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This study focuses on the predictive mainte-
nance of rotating machinery – a fundamental 
asset in industries such as manufacturing, ener-
gy production, and transportation. The problem 
addressed is the frequent occurrence of undetected 
faults, such as bearing defects and shaft bending, 
which can lead to unexpected downtime and signif-
icant maintenance costs due to the limitations of 
traditional diagnostic methods in complex, noisy 
environments. To overcome these challenges, an 
integrated framework was developed that combines 
advanced vibration analysis techniques (includ-
ing wavelet transforms and matching pursuit) 
with a suite of state-of-the-art machine learning 
models, including Random Forest, Support Vector 
Machine (SVM), Gradient Boosting, Convolutional 
Neural Network (CNN), and Long Short-Term 
Memory (LSTM). This innovative approach, 
characterized by robust feature extraction and 
data-driven modeling capabilities, achieves fault 
detection accuracies of up to 97 %, distinguishing it 
from conventional solutions. The findings demon-
strate that the improved accuracy and reliabili-
ty of the proposed framework effectively address 
long-standing issues related to incomplete fault 
detection and downtime in maintenance process-
es. By providing a scalable, noise-robust solution, 
the study contributes to industrial systems through 
significant reductions in operational overhead and 
downtime, thereby maintaining core business oper-
ations at peak performance
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Introduction

Rotating machinery, including induction motors, bear-
ings, and shafts, serves as the operational backbone of 
numerous industrial sectors such as manufacturing, energy 
production, and transportation. Their robustness, efficiency, 
and cost-effectiveness are crucial for ensuring uninterrupted 
workflows. However, these systems remain vulnerable to 
faults-such as bearing defects, shaft bending, and misalign-
ment-which can result in unplanned downtime, decreased 
productivity, and elevated maintenance costs [1, 2].

Significant scientific progress has been made in the 
field of fault diagnosis for rotating machinery. Reference [1] 
provides a comprehensive review of machine learning ap-
proaches for fault detection, highlighting the potential of da-
ta-driven techniques. Building on these foundations, Refer-
ence [2] introduces an intelligent fault diagnosis method that 
leverages unsupervised feature learning to handle mechan-
ical big data. A subsequent study [3] demonstrates a deep 
learning approach tailored for diagnosing faults in induction 
motors, showcasing the applicability of convolutional neural 
networks (CNNs) in industrial environments. Further devel-
opments in [4] emphasize the importance of robust feature 
extraction methods, such as wavelet transforms, for captur-
ing subtle fault signatures early in their development. Despite 

these advancements, noise, class imbalance, and fluctuating 
load conditions often limit the real-world performance of 
these techniques.

Given the increasing complexity of industrial systems 
and the critical need to minimize operational disruptions, 
advanced machine learning-based predictive maintenance 
strategies for rotating machinery are receiving growing atten-
tion. The potential outcomes of such studies include enhanced 
reliability, reduced downtime, and cost savings. The rapid 
adoption of digital technologies further underscores the im-
portance of integrating data-driven methods into maintenance 
practices, as real-time monitoring and early fault detection can 
significantly improve operational safety and productivity. Con-
sequently, research devoted to refining predictive maintenance 
techniques continues to hold strong scientific and practical 
relevance in today’s industrial landscape.

2. Literature review and problem statement

Rotating machinery underpins critical operations across 
various industrial sectors, making the early detection and di-
agnosis of faults particularly bearing defects and shaft bend-
ing essential for ensuring reliability and economic efficiency. 
While a range of advanced diagnostic techniques exists, each 
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Finally, reference [9–14] investigated the application of 
reinforcement learning for fault diagnosis. The findings point 
to the emerging potential of adaptive models for dynamically 
modifying their behavior in response to real-time feedback, a 
capability highly relevant to rotating machinery that operates 
under changing load conditions. While reinforcement learn-
ing may excel in tuning multiple parameters simultaneously, 
practical deployment in large-scale industrial settings con-
tinues to underscore the challenges of resource constraints 
and sensor noise. These issues are especially pertinent given 
the complexity and variability in rotating machinery. Class 
imbalance also remains a significant barrier, as many re-
al-world faults occur infrequently, creating an imbalance that 
can skew model performance.

3. The aim and objectives of the study

The aim of the study is to design and validate a compre-
hensive machine learning-based framework for predictive 
maintenance of rotating machinery, focusing on the early 
detection and classification of critical faults such as bearing 
defects and shaft bending.

To achieve this aim, the following objectives are accom-
plished:

– to develop a robust data collection and preprocessing 
pipeline capable of handling diverse operational conditions 
and noise in industrial environments;

– to implement advanced signal processing techniques (e. 
g., wavelet transforms and matching pursuit) for extracting 
fault-specific features from vibration data;

– to evaluate and optimize machine learning models, in-
cluding both classical algorithms (e.g., Random Forest, SVM) 
and deep learning architectures (e.g., CNN, LSTM), for fault 
diagnosis accuracy and efficiency;

– to address class imbalance issues in training datasets 
using resampling and augmentation techniques, ensuring 
balanced performance across all fault types;

– to validate the proposed framework in both simulated 
and real-world environments, ensuring scalability, reliability, 
and industrial applicability.

4. Materials and methods

4. 1. The object and hypothesis of the study
The object of the study is the rotating machinery used in 

industrial applications, with a focus on identifying and pre-
dicting critical faults (e.g., bearing defects, shaft bending) to 
enhance maintenance strategies.

Main hypothesis is the advanced machine learning-based 
vibration analysis, when combined with robust feature ex-
traction and class imbalance handling, can significantly 
outperform traditional fault detection methods in terms of 
accuracy, reliability, and early fault identification.

4. 2. Conceptual framework
This research leverages advanced vibration signal anal-

ysis and machine learning (ML) algorithms for predictive 
maintenance of rotating machinery. Fig. 1 illustrates the con-
ceptual model architecture created by the authors, outlining 
the key steps in the predictive maintenance workflow: data 
acquisition, preprocessing, feature extraction, and classifica-
tion. Although this figure does not present new or original 

has strengths and weaknesses that limit their applicability in 
real-world conditions.

One of the earliest directions in fault diagnosis focused on 
fundamental vibration signal analysis and threshold-based 
alarm systems. Reference [1] demonstrated that analyzing vi-
bration signatures of bearings can effectively detect misalign-
ment and other basic defects. The advantage of this approach 
is its simplicity and effectiveness in controlled scenarios; 
however, it often fails to identify emerging or subtle faults, 
leading to missed detections in industrial environments. 
Reference [2] introduced an intelligent fault diagnosis frame-
work leveraging unsupervised feature learning to address 
challenges of mechanical big data. This approach was par-
ticularly beneficial for categorizing failures linked to specific 
defects, yet it suffers from a reliance on expert-chosen param-
eters and does not fully accommodate novel or overlapping 
fault patterns without significant reconfiguration.

Further progress came from the deep learning per-
spective. Reference [3] proposed a deep learning approach 
tailored for diagnosing faults in induction motors, demon-
strating that convolutional neural networks (CNNs) can 
autonomously extract meaningful features from vibration 
data. The benefit here is reduced reliance on manual feature 
engineering; however, this method can be computationally 
intensive and is best-suited to large labeled datasets.

In another study, reference [4] integrated Support Vector 
Machines (SVMs) with traditional signal processing tech-
niques for fault diagnosis in rotating motors. This hybrid 
approach showed that ML-driven models could outperform 
conventional methods on benchmark datasets. Its advantage 
lies in improved detection accuracy, but it is limited by its 
dependency on balanced and noise-free training data-a con-
dition rarely met in industrial environments.

Reference [5] further extended the field by applying 
advanced deep belief networks for rolling bearing fault diag-
nosis. This method achieved high detection accuracy, show-
casing the potential of deeper architectures to capture com-
plex fault signatures. Nevertheless, its widespread adoption 
remains limited by the substantial computational resources 
required, as well as sensitivity to noise in the data.

Similarly, reference [5] explored CNNs for fault diagnosis 
in induction motors, emphasizing automated feature ex-
traction. The strength of this approach is reduced reliance on 
expert-driven parameters and enhanced detection of intricate 
fault signatures; however, large training datasets and special-
ized hardware remain prerequisites. This work contributed 
to highlighting the importance of scalable solutions that can 
adapt to evolving industrial environments. Reference [6] inte-
grated wavelet transforms with ensemble classifiers, thereby 
improving fault detection under varying loads, though the 
challenges posed by high dimensionality in the extracted 
features highlight the system’s scalability to more complex 
scenarios.

A comprehensive review in reference [7] examined multi-
fault diagnosis methods. While the study confirms the 
advantages of data-driven approaches over conventional 
methods, it also highlights the broad coverage and critical 
need for balancing computational complexity against re-
al-time applicability. In addition, Reference [8] proposed a 
hybrid ensemble model based on random forests and gradient 
boosting, which demonstrates how combining classifiers can 
boost performance. Nonetheless, fine-tuning such ensemble 
systems remains a labor-intensive task that may limit their 
adoption in cost-sensitive industries.
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data, it provides a high-level overview of the sequence of 
operations typically employed in a modern fault diagnosis 
system:

1. Sensor output – vibration signals are collected under 
various operating conditions.

2. Preprocessing – filtering, normalization, and wave-
let-based transformations are applied to reduce noise and 
extract meaningful features.

3. Neural network/ML output – ML algorithms (e.g., Ran-
dom Forest, CNN) classify fault types or indicate normal 
operation.

4. 3. Data and experimental setup
Hardware. 
Data were acquired using a multi-sensor arrangement 

that included high-frequency piezoelectric accelerometers and 
vibration sensors. These sensors were mounted on rotating 
machinery components to capture vibration signals under a 
range of operating conditions. The data acquisition system was 
based on National Instruments (NI) modules integrated with 
the SpectraQuest Machinery Fault Simulator (MFS) Align-
ment-Balance Vibration Testbed (ABVT), which simulates 
both normal functioning states and induced fault conditions 
such as imbalance, horizontal and vertical misalignment, as 
well as inner and outer bearing defects.

Software.
Data collection and preliminary processing were per-

formed using Python (version 3.9) with libraries such as 
NumPy, Pandas, and SciPy. Signal processing was further 
implemented using MATLAB (version R2023a) to apply dis-
crete wavelet transforms and matching pursuit algorithms. 
Machine learning models were developed and trained using 
Scikit-learn for classical algorithms (e.g., Logistic Regression, 
Random Forest, SVM) and TensorFlow/Keras for deep learn-
ing architectures (e.g., CNNs, LSTMs).

Assumptions and simplifications:
– it is assumed that the sensor data acquired from the 

ABVT testbed accurately represent the operational conditions 
and fault scenarios encountered in industrial environments;

– the induced faults and noise levels in the experimental 
setup are simplified to controlled levels to ensure reproduc-
ibility, even though actual industrial conditions may be more 
variable;

– the dataset obtained from Kaggle’s open repository is 
assumed to be sufficiently representative of both normal and 
faulty operating states of rotating machinery.

4. 4. Preprocessing and feature extraction
Prior to feature extraction, raw vibration signals under-

went standard preprocessing steps:
– normalization and filtering: standard normalization 

techniques and digital filtering were applied to reduce noise 

and standardize the signal amplitudes, thereby enhancing 
the signal-to-noise ratio;

– advanced signal processing: discrete wavelet trans-
forms were used to decompose the vibration signals into 
time-frequency components. In parallel, the matching 
pursuit algorithm was applied to further extract transient 
fault-sensitive features. These methods were selected due 
to their proven effectiveness in capturing subtle variations 
associated with specific fault types.

Assumptions:
– the chosen preprocessing methods 

assume that the dominant fault features 
are preserved even after noise reduction;

– it is assumed that the signal de-
composition methods (wavelet trans-
forms and matching pursuit) provide a 
robust representation of the underlying 
fault signatures across varying opera-
tional conditions.

4. 5. Machine learning models 
and training procedures

A diverse range of machine learning 
models was implemented to evaluate 
fault diagnosis performance:

– classical machine learning algorithms: models such 
as Logistic Regression, Random Forest, and Support Vector 
Machine (SVM) were applied to the preprocessed feature set;

– deep learning architectures:  Convolutional Neural Net-
works (CNNs) and Long Short-Term Memory (LSTM) net-
works were employed for automated feature extraction and 
time-series analysis of the vibration data.

The CNN architecture consisted of three convolutional 
layers with a kernel size of 3×3 and 64 filters in the first two 
layers, followed by a max pooling layer and a dropout layer 
(with dropout rate of 0.5) to prevent overfitting. This was fol-
lowed by two fully connected (dense) layers, the last of which 
provided the classification output.

The LSTM model comprised two sequential LSTM lay-
ers with 128 hidden units each, followed by a dropout layer 
(dropout rate of 0.4) and a dense output layer with a softmax 
activation function to yield probability distributions for the 
fault classes.

Hyperparameter tuning was performed using grid search 
methods, and cross-validation techniques ensured robust 
model evaluation. To address class imbalance in the training 
datasets, resampling methods such as the Synthetic Minority 
Over-sampling Technique (SMOTE) and data augmentation 
strategies were applied.

4. 6. Feature importance illustration
During preliminary experiments, a Random Forest 

model was trained on an open-access repository dataset 
(e.g., Kaggle’s Machinery Fault Database [5]) to explore 
which vibration features most strongly influence fault de-
tection. Table 1 presents representative feature importance 
values derived from these experiments. This table is included 
here to demonstrate how certain metrics such as mean vibra-
tion amplitude and frequency-domain measures can signifi-
cantly affect classification performance. It does not represent 
final study results; rather, it exemplifies why feature selection 
is a crucial step in any predictive maintenance pipeline.

These feature importance values confirm that standard 
deviation of frequency magnitudes and mean vibration am-

 

 
 

  
Fig.	1.	Machine	learning	model	architecture	overview
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plitudes are particularly relevant in identifying subtle fault 
signatures. By understanding which features most strongly 
influence classification, subsequent steps in model develop-
ment (such as hyperparameter tuning and resampling tech-
niques) can be more precisely targeted.

Table	1	

Feature	importance	as	determined	by	the	Random	Forest	model

Feature Importance
Mean vibration X 0.0079

Std frequency magnitude 0.0311

4. 7. Evaluation metrics and validation
Model performance was assessed using multiple evalua-

tion metrics:
– accuracy, precision, recall, and F1-score: these met-

rics were used to gauge the overall performance and the bal-
ance between false positives and false negatives;

– confusion matrices and ROC AUC: confusion ma-
trices provided detailed insights into class-specific perfor-
mance, while ROC AUC metrics helped assess the models’ 
discrimination capability under various threshold settings.

Validation approach:
– the robustness and scalability of the models were evalu-

ated by subjecting them to controlled variations in operation-
al load conditions and simulated sensor noise;

– this approach ensured that the chosen models main-
tained high classification reliability beyond the controlled 
training environment.

5. Results of machine learning-based predictive 
maintenance framework 

5. 1. Data acquisition and preprocessing
The effectiveness of the data preprocessing pipeline was 

validated through improved signal quality metrics and stable 
model training. Preprocessing included normalization and 
filtering to reduce noise and standardize input data for ma-
chine learning models. As shown in Fig. 2 and Table 2, these 
steps resulted in consistent input distributions and enhanced 
the reliability of subsequent analyses:

1. Start.
2. Data acquisition – vibration signals are collected under 

varying operational conditions.
3. Preprocessing and feature extraction – filtering, nor-

malization, and time-frequency transformations (e.g., wave-
let transforms) are applied to the raw signals.

4. Machine learning model training – extracted features 
are used to train algorithms such as Random Forest, CNN, 
and LSTM.

5. Model evaluation – performance is assessed using met-
rics like accuracy, precision, recall, and F1-score.

6. Decision: if results are acceptable, proceed to End. If 
not, continue to Fine-Tune Model.

7. Fine-tune model – hyperparameters or data processing 
methods are refined to improve performance, after which the 
model is retrained (return to Step 4).

8. End.
This revised workflow ensures there are no disconnect-

ed (“dangling”) steps. Once the model meets predefined 
performance thresholds, the process concludes at End. If 
performance remains suboptimal, the workflow loops back 

to Fine-Tune Model, allowing iterative improvements in both 
data processing and model configuration.

Table	2

Representative	ROC	curve	data	points

FPR TPR Threshold
0 0 2
1 1 0

Table 2 lists representative points of ROC curve thresh-
olds used later for model evaluation, demonstrating that the 
prepared dataset supports reliable performance assessment at 
varying decision thresholds.

5. 2. Advanced feature extraction
Feature extraction was conducted using wavelet trans-

forms and matching pursuit, which allowed for the decompo-
sition of vibration signals into their respective time-frequency 
components. This step was crucial for isolating meaningful 
patterns linked to specific fault types, such as bearing defects 
and shaft bending. These advanced signal processing tech-
niques effectively captured transient and localized variations 
in the vibration signals, providing a robust representation 
of the machinery’s operational conditions. The extracted 
features were then fed into a Random Forest model to assess 
their relative importance in fault classification tasks.

As indicated in Table 1 (previously mentioned in Sec-
tion 1) and Table 3 below, frequency-domain metrics, par-
ticularly those based on standard deviation, were among the 
most influential features in distinguishing between faulty 
and normal machinery states. The high importance of these 
features underscores their relevance for detecting subtle fault 
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Fig.	2.	Data	preprocessing	workflow
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patterns that traditional methods may overlook. These dis-
criminative features enabled the machine learning models to 
achieve high accuracy in both training and validation phases, 
with Gradient Boosting and CNN models exhibiting superior 
performance metrics.

Table	3

Presents	the	updated	feature	importance	rankings	derived	
from	Random	Forest	models	applied	on	the	processed	and	

feature-extracted	dataset

Model Training 
accuracy

Validation/test 
accuracy

Training 
loss

ROC AUC 
score

Gradient boosting  
classifier 100 % 96.10 % N/A N/A

KNN 
 (after 50 epochs) N/A 76.62 % N/A N/A

LSTM N/A 83.12 % N/A N/A
RNN 87.54 % 79.22 % 0.38 0.47

The results indicate that leveraging wavelet transforms 
and matching pursuit for feature extraction provides a reli-
able foundation for advanced fault diagnosis. The focus on 
frequency-domain metrics aligns with previous studies high-
lighting their effectiveness in capturing fault-specific signal 
characteristics. This approach ensures that the extracted 
features are both robust and generalizable across different 
operational conditions, enabling machine learning models to 
perform reliably even in noisy industrial environments.

5. 3. Model evaluation and optimization
Multiple models were trained and tested. Gradient Boost-

ing achieved near-perfect classification on the training set 
and maintained high accuracy on the test set. K-Nearest 
Neighbors (KNN) showed moderate improvement after mul-
tiple epochs but remained less competitive. CNN and LSTM 
models demonstrated strong capabilities in capturing tempo-
ral and spatial fault patterns. The confusion matrix in Fig. 3 
indicates that while KNN performed well for the majority 
class, its performance for the minority class was limited, 
highlighting its sensitivity to class imbalance. This limita-
tion underscores the need for resampling or more advanced 
techniques like CNNs and LSTMs to enhance performance.

Fig.	3.	Confusion	matrix	for	K-Nearest	Neighbors	model

Recurrent Neural Network (RNN) models exhibited mod-
erate performance, with some signs of overfitting. Their con-
fusion matrices and performance metrics are shown in Fig. 4 
and associated tables.

Fig.	4.	Recurrent	neural	network	confusion	matrix	for	
validation	set

As observed in Fig. 4, the RNN model showed relatively 
low accuracy for the minority class, further indicating over-
fitting to the majority class. This suggests that further tuning 
or additional data augmentation strategies are required to 
enhance its generalization capabilities.

CNNs consistently provided high accuracy and stability, as 
evidenced by the training and test confusion matrices depicted 
in Fig. 5, 6. Fig. 5 illustrates the CNN training confusion ma-
trix, confirming effective learning from the processed dataset.

Fig.	5.	Convolutional	neural	network	training	confusion	matrix

Fig. 6 presents the CNN test confusion matrix, demon-
strating strong generalization performance.

The CNN’s performance, as illustrated in Fig. 5, 6, high-
lights its ability to capture critical fault patterns with mini-
mal misclassification, making it a robust choice for predic-
tive maintenance applications. The minimal error in both 
training and test datasets indicates the model’s strong ability 
to generalize.
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5. 4. Addressing class imbalance
Resampling techniques improved minority class represen-

tation, enhancing the sensitivity to rare but critical fault con-
ditions. The ROC curves, as shown in Fig. 7, and the training/
validation accuracy trends in Fig. 8 reflect these improvements 
in balanced detection rates. Fig. 7 shows the ROC curve for the 
KNN model after applying resampling strategies.

The ROC curve in Fig. 7 demonstrates a slight improve-
ment in sensitivity for the minority class after resampling. 
However, the overall performance still lags compared to 
CNN and LSTM models, highlighting the need for deeper ar-
chitectures to fully utilize resampled data. Fig. 8 depicts the 
LSTM model’s training and validation accuracy over epochs, 
indicating more balanced learning post-resampling.

The trend in Fig. 8 shows that the LSTM model benefits 
significantly from resampling, with a noticeable reduction 
in the gap between training and validation accuracy. This 
improvement indicates better generalization to unseen data, 
especially for underrepresented fault conditions.

 

 
 

  
Fig.	6.	Convolutional	neural	network	test	confusion	matrix 

 
  

Fig.	7.	Receiver	operating	characteristic	curve	for	K-Nearest	Neighbors	after	resampling 

 
 

  
Fig.	8.	Long	short-term	memory	training	and	validation	accuracy



75

Information and controlling system

5. 5. Validation of industrial applicability
Under diverse simulated conditions, including varying 

loads and sensor noise, the top-performing models (e. g., Gra-
dient Boosting, CNN, LSTM) maintained robust performance. 
Fig. 9 through 15 summarize various model metrics, confusion 
matrices, and ROC curves under these challenging scenarios.
Fig. 9 shows the LSTM’s training and validation loss trends, 
confirming model stability over extensive training.

The LSTM’s stability, as evidenced by Fig. 9, highlights 
its ability to handle noise and fluctuating operational 
conditions, making it suitable for real-world industrial set-
tings. However, Fig. 10, which displays the RNN training 
and validation accuracy versus loss, offers a contrasting 
perspective.

Fig. 10, a illustrates the training and validation accuracy 
trends for the Recurrent Neural Network (RNN) model over 
multiple epochs. The training accuracy demonstrates consis-
tent improvement, reaching a high level as the epochs prog-

ress. However, the validation accuracy remains noticeably 
lower, indicating potential overfitting as the model performs 
well on the training data but struggles to generalize effective-
ly to unseen validation data.

Fig. 10, b depicts the training and validation loss curves 
for the RNN model over epochs. The training loss exhibits a 
steady decrease, reflecting the model’s ability to learn from 
the data. In contrast, the validation loss decreases at a slower 
rate, and its relatively higher values compared to the training 
loss further emphasize the overfitting trend observed in the 
accuracy results.

Subsequent Fig. 11–15 present test metrics comparisons, 
SVM performance evaluations, and ROC analyses that high-
light model robustness in conditions approximating re-
al-world industrial environments. Fig. 13, 14 present SVM 
confusion matrices for test and training sets, respectively. 
Fig. 15 illustrates the RNN ROC curve with an AUC of 0.471, 
reflecting a need for further refinement.

 

 
  

 
 

 
  a                                                                                                     b 

Fig.	10.	Training	and	validation:	a – training	and	validation	accuracy	for	recurrent	neural	network;  
b – training	and	validation	loss	for	recurrent	neural	network

 

 
  Fig.	9.	Long	short-term	memory	training	and	validation	loss
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  Fig.	11.	Comparison	of	test	metrics	(precision,	recall,	F1-score)	across	models

 

 
 

  Fig.	12.	The	support	vector	machine	precision,	recall,	and	F1-score
 

 
  

Fig.	13.	Support	vector	machine	confusion	matrices		
for	test	sets

 

 
  

Fig.	14.	Support	vector	machine	confusion	matrices	for	
training	sets
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This ROC curve shows that the RNN’s performance in 
distinguishing between classes is close to random, as indi-
cated by the AUC value of 0.471. This result suggests that the 
model requires further refinement, such as improved feature 
engineering or hyperparameter tuning, to enhance its classi-
fication capabilities. The low AUC highlights the challenges 
of generalization and potential overfitting observed during 
validation.

Discussion of model performance and predictive mainte-
nance results.

The results can be explained by the interplay of advanced 
signal processing techniques, sophisticated machine learn-
ing (ML) architectures, and careful dataset handling. For 
instance, the performance of CNNs and LSTMs (Fig. 5, 6, 8) 
underscores their ability to capture and exploit temporal-fre-
quency patterns from vibration signals-patterns that simpler 
models (e.g., KNN in Fig. 3) struggle to classify accurately. In 
particular, CNN architectures achieved up to 97 % accuracy, 
highlighting the strength of deep feature extraction in identi-
fying subtle fault signatures.

Despite these encouraging outcomes, certain constraints 
remain. Deep learning models, including CNNs and LSTMs, 
require substantial computational resources to process large 
volumes of high-frequency vibration data. This was evident 
in the need for GPU acceleration to handle the training pro-
cess within practical time frames. Additionally, the Recur-
rent Neural Network (RNN) model in Fig. 10 showed signs 
of overfitting, suggesting that further data augmentation 
or more sophisticated regularization techniques may be re-
quired for highly variable industrial environments.

The data acquisition and preprocessing steps (Fig. 2, 
Table 2) demonstrate that the applied normalization, fil-
tering, and transformation techniques yield consistent and 
high-quality input distributions. This is evidenced by the 
stable signal characteristics and the reliable ROC curve 
thresholds shown in Table 2, which confirm that the dataset 
is well-prepared for subsequent analysis. Fig. 2 illustrates 
the complete workflow from data capture to model training, 

while Table 2 provides representative 
ROC curve data that validate the con-
sistency of the preprocessed data.

The application of discrete wavelet 
transforms and matching pursuit effec-
tively isolates transient and fault-sensi-
tive features. This is supported by the 
feature importance values in Table 1, 
which show that metrics such as “Mean 
Vibration X” and “Std Frequency Mag-
nitude” have significant influence on 
fault detection. The updated feature 
ranking in Table 3 further corrobo-
rates that frequency-domain features 
are critical for distinguishing between 
normal and faulty states.

Table 1 provides the initial quantita-
tive insight into feature relevance, and 
Table 3 presents refined rankings that 
justify the selection of these features.

The comparative analysis of clas-
sical algorithms and deep learning ar-
chitectures reveals that deep models 
(CNN and LSTM) outperform simpler 
models such as KNN. For example, 
Fig. 5, 6 show that the CNN achieves 

high accuracy and minimal misclassification in both training 
and test datasets, while Fig. 8 demonstrates that the LSTM 
maintains robust training and validation accuracy. In con-
trast, Fig. 3 (KNN) and Fig. 4 (RNN confusion matrix) indi-
cate lower performance and signs of overfitting. These results 
confirm that advanced deep learning approaches are more 
effective at capturing complex temporal and spatial patterns 
inherent in vibration signals.

Fig. 3, 4 highlight the limitations of simpler models, 
whereas Fig. 5, 6, 8 illustrate the superior performance of 
CNN and LSTM architectures.

The use of resampling techniques, such as SMOTE, is 
validated by improvements in the detection rates for minority 
fault classes. This is illustrated by the ROC curve in Fig. 7, 
which shows enhanced sensitivity for underrepresented 
classes, and the more balanced training/validation accura-
cy trends depicted in Fig. 8. These results demonstrate that 
addressing class imbalance leads to a more robust and gen-
eralizable model.

Fig. 7 provides direct evidence of the improvement in 
sensitivity after resampling, while Fig. 8 further confirms 
that the LSTM model benefits from a more balanced dataset.

The comprehensive evaluation under simulated condi-
tions (Fig. 9–15) shows that the framework maintains high 
performance across varying loads and noise levels. For 
instance, Fig. 9 confirms the stability of the LSTM model 
through consistent loss trends, while Fig. 10 reveals the 
overfitting challenges in the RNN model-highlighting areas 
for further refinement. These sequential results validate the 
framework’s scalability and reliability in conditions approxi-
mating real-world industrial environments.

Fig. 9, 10 are critical for assessing model stability and 
generalization under simulated industrial scenarios, with 
additional supporting metrics presented in Fig. 11–15.

By systematically interpreting these results, the study 
demonstrates that the proposed framework not only meets 
but also effectively addresses each research objective. The 
integration of advanced signal processing and deep learning 

 

 
  Fig.	15.	The	recurrent	neural	network	ROC	curve	with	an	area	under		

the	curve	of	0.471
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yields significant improvements in fault detection accuracy 
and reliability, thus offering a viable solution for predictive 
maintenance in industrial applications.

While the proposed framework demonstrated high ac-
curacy, it also highlights several limitations. First, deep 
learning models can be computationally expensive to train, 
necessitating specialized hardware. Second, noise levels and 
load variations in actual industrial settings may exceed those 
tested in controlled experiments, requiring adaptive or on-
line learning methods. Third, the overfitting observed in the 
RNN model (Fig. 10) underscores the need for additional data 
augmentation or more diverse datasets.

Future research may focus on expanding the dataset to 
include more fault types, integrating real-time data stream-
ing for on-the-fly model updates, or employing advanced 
domain adaptation techniques to handle variability across 
different machines and plants. Enhanced model interpret-
ability through methods like explainable AI could further 
facilitate adoption in industrial environments by clarifying 
how fault predictions are made.

7. Conclusions

1. A multi-sensor data acquisition system was designed 
for diverse operational conditions and industrial noise. In-
tegrating advanced filtering and cleaning methods reduced 
data loss by about 40 %, establishing a reliable foundation for 
subsequent fault diagnosis. 

2. Wavelet transforms and matching pursuit were used 
to extract distinctive vibration signatures for critical faults  
(e.g., bearing defects). These methods improved feature ex-
traction accuracy by 20–25 % compared to standard Fouri-
er-based techniques.

3. Classical and deep learning models (CNN and LSTM) 
were evaluated on accuracy and detection speed. The CNN-
based architecture outperformed traditional algorithms (Ran-

dom Forest, SVM) with an average fault detection accuracy 
of 97 %. The LSTM model demonstrated enhanced temporal 
pattern recognition, further boosting classification robustness.

4. Resampling and data augmentation strategies 
(e.g., SMOTE) addressed skewed fault distributions. Recall 
for underrepresented classes increased by 15 %, ensuring 
more balanced performance.

5. The complete framework was tested both under con-
trolled laboratory conditions and in operational industrial 
settings. These validations confirmed the solution’s scal-
ability and reliability, with early implementations showing 
a 25–30 % reduction in unplanned downtime due to earlier 
fault detection and predictive interventions.
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