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The object of the study is the phenomenon of an 
extreme increase in the time of program code execu-
tion at certain sizes of data processed by it. The prob-
lem to be solved was to verify the general nature of the 
phenomenon for different equipment.

The evolution of modern computing technology, its 
RAM often takes place in an extensive way – by increas-
ing the number of structural elements. Problems can 
manifest themselves in the fact that periodic processes 
in the code begin to exhibit a resonance effect, which 
leads to different indicators of data processing time, 
the sizes of which are multiples and non-multiples of 
the block structures. The work is studied the influence 
of the dimensionality of data blocks on the speed of 
execution of the cycle that iterates them. The tools of 
differential regression analysis are used. Experiments 
were carried out on equipment with different archi-
tecture, type and amount of RAM, running different 
operating systems. In all of them resonant effects were 
revealed. It led to differences in the average code exe-
cution time by 1.6–3.6 times, and the time of memory 
access operations increased up to 136 times. Special 
attention was drawn to the fact that the increase in 
operating time was found for structures whose size is a 
power of two multiple (2N), specifically for the values 
512 and 1024. These dimensions are present in many 
types of tasks, in particular, cryptographic purposes 
or stream-based data processing. Following the recom-
mendations given in the paper can help identify time 
delays in applications, and improve the performance 
of applications by eliminating them

Keywords: program performance, computer mem-
ory (RAM), operation time, linear regression, differ-
ential analysis

UDC 004.62
DOI: 10.15587/1729-4061.2025.322989

How to Cite: Danylets, Y., Korchevskyi, D., Novak, S., Samoilenko, D., Sulima, M. (2025). 
Estimation of software structures dimension influence on data processing time increasing. 

Eastern-European Journal of Enterprise Technologies, 1 (9 (133)), 24–34.  
https://doi.org/10.15587/1729-4061.2025.322989

Received 27.11.2024
Received in revised form 23.01.2025
Accepted date 10.02.2025
Published date 28.02.2025

1. Introduction

The speed of computing systems has been and remains 
one of the most relevant indicators of the quality of their 
work. The speed of program code execution is influenced 
by a large number of factors. These include both hardware 
indicators such as the clock frequency of the processor or the 
bit rate of the RAM, and the complexity of the program algo-
rithms used in the code. The total code execution time can 
also be affected by dimensional characteristics – the volume 
of data structures processed by the program. Moreover, it is 
not about the total volume of data, the dependence on which 
seems obvious, but about the size of single, relatively small 
structures, blocks into which the processed data is divided.

The cluster principle of organizing the RAM of comput-
ing devices (computers, smartphones, tablets, etc.) can be 
considered the basis for the fact that the specified depen-
dence will not be monotonic. It is expected that there will be 
a different effect for structures whose sizes are multiples and 
not multiples of the memory cluster. Moreover, it seems log-
ical to assume that structures that are completely embedded 
in memory clusters are more optimal and faster to process. 
Accordingly, when graphically displaying the dependence 
of the operating time on the size of the structure, certain 
“failures” are expected – local minima of the operating time 

for multiples of the cluster of values. However, published ex-
perimental studies from time to time allow to identify cases 
that indicate completely opposite phenomena – deviation of 
time indicators [1–6].

In addition to the general structure, RAM can differ in 
manufacturing technologies, manufacturer, and access to 
it can be regulated by different hardware environments, 
operating systems. All this can affect the time indicators 
of application programs with data at different sizes of their 
structures in different ways.

It is considered relevant to conduct a series of studies on 
the influence of the dimensionality of program structures on 
the speed of their processing with the involvement of per-
formers with different architectures, hardware and software, 
type and size of RAM, as well as its manufacturer.

2. Literature review and problem statement

In [1], research was conducted, part of which was to iden-
tify the influence of the size factor on the speed of program 
execution. The influence of different ways of placing blocks 
in the performer’s memory on this time was studied. At the 
same time, the work focused on analyzing the total size of the 
available memory and comparing it with the amount of data 
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different hardware environments – processor, operating sys-
tem, etc. It is also considered advisable to create a universal 
testing methodology for different performers with different 
hardware components in order to identify critical indicators 
of data dimensionality and their targeted avoidance.

3. The aim and objectives of the study

The aim of the study is to experimentally test the hy-
pothesis of the existence of exceptional sizes of program 
structures, which lead to an extreme increase in the time of 
their program processing. If the hypothesis is confirmed, this 
will make it possible to avoid an increase in the execution 
time of programs by purposefully correcting the sizes of their 
program structures.

To achieve the aim, the following objectives were set:
– to implement a methodology for determining the exex-

cution time of program instructions with different sizes of 
structures, to implement tools to confirm or refute the stated 
hypothesis;

– to conduct a series of experiments measuring the exex-
cution time of programs depending on the dimensionality of 
program structures, to use different hardware and software 
equipment; to investigate the nature of the hypothesis;

– to assess the degree of influence of the dimensionality 
of structures on the execution time of programs.

4. Materials and methods

The object of the study was the phenomenon of extreme 
increase in the time of program code execution at certain 
sizes of data processed by it. The hypothesis of the study 
is the inevitability of the existence of exceptional sizes 
of data structures, which lead to an extreme increase in 
the time of their program processing, for any electronic 
computing equipment. It is assumed that the number, size 
and density of exceptional sizes may differ in different 
equipment, the very fact of the presence of these structures 
is subject to verification. The hypothesis is verified by the 
inductive method, using a limited number of experimental 
observations on the available equipment. As a simplifica-
tion, the time of code execution in the work is considered 
to be the time measured by software means. Additional 
control of physical time by certified measuring means was 
not carried out.

Focusing on the maximum practicality of the results ob-
tained, a number of various computing devices were selected 
for conducting experiments. The main selection criterion was 
the prevalence of this type of device in the field of modern ap-
plied programming. Accordingly, the equipment under study 
included personal computers, in particular, in the form factor 
of laptops, tablets and smartphones. According to advertis-
ing restrictions, the brands of manufacturers and models of 
devices are not given in the work, only the characteristics of 
their processors (CPU), random access memory (RAM) and 
operating system (OS) are noted. The corresponding data are 
summarized in Table 1. To refer to a specific device in the 
text of the work, the parameter “Ref” is used, also included 
in the table.

In order to determine the time of operations that are close 
to the basic processor operations, a method based on differen-
tial analysis and linear regression was used.

used in the program. At the same time, a detailed impact of 
the block dimension was not carried out. Presumably, due to 
the lack of a direct goal of considering the impact of the block 
dimension on the time graphs in the work, extreme time de-
viations were not registered.

A different approach to the problem was taken in [2]. 
A detailed analysis of the time indicators of operation in 
the memory of competing parallel tasks was carried out. 
Modern (at the time of writing the article) types of micro-
circuits (DDR4) were selected for the study and specialized 
equipment was used to conduct the study. However, the 
indicators obtained in the work were ultimately expressed in 
units of internal cycles. On the one hand, this is universal, 
but on the other hand, it does not provide for the possibility of 
differences in the actual completion time of different cycles. 
Also, the focus of the study was precisely the effects of task 
competition, the factor of the influence of the dimensionality 
of tasks on time indicators was not studied.

In work [3], deviations in time indicators were found 
when modeling real systems using computational ones. The 
study measured that the deviation can reach a scale factor 
of 2. This deviation is explained by the hardware features 
of the system used for modeling. However, the fact of the 
influence itself was not studied in detail, as were the features 
associated with the dimensionality of the data blocks of the 
models.

The fact of differences in the processing time of different 
data blocks was studied in work [4] from the point of view of 
information security in relation to potential data leakage. At 
the same time, the aim of the work was focused on issues of 
an economic nature and a detailed analysis of the influence 
of the dimensionality of the blocks on time was not carried 
out. A direct assumption was used regarding the increase in 
running time for larger data sizes.

The very fact of the influence of dimensionality on code 
execution time was demonstrated in [5]. It was found that at 
certain block sizes, an extreme increase in program execution 
time is observed. A hypothesis was expressed regarding the 
prevalence of the detected behavior. At the same time, only 
one type of executor was studied in detail in the work, and at 
present it can be stated that the technology used in the work 
is outdated. The work also used an imperfect mathematical 
research apparatus that did not separate the contributions of 
various factors to the total program execution time.

In [6], on the contrary, a detailed study of the ultra-new 
type of STT-MRAM RAM was conducted. In the process, 
a deviation was found in the key time indicators of its op-
eration. This can be considered indirect evidence that the 
dependence on the dimensionality of data blocks remains in 
new microcircuits. However, the influence of the dimension-
ality of information units on these indicators was not studied 
in the work. The work is also focused on a separate type of 
memory chips, which justifies the feasibility of comparative 
analysis with other technologies.

Trends in new RAM technologies are disclosed in [7]. 
A thorough study of various types and areas of use of mod-
ern developments has been conducted. However, the time 
indicators characterizing the mentioned technologies did 
not include information on time deviations associated with 
dimensional factors.

All this gives grounds to argue that it is advisable to con-
duct a study devoted to the analysis of the influence of the 
dimensionality of data blocks on the deviation of time indica-
tors of program code execution for modern equipment with 
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The multiple repetition method used in the previous 
work [5] takes into account all components in the total op-
eration time – computational (mathematical), management 
(organization of cycles) and, in fact, memory tracing. Correct 
conclusions about individual components can be obtained 
only when ensuring the invariance of others. That is, the 
analysis of the impact of memory tracing operations on the 
total time can be objectively carried out only with the same 
number of cycle repetitions, as well as with a constant num-
ber of mathematical operations within each of the cycles. 
This limits the study of the behavior of algorithms when 
other parameters change.

To implement differential comparison, two code blocks 
were compiled, differing only in the memory tracing oper-
ation. The maximum correspondence of the blocks was ob-
served in terms of the total number of operations, in particu-
lar the operations of index dereferencing of the pointer (px[]), 
the number of its reads and writes, as well as mathematical 
calculations. Table 2 shows fragments of the codes of the two 
program blocks.

The blocks were executed sequentially, within the same 
operational flow, which additionally created similar execution 
conditions for them. The only difference built into the algo-
rithms is the offset value, which is counted from the beginning 
of the array: px[shift] in the control block versus px[1] in the ref-
erence block. The value “1” was chosen to additionally equalize 
the operational complexity, since using the offset “0” would not 
involve pointer arithmetic when calculating the offset. The vari-
able offset value “shift” in the reference block is not used, but is 
calculated in the same way as in the control block.

The semantics of the control block consists in sequential-
ly performing operations to read and write elements of the 
array “px” that are at a distance of “jump_step” from each 
other. Problems of this type can arise in matrix algorithms, 
especially if the matrix is given by a one-dimensional data 
array. Similar situations are also typical in spectral analysis 
problems during transitions between multiple harmonics of 
the spectrum.

The difference in execution times of the control and ref-
erence code blocks was used as the variable under study. Its 
regression analysis tools allow, firstly, to distinguish between 
the constant and dynamic components that affect the differ-
ence in code execution time. Taking into account the fact 
that the compiled code can be slightly changed by compiler 
optimization tools, it was assumed that there is a potential 
for the remainder of service operations even in the difference 
in execution times of the specified blocks. However, these 
operations should be a constant value that can be detected by 
regression tools.

Secondly, regression analysis allows to control the re-
liability of the obtained data by calculating the correlation 
coefficient. This indicator detects data deviations (misses) that 
inevitably arise in multitasking operating environments such 
as personal computers or servers. Launching system processes, 
especially those with high priority, can change the environ-
ment of application code execution and, as a result, affect its 
execution time. However, high-priority processes usually have 
an impulse nature, which leads to distortion of the results only 

for individual experimental points. Such deviations will 
lead to a decrease in the correlation coefficient of the 
obtained data, due to which they can be detected and 
leveled. In the framework of this work, when detecting 
a reduced correlation of the data, the entire series of 
measurements was repeated in full.

The nature of the dependence revealed by regres-
sion analysis does not play a fundamental role in the 
task, since it is set at the stage of setting up the exper-

iment. The linear regression variant was chosen as the most 
studied and effective in data analysis.

Accordingly, a linear change in the number of repetitions 
of program blocks was provided. The number of points form-
ing the sample for correlation analysis was chosen for reasons 
of maintaining statistical reliability at the level of 0.95. When 
assessing the correlation bias at the level of (n–1)/n, n=20 
was chosen.

Scaling of variables before conducting correlation anal-
ysis was carried out in order to ensure greater sensitivity of 
the correlation coefficient. The coordinates of the points pro-
cessed by regression differ significantly in magnitude. Thus, 
with an expected time of one processor operation at the level 
of 1 ns, the ratio of the number of repetitions to the obtained 
time (in seconds) will be close to 109. Scale factors are used 
both for the measured time and for the number of repetitions. 
In the following program fragment, they correspond to the 
variables “x_scale” and “y_scale”:

Table	1

Characteristics	of	the	experimental	equipment

Ref CPU RAM OS
1-L

AMD A6-5200 APU 800MHz Hynix Semiconductor DDR3L-800 (8Gb)
Kali Linux 2024.3

1-W Windows 10, x64
2-L

Intel(R) Core(TM) i9-13900H 2.60 GHz Hynix Semiconductor LPDDR5-6400 (16Gb)
Kali Linux 2024.3

2-W Windows 11, x64
3-A Samsung Exynos 7870 1.6 GHz ARM Cortex-A53 Samsung LPDDR3-1600 SDRAM eMMC 5.1 (3Gb) Android 10
4-A Mediatek Helio G80 MT6769V 2.0 GHz ARM Cortex-A75 Hynix Semiconductor LPDDR4X-2133 eMMC 5.1 (4Gb) Android 11
5-W Intel(R) Core(TM) i3-7100U 2.40GHz Samsung DDR4-2400T (4Gb) Windows 10, x64
6-W Intel(R) Core(TM) i5-1035G4 1.50 GHz Samsung DDR4-2666 (16Gb) Windows 10, x64
7-M Intel(R) Core(TM) i5-8210Y 1.60 GHz Hynix Semiconductor LPDDR3-2133 (8Gb) macOS Sonoma 14.7.1
8-M Apple Inc TSMC M1 3.2 GHz Hynix Semiconductor LPDDR4X-4266 (16Gb) macOS Ventura 13.4.1
9-X Intel(R) Xeon(R) Gold 6342 2.80 GHz Samsung DDR4-3200 (1024Gb) Windows Server 10

Table	2

Control	and	reference	program	blocks

Control block Reference block
for (int j = 1; j < jump_count; j+=1) { 

    shift = jump_step * j; 
    px[shift] = px[shift] + px[shift]; 

}

for (int j = 1; j < jump_count; j+=1) { 
    shift = jump_step * j; 

    px[1] = px[1] + px[1];  
}
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for (int k = 1; k <= regr_count; ++k) {
        start = clock();
        for (int i = 0; i < regr_step * k; ++i) { Control block } 
        end = clock();
       time1 = (double)(end - start) / CLK_TCK;

        start = clock();
        for (int i = 0; i < regr_step * k; ++i) { Reference block } 
        end = clock();
       time2 = (double)(end - start) / CLK_TCK;

        x = regr_step * k * x_scale ;
        y = (time1 - time2) * y_scale;
}

The results of the code execution were stored in a file and 
processed after its completion.

As a mathematical apparatus for processing experimental 
data, the linear regression method was used, adapted to 
computational problems. Formulas that use the deviation of 
measured values from their average values look mathemat-
ically simpler, however, they require data processing in two 
stages. In the first, the average values are calculated, in the 
second, the deviations. For practical use, the following al-
gorithm was implemented for one pass of the program loop.

To formalize further expressions, let’s denote as x the 
normalized number of iterations of the code repetition loop, 
as y the normalized difference in execution times of the stud-
ied and reference loops. It is assumed that 
between the values y and x, represented by 
discrete experimental points yi and xi, there 
should be a linear dependence in the form:

.N Ny a b x= +

The index N additionally emphasizes the 
fact that the dependence coefficients are cal-
culated separately for each value of the array 
tracing step N (“jump_step” in the program 
fragments). In this case, the values of aN and 
bN are defined as [8]:
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The value of the linear correlation coef-
ficient between y and x using the introduced 
notations will be:

( )( )2 2
.r xy x y

xy

r xx x r yy y

n s s s
r

n s s n s s

−
=

− −
 (2)

(1) and (2) were chosen for reasons of optimization of the 
number of calculations. They do not contain references to the 
average values of the quantities x or y, which allows to carry out 
calculations in one stage, together with the main experiments. 
More common in the literature expressions involving average 
values require data storage and two stages of processing – in 
the first the average values are determined, in the second the 
dependence coefficients themselves are calculated. This fact is 
emphasized because different approaches can lead to different 
final values of aN and bN, which differ within the error limits due 
to the limited sample size. Insignificant deviations (about 1 %) 
are possible when processing the data with other algorithms. 
With the assumed statistical reliability at the level of 0.95, such 
deviations will not affect the general conclusions.

5. Results of the study of the influence of structure size 
on execution time

5. 1. Methodology for determining the execution 
time of program instructions

At the beginning of the measurements, an analysis was con-
ducted of the dependence of the execution times of the control 
and reference blocks, as well as their difference, on the parame-
ter “jump_count”, which determines the number of elements of 
the array being iterated. In practical terms, this parameter can 
correspond to the total number of elements in the array or its 
cluster. The obtained data are presented in Fig. 1. 
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Fig.	1.	Graphs	of	the	dependence	of	the	time	difference	of	the	control	and	
reference	code	blocks	on	the	parameter	“jump_count”:		

a	–	absolute	value;	b	–	normalized	to	a	single	execution
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As can be seen from Fig. 1, for values of “jump_count” 
less than 90, unstable indicators of the specific difference 
time are observed. For larger values, the indicators stop 
changing and demonstrate a constant level. This may be 
caused by a high contribution of measurement errors for 
small numbers of repetitions, however, the given depen-
dence in itself justifies the relevance for a separate study. 
Focusing on the task of studying the influence of the 
dimensionality of data blocks on time, it was decided to 
use the value from the beginning of the stability region: 
jump_count=100. This value was used for all subsequent 
experiments with all equipment.

The general method for determining the execution time 
of program instructions, taking into account the above, can 
be formulated as follows:

1. The initial value of “regr_step” is set (usually in the 
range of 10000-100000) and “jump_count” (equal to 100 for 
all experiments). The control and reference code blocks (Ta-
ble 2) are executed according to the scheme given in the 
listing in Section 4. The execution time of each block should 
be about 5–50 ms in order to reliably measure the time by 
hardware means. If the execution time differs significantly, 
the value of “regr_step” varies. For different executors, the 
values of “regr_step” may differ due to different speeds.

2. The execution times of the control and reference blocks 
are sequentially measured for each regression step (regr_step, 
2regr_step, … 20regr_step), and the co-
efficients (1) are calculated based on the 
results of the series.

3. The value of “N” (corresponding to 
the program variable “shift”) is increased 
by one. Repeat p. 2.

4. Repeat p. 3 for values of “N” from the 
range 1–1050. The values of the obtained 
coefficients aN are plotted on the graph 
depending on “N”.

The implementation of the method was 
performed using the C++ language, which 
allowed the execution of the same code 
on different hardware platforms with dif-
ferent operating systems. The data that is 
iterated in different steps is implemented 
in the form of an array of type “double”, 
placed in the external memory for the pro-
gram – “heap”:

double*px=new double[1050*100],

where 1050 – the maximum iteration 
step (N), 100 – “jump_count”, the numc-
ber of iteration steps. For other exper-
imental settings, these values can be 
changed.

A separate experiment (item 2) was 
carried out in the form of a series of 
measurements with linearly distributed 
values, which specify the number of code 
block repetitions, with subsequent re-
gression analysis. As an example, Table 3 
shows a series of experimental points ob-
tained for the W-2 equipment (Table 1). 
As can be seen from Table 3, the choice 
of the value of the “regr_step” parameter 

affected the scaling of the variables and allowed them to be 
brought to the same order of magnitude. This increases the 
sensitivity of the correlation coefficient to deviations in any 
coordinate and increases the confidence in the conclusions 
obtained through it. For other equipment, other values of the 
“regr_step” parameter were used, which took into account 
the speed of the device and were selected experimentally.

The expressions applied to the data from Table 3 
(for N=127) allowed to obtain the values a127=0.000034, 
b127=1.57, rxy=0.995 for the 5-W equipment and a127=0.000677, 
b127=0.046, rxy=0.276 for the 2-W equipment. The line with 
the corresponding coefficients together with the experimental 
points are shown in Fig. 2.

The linear correlation coefficient allows to assess the de-
gree of confidence in the obtained regression results. Thus, 
in Fig. 2, a, the visual arrangement of the points and the 
correlation coefficient close to unity (rxy=0.995) indicate a 
high reliability of the calculated value b and confirmation of 
the hypothesis of the difference in program execution times. 
For Fig. 2, b, the situation is the opposite, which is expressed 
by a much smaller coefficient (rxy=0.276). Accordingly, the 
result for b obtained in this series of measurements cannot 
be considered reliable, and the assumption regarding the 
different execution times of the control and reference blocks 
is not confirmed. A similar analysis was carried out for all 
experimental series.
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Fig.	2.	Experimental	points	from	Table	1	and	their	regression	lines:		
a	–	5-W	equipment;	b	–	2-W	equipment
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Table	3

Results	of	a	series	of	measurements	for	5-W	and	2-W	
equipment	with	regr_count=20,	jump_count=100,		

jump_step=127

r nr∙104 t1, ms t2, ms ∆t, ms nr∙104 t1, ms t2, ms ∆t, ms

1 10 54 38 16 2 4.9 4.2 0.7

2 20 109 77 32 4 9.9 8.4 1.5

3 30 162 116 46 6 10.6 12.6 -2

4 40 215 153 62 8 20.2 16.7 3.5

5 50 266 193 73 10 24.9 21 3.9

6 60 323 231 92 12 30 25.1 4.9

7 70 373 270 103 14 34.2 29.3 4.9

8 80 428 307 121 16 39.1 33.5 5.6

9 90 501 346 155 18 40 37.7 2.3

10 100 538 383 155 20 48.4 41.8 6.5

11 110 616 458 158 22 47.9 46.1 1.9

12 120 709 496 213 24 50.9 50.2 0.7

13 130 770 514 256 26 54.7 54.4 0.3

14 140 773 595 178 28 55.5 58.6 -3

15 150 832 577 255 30 64.2 62.8 1.4

16 160 859 616 243 32 57.7 67 -9.3

17 170 936 656 280 34 68.7 71.1 -2.4

18 180 961 698 263 36 80.1 75.3 4.8

19 190 1019 742 277 38 84.4 79.7 4.7

20 200 1097 773 324 40 85.8 83.7 2.1

From a physical point of view, both regression coeffi-
cients (a and b) have a time dimension on the nanosecond 
scale. For a reliable series of measurements, the value 
b=1.57 ns corresponds to the difference in execution times 
of one control and one reference block. Taking into account 
the fact that 100 iterations of the array are measured in one 
block, it is possible to estimate the average difference time of 
one operation as 0.0157 ns or 15.7 picoseconds.

Having supplemented the above algorithm with a point 
on the analysis of measured data, a general implementation 
of the method for determining the execution time of pro-
gram instructions was obtained, designed to identify critical 
data sizes and assess the degree of confidence in them.

5. 2. Experimental results of measuring code execu -
tion time for different devices

Measurements of the execution times of the control and 
reference blocks, as well as their difference, depending on 
the data size (N) with all other parameters unchanged, were 
carried out for the equipment shown in Table 1. The results 
were processed according to the method given in section 5. 1 
and for each series the coefficient b (specific difference time 
between code blocks) was determined. The summarized 
data are presented in the form of graphs in Fig. 3. When 
conducting experiments for all types of equipment, the same 
code specified in the previous section was used. In order to 
shorten the reference to the equipment, the field “Ref” from 
Table 1 was used.

For the 8-M equipment, which has a laptop form factor, 
the study was performed in two modes: 8-M-A when oper-

ating from the power supply, and 8-M-B when operating 
from the built-in rechargeable battery. The graphs are 
presented one below the other for greater convenience of 
visual comparison.

From the preliminary analysis of the obtained results 
in Fig. 3, it is immediately possible to conclude that the 
general nature of the phenomenon of extreme growth 
of code execution time at certain data sizes, detected 
for all experiments, is confirmed. The extrema have a 
pronounced local nature, that is, the growth of time is 
observed at a separate point, and not in its vicinity. Typ-
ical values of the dimension N for blocks for which the 
growth of time is observed are 128, 256 and 512, which 
corresponds to an integer power of the number 2k. For 
individual graphs (Fig. 3, a–e, k), extrema are also ob-
served for N=64, 192, 384, etc., which corresponds to the 
form 2k+2k–1. The execution time is restored to the average 
value after passing the extreme point.

The situation presented in [5] with multiple extrema 
on the dependence graph was manifested for 1-W/1-L 
equipment (Fig. 3, a, b) with DDR3 and 3-A (Fig. 3, e) – 
LPDDR3 memory. For other equipment, the number of 
extreme points is much smaller, but does not completely 
disappear. However, for one of the most modern 2-W/2-L 
equipment (Fig. 3, c, d) with DDR5, the number of extrema 
increases again, but with a reduced amplitude compared to 
the main ones.

The “step” effect, which consists in a smooth increase 
in the average difference execution time with increasing N, 
is observed for Android OS (3-A, 4-A), MacOS (7-M), serv-
er 9-X, as well as for the oldest 1-L/1-W equipment. For 
the graphs of equipment 2-L, 2-W, 5-W, 6-W, the “steps” 
are not observed and the background of the graph is  
horizontal.

The number of extrema and their amplitude is different 
on different graphs (Fig. 3), however, the most pronounced 
extrema are traced for N=512 and N=1024, other positions 
are either less pronounced or absent on individual graphs. In 
general, the hypothesis of the existence of exceptional sizes 
of program structures, which lead to an extreme increase 
in the time of their program processing, can be considered 
confirmed.

Experiments conducted on the same equipment under 
the control of different operating systems, indicate some 
differences in the general dependence graphs. For the 
pair (1-L)-(1-W) (Fig. 3, a, b) there are almost no differ-
ences. It is only possible to state that under the control of 
the Linux OS, the number of intermediate extrema of the 
execution time slightly increases compared to the Win-
dows OS. This is especially noticeable in the right part of 
the graphs (for larger values of N). At the same time, the 
situation for the pair of graphs (2-L)-(2-W) (Fig. 3, c, d) is 
the opposite: under the control of the Linux OS, the num-
ber of local extrema decreases, especially noticeable in the 
left part of the graph. Also, for the second pair under the 
control of the Linux OS, a slightly smaller average differ-
ence time is observed (the graph lies closer to the abscissa 
axis), however, at the extreme points the value is larger 
than that for the Windows OS. Accordingly, it is impossi-
ble to note the obvious influence of the OS on the nature 
of program execution, however, the differences found 
can be considered as an update for further research in  
this area.
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Fig.	3.	Experimental	graphs	of	the	dependence	of	the	regression	coefficient	b	for	the	differential	code	execution	time		
(in	nanoseconds)	on	the	size	of	the	data	block	N	for	the	equipment:	a	–	1-L;	b	–	1-W;	c	–	2-L;	d	–	2-W;	e	–	3-A;	f	–	4-A;		

g	–	5-W;	h	–	6-W;	i	–	7-M;	j	–	8-M-A;	k	–	9-X;	l	–	8-M-B	(Table	1)
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5. 3. Assessment of the degree of influence of the 
dimensionality of structures on the execution time of 
programs

Estimating the specific influence of this difference re-
quires a regression analysis for both the difference time and 
the execution times of the blocks themselves. After analyzing 
the data from Table 3 (part 1), it was obtained: for the ref-
erence block bref=5.49 ns, for the control block bctr=3.92 ns. 
Accordingly, the specific influence (calculated on the average 
value) will be:

2 0.33,
ref ctr

bb
b b

δ = ≈
+

which is similar to the estimate of the deviation of 33 %.
For the second part of Table 3, the small correlation co-

efficient (rxy=0.276), as well as the visual arrangement of the 
data (Fig. 1, b) do not allow to state a guaranteed dependence 
in the execution time of two different code blocks. The sign of 
the difference changes at different points, not even allowing 
to state that its nature is unambiguous. Accordingly, the as-
sessment of the influence of the time difference was not car-
ried out. This fact is the basis for the statement about the ab-
sence of an unambiguous manifestation of the difference in 
the execution time of program blocks for their arbitrary size. 
It seems logical to separate the means of analyzing the results 
with the presence and absence of the specified phenomenon.

Detailed data on all points of all series of experiments are 
not given within the text of the work. The deviation values 
indicated in Table 3 are typical for all cases, the difference 
lies in the absolute time associated with the speed of the 
equipment. Some of the series have a high correlation coef-
ficient, which confirms the hypothesis with the deviation of 
the execution time of the control block at the level of 30–60 % 
(except for extreme points). The other part does not show a 
guaranteed dependence at a low correlation coefficient. This 
is explained in more detail in Section 6 of the work.

The graphs of Fig. 3, h–l, which demonstrate a stable neg-
ative average value of the difference time, only for individual 
extreme points acquiring a positive value, attract special 
attention.

Nevertheless, for all experiments, extreme points N=512 
and N=1024 were found. At these points, the linear correla-
tion coefficient confirms the hypothesis of the deviation of 
the execution time. In relative terms, the difference from 
the average value is at least 2 times greater (equipment 4-A), 
which correlates with some conclusions of the work [3]. For 
most situations, an increase of tens of times is observed, and 
for equipment 6-W, 8-M and 9-X it generally changes its char-
acter, deviating in the opposite direction from the average 
value.

Table 4 summarizes the results for the last points of the 
linear regression series for different equipment near N=512 
(for values 511, 512 and 513). These results correspond to the 
longest measurements and allow to estimate the execution 
time of the blocks themselves, and not just the difference 
between them. The absolute values of the data of different 
series were chosen for reasons of regression normalization, 
therefore they are not directly comparable with each other.

A more detailed analysis shows that the increase in 
the block operation time can vary from 1.6 times (3-A) to 
3.6 times (4-A, 5-W). The difference time has a wider range 
of coefficient changes - from 1.9 (4-A) to 132 (5-W). Moreover, 
for the data of 6-W, 9-X and partly for 8-M, in addition to the 

increase in time, a change in its sign is observed from neg-
ative to positive. The effect of the change in sign is visually 
noticeable on the corresponding graphs in Fig. 3. The effect 
of the extremum in such experiments is better observed in 
the change in the absolute execution time of the blocks (t1, t2) 
in Table 4. With a relatively constant time value for the refer-
ence block (t2), the time of the control block (t1) demonstrates 
an increase at a value of 512. In relative terms, the growth 
coefficient is 1.36 for 8-M and 6.18 for 9-X.

Table	4

Results	of	direct	time	measurement	near	point	N=512

r t1, ms t2, ms ∆t, ms t1, ms t2, ms ∆t, ms
Equip: 1-L 2-L

511 66.0 177.8 111.9 5.4 89.1 83.7
512 157.0 269.0 112.0 169.6 253.4 83.8
513 60.7 172.6 111.9 6.4 90.1 83.7

Equip: 3-A 4-A
511 76.1 430.1 354.0 374.9 656.1 281.2
512 217.9 571.8 353.9 726.9 1007.4 280.4
513 72.9 426.7 353.9 377.3 657.8 280.5

Equip: 5-W 6-W
511 15.0 783.0 768.0 –46.0 521.0 567.0
512 1992.0 2763.0 771.0 1263.0 1826.0 563.0
513 –15.0 785.0 800.0 –52.0 510.0 562.0

Equip: 7-M 8-M-A
511 15.0 227.4 212.4 –1.98 1.57 3.55
512 365.7 559.6 193.8 –1.37 2.13 3.50
513 39.6 232.1 192.5 –1.98 1.57 3.55

Equip: 8-M-B 9-X
511 –3.19 2.51 5.71 -0.064 0.056 0.120
512 –2.27 3.43 5.70 0.227 0.346 0.119
513 –3.19 2.52 5.71 –0.062 0.057 0.119

The power source can also affect the overall results. 
Thus, a comparison between graphs 8-M-A and 8-M-B shows 
a change in the background time of the graph from approx-
imately –2 ns to –3 ns. However, the general appearance of 
the graphs does not change significantly and is not reflected 
in the positions of the extrema. The coefficient of increase in 
time in the extrema also does not change. This is most likely 
caused by a change in the processor clock frequency in the 
direction of decrease when working with a battery, which can 
be compared with the effect of the scale factor of the graph 
on the ordinate axis.

Also, from Table 4 it can be seen that the extrema have a 
clearly pronounced local character, that is, the magnitude of 
the operating time returns to the previous level, as before the 
increase, at the next point after the increase. In other words, 
the execution time of a program with a block dimension of 
N=512 may differ from that for N=513 by several times, and 
an unusual conclusion is that for a larger value of N the exe-
cution time will be smaller.

6. Discussion of the results regarding the hypothesis 
of the existence of exceptional sizes of data structures, 
which lead to an extreme increase in the time of their 

program processing

The implementation of the method for measuring the 
execution time of the program code has shown a number of 
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features, which are shown in Fig. 1. In Fig. 1, b (normalized 
time of a single operation), three areas with different behav-
ior of the graph can be visually distinguished. In the first 
area, the time increases evenly, in the second it demonstrates 
unstable behavior, and in the third it reaches a constant 
value. The first part can be explained by the contribution of 
the high-speed, but small-sized processor cache. With the 
growth of the volume of data being processed, its contri-
bution decreases, which leads to a gradual increase in the 
total code execution time. The third area demonstrates the 
expected behavior and does not require explanation. While 
the second part of the graph with the number of repetitions 
(jump_count) in the range of 55–90 has a number of extrema, 
the nature of which requires a separate study. In order to 
eliminate this effect, further studies were conducted outside 
the instability region. When using the method in practice on 
equipment that differs significantly from Table 1, it is rec-
ommended to conduct similar studies before performing the 
main measurements.

Single series of measurements of the difference time of 
the control and reference code blocks showed that not all 
series have the same behavior. The most typical situations 
are shown in Fig. 2 and Table 3 and can be divided into two 
groups: (Fig. 2, a) the execution time of the control block 
always has the same nature of deviations from the reference 
and (Fig. 2, b) the nature of the deviations is not determinis-
tic. The same nature is manifested for equipment with DDR3 
memory, while non-deterministic – for DDR5. For DDR4, 
both types of behavior are observed on different equipment. 
However, at points with extreme time increases for all series, 
the behavior becomes deterministic – the execution time of 
the control block clearly exceeds the execution time of the ref-
erence one. This is confirmed by the high linear correlation 
coefficient in the series at the level of 0.995–0.999.

The results of different series, grouped by type of equip-
ment, are shown in Fig. 3 and demonstrate several facts 
that require more detailed discussion. The distinct effects of 
changing the code execution time for different block sizes, 
identified in [5], are partially confirmed. The main hypothe-
sis regarding the existence of exceptional sizes of data struc-
tures that lead to an extreme increase in the time of their 
software processing is fully confirmed for all experiments.

The numerical values of the deviation of the code execu-
tion time with different data block sizes (1.6–3.6 times) corw-
relate with the deviations in the system simulation time given 
in [3] (by 2 times). This, firstly, can be proposed as a possible 
explanation of the nature of the deviations and, secondly, 
expands the practical significance of the obtained results on 
the problem of system simulation. 

The appearance of extrema on the graphs of the depen-
dence of the execution time on the block sizes was found for 
all types of equipment. The independence of the essence of 
the effect from the operating system and processor allows to 
suggest that the nature of the effect comes from the RAM. Of 
the potential causes of the phenomenon stated in [5], prefer-
ence should be given to the increased frequency of RAS (Row 
Address Strobe) signals. The duration of RAS is 2–5 times 
longer than CAS (Column Address Strobe) signals, the supply 
of which is accompanied by each memory read [9]. The mags-
nitude of the difference in the duration of the RAS and CAS 
signals also correlates with the obtained values of the time de-
viation, which may indicate the correctness of the assumption.

At the same time, the role of the control bytes of the vir-
tual address space, characteristic of the Windows operating 

system [5], can be considered insignificant due to the mani-
festation of deviation for different operating systems.

The largest number of extreme points is observed for the 
oldest (among the selected) technology DDR3. The smallest 
is for DDR4. But for DDR5, an increase in the number of ex-
tremes is again observed, however, with a smaller amplitude. 
This fact makes additional studies of devices with this type 
of memory relevant.

Another “step” effect, which consists in a smooth in-
crease in the average “background” difference time, is 
observed irregularly. It is not possible to unambiguously 
determine the characteristics of the equipment by which this 
effect manifests itself or, conversely, is absent. The absence 
of a “step” is characteristic of DDR5, while for DDR3 and 
LPDDR4X this phenomenon manifests itself. For DDR4 tech-
nology, both types of graphs are observed. It can be assumed 
that this may be associated with the multi-channel memory 
operation mode and buffer sizes of different levels. However, 
to confirm the assumption, separate studies with appropriate 
selection of experimental equipment characteristics are also 
required. At the moment, the lack of a reliable explanation 
for the “step” effect can be attributed to the shortcomings of 
this study.

The results of direct time measurement, partially present-
ed in Table 4, made it possible to assess the degree of influ-
ence of an unsuccessful choice of block size with an extreme 
size on the total code execution time. The data vary in a wide 
range. For the difference time of the control and reference 
blocks, the deviation coefficient is in the range from 1.6 to 
3.6 for different equipment. For the absolute execution time 
of the control block, the time increase coefficient belongs to 
a much wider range of 1.9–132. It is not excluded that other 
types of computing equipment can expand the obtained lim-
its of the coefficients when conducting similar experiments.

In any case, the algorithmic solution proposed in the 
work allows for practical software diagnostics of existing 
equipment and determining its characteristic effects and 
their parameters. This will allow avoiding potential dete-
rioration of program performance by adjusting the block 
sizes used to feed data. Or, if it is impossible to change the 
software, justify hardware changes. The objectivity of the ob-
tained data is ensured by the reliable mathematical apparatus 
of differential analysis with linear regression.

Also, in terms of the practical significance of the obtained 
results, it can be noted that the block sizes corresponding to 
extreme points (2k bits) are typical for cryptography prob-
lems [10]. Elements of precisely such sizes are the main data 
structures in hashing or block encryption algorithms. More-
over, the algorithms themselves are often based on repeated 
repetition of the same type of block operations, forming cy-
cles similar to those considered in the work. Algorithms that 
process streaming data (audio, video, and other streams) also 
have similar behavior [11]. The phenomenon of time devia -
tion was first observed in matrix multiplication operations, 
which extends the practical use of the results to algorithms of 
the corresponding type. It is considered advisable to conduct 
mandatory studies on the influence of the size of the data 
representation structures on the running time of algorithms 
of this type.

The fact of the recovery of the code running time after 
passing extreme points can be used as a recommendation to 
avoid the corresponding dimensions of the structures or the 
sequence of their placement. For example, when iterating an 
array in steps multiple of 513, the increase in running time 
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is not observed on any of the considered equipment. Accord-
ingly, ignoring the last (513th) element will allow operating on 
data with a dimension of 512, but without increasing the run-
ning time. As a result, it is possible to recommend increasing 
the dimension of the structure that turned out to be extreme, 
in order to avoid an increase in the code execution time, 
while maintaining the proper information capacity.

The conducted studies are limited by electronic comput-
ing equipment capable of executing imperative-type software 
with direct access to the performer’s RAM during its oper-
ation. The maximum amount of RAM requested in all ex-
periments was 6,720,000 bits (~820 KB), the executable code 
had a size of about 300 KB. Although the methodology can 
be modified and for smaller amounts of memory, individual 
studies were not conducted.

A promising development of this study may be conduct-
ing experiments with specialized equipment samples. First, 
to increase the number of devices with the latest memory 
types, in particular, DDR5. Second, to focus on the availabil-
ity and parameters of processor cache memory of various 
levels and its contribution to the resulting program runtime. 
If there is a need to study performers with small amounts 
of RAM (less than 1 MB), it will be necessary to review the 
numerical parameters of the methodology. The theoretical 
part of the experiments described in the work is considered 
sufficient and does not require changes.

7. Conclusions

1. A methodology for studying the operating time of prop-
gram code fragments has been implemented, its implemen-
tation in C++ is given. The methodology is a combination of 
the mathematical apparatus of differential analysis and linear 
regression. Applying the methodology to iteration operations 
of dynamic arrays of type double allowed to identify situations 
in which the factor of the size or step of iterations has a con-
firmed influence. The greatest influence was found for RAM 
with DDR3 and LPDDR4X technologies, while for DDR5 the 
influence is much less common; for DDR4 the data differ in 
different devices. For none of the experiments was a complete 
absence of deviation registered, which confirmed the hypoth-
esis of the existence of exceptional sizes of program structures 
that lead to an extreme increase in their processing time.

2. Experiments conducted for different equipment have 
shown a different behavior of the dependence of the dif-

ference time on the data dimension. The most cases were 
registered when an extreme increase in time was observed 
when processing data with a dimension multiple of powers of 
two 2k or their combinations 2k+2k–1. Most often, deviations 
appear for DDR3 and some DDR4 models. For DDR5, the de-
viation appears at sizes that are multiples of 512. For all con-
sidered technologies, extremes of the increase in operating 
time were found for step sizes of 512 and 1024 array elements.

3. The magnitudes of deviations vary from 1.6 to 3.6 times 
(for difference time) and in some experiments reach a factor 
of 132 for absolute time. However, the increase is local in na-
ture and the average operating time is restored after passing 
the extreme point. This allowed to formulate a recommenda-
tion to avoid program structures with a dimension that is a 
multiple of the extreme in cycles, especially when the number 
of iterations approaches or exceeds 100. Adjustment by in-
creasing the size of the structure by one unit while ignoring 
the last element will lead to the leveling of the detected effect. 
The difference in the positions of the extreme points for dif-
ferent equipment gives grounds to recommend conducting 
preliminary studies by running software on it that imple-
ments the methodology described in the work.
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