to establish 
dependences between costs, emissions, and area. Regression 
models were built that took into account the logarithmic ef-
fect of area on specific costs.

Modeling was carried out taking into account options for 
seasonal changes in climatic conditions.

5. Results of investigating the use of neural networks 
as a tool for greening sunflower protection methods

5. 1. Results of the development of an algorithm for 
integrating synthetic data into the diagnostic process 
to increase accuracy

A special algorithm was developed to achieve high accu-
racy in the diagnosis of sunflower diseases under conditions 
where real data is scarce.

The construction of the algorithm involves the integra-
tion of synthetic images generated with the help of generative 
adversarial networks (GANs) into the learning process of the 
model (Fig. 1).

The steps of the algorithm for integrating synthetic data 
into the process of diagnosing sunflower diseases include the 
following:

Step 1. Creation of synthetic images of sunflower diseases. 
A generative adversarial network (GAN) was used to expand 
the initial set of 50 real images. The GAN created new images 
through the interaction of a generator (G) and a discrimina-
tor (D), which learned to distinguish synthetic images from 
real ones. The GAN loss function (1) is given below:

( ) ( )
( )( )( )

( )

( )

min max , log

log 1 .
data x

data z

xpG D

xp

V D G E D x

E D G z

 = + 
 + −  		  (1)

To train the model, synthetic images with variations in 
illumination, scale, and viewing angle were created, increas-
ing the diversity of the training set to 500 images.

Step 2. Data preparation and image processing. After cre-
ating synthetic images, all data were processed: brightness 
normalization, contrast enhancement, noise removal, and 
scaling to a single size. After processing, the set was divided 
into training and test in a ratio of 80:20.

Step 3. Statistical assessment of the importance of parame-
ters. To determine the most significant parameters that affect 
the accuracy of the model, an analysis of variance (ANOVA) 
was performed. This method helped identify important factors 
such as lighting and viewing angle that had a significant im-
pact on the results. Statistical data with p-value<0.05 for these 
parameters confirmed their significance for diagnosis.

Step 4. Model training using Few-shot learning. Few-shot 
learning (FSL) method was used to train the model under 
conditions of limited real data. The model was trained to rec-
ognize classes from several examples, which provided better 
generalization. The optimization was carried out using the 
loss function (2):

( )( )( , ) 0
1

min , ,
N

x y i
i

E D l f x y
θ

=

 
 ∑   			   (2)

where l is the loss function for accurate prediction.
Step 5. Accuracy assessment. To assess the categorization 

quality, metrics such as Precision, Recall, F1-score, and AUC-
ROC were used, which helped assess the model’s ability to 
distinguish between diseased and healthy plants.

The implementation scheme of the integration method is 
given below (Fig. 2).

The purpose of the method is to reduce the dependence 
on real data and train the model on small sets. The generation 
of synthetic images makes it possible to significantly expand 
the training set. This, in turn, has a positive effect on the 
accuracy of the model, which is able to detect diseases under 
various field conditions. To verify the accuracy of the model, 
independent testing was conducted using data not used in 
model training.

The average accuracy of the model on all test data sets 
was 93±2 % under standard conditions. For more challenging 
conditions, such as poor lighting quality or high noise levels, 
the accuracy dropped to 87 %.

Thanks to the integration of synthetic data and the use of 
Few-shot learning (FSL), the accuracy of the model increased 
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to 93–95 %, which is confirmed by the results of comparison 
with other approaches.

The model was tested using the cross-validation meth-
od (5-fold cross-validation) on data sets that included 500 syn-
thetic and 50 real images. The model showed consistent 
accuracy in various scenarios simulating field conditions, 
including noise, low-quality lighting, and different viewing 
angles. The test set included images captured under real field 
conditions with varying lighting and plant damage levels. 
A test set of 50 images containing excessive noise and low 
contrast was used to further validate the model. The results 
showed that the accuracy of the model decreased to 87 % 

but remained at a level significantly higher than the average 
accuracy of similar models (82 %). In addition, a comparative 

analysis of accuracy in different scenarios (dif-
ferent viewing angles, image scales) was con-
ducted. The accuracy of the model varied from 
90 % to 93 % depending on the complexity of 
the images. 

To check the accuracy of the model, the 
cross-validation technique was used with 
the division of data into five parts (5-fold 
cross-validation). A dataset consisting of 50 
real and 500 synthetic images was applied to 
train the model. A separate set of 50 non-train-
ing images was used to test the model to check 
the generalization abilities of the model.

The accuracy of the model on the bench-
mark data ranged from 92 % for images with 
standard parameters to 87 % for low-light and 
noisy conditions. ROC-AUC was 0.94, Preci-
sion and Recall for rare disease classes reached 
88 % and 85 %, respectively, while for common 
diseases these indicators were 93 % and 92 %. 
The average F1-score for the model was 90 %, 
which is 12 % higher than the results of similar 
models without integration of synthetic data.

The results showed that the accuracy of 
the model was 90 % under difficult conditions, 

which confirms its ability to generalize.
Generation of synthetic images: in 

the first step, 500 synthetic images of 
sunflower diseases were generated us-
ing GAN. We used real images that 
showed different stages of disease devel-
opment. Synthetic data varied according 
to many features: lighting conditions, 
viewing angles, scaling. This allowed a 
wide range of symptoms to be generat-
ed, which improved the generalization 
and categorization of the model even on 
small datasets.

The Deep Convolutional (DCGAN) 
architecture was used during construc-
tion, which proved to be effective for im-
age generation. The DCGAN architec-
ture was chosen because of its ability to 
generate high-quality synthetic images, 
which is important for training models 
with small datasets. This provided the 
necessary diversity in the training data 
to improve categorization accuracy.

Real images were pre-processed: nor-
malized and scaled to a uniform size.

The synthetic data varied in several 
parameters, such as lighting conditions, 

viewing angles, and image scaling. This made it possible to 
create a wide range of options for the manifestation of disease 
symptoms, which contributed to increasing the ability of the 
model to generalize and classify based on limited data sets.

Integrating synthetic data into the learning process: after 
generating synthetic images, they were added to an already 
existing training set consisting of 50 real images. Thus, the 
total number of images increased to 550. The use of GAN 
to create synthetic images brought a variety of data, which 
significantly increased the accuracy of categorization. The 

Fig. 1. Scheme of the synthetic data integration algorithm

Fig. 2. Algorithm for integrating synthetic images generated by generative 
adversarial networks (GAN) into the model learning process
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average diagnostic accuracy based on real data was 82 %, but 
after integration of synthetic data it increased to 90 %.

In addition, the Few-shot learning (FSL) algorithm was 
applied, which further increased the accuracy of the model 
when working with small data sets. This made it possible to 
train the model even with a minimal number of real images, 
while maintaining a high accuracy of disease categorization.

After the integration of synthetic data and the application 
of FSL, the accuracy of diagnosis rose. This is confirmed by 
metrics such as Precision, Recall, and F1-score, which were 
91–94 %, 90–93 %, and 92 %, respectively. The Precision, 
Recall, and F1-score metrics were chosen to evaluate the 
accuracy of the model, as they allow a better assessment of 
its ability to correctly identify sunflower diseases, especially 
when it comes to rare diseases.

To assess the quality of the model, the ROC-AUC curve 
was also calculated, which showed 94 %. This indicates the 
high ability of the model to distinguish diseased plants from 
healthy ones, even under difficult conditions. All these met-
rics are listed in Tables 1, 2.

To check the adaptability of the model to extreme con-
ditions (low temperatures, high humidity, excessive bright-
ness, low contrast), additional testing of synthetic data was 
conducted. Under such conditions, the accuracy of the model 
was 88 %, which indicates the stability of the model to signif-
icant changes in parameters.

One of the key advantages of integrating synthetic data 
was the reduction of diagnostic error. Analysis revealed 
that the average categorization error when using only real 
data was 15 %. After the integration of synthetic images, it 
decreased to 8 %. This indicates the stability of the model. 
Application of the Few-shot learning algorithm further re-
duced the error by 2 %. This confirms the effectiveness of the 
combination of FSL and GAN.

An analysis of the influence of the number of real and 
synthetic images on the accuracy of diagnosis was carried 
out. The addition of synthetic imagery allowed the model 
to better adapt to changing lighting conditions and plant 
damage. This increased the ability to detect diseases under 
different field conditions. The use of 500 synthetic images 
provided a significant increase in model accuracy.

The results of the integration of synthetic data demon-
strate a significant increase in the accuracy of the diagnosis 
of sunflower diseases when using small data sets. One of 
the main advantages of integrating synthetic images is their 
ability to compensate for the effects of changing lighting 
conditions. To validate the model, 50 test images with exces-

sively high brightness (>90 %) and low contrast (<20 %) were 
added. The model maintained an accuracy of 87 %, demon-
strating its robustness to conditions that typically cause 
diagnostic difficulties.

To verify the adaptability of the proposed model to ex-
treme conditions, testing was conducted using synthetic data 
sets simulating low temperatures (below 10 °C) and high 
humidity (>80 %). Under these conditions, the average accu-
racy of the model was 88 %, which indicates its resistance to 
significant variations of parameters. Additionally, efficacy 
was evaluated for rare pests that occur at a frequency of 
less than 5 %. The accuracy of identification of these cases 
was 84 %, which exceeds the results of similar models with-
out integration of synthetic data.

The generation of synthetic images using GAN combined 
with Few-shot learning allowed us to achieve 93–95 % ac-
curacy and reduce the error to 6 %. This also ensured the 
stability of the model under different field conditions. These 
results confirm the effectiveness of the proposed approach for 
practical application in agricultural technologies.

5. 2. Results of comparison and numerical modeling 
regarding the optimal conditions for the application of 
biological methods of protection

Three scenarios of sunflower protection were evaluated: 
chemical, biological, and mixed. Chemical protection in-
volved the use of exclusively chemical means of pest control, 
biological – the use of biological agents, and mixed protection 
combined both approaches in different proportions.

To analyze the results, ecological and economic indica-
tors were calculated for areas from 100 to 5000 hectares.

Specific costs were estimated using regression models 
that took into account the nonlinear behavior of the param-
eter. In particular, the logarithmic form of dependence was 

chosen, which best describes the decrease in specific costs 
with the growth of the area. The equation takes the form:

( )ln ,y a x b cT dH= + + + 			   (3)

where y is specific costs, (USD/ha),
x – processing area, (ha),
T is the ambient temperature,
H – air humidity,
a, b, c, d are coefficients that determine the form of 

dependence.
According to the simulation results, the parameters took 

the following values: a=−5.1±0.3 (logarithmic effect of the 
area), b=43.2±1.1 (initial level of costs), c=−0.8±0.2 (tem-
perature effect), d=−0.4±0.1 (influence of humidity). These 
coefficients have high statistical significance (p-value<0.001), 
which was confirmed by variance analysis. The high value 

of the coefficient of determination (R2=0.95) indicates that the 
selected model adequately describes the actual data.

Coefficient a shows the rate of cost reduction with area 
growth: each 10-fold increase in area reduces specific costs 
by an average of 5.2 USD/ha. Coefficient b corresponds to 
the initial level of costs at the minimum area in the analysis.

The model was tested on a control sample of data. The av-
erage absolute error was ±2.3 %, which indicates the stability 
and consistency of the model with real data. In addition, the 
analysis of variance (ANOVA) confirmed that the logarith-
mic dependence is the most adequate for describing the be-
havior of specific costs for different processing areas (F-sta-
tistic: 52.3, p<0.001).

Table 1

Comparison of diagnostic accuracy and additional metrics before 
and after integration of synthetic data

Method Accura-
cy (%)

Preci-
sion (%)

Recall 
(%)

F1-score 
(%)

AUC-
ROC (%)

Accuracy 
increase (%)

Real data 82 81 79 80 85 –
Synthetic data 90 88 87 87.5 92 +8
Integration of 
FSL and GAN 93–95 91–94 90–93 92 94 +11–13

Table 2

Number of real and synthetic images in training sets

Data category Real images Synthetic images Total number
Sunflower diseases 50 500 550
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According to the LCA methodology, emissions and stages 
in the life cycle stages of protective equipment are estimated: 
production, transportation, application, and disposal.

Production of drugs. At the stage of production of chemi-
cal preparations, the energy costs associated with the synthe-
sis of active substances, including their purification and for-
mation of the final product, were estimated. For chemicals, 
the calculations were based on data on the average energy 
consumption for the production of pesticides (16 MJ/kg). 
The carbon equivalent of production was 5.3 kg CO2/ha with 
an average application volume of 3.5 kg/ha. For biological 
agents such as Trichoderma, data on fermentation of microor-
ganisms were used. Energy consumption for the production 
of biological preparations was much lower (4 MJ/kg), which 
resulted in emissions of only 1.8 kg of CO2/ha.

Transportation. The average fuel consumption for transport-
ing drugs for a distance of 500 km was calculated based on the 
consumption of diesel fuel by trucks (32 l/100 km). For chemical 
agents, which require larger volumes for treatment, emissions 
were 0.8 kg CO2/ha, while for biological agents – 0.4 kg CO2/ha.

Application. Emissions from the operation of equipment 
for the introduction of means amounted to 0.85 kg CO2/ha for 
chemical preparations since treatments are performed more 
often (3 times per season). Biological agents were applied 
twice, which reduced this indicator to 0.5 kg CO2/ha.

Disposal. The chemical method took into account emis-
sions from the disposal of drug packaging, which added 
0.2 kg of CO2/ha. For biological agents, the impact of packag-
ing was minimal and amounted to less than 0.05 kg CO2/ha.

Standard calculation methods according to ISO 14040 (life 
cycle assessment) were used to estimate CO2 emissions.

Analysis revealed that for the chemical method, each 
10-fold increase in area allowed us to reduce specific costs 
by an average of 6 %. For the biological method, this effect 
was less pronounced due to the relatively stable price of 
biological preparations, and the decrease was about 4 %. In 
mixed methods, the dependence of costs on the area varied 
depending on the proportions of chemical and biological 
components.

The generalized assessment of emissions is given in Table 3.

Table 3

Environmental assessment of CO2 emissions (kg/ha)

Stage Chemical method Biological method
Production 5.30 1.80

Transportation 0.80 0.40
Application 0.85 0.50

Disposal 0.20 0.05
Total CO2 emissions 6.95 2.75

Financial costs were calculated as the sum of drug costs, 
transport costs, and service costs.

The cost of drugs: the average price of chemicals was 
25 USD/ha at an application rate of 3.5 kg/ha. For biological 
agents (1.5 kg/ha), the cost was 15 USD/ha.

Transport costs: transport costs depended on the area of 
treatment. For chemicals, they were 2 USD/ha for an area 
of 100 ha and decreased to 1.2 USD/ha for 5000 ha due to 
the scaling effect. Biological agents had lower costs – from 
1 USD/ha to 0.8 USD/ha.

Maintenance: for the chemical method, maintenance 
costs were 3 USD/ha due to frequent treatments, while for the 
biological method it was 2 USD/ha. For mixed methods, these 

indicators ranged from 2.3 to 2.7 USD/ha, depending on the 
proportion. The summarized results by cost components for 
chemical and biological methods are given in Table 4.

Table 4

Economic evaluation (USD/ha)

Cost component Chemical method Biological method 
Cost of materials 25.00 15.00

Transportation costs 2.00 1.00
Maintenance 3.00 2.00

Total costs 30.00 18.00

Costs for biological agents are significantly lower in 
large areas due to their stable cost and less need for frequent 
treatments. For an area of 5,000 hectares, the cost of the bio-
logical method is only 15 USD/ha, which is 40 % less than the 
chemical method (25 USD/ha). This makes biological means 
especially profitable for large farms.

In addition, the scaling effect makes it possible to reduce 
transport costs. For chemicals, the reduction in transport costs 
from 2 USD/ha (100 ha) to 1.2 USD/ha (5000 ha) is less signifi-
cant than for biological agents (1 USD/ha to 0.8 USD/ha).

The total emissions and costs for each method are given 
in Table 5.

Mixed methods, especially with a ratio of 70/30 in favor of 
the biological component, are an effective compromise in the 
transitional period of the process from chemical to biological 
protection. This approach allows reducing CO2 emissions to 
3.77 kg/ha and costs to 18 USD/ha, which is 40 % more prof-
itable compared to fully chemical methods.

In the transition period, it is important to correctly cal-
culate the proportion of chemical and biological components 
depending on the degree of crop contamination. A ratio of 
50/50 is recommended for areas with moderate disease prev-
alence (10–20 %), while 30/70 is optimal for regions with high 
prevalence (over 20 %). This makes it possible to avoid exces-
sive use of chemicals while maintaining economic efficiency.

A comparative analysis shows that in the mixed scenar-
ios (50/50) emissions are reduced to 4.83 kg/ha, while costs 
remain at 23 USD/ha, making this approach promising for 
farms transitioning from chemical to ecological protection.

Table 5

Comparison of environmental and economic indicators of 
protection scenarios

Area (ha) Scenario CO2 emissions (total, kg) Costs (USD/ha)

100

Chemical 695 30
Biological 270 20

Mixed (50/50) 483 25
Mixed (70/30) 377 23
Mixed (30/70) 540 26

1000

Chemical 6,950 28
Biological 2,700 18

Mixed (50/50) 4,830 23
Mixed (70/30) 3,770 21
Mixed (30/70) 5,400 24

5000

Chemical 34,750 25
Biological 13,500 15

Mixed (50/50) 24,150 20
Mixed (70/30) 18,850 18
Mixed (30/70) 27,000 22
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Chemical protection is characterized by the highest indica-
tors of CO2 emissions, which reach 6.95 kg/ha, which causes a 
significant environmental burden. Thus, the logarithmic model 
confirms the economic feasibility of increasing the scale of 
cultivation, especially for biological protection. This makes it 
possible to significantly reduce the carbon footprint and costs, 
while maintaining the high efficiency of processing large areas.

Overall costs, however, decrease as the cultivated area 
increases, from 30 USD/ha on small areas to 25 USD/ha on 
large ones, thanks to economies of scale. The main risks of 
this approach are pollution of the environment, particularly 
soil and water, high dependence on chemicals, as well as the 
possibility of the development of pest resistance to pesticides 
in the long term. It is advisable to use chemical protection 
only in case of significant crop threats when other methods 
are insufficiently effective.

Biological protection shows the lowest CO2 emis-
sions – 2.7 kg/ha, which is 61 % less compared to chemical 
methods. Economic indicators are also more favorable: costs 
are reduced from 20 USD/ha for small areas to 15 USD/ha for 
large farms. At the same time, the effectiveness of this meth-
od depends significantly on climatic conditions, because low 
temperatures or excessive humidity can reduce the activity 
of biological agents. Modeling showed that the effectiveness 
of biological methods of protection depends significantly on 
climatic factors. In particular, at a temperature of 20–25 °C 
and humidity above 70 %, the efficiency of biological agents 
reached 92–93 %. At the same time, when the humidity was 
reduced to 50 %, efficiency decreased to 78 %, and when the 
humidity was below 30 %, it decreased to 63 %. An increase in 
temperature above 30 °C reduced the efficiency to 80 %, which 
required dosage correction or more frequent application.

To achieve the maximum efficiency of biological methods 
of sunflower protection, the following optimal conditions are 
important:

1. Temperature: 20–25 °C. Within these limits, the ac-
tivity of biological agents such as Trichoderma or Bacillus 
thuringiensis is the highest. Temperatures above 30 °C can 
reduce efficiency by 12–15 %.

2. Humidity: over 70 %. At low humidity (30–50 %), the 
activity of agents decreases to 63–78 %, which requires an 
increase in the number of treatments.

3. Type of soil: biological preparations show the best effec-
tiveness in soils with a high organic content (more than 2 %). 
Soils require prior application of organic fertilizers to activate 
biological agents.

The timeliness of drug use is also important. The best results 
are achieved when the means are applied in the early stages of 
the disease, which prevents the spread of the infection.

The biological approach is particularly appropriate in 
regions with high environmental requirements or for farms 
seeking to reduce their carbon footprint and costs. The 
economic effectiveness of biological protection is especially 
noticeable in large areas. For example, costs for biological 
agents for an area of 5,000 ha are reduced to 15 USD/ha, 
while for chemicals the minimum costs remain at 25 USD/ha.  
For mixed methods, the ratio of 70/30 in favor of the bio-
logical component makes it possible to achieve an optimal 
balance between ecological (CO2 emissions: 3.77 kg/ha) and 
financial indicators (18 USD/ha).

Mixed protection, which combines chemical and biologi-
cal methods in different proportions, provides a compromise 
between ecological and economic indicators. For a 50/50 ra-
tio, CO2 emissions are 4.83 kg/ha, and costs are 25 USD/ha 

for small areas and 20 USD/ha for large ones. Switching to 
a ratio of 70/30 in favor of the biological component makes 
it possible to reduce emissions to 3.77 kg/ha and costs 
to 18 USD/ha, which makes this option the most profitable 
in terms of the balance of economic efficiency and environ-
mental effect. However, with a predominance of the chem-
ical component (30/70), emissions increase to 5.40 kg/ha,  
and costs reach 26 USD/ha. The main risks of the mixed 
approach are the difficulty in choosing the optimal ratio of 
methods and the possibility of residual contamination due to 
the use of chemicals. This option can be a transitional solu-
tion for farmers who want to reduce dependence on chemical 
pesticides, gradually moving to more ecological technologies.

Thus, the biological method is optimal for minimizing 
the ecological burden and reducing costs, especially in large 
areas, while the mixed approach with the dominance of the 
biological component (70/30) provides a better balance be-
tween costs and ecological efficiency. Chemical protection 
should be considered as a means of rapid response to signif-
icant crop threats.

The obtained results are illustrated in MATLAB to 
demonstrate the relationships between CO2 emissions, costs, 
and area for each scenario (Fig. 3).

Fig. 3. Functional surface for modeling the dependence of 
costs and CO2 emissions on the processing area: a – costs; 

b – emissions

a

b
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Fig. 3 shows 3D surfaces for each variable: costs and 
emissions. Axes X – treatment area, Y – protection method, 
Z – result (costs or emissions). The cost plot shows how in-
creasing processing area reduces costs.

Fig. 3, a reflects the dependence of costs on the process-
ing area. Costs decrease with increasing area. The model 
includes a coefficient that varies for biological (0.8) and 
chemical (1.0) methods.

Fig. 3, b reflects emissions. The model accounts for emis-
sion reductions for biological agents based on the fraction of 
area treated.

The emissions plot demonstrates the advantages of bio-
logical methods in reducing CO2.

Graphical interpretation of the data shows a clear de-
crease in costs with increasing area. On small and medi-
um-sized areas, this decrease is the most pronounced, while 
on large areas there is a stabilization of costs. This confirms 
the efficiency of scaling, especially for biological and mixed 
methods of protection, which demonstrate a more significant 
reduction in costs compared to chemical methods.

Additionally, graphical analysis in MATLAB confirmed 
the non-linear effect of processing area on specific costs. For 
example, when the area increases from 100 ha to 1,000 ha, 
transportation costs decrease by 40 %, which significantly 
affects the total economic efficiency of the biological method.

6. Discussion of results based on the implementation 
of innovative methods of biological protection of 

sunflower from pests

The results of our study show that the application of 
innovative methods such as generative adversarial networks 
(GANs) and Few-shot learning (FSL) significantly increases 
the accuracy of sunflower disease diagnosis even in situa-
tions with a limited amount of real data. According to the 
data given in Table 4, synthetic images increased the average 
diagnostic accuracy from 85 % to 94 %. This is because the 
additional synthetic images greatly expand the variability 
of the training set, allowing the model to adapt to different 
scenarios covering different lighting levels, viewing angles, 
and scale variations.

Increasing the accuracy of the model thanks to the Few-
shot learning (FSL) method by 3–5 % (up to 93-95 %) has be-
come the key to effective work under conditions where there 
is not enough real data for full-fledged training. In particular, 
the results given in Table 3 show that FSL effectively com-
pensates for the shortcomings of small data sets, providing 
adequate categorization even for rare diseases, the symptoms 
of which are difficult to display under real conditions.

In addition, it was established that lighting conditions, 
viewing angle, and changes in the size of objects affect the 
accuracy of the model. The increase in accuracy after the 
integration of synthetic images became possible due to the 
expansion of the variations of these parameters in the train-
ing data. This highlights the importance of additional virtual 
samples that increase the ability of the model to generalize 
the acquired knowledge.

The proposed methods compare favorably with conven-
tional approaches to the diagnosis of plant diseases. The 
proposed model using GAN and FSL showed an accura-
cy of 93–95 %, which exceeds the results of conventional 
CNNs (82–85 %) under similar conditions. This was achieved 
thanks to the integration of synthetic data, which allowed 

the model to maintain stability even with variations in pa-
rameters (illumination, viewing angles, scale). In addition, 
a comparison with MobileNet-based models showed that the 
proposed technique reduced the categorization error by 10 %, 
increasing the F1-score from 82 % to 92 %.

For example, in study [11], diagnosis was based on stan-
dard deep learning methods, which largely depend on the 
amount of real data. The disadvantage of this approach is a 
decrease in the accuracy of the model under conditions when 
the number of real samples is limited, or they have signifi-
cant variations due to changes in lighting or viewing angle. 
In our study, the application of GAN allowed the creation of 
synthetic images taking into account these variations, which 
provided more stable accuracy indicators and reduced the 
dependence of the model on the volumes of real data.

In addition, the Few-shot learning (FSL) method pro-
vides model training even with a small number of training 
samples, which is a serious advantage compared to similar 
approaches. For example, paper [9] reported that when using 
methods based on standard CNN networks without using 
synthetic data, the accuracy significantly decreases under 
conditions of changes in lighting and viewing angle. In the 
case of FSL, the adaptability of the model is significantly 
improved, because even with a small number of samples, the 
model is able to recognize signs of diseases, thanks to the 
additional volume of synthetic images.

One of the key challenges was the need to reduce reliance 
on large amounts of real data for model training. The pro-
posed approach with synthetic image generation using GAN 
and learning using FSL effectively solves this task. Adding 
synthetic images makes it possible to expand the training set, 
which in turn helps increase the accuracy of the model. The 
results given in Table 2 show that even when reducing the 
number of real images to a minimum, the model maintains 
stable accuracy, which confirms the achievement of the goal.

Thanks to the creation of synthetic images, the model is 
able to work effectively under conditions of changing lighting 
and angles. This allows us to fill an existing niche, providing 
affordable and effective diagnostic tools even with limited 
resources.

Two main limitations of the study should be noted. The 
first limitation is the computational resource requirements 
for generating synthetic images and applying FSL. The 
model requires a powerful graphics card to ensure speed of 
processing and training, which may not be available for some 
farms with limited resources. A second limitation is the per-
formance of the model under extreme conditions, such as ex-
cessively high temperature (>30 °C) or low humidity (<45 %), 
which can affect the quality of the data for training the model 
and its ability to generalize.

It is recommended to take into account these limitations 
when implementing the method in practice, in particular in 
regions with sharp climatic fluctuations. This may require 
additional training of the model or the application of modi-
fied parameters to ensure its reliability.

The main disadvantage is the dependence of accuracy on 
the pre-processing of images, especially under different light-
ing conditions. This means that to achieve consistent accu-
racy, additional synthetic images may need to be generated, 
taking into account specific lighting conditions and parame-
ters. In addition, the proposed method is not yet adapted to 
work on mobile devices, as it requires significant computing 
power. This limits its use in the field without a connection to 
high-performance equipment.
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Further research would include adapting the model to 
work on mobile devices, allowing it to be effectively used di-
rectly in the field. Optimization for mobile applications could 
increase the accessibility of the technology to farmers, which 
might have a significant positive impact on practical applica-
tions. In addition, the research can be developed by adapting 
the approach for diagnosing other crops, which would ensure 
the universality of the method. The relevance of this research 
area is related to the need for universal tools for combating 
diseases of agricultural crops.

7. Conclusions 

1. An algorithm for integrating synthetic images gen-
erated by generative adversarial networks (GANs) into the 
learning process of a sunflower disease diagnosis model has 
been developed. It was determined that the use of neural 
networks for the diagnosis of sunflower diseases is an ef-
fective tool for increasing the accuracy of disease detection 
even under conditions of a limited amount of real data. A 
feature of the study is the ability to work with small training 
sets, which was achieved by integrating synthetic data gen-
erated using generative adversarial networks (GANs). The 
results showed that the use of synthetic images can increase 
the accuracy of disease detection to 93–95 % even for small 
real data sets, in contrast to approaches based only on real 
data, where the accuracy was limited to 82–85 %. The pro-
posed algorithm makes it possible to effectively compensate 
for the insufficiency of real samples, increasing the model’s 
ability to generalize and categorization accuracy. This is 
because the synthetic data adds variability to the training 
set, improving the performance of the model under varying 
parameters.

The integration of synthetic data allowed the artificial 
neural network model to adapt to different field conditions, 
including changes in lighting, noise, and other factors that 
affect image quality. Under difficult conditions, the diagnos-
tic accuracy remained at the level of 87 %. In addition, the 
introduction of Few-shot learning algorithms enabled the 
model to work effectively even with rare classes of diseases, 
increasing its generalization capabilities. Thus, the research 
results confirm the effectiveness of the proposed approach 
for diagnosing sunflower diseases and create prospects for its 
adaptation to other agricultural crops.

2. Numerical modeling has been performed, which made 
it possible to determine the optimal conditions for the use 
of biological methods of protection. The best results were 
achieved using the biological method, which provided total 

CO2 emissions at the level of 2.75 kg/ha, which is 2.5 times 
less than the chemical method (6.95 kg/ha). Economic costs 
for the biological method are 18 USD/ha, which is 40 % lower 
compared to the chemical method (30 USD/ha).

The optimal conditions for the biological method involve 
the treatment of large areas (over 5000 ha), where costs are 
reduced to 15 USD/ha due to the scaling effect. A mixed 
method with a ratio of 70/30 in favor of the biological compo-
nent provides an acceptable compromise with CO2 emissions 
of 3.77 kg/ha and costs of 18 USD/ha, making it effective for 
the transition period.

Unlike empirical methods, the proposed modeling 
allows us to predict results for various scenarios. In par-
ticular, adapting the model for use on medium-power 
mobile devices could significantly expand its practical 
application in the field. For this purpose, the neural ar-
chitecture should be optimized, for example, by replacing 
GANs with autoencoders, which will reduce the computa-
tional load. Our results indicate the ability of the model to 
adapt biological methods of protection to specific climatic 
conditions, reducing risks and increasing the stability of 
protection. By taking into account different scenarios, the 
model can be effectively applied to regions with different 
weather conditions, which increases its value for the agri-
cultural sector.
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