
Eastern-European Journal of Enterprise Technologies ISSN-L 1729-3774; E-ISSN 1729-4061 1/9 (133) 2025

24

ESTIMATION OF
SOFTWARE STRUCTURES

DIMENSION INFLUENCE
ON DATA PROCESSING

TIME INCREASING
Y e v h e n D a n y l e t s
PhD,	Associate	Professor*

D m y t r o K o r c h e v s k y i
Doctor	of	Pedagogical	Sciences*

S e r h i i N o v a k
PhD,	Associate	Professor*

D e n y s S a m o i l e n k o
Corresponding author

PhD,	Associate	Professor*
E-mail:	denniksam@gmail.com

M y k o l a S u l i m a
PhD*

*Department	of	Information	Technologies		
and	Fundamental	Study

Odesa	Technological	University	“STEP”
Sadova	str.,	3,	Odesa,	Ukraine,	65023

The object of the study is the phenomenon of an
extreme increase in the time of program code execu-
tion at certain sizes of data processed by it. The prob-
lem to be solved was to verify the general nature of the
phenomenon for different equipment.

The evolution of modern computing technology, its
RAM often takes place in an extensive way – by increas-
ing the number of structural elements. Problems can
manifest themselves in the fact that periodic processes
in the code begin to exhibit a resonance effect, which
leads to different indicators of data processing time,
the sizes of which are multiples and non-multiples of
the block structures. The work is studied the influence
of the dimensionality of data blocks on the speed of
execution of the cycle that iterates them. The tools of
differential regression analysis are used. Experiments
were carried out on equipment with different archi-
tecture, type and amount of RAM, running different
operating systems. In all of them resonant effects were
revealed. It led to differences in the average code exe-
cution time by 1.6–3.6 times, and the time of memory
access operations increased up to 136 times. Special
attention was drawn to the fact that the increase in
operating time was found for structures whose size is a
power of two multiple (2N), specifically for the values
512 and 1024. These dimensions are present in many
types of tasks, in particular, cryptographic purposes
or stream-based data processing. Following the recom-
mendations given in the paper can help identify time
delays in applications, and improve the performance
of applications by eliminating them

Keywords: program performance, computer mem-
ory (RAM), operation time, linear regression, differ-
ential analysis

UDC 004.62
DOI: 10.15587/1729-4061.2025.322989

How to Cite: Danylets, Y., Korchevskyi, D., Novak, S., Samoilenko, D., Sulima, M. (2025).
Estimation of software structures dimension influence on data processing time increasing.

Eastern-European Journal of Enterprise Technologies, 1 (9 (133)), 24–34.
https://doi.org/10.15587/1729-4061.2025.322989

Received 27.11.2024
Received in revised form 23.01.2025
Accepted date 10.02.2025
Published date 28.02.2025

1. Introduction

The speed of computing systems has been and remains
one of the most relevant indicators of the quality of their
work. The speed of program code execution is influenced
by a large number of factors. These include both hardware
indicators such as the clock frequency of the processor or the
bit rate of the RAM, and the complexity of the program algo-
rithms used in the code. The total code execution time can
also be affected by dimensional characteristics – the volume
of data structures processed by the program. Moreover, it is
not about the total volume of data, the dependence on which
seems obvious, but about the size of single, relatively small
structures, blocks into which the processed data is divided.

The cluster principle of organizing the RAM of comput-
ing devices (computers, smartphones, tablets, etc.) can be
considered the basis for the fact that the specified depen-
dence will not be monotonic. It is expected that there will be
a different effect for structures whose sizes are multiples and
not multiples of the memory cluster. Moreover, it seems log-
ical to assume that structures that are completely embedded
in memory clusters are more optimal and faster to process.
Accordingly, when graphically displaying the dependence
of the operating time on the size of the structure, certain
“failures” are expected – local minima of the operating time

for multiples of the cluster of values. However, published ex-
perimental studies from time to time allow to identify cases
that indicate completely opposite phenomena – deviation of
time indicators [1–6].

In addition to the general structure, RAM can differ in
manufacturing technologies, manufacturer, and access to
it can be regulated by different hardware environments,
operating systems. All this can affect the time indicators
of application programs with data at different sizes of their
structures in different ways.

It is considered relevant to conduct a series of studies on
the influence of the dimensionality of program structures on
the speed of their processing with the involvement of per-
formers with different architectures, hardware and software,
type and size of RAM, as well as its manufacturer.

2. Literature review and problem statement

In [1], research was conducted, part of which was to iden-
tify the influence of the size factor on the speed of program
execution. The influence of different ways of placing blocks
in the performer’s memory on this time was studied. At the
same time, the work focused on analyzing the total size of the
available memory and comparing it with the amount of data

Copyright © 2025, Authors. This is an open access article under the Creative Commons CC BY license

25

Information and controlling system

different hardware environments – processor, operating sys-
tem, etc. It is also considered advisable to create a universal
testing methodology for different performers with different
hardware components in order to identify critical indicators
of data dimensionality and their targeted avoidance.

3. The aim and objectives of the study

The aim of the study is to experimentally test the hy-
pothesis of the existence of exceptional sizes of program
structures, which lead to an extreme increase in the time of
their program processing. If the hypothesis is confirmed, this
will make it possible to avoid an increase in the execution
time of programs by purposefully correcting the sizes of their
program structures.

To achieve the aim, the following objectives were set:
– to implement a methodology for determining the exex-

cution time of program instructions with different sizes of
structures, to implement tools to confirm or refute the stated
hypothesis;

– to conduct a series of experiments measuring the exex-
cution time of programs depending on the dimensionality of
program structures, to use different hardware and software
equipment; to investigate the nature of the hypothesis;

– to assess the degree of influence of the dimensionality
of structures on the execution time of programs.

4. Materials and methods

The object of the study was the phenomenon of extreme
increase in the time of program code execution at certain
sizes of data processed by it. The hypothesis of the study
is the inevitability of the existence of exceptional sizes
of data structures, which lead to an extreme increase in
the time of their program processing, for any electronic
computing equipment. It is assumed that the number, size
and density of exceptional sizes may differ in different
equipment, the very fact of the presence of these structures
is subject to verification. The hypothesis is verified by the
inductive method, using a limited number of experimental
observations on the available equipment. As a simplifica-
tion, the time of code execution in the work is considered
to be the time measured by software means. Additional
control of physical time by certified measuring means was
not carried out.

Focusing on the maximum practicality of the results ob-
tained, a number of various computing devices were selected
for conducting experiments. The main selection criterion was
the prevalence of this type of device in the field of modern ap-
plied programming. Accordingly, the equipment under study
included personal computers, in particular, in the form factor
of laptops, tablets and smartphones. According to advertis-
ing restrictions, the brands of manufacturers and models of
devices are not given in the work, only the characteristics of
their processors (CPU), random access memory (RAM) and
operating system (OS) are noted. The corresponding data are
summarized in Table 1. To refer to a specific device in the
text of the work, the parameter “Ref” is used, also included
in the table.

In order to determine the time of operations that are close
to the basic processor operations, a method based on differen-
tial analysis and linear regression was used.

used in the program. At the same time, a detailed impact of
the block dimension was not carried out. Presumably, due to
the lack of a direct goal of considering the impact of the block
dimension on the time graphs in the work, extreme time de-
viations were not registered.

A different approach to the problem was taken in [2].
A detailed analysis of the time indicators of operation in
the memory of competing parallel tasks was carried out.
Modern (at the time of writing the article) types of micro-
circuits (DDR4) were selected for the study and specialized
equipment was used to conduct the study. However, the
indicators obtained in the work were ultimately expressed in
units of internal cycles. On the one hand, this is universal,
but on the other hand, it does not provide for the possibility of
differences in the actual completion time of different cycles.
Also, the focus of the study was precisely the effects of task
competition, the factor of the influence of the dimensionality
of tasks on time indicators was not studied.

In work [3], deviations in time indicators were found
when modeling real systems using computational ones. The
study measured that the deviation can reach a scale factor
of 2. This deviation is explained by the hardware features
of the system used for modeling. However, the fact of the
influence itself was not studied in detail, as were the features
associated with the dimensionality of the data blocks of the
models.

The fact of differences in the processing time of different
data blocks was studied in work [4] from the point of view of
information security in relation to potential data leakage. At
the same time, the aim of the work was focused on issues of
an economic nature and a detailed analysis of the influence
of the dimensionality of the blocks on time was not carried
out. A direct assumption was used regarding the increase in
running time for larger data sizes.

The very fact of the influence of dimensionality on code
execution time was demonstrated in [5]. It was found that at
certain block sizes, an extreme increase in program execution
time is observed. A hypothesis was expressed regarding the
prevalence of the detected behavior. At the same time, only
one type of executor was studied in detail in the work, and at
present it can be stated that the technology used in the work
is outdated. The work also used an imperfect mathematical
research apparatus that did not separate the contributions of
various factors to the total program execution time.

In [6], on the contrary, a detailed study of the ultra-new
type of STT-MRAM RAM was conducted. In the process,
a deviation was found in the key time indicators of its op-
eration. This can be considered indirect evidence that the
dependence on the dimensionality of data blocks remains in
new microcircuits. However, the influence of the dimension-
ality of information units on these indicators was not studied
in the work. The work is also focused on a separate type of
memory chips, which justifies the feasibility of comparative
analysis with other technologies.

Trends in new RAM technologies are disclosed in [7].
A thorough study of various types and areas of use of mod-
ern developments has been conducted. However, the time
indicators characterizing the mentioned technologies did
not include information on time deviations associated with
dimensional factors.

All this gives grounds to argue that it is advisable to con-
duct a study devoted to the analysis of the influence of the
dimensionality of data blocks on the deviation of time indica-
tors of program code execution for modern equipment with

Eastern-European Journal of Enterprise Technologies ISSN-L 1729-3774; E-ISSN 1729-4061 1/9 (133) 2025

26

The multiple repetition method used in the previous
work [5] takes into account all components in the total op-
eration time – computational (mathematical), management
(organization of cycles) and, in fact, memory tracing. Correct
conclusions about individual components can be obtained
only when ensuring the invariance of others. That is, the
analysis of the impact of memory tracing operations on the
total time can be objectively carried out only with the same
number of cycle repetitions, as well as with a constant num-
ber of mathematical operations within each of the cycles.
This limits the study of the behavior of algorithms when
other parameters change.

To implement differential comparison, two code blocks
were compiled, differing only in the memory tracing oper-
ation. The maximum correspondence of the blocks was ob-
served in terms of the total number of operations, in particu-
lar the operations of index dereferencing of the pointer (px[]),
the number of its reads and writes, as well as mathematical
calculations. Table 2 shows fragments of the codes of the two
program blocks.

The blocks were executed sequentially, within the same
operational flow, which additionally created similar execution
conditions for them. The only difference built into the algo-
rithms is the offset value, which is counted from the beginning
of the array: px[shift] in the control block versus px[1] in the ref-
erence block. The value “1” was chosen to additionally equalize
the operational complexity, since using the offset “0” would not
involve pointer arithmetic when calculating the offset. The vari-
able offset value “shift” in the reference block is not used, but is
calculated in the same way as in the control block.

The semantics of the control block consists in sequential-
ly performing operations to read and write elements of the
array “px” that are at a distance of “jump_step” from each
other. Problems of this type can arise in matrix algorithms,
especially if the matrix is given by a one-dimensional data
array. Similar situations are also typical in spectral analysis
problems during transitions between multiple harmonics of
the spectrum.

The difference in execution times of the control and ref-
erence code blocks was used as the variable under study. Its
regression analysis tools allow, firstly, to distinguish between
the constant and dynamic components that affect the differ-
ence in code execution time. Taking into account the fact
that the compiled code can be slightly changed by compiler
optimization tools, it was assumed that there is a potential
for the remainder of service operations even in the difference
in execution times of the specified blocks. However, these
operations should be a constant value that can be detected by
regression tools.

Secondly, regression analysis allows to control the re-
liability of the obtained data by calculating the correlation
coefficient. This indicator detects data deviations (misses) that
inevitably arise in multitasking operating environments such
as personal computers or servers. Launching system processes,
especially those with high priority, can change the environ-
ment of application code execution and, as a result, affect its
execution time. However, high-priority processes usually have
an impulse nature, which leads to distortion of the results only

for individual experimental points. Such deviations will
lead to a decrease in the correlation coefficient of the
obtained data, due to which they can be detected and
leveled. In the framework of this work, when detecting
a reduced correlation of the data, the entire series of
measurements was repeated in full.

The nature of the dependence revealed by regres-
sion analysis does not play a fundamental role in the
task, since it is set at the stage of setting up the exper-

iment. The linear regression variant was chosen as the most
studied and effective in data analysis.

Accordingly, a linear change in the number of repetitions
of program blocks was provided. The number of points form-
ing the sample for correlation analysis was chosen for reasons
of maintaining statistical reliability at the level of 0.95. When
assessing the correlation bias at the level of (n–1)/n, n=20
was chosen.

Scaling of variables before conducting correlation anal-
ysis was carried out in order to ensure greater sensitivity of
the correlation coefficient. The coordinates of the points pro-
cessed by regression differ significantly in magnitude. Thus,
with an expected time of one processor operation at the level
of 1 ns, the ratio of the number of repetitions to the obtained
time (in seconds) will be close to 109. Scale factors are used
both for the measured time and for the number of repetitions.
In the following program fragment, they correspond to the
variables “x_scale” and “y_scale”:

Table	1

Characteristics	of	the	experimental	equipment

Ref CPU RAM OS
1-L

AMD A6-5200 APU 800MHz Hynix Semiconductor DDR3L-800 (8Gb)
Kali Linux 2024.3

1-W Windows 10, x64
2-L

Intel(R) Core(TM) i9-13900H 2.60 GHz Hynix Semiconductor LPDDR5-6400 (16Gb)
Kali Linux 2024.3

2-W Windows 11, x64
3-A Samsung Exynos 7870 1.6 GHz ARM Cortex-A53 Samsung LPDDR3-1600 SDRAM eMMC 5.1 (3Gb) Android 10
4-A Mediatek Helio G80 MT6769V 2.0 GHz ARM Cortex-A75 Hynix Semiconductor LPDDR4X-2133 eMMC 5.1 (4Gb) Android 11
5-W Intel(R) Core(TM) i3-7100U 2.40GHz Samsung DDR4-2400T (4Gb) Windows 10, x64
6-W Intel(R) Core(TM) i5-1035G4 1.50 GHz Samsung DDR4-2666 (16Gb) Windows 10, x64
7-M Intel(R) Core(TM) i5-8210Y 1.60 GHz Hynix Semiconductor LPDDR3-2133 (8Gb) macOS Sonoma 14.7.1
8-M Apple Inc TSMC M1 3.2 GHz Hynix Semiconductor LPDDR4X-4266 (16Gb) macOS Ventura 13.4.1
9-X Intel(R) Xeon(R) Gold 6342 2.80 GHz Samsung DDR4-3200 (1024Gb) Windows Server 10

Table	2

Control	and	reference	program	blocks

Control block Reference block
for (int j = 1; j < jump_count; j+=1) {

 shift = jump_step * j;
 px[shift] = px[shift] + px[shift];

}

for (int j = 1; j < jump_count; j+=1) {
 shift = jump_step * j;

 px[1] = px[1] + px[1];
}

27

Information and controlling system

for (int k = 1; k <= regr_count; ++k) {
 start = clock();
 for (int i = 0; i < regr_step * k; ++i) { Control block }
 end = clock();
 time1 = (double)(end - start) / CLK_TCK;

 start = clock();
 for (int i = 0; i < regr_step * k; ++i) { Reference block }
 end = clock();
 time2 = (double)(end - start) / CLK_TCK;

 x = regr_step * k * x_scale ;
 y = (time1 - time2) * y_scale;
}

The results of the code execution were stored in a file and
processed after its completion.

As a mathematical apparatus for processing experimental
data, the linear regression method was used, adapted to
computational problems. Formulas that use the deviation of
measured values from their average values look mathemat-
ically simpler, however, they require data processing in two
stages. In the first, the average values are calculated, in the
second, the deviations. For practical use, the following al-
gorithm was implemented for one pass of the program loop.

To formalize further expressions, let’s denote as x the
normalized number of iterations of the code repetition loop,
as y the normalized difference in execution times of the stud-
ied and reference loops. It is assumed that
between the values y and x, represented by
discrete experimental points yi and xi, there
should be a linear dependence in the form:

.N Ny a b x= +

The index N additionally emphasizes the
fact that the dependence coefficients are cal-
culated separately for each value of the array
tracing step N (“jump_step” in the program
fragments). In this case, the values of aN and
bN are defined as [8]:

2 ,y xx x xy
N

r xx x

s s s s
a

n s s
−

=
−

2 ,r xy x y

N
r xx x

n s s s
b

n s s
−

=
−

 (1)

where nr – the number of steps of the
regression analysis (the number of
experimental points, “regr_count” in the
program fragments). The following nota-
tions are also used in the formulas:

0
,

rn

x i
i

s x
=

= ∑
0

,
rn

y i
i

s y
=

= ∑
0

,
rn

xy i i
i

s x y
=

= ∑

2

0 0
,

r rn n

xx i i i
i i

s x x x
= =

= =∑ ∑ 2

0 0
.

r rn n

yy i i i
i i

s y y y
= =

= =∑ ∑

The value of the linear correlation coef-
ficient between y and x using the introduced
notations will be:

()()2 2
.r xy x y

xy

r xx x r yy y

n s s s
r

n s s n s s

−
=

− −
 (2)

(1) and (2) were chosen for reasons of optimization of the
number of calculations. They do not contain references to the
average values of the quantities x or y, which allows to carry out
calculations in one stage, together with the main experiments.
More common in the literature expressions involving average
values require data storage and two stages of processing – in
the first the average values are determined, in the second the
dependence coefficients themselves are calculated. This fact is
emphasized because different approaches can lead to different
final values of aN and bN, which differ within the error limits due
to the limited sample size. Insignificant deviations (about 1 %)
are possible when processing the data with other algorithms.
With the assumed statistical reliability at the level of 0.95, such
deviations will not affect the general conclusions.

5. Results of the study of the influence of structure size
on execution time

5. 1. Methodology for determining the execution
time of program instructions

At the beginning of the measurements, an analysis was con-
ducted of the dependence of the execution times of the control
and reference blocks, as well as their difference, on the parame-
ter “jump_count”, which determines the number of elements of
the array being iterated. In practical terms, this parameter can
correspond to the total number of elements in the array or its
cluster. The obtained data are presented in Fig. 1.

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

10 20 30 40 50 60 70 80 90 100 110 120 130 140

∆t
, m

s

jump_count

-0,008

-0,006

-0,004

-0,002

0

0,002

0,004

0,006

10 20 30 40 50 60 70 80 90 100 110 120 130 140

∆t
, m

s

jump_count

a

b

Fig.	1.	Graphs	of	the	dependence	of	the	time	difference	of	the	control	and	
reference	code	blocks	on	the	parameter	“jump_count”:		

a	–	absolute	value;	b	–	normalized	to	a	single	execution

Eastern-European Journal of Enterprise Technologies ISSN-L 1729-3774; E-ISSN 1729-4061 1/9 (133) 2025

28

As can be seen from Fig. 1, for values of “jump_count”
less than 90, unstable indicators of the specific difference
time are observed. For larger values, the indicators stop
changing and demonstrate a constant level. This may be
caused by a high contribution of measurement errors for
small numbers of repetitions, however, the given depen-
dence in itself justifies the relevance for a separate study.
Focusing on the task of studying the influence of the
dimensionality of data blocks on time, it was decided to
use the value from the beginning of the stability region:
jump_count=100. This value was used for all subsequent
experiments with all equipment.

The general method for determining the execution time
of program instructions, taking into account the above, can
be formulated as follows:

1. The initial value of “regr_step” is set (usually in the
range of 10000-100000) and “jump_count” (equal to 100 for
all experiments). The control and reference code blocks (Ta-
ble 2) are executed according to the scheme given in the
listing in Section 4. The execution time of each block should
be about 5–50 ms in order to reliably measure the time by
hardware means. If the execution time differs significantly,
the value of “regr_step” varies. For different executors, the
values of “regr_step” may differ due to different speeds.

2. The execution times of the control and reference blocks
are sequentially measured for each regression step (regr_step,
2regr_step, … 20regr_step), and the co-
efficients (1) are calculated based on the
results of the series.

3. The value of “N” (corresponding to
the program variable “shift”) is increased
by one. Repeat p. 2.

4. Repeat p. 3 for values of “N” from the
range 1–1050. The values of the obtained
coefficients aN are plotted on the graph
depending on “N”.

The implementation of the method was
performed using the C++ language, which
allowed the execution of the same code
on different hardware platforms with dif-
ferent operating systems. The data that is
iterated in different steps is implemented
in the form of an array of type “double”,
placed in the external memory for the pro-
gram – “heap”:

double*px=new double[1050*100],

where 1050 – the maximum iteration
step (N), 100 – “jump_count”, the numc-
ber of iteration steps. For other exper-
imental settings, these values can be
changed.

A separate experiment (item 2) was
carried out in the form of a series of
measurements with linearly distributed
values, which specify the number of code
block repetitions, with subsequent re-
gression analysis. As an example, Table 3
shows a series of experimental points ob-
tained for the W-2 equipment (Table 1).
As can be seen from Table 3, the choice
of the value of the “regr_step” parameter

affected the scaling of the variables and allowed them to be
brought to the same order of magnitude. This increases the
sensitivity of the correlation coefficient to deviations in any
coordinate and increases the confidence in the conclusions
obtained through it. For other equipment, other values of the
“regr_step” parameter were used, which took into account
the speed of the device and were selected experimentally.

The expressions applied to the data from Table 3
(for N=127) allowed to obtain the values a127=0.000034,
b127=1.57, rxy=0.995 for the 5-W equipment and a127=0.000677,
b127=0.046, rxy=0.276 for the 2-W equipment. The line with
the corresponding coefficients together with the experimental
points are shown in Fig. 2.

The linear correlation coefficient allows to assess the de-
gree of confidence in the obtained regression results. Thus,
in Fig. 2, a, the visual arrangement of the points and the
correlation coefficient close to unity (rxy=0.995) indicate a
high reliability of the calculated value b and confirmation of
the hypothesis of the difference in program execution times.
For Fig. 2, b, the situation is the opposite, which is expressed
by a much smaller coefficient (rxy=0.276). Accordingly, the
result for b obtained in this series of measurements cannot
be considered reliable, and the assumption regarding the
different execution times of the control and reference blocks
is not confirmed. A similar analysis was carried out for all
experimental series.

0

50

100

150

200

250

300

350

0 30 60 90 120 150 180 210

∆t
, m

s

nr∙104

a

-12
-10

-8
-6
-4
-2
0
2
4
6
8

0 6 12 18 24 30 36 42

∆t
, m

s

nr∙104

b

Fig.	2.	Experimental	points	from	Table	1	and	their	regression	lines:		
a	–	5-W	equipment;	b	–	2-W	equipment

29

Information and controlling system

Table	3

Results	of	a	series	of	measurements	for	5-W	and	2-W	
equipment	with	regr_count=20,	jump_count=100,		

jump_step=127

r nr∙104 t1, ms t2, ms ∆t, ms nr∙104 t1, ms t2, ms ∆t, ms

1 10 54 38 16 2 4.9 4.2 0.7

2 20 109 77 32 4 9.9 8.4 1.5

3 30 162 116 46 6 10.6 12.6 -2

4 40 215 153 62 8 20.2 16.7 3.5

5 50 266 193 73 10 24.9 21 3.9

6 60 323 231 92 12 30 25.1 4.9

7 70 373 270 103 14 34.2 29.3 4.9

8 80 428 307 121 16 39.1 33.5 5.6

9 90 501 346 155 18 40 37.7 2.3

10 100 538 383 155 20 48.4 41.8 6.5

11 110 616 458 158 22 47.9 46.1 1.9

12 120 709 496 213 24 50.9 50.2 0.7

13 130 770 514 256 26 54.7 54.4 0.3

14 140 773 595 178 28 55.5 58.6 -3

15 150 832 577 255 30 64.2 62.8 1.4

16 160 859 616 243 32 57.7 67 -9.3

17 170 936 656 280 34 68.7 71.1 -2.4

18 180 961 698 263 36 80.1 75.3 4.8

19 190 1019 742 277 38 84.4 79.7 4.7

20 200 1097 773 324 40 85.8 83.7 2.1

From a physical point of view, both regression coeffi-
cients (a and b) have a time dimension on the nanosecond
scale. For a reliable series of measurements, the value
b=1.57 ns corresponds to the difference in execution times
of one control and one reference block. Taking into account
the fact that 100 iterations of the array are measured in one
block, it is possible to estimate the average difference time of
one operation as 0.0157 ns or 15.7 picoseconds.

Having supplemented the above algorithm with a point
on the analysis of measured data, a general implementation
of the method for determining the execution time of pro-
gram instructions was obtained, designed to identify critical
data sizes and assess the degree of confidence in them.

5. 2. Experimental results of measuring code execu -
tion time for different devices

Measurements of the execution times of the control and
reference blocks, as well as their difference, depending on
the data size (N) with all other parameters unchanged, were
carried out for the equipment shown in Table 1. The results
were processed according to the method given in section 5. 1
and for each series the coefficient b (specific difference time
between code blocks) was determined. The summarized
data are presented in the form of graphs in Fig. 3. When
conducting experiments for all types of equipment, the same
code specified in the previous section was used. In order to
shorten the reference to the equipment, the field “Ref” from
Table 1 was used.

For the 8-M equipment, which has a laptop form factor,
the study was performed in two modes: 8-M-A when oper-

ating from the power supply, and 8-M-B when operating
from the built-in rechargeable battery. The graphs are
presented one below the other for greater convenience of
visual comparison.

From the preliminary analysis of the obtained results
in Fig. 3, it is immediately possible to conclude that the
general nature of the phenomenon of extreme growth
of code execution time at certain data sizes, detected
for all experiments, is confirmed. The extrema have a
pronounced local nature, that is, the growth of time is
observed at a separate point, and not in its vicinity. Typ-
ical values of the dimension N for blocks for which the
growth of time is observed are 128, 256 and 512, which
corresponds to an integer power of the number 2k. For
individual graphs (Fig. 3, a–e, k), extrema are also ob-
served for N=64, 192, 384, etc., which corresponds to the
form 2k+2k–1. The execution time is restored to the average
value after passing the extreme point.

The situation presented in [5] with multiple extrema
on the dependence graph was manifested for 1-W/1-L
equipment (Fig. 3, a, b) with DDR3 and 3-A (Fig. 3, e) –
LPDDR3 memory. For other equipment, the number of
extreme points is much smaller, but does not completely
disappear. However, for one of the most modern 2-W/2-L
equipment (Fig. 3, c, d) with DDR5, the number of extrema
increases again, but with a reduced amplitude compared to
the main ones.

The “step” effect, which consists in a smooth increase
in the average difference execution time with increasing N,
is observed for Android OS (3-A, 4-A), MacOS (7-M), serv-
er 9-X, as well as for the oldest 1-L/1-W equipment. For
the graphs of equipment 2-L, 2-W, 5-W, 6-W, the “steps”
are not observed and the background of the graph is
horizontal.

The number of extrema and their amplitude is different
on different graphs (Fig. 3), however, the most pronounced
extrema are traced for N=512 and N=1024, other positions
are either less pronounced or absent on individual graphs. In
general, the hypothesis of the existence of exceptional sizes
of program structures, which lead to an extreme increase
in the time of their program processing, can be considered
confirmed.

Experiments conducted on the same equipment under
the control of different operating systems, indicate some
differences in the general dependence graphs. For the
pair (1-L)-(1-W) (Fig. 3, a, b) there are almost no differ-
ences. It is only possible to state that under the control of
the Linux OS, the number of intermediate extrema of the
execution time slightly increases compared to the Win-
dows OS. This is especially noticeable in the right part of
the graphs (for larger values of N). At the same time, the
situation for the pair of graphs (2-L)-(2-W) (Fig. 3, c, d) is
the opposite: under the control of the Linux OS, the num-
ber of local extrema decreases, especially noticeable in the
left part of the graph. Also, for the second pair under the
control of the Linux OS, a slightly smaller average differ-
ence time is observed (the graph lies closer to the abscissa
axis), however, at the extreme points the value is larger
than that for the Windows OS. Accordingly, it is impossi-
ble to note the obvious influence of the OS on the nature
of program execution, however, the differences found
can be considered as an update for further research in
this area.

Eastern-European Journal of Enterprise Technologies ISSN-L 1729-3774; E-ISSN 1729-4061 1/9 (133) 2025

30

0
1
2
3
4
5
6
7
8
9

0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

b, ns

N 0
1
2
3
4
5
6
7
8
9

0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

b, ns

N

a b

0

0,5

1

1,5

2

2,5

3

3,5

0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

b, ns

N -1

0

1

2

3

4

5

0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

b, ns

N

c d

-5

0

5

10

15

20

0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

b, ns

N
0

5

10

15

20

25

0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

b, ns

N

e f

-2

0

2

4

6

8

10

12

0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

b, ns

N
-2,5

-0,5

1,5

3,5

5,5

7,5

0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

b, ns

N

g h

0

1

2

3

4

5

6

7

8

0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

b, ns

N
-2,5
-2

-1,5
-1

-0,5
0

0,5
1

1,5
2

2,5

0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

b, ns

N

i j

-0,00015

-0,0001

-0,00005

0

0,00005

0,0001

0,00015

0,0002

0,00025

0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

b, ns

N
-4

-3

-2

-1

0

1

2

3

0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

b, ns

N

k l

Fig.	3.	Experimental	graphs	of	the	dependence	of	the	regression	coefficient	b	for	the	differential	code	execution	time		
(in	nanoseconds)	on	the	size	of	the	data	block	N	for	the	equipment:	a	–	1-L;	b	–	1-W;	c	–	2-L;	d	–	2-W;	e	–	3-A;	f	–	4-A;		

g	–	5-W;	h	–	6-W;	i	–	7-M;	j	–	8-M-A;	k	–	9-X;	l	–	8-M-B	(Table	1)

31

Information and controlling system

5. 3. Assessment of the degree of influence of the
dimensionality of structures on the execution time of
programs

Estimating the specific influence of this difference re-
quires a regression analysis for both the difference time and
the execution times of the blocks themselves. After analyzing
the data from Table 3 (part 1), it was obtained: for the ref-
erence block bref=5.49 ns, for the control block bctr=3.92 ns.
Accordingly, the specific influence (calculated on the average
value) will be:

2 0.33,
ref ctr

bb
b b

δ = ≈
+

which is similar to the estimate of the deviation of 33 %.
For the second part of Table 3, the small correlation co-

efficient (rxy=0.276), as well as the visual arrangement of the
data (Fig. 1, b) do not allow to state a guaranteed dependence
in the execution time of two different code blocks. The sign of
the difference changes at different points, not even allowing
to state that its nature is unambiguous. Accordingly, the as-
sessment of the influence of the time difference was not car-
ried out. This fact is the basis for the statement about the ab-
sence of an unambiguous manifestation of the difference in
the execution time of program blocks for their arbitrary size.
It seems logical to separate the means of analyzing the results
with the presence and absence of the specified phenomenon.

Detailed data on all points of all series of experiments are
not given within the text of the work. The deviation values
indicated in Table 3 are typical for all cases, the difference
lies in the absolute time associated with the speed of the
equipment. Some of the series have a high correlation coef-
ficient, which confirms the hypothesis with the deviation of
the execution time of the control block at the level of 30–60 %
(except for extreme points). The other part does not show a
guaranteed dependence at a low correlation coefficient. This
is explained in more detail in Section 6 of the work.

The graphs of Fig. 3, h–l, which demonstrate a stable neg-
ative average value of the difference time, only for individual
extreme points acquiring a positive value, attract special
attention.

Nevertheless, for all experiments, extreme points N=512
and N=1024 were found. At these points, the linear correla-
tion coefficient confirms the hypothesis of the deviation of
the execution time. In relative terms, the difference from
the average value is at least 2 times greater (equipment 4-A),
which correlates with some conclusions of the work [3]. For
most situations, an increase of tens of times is observed, and
for equipment 6-W, 8-M and 9-X it generally changes its char-
acter, deviating in the opposite direction from the average
value.

Table 4 summarizes the results for the last points of the
linear regression series for different equipment near N=512
(for values 511, 512 and 513). These results correspond to the
longest measurements and allow to estimate the execution
time of the blocks themselves, and not just the difference
between them. The absolute values of the data of different
series were chosen for reasons of regression normalization,
therefore they are not directly comparable with each other.

A more detailed analysis shows that the increase in
the block operation time can vary from 1.6 times (3-A) to
3.6 times (4-A, 5-W). The difference time has a wider range
of coefficient changes - from 1.9 (4-A) to 132 (5-W). Moreover,
for the data of 6-W, 9-X and partly for 8-M, in addition to the

increase in time, a change in its sign is observed from neg-
ative to positive. The effect of the change in sign is visually
noticeable on the corresponding graphs in Fig. 3. The effect
of the extremum in such experiments is better observed in
the change in the absolute execution time of the blocks (t1, t2)
in Table 4. With a relatively constant time value for the refer-
ence block (t2), the time of the control block (t1) demonstrates
an increase at a value of 512. In relative terms, the growth
coefficient is 1.36 for 8-M and 6.18 for 9-X.

Table	4

Results	of	direct	time	measurement	near	point	N=512

r t1, ms t2, ms ∆t, ms t1, ms t2, ms ∆t, ms
Equip: 1-L 2-L

511 66.0 177.8 111.9 5.4 89.1 83.7
512 157.0 269.0 112.0 169.6 253.4 83.8
513 60.7 172.6 111.9 6.4 90.1 83.7

Equip: 3-A 4-A
511 76.1 430.1 354.0 374.9 656.1 281.2
512 217.9 571.8 353.9 726.9 1007.4 280.4
513 72.9 426.7 353.9 377.3 657.8 280.5

Equip: 5-W 6-W
511 15.0 783.0 768.0 –46.0 521.0 567.0
512 1992.0 2763.0 771.0 1263.0 1826.0 563.0
513 –15.0 785.0 800.0 –52.0 510.0 562.0

Equip: 7-M 8-M-A
511 15.0 227.4 212.4 –1.98 1.57 3.55
512 365.7 559.6 193.8 –1.37 2.13 3.50
513 39.6 232.1 192.5 –1.98 1.57 3.55

Equip: 8-M-B 9-X
511 –3.19 2.51 5.71 -0.064 0.056 0.120
512 –2.27 3.43 5.70 0.227 0.346 0.119
513 –3.19 2.52 5.71 –0.062 0.057 0.119

The power source can also affect the overall results.
Thus, a comparison between graphs 8-M-A and 8-M-B shows
a change in the background time of the graph from approx-
imately –2 ns to –3 ns. However, the general appearance of
the graphs does not change significantly and is not reflected
in the positions of the extrema. The coefficient of increase in
time in the extrema also does not change. This is most likely
caused by a change in the processor clock frequency in the
direction of decrease when working with a battery, which can
be compared with the effect of the scale factor of the graph
on the ordinate axis.

Also, from Table 4 it can be seen that the extrema have a
clearly pronounced local character, that is, the magnitude of
the operating time returns to the previous level, as before the
increase, at the next point after the increase. In other words,
the execution time of a program with a block dimension of
N=512 may differ from that for N=513 by several times, and
an unusual conclusion is that for a larger value of N the exe-
cution time will be smaller.

6. Discussion of the results regarding the hypothesis
of the existence of exceptional sizes of data structures,
which lead to an extreme increase in the time of their

program processing

The implementation of the method for measuring the
execution time of the program code has shown a number of

Eastern-European Journal of Enterprise Technologies ISSN-L 1729-3774; E-ISSN 1729-4061 1/9 (133) 2025

32

features, which are shown in Fig. 1. In Fig. 1, b (normalized
time of a single operation), three areas with different behav-
ior of the graph can be visually distinguished. In the first
area, the time increases evenly, in the second it demonstrates
unstable behavior, and in the third it reaches a constant
value. The first part can be explained by the contribution of
the high-speed, but small-sized processor cache. With the
growth of the volume of data being processed, its contri-
bution decreases, which leads to a gradual increase in the
total code execution time. The third area demonstrates the
expected behavior and does not require explanation. While
the second part of the graph with the number of repetitions
(jump_count) in the range of 55–90 has a number of extrema,
the nature of which requires a separate study. In order to
eliminate this effect, further studies were conducted outside
the instability region. When using the method in practice on
equipment that differs significantly from Table 1, it is rec-
ommended to conduct similar studies before performing the
main measurements.

Single series of measurements of the difference time of
the control and reference code blocks showed that not all
series have the same behavior. The most typical situations
are shown in Fig. 2 and Table 3 and can be divided into two
groups: (Fig. 2, a) the execution time of the control block
always has the same nature of deviations from the reference
and (Fig. 2, b) the nature of the deviations is not determinis-
tic. The same nature is manifested for equipment with DDR3
memory, while non-deterministic – for DDR5. For DDR4,
both types of behavior are observed on different equipment.
However, at points with extreme time increases for all series,
the behavior becomes deterministic – the execution time of
the control block clearly exceeds the execution time of the ref-
erence one. This is confirmed by the high linear correlation
coefficient in the series at the level of 0.995–0.999.

The results of different series, grouped by type of equip-
ment, are shown in Fig. 3 and demonstrate several facts
that require more detailed discussion. The distinct effects of
changing the code execution time for different block sizes,
identified in [5], are partially confirmed. The main hypothe-
sis regarding the existence of exceptional sizes of data struc-
tures that lead to an extreme increase in the time of their
software processing is fully confirmed for all experiments.

The numerical values of the deviation of the code execu-
tion time with different data block sizes (1.6–3.6 times) corw-
relate with the deviations in the system simulation time given
in [3] (by 2 times). This, firstly, can be proposed as a possible
explanation of the nature of the deviations and, secondly,
expands the practical significance of the obtained results on
the problem of system simulation.

The appearance of extrema on the graphs of the depen-
dence of the execution time on the block sizes was found for
all types of equipment. The independence of the essence of
the effect from the operating system and processor allows to
suggest that the nature of the effect comes from the RAM. Of
the potential causes of the phenomenon stated in [5], prefer-
ence should be given to the increased frequency of RAS (Row
Address Strobe) signals. The duration of RAS is 2–5 times
longer than CAS (Column Address Strobe) signals, the supply
of which is accompanied by each memory read [9]. The mags-
nitude of the difference in the duration of the RAS and CAS
signals also correlates with the obtained values of the time de-
viation, which may indicate the correctness of the assumption.

At the same time, the role of the control bytes of the vir-
tual address space, characteristic of the Windows operating

system [5], can be considered insignificant due to the mani-
festation of deviation for different operating systems.

The largest number of extreme points is observed for the
oldest (among the selected) technology DDR3. The smallest
is for DDR4. But for DDR5, an increase in the number of ex-
tremes is again observed, however, with a smaller amplitude.
This fact makes additional studies of devices with this type
of memory relevant.

Another “step” effect, which consists in a smooth in-
crease in the average “background” difference time, is
observed irregularly. It is not possible to unambiguously
determine the characteristics of the equipment by which this
effect manifests itself or, conversely, is absent. The absence
of a “step” is characteristic of DDR5, while for DDR3 and
LPDDR4X this phenomenon manifests itself. For DDR4 tech-
nology, both types of graphs are observed. It can be assumed
that this may be associated with the multi-channel memory
operation mode and buffer sizes of different levels. However,
to confirm the assumption, separate studies with appropriate
selection of experimental equipment characteristics are also
required. At the moment, the lack of a reliable explanation
for the “step” effect can be attributed to the shortcomings of
this study.

The results of direct time measurement, partially present-
ed in Table 4, made it possible to assess the degree of influ-
ence of an unsuccessful choice of block size with an extreme
size on the total code execution time. The data vary in a wide
range. For the difference time of the control and reference
blocks, the deviation coefficient is in the range from 1.6 to
3.6 for different equipment. For the absolute execution time
of the control block, the time increase coefficient belongs to
a much wider range of 1.9–132. It is not excluded that other
types of computing equipment can expand the obtained lim-
its of the coefficients when conducting similar experiments.

In any case, the algorithmic solution proposed in the
work allows for practical software diagnostics of existing
equipment and determining its characteristic effects and
their parameters. This will allow avoiding potential dete-
rioration of program performance by adjusting the block
sizes used to feed data. Or, if it is impossible to change the
software, justify hardware changes. The objectivity of the ob-
tained data is ensured by the reliable mathematical apparatus
of differential analysis with linear regression.

Also, in terms of the practical significance of the obtained
results, it can be noted that the block sizes corresponding to
extreme points (2k bits) are typical for cryptography prob-
lems [10]. Elements of precisely such sizes are the main data
structures in hashing or block encryption algorithms. More-
over, the algorithms themselves are often based on repeated
repetition of the same type of block operations, forming cy-
cles similar to those considered in the work. Algorithms that
process streaming data (audio, video, and other streams) also
have similar behavior [11]. The phenomenon of time devia -
tion was first observed in matrix multiplication operations,
which extends the practical use of the results to algorithms of
the corresponding type. It is considered advisable to conduct
mandatory studies on the influence of the size of the data
representation structures on the running time of algorithms
of this type.

The fact of the recovery of the code running time after
passing extreme points can be used as a recommendation to
avoid the corresponding dimensions of the structures or the
sequence of their placement. For example, when iterating an
array in steps multiple of 513, the increase in running time

33

Information and controlling system

is not observed on any of the considered equipment. Accord-
ingly, ignoring the last (513th) element will allow operating on
data with a dimension of 512, but without increasing the run-
ning time. As a result, it is possible to recommend increasing
the dimension of the structure that turned out to be extreme,
in order to avoid an increase in the code execution time,
while maintaining the proper information capacity.

The conducted studies are limited by electronic comput-
ing equipment capable of executing imperative-type software
with direct access to the performer’s RAM during its oper-
ation. The maximum amount of RAM requested in all ex-
periments was 6,720,000 bits (~820 KB), the executable code
had a size of about 300 KB. Although the methodology can
be modified and for smaller amounts of memory, individual
studies were not conducted.

A promising development of this study may be conduct-
ing experiments with specialized equipment samples. First,
to increase the number of devices with the latest memory
types, in particular, DDR5. Second, to focus on the availabil-
ity and parameters of processor cache memory of various
levels and its contribution to the resulting program runtime.
If there is a need to study performers with small amounts
of RAM (less than 1 MB), it will be necessary to review the
numerical parameters of the methodology. The theoretical
part of the experiments described in the work is considered
sufficient and does not require changes.

7. Conclusions

1. A methodology for studying the operating time of prop-
gram code fragments has been implemented, its implemen-
tation in C++ is given. The methodology is a combination of
the mathematical apparatus of differential analysis and linear
regression. Applying the methodology to iteration operations
of dynamic arrays of type double allowed to identify situations
in which the factor of the size or step of iterations has a con-
firmed influence. The greatest influence was found for RAM
with DDR3 and LPDDR4X technologies, while for DDR5 the
influence is much less common; for DDR4 the data differ in
different devices. For none of the experiments was a complete
absence of deviation registered, which confirmed the hypoth-
esis of the existence of exceptional sizes of program structures
that lead to an extreme increase in their processing time.

2. Experiments conducted for different equipment have
shown a different behavior of the dependence of the dif-

ference time on the data dimension. The most cases were
registered when an extreme increase in time was observed
when processing data with a dimension multiple of powers of
two 2k or their combinations 2k+2k–1. Most often, deviations
appear for DDR3 and some DDR4 models. For DDR5, the de-
viation appears at sizes that are multiples of 512. For all con-
sidered technologies, extremes of the increase in operating
time were found for step sizes of 512 and 1024 array elements.

3. The magnitudes of deviations vary from 1.6 to 3.6 times
(for difference time) and in some experiments reach a factor
of 132 for absolute time. However, the increase is local in na-
ture and the average operating time is restored after passing
the extreme point. This allowed to formulate a recommenda-
tion to avoid program structures with a dimension that is a
multiple of the extreme in cycles, especially when the number
of iterations approaches or exceeds 100. Adjustment by in-
creasing the size of the structure by one unit while ignoring
the last element will lead to the leveling of the detected effect.
The difference in the positions of the extreme points for dif-
ferent equipment gives grounds to recommend conducting
preliminary studies by running software on it that imple-
ments the methodology described in the work.

Conflict of interest

The authors declare that they have no conflict of interest
regarding this study, including financial, personal, author-
ship or other, which could affect the study and its results
presented in this article.

Financing

The study was conducted without financial support.

Data availability

The manuscript has no related data.

Use of artificial intelligence

The authors confirm that they did not use artificial intel-
ligence technologies when creating the presented work.

References

1. Cheng, G., Wan, Z., Ding, W., Sun, R. (2023). Memory Allocation Strategy in Edge Programmable Logic Controllers Based on Dynamic
Programming and Fixed-Size Allocation. Applied Sciences, 13 (18), 10297. https://doi.org/10.3390/app131810297

2. de Lecea, A. F., Hassan, M., Mezzetti, E., Abella, J., Cazorla, F. J. (2023). Improving Timing-Related Guarantees for Main Memory
in Multicore Critical Embedded Systems. 2023 IEEE Real-Time Systems Symposium (RTSS), 265–278. https://doi.org/10.1109/
rtss59052.2023.00031

3. Over, A., Strazdins, P., Clarke, B. (2005). Cycle Accurate Memory Modelling: A Case-Study in Validation. 13th IEEE International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, 85–96. https://doi.org/10.1109/
mascots.2005.22

4. Fletchery, C. W., Ren, L., Yu, X., Van Dijk, M., Khan, O., Devadas, S. (2014). Suppressing the Oblivious RAM timing channel while
making information leakage and program efficiency trade-offs. 2014 IEEE 20th International Symposium on High Performance
Computer Architecture (HPCA), 213–224. https://doi.org/10.1109/hpca.2014.6835932

5. Samoilenko, D. (2011). Memory tracing influence on algorithm complexity. Electrotechnic and computer systems, 4 (80), 209–212.
Available at: https://eltecs.op.edu.ua/index.php/journal/article/view/907

Eastern-European Journal of Enterprise Technologies ISSN-L 1729-3774; E-ISSN 1729-4061 1/9 (133) 2025

34

6. Asifuzzaman, K., Verdejo, R. S., Radojković, P. (2022). Performance and Power Estimation of STT-MRAM Main Memory with Reliable
System-level Simulation. ACM Transactions on Embedded Computing Systems, 21 (1), 1–25. https://doi.org/10.1145/3476838

7. Worlanyo Gbedawo, V., Agyeman Owusu, G., Komla Ankah, C., Ibrahim Daabo, M. (2023). An Overview of Computer Memory
Systems and Emerging Trends. American Journal of Electrical and Computer Engineering, 7 (2), 19–26. https://doi.org/10.11648/
j.ajece.20230702.11

8. Simple Linear Regression. Available at: https://www.ncl.ac.uk/webtemplate/ask-assets/external/maths-resources/statistics/
regression-and-correlation/simple-linear-regression.html

9. Mukundan, J., Hunter, H., Kim, K., Stuecheli, J., Martínez, J. F. (2013). Understanding and mitigating refresh overheads in high-
density DDR4 DRAM systems. ACM SIGARCH Computer Architecture News, 41 (3), 48–59. https://doi.org/10.1145/2508148.2485927

10. Sousi, A.-L., Yehya, D., Joudi, M. (2020). AES Encryption: Study & Evaluation. Rafik Hariri University. Available at: https://www.
researchgate.net/publication/346446212_AES_Encryption_Study_Evaluation

11. Laghari, A. A., Shahid, S., Yadav, R., Karim, S., Khan, A., Li, H., Shoulin, Y. (2023). The state of art and review on video streaming.
Journal of High Speed Networks, 29 (3), 211–236. https://doi.org/10.3233/jhs-222087

