
Eastern-European Journal of Enterprise Technologies ISSN-L 1729-3774; E-ISSN 1729-4061	 2/2 (134) 2025

68

CACHE INVALIDATION
BASED ON A

DECLARATIVE
APPROACH FOR

SEPARATING
BUSINESS LOGIC OF

MICROSERVICES FROM
CACHE UPDATE RULES

V i t a l i i F a l k e v y c h
Corresponding author

Department of Computer Science*
E-mail: vitaliifalkevich@gmail.com

A n d r i i L i s n i a k
PhD

Department of Software Engineering*
*Zaporizhzhia National University

Zhukovskoho str., 66, Zaporizhzhia, Ukraine, 69600

The object of this study is the mechanisms of cache inval-
idation within a microservice architecture. The research
addresses the challenge of reducing inter-service dependenc-
es, enhancing system performance, and ensuring data con-
sistency in distributed high-load environments by optimizing
cache management strategies. The study's findings include
the development of a declarative approach to cache invalida-
tion, which ensures the decoupling of microservice business
logic from cache update mechanisms. The proposed solution
is based on a centralized cache management strategy utilizing
YAML configurations in conjunction with asynchronous mes-
sage exchange between services.

Optimization of the mechanisms for adding, updat-
ing, and deleting cache elements enables efficient manage-
ment of cached data, warranting the avoidance of residual
entries after deletion, updating all lists in which the element
appeared, as well as maintaining cache consistency when
updating or deleting data.

The proposed approach contributes to increasing the
autonomy of microservices, reducing inter-service dependenc-
es, and more efficient use of the cache. The features and dis-
tinctive characteristics of the results relate to the fact that
the proposed approach uses a declarative cache management
model, which differs from conventional imperative solutions.
This enables flexibility in configuring cache update mecha-
nisms without the need to modify the business logic of micro-
services.

The practical implications of the study extend to high-load
distributed systems where rapid data retrieval, scalability,
and resilience to varying workloads are critical. The proposed
approach could be applied in the design of effective caching
strategies within microservice-based architectures

Keywords: cache invalidation, Redis, Memcached, declar-
ative approach, cache management, performance optimiza-
tion

UDC 004.9
DOI: 10.15587/1729-4061.2025.325932

How to Cite: Falkevych, V., Lisniak, A. (2025). Cache invalidation based on a
declarative approach for separating business logic of microservices from cache up-

date rules. Eastern-European Journal of Enterprise Technologies, 2 (2 (134)), 68–74.
https://doi.org/10.15587/1729-4061.2025.325932

Received 10.01.2025
Received in revised form 05.02.2025
Accepted date 24.03.2025
Published date 22.04.2025

Copyright © 2025 Authors. This is an open access article under the Creative Commons CC BY license

1. Introduction

Microservice architecture is widely used in the con-
struction of modern highly loaded web systems as it en-
ables their scalability, flexibility, and independence of the
deployment of individual services. At the same time, with
the growth of data volumes, the number of simultaneous
users and the need for operational access to information,
new challenges arise related to the performance of systems.
One of the key tools for overcoming them is caching, which
makes it possible to reduce the load on servers, reduce the
frequency of database requests, and speed up the processing
of user requests [1].

Despite significant advantages, the use of caching is ac-
companied by a number of problems, in particular, the need
to ensure data relevance, the complexity of synchronizing the
cache with changes in the system and the potential possibil-
ity of using outdated information. The lack of standardized
cache management methods complicates its support and can
negatively affect the reliability of the system [2].

There are various approaches to solving these problems,
including Spring Cache, GraphQL/Apollo Client, Redis &
Cache Invalidation Rules. Spring Cache provides an easy-
to-use caching mechanism integrated into the Spring eco-
system, making it possible to cache the results of method

calls without significant code changes. It supports automatic
caching using annotations, which makes it attractive for rapid
integration. However, this approach does not solve the problem
of global cache consistency across microservices and requires
manual invalidation management, which can become a point
of failure in distributed systems. GraphQL/Apollo Client
offers normalized client-side caching, which allows data
to be automatically refreshed when new queries are made.
Apollo Client has cache management mechanisms that make
it possible to track relationships between entities, but this
approach is mainly focused on the client level and does not
solve the problem of cache consistency across services. In
addition, to maintain data freshness, one needs to manually
configure cache refresh policies, which adds complexity to
development.

Redis & Cache Invalidation Rules provide powerful
cache management capabilities, such as TTL (Time-To-Live),
LRU (Least Recently Used) eviction, and cache change no-
tification mechanisms via Pub/Sub. Redis makes it possible
to build complex caching strategies and invalidation mecha-
nisms, which makes it a flexible solution for scalable systems.
However, its use requires careful tuning of invalidation rules,
in particular to maintain consistency between services. The
high speed of Redis is offset by additional overhead for sup-
porting complex invalidation logic and data replication.

Information technology

69

proach in Redis was investigated, which makes it possible
to reduce memory fragmentation and increase overall
performance. However, it was found that such a strategy
contributes to the accumulation of inactive objects, which
can lead to inefficient use of resources. It was found that
the main reason for this problem is the limitation of the
memory reuse mechanism, which requires additional data
collection strategies.

One approach to solving this problem is the use of seg-
ment utility assessment strategies to optimize memory clean-
ing. In [8], a method for caching Memcached on a reconfig-
ured network interface (NIC) using FPGAs was proposed.
The study showed that caching the most frequently requested
data on the NIC can significantly reduce Memcached latency,
minimizing access to the server’s main processor. However,
the limitation of FPGA hardware resources creates additional
difficulties in scaling the system, as managing large amounts
of data becomes more difficult. As a solution, the integration
of dynamic caching and adaptive synchronization between
the FPGA and the server is proposed.

Similar scalability issues are addressed in [9], which
analyzes the use of Redis in distributed environments. The
study demonstrates that integrating Redis with ZooKeeper
provides efficient cluster management and automation of
disaster recovery processes. At the same time, it was found
that under conditions of high update competition, additional
delays arise due to complex coordination between nodes.
This indicates the need for further optimization of replication
and load balancing algorithms.

Particular attention is paid to the problem of cache inval-
idation in the microservice architecture of web applications.
In [3], a centralized cache management mechanism is ana-
lyzed, which makes it possible to reduce update delays and
increase data consistency. However, the scalability of such
an approach in large distributed systems remains open. The
main limitations are the need for high performance of the
cache management server and the risk of its overload.

All this suggests that it is advisable to conduct research
on the development of a declarative approach to cache inval-
idation in microservices, which will ensure the separation of
microservice business logic from cache update mechanisms.
Such an approach should take into account both adaptive
memory allocation to reduce caching delays and automatic
tracking of dependences between services. It is expected that
this will significantly increase the performance of distributed
systems, minimize the overhead of cache updates, and im-
prove data consistency between microservices.

3. The aim and objectives of the study

The purpose of our research is to devise a declarative
approach to cache invalidation in the context of microservice
architecture, focusing on separating the business logic of
microservices from cache update rules. This will allow for
effective management of caching processes, optimize inter-
action between microservices, and ensure the relevance and
accuracy of data in highly loaded systems.

To achieve this goal, the following tasks must be solved:
– to determine mechanisms for dividing responsibility

between microservices to ensure autonomy and reduce in-
ter-service dependences in caching processes;

– to build a conceptual model of a declarative approach
to cache invalidation that defines the structure and mecha-

Under modern conditions, there is a need to devise a
declarative approach to cache invalidation, which would
facilitate a clear separation of microservices business logic
from cache update rules. This could reduce the complexity of
data synchronization, unify cache management mechanisms,
and minimize the risks associated with untimely updating
of cached information. From a scientific point of view, such
research would contribute to the formalization of approaches
to the integration of caching into microservice systems and the
development of effective algorithms for its update [2].

From a scientific point of view, such research will con-
tribute to the formalization of approaches to the integration
of caching into microservice systems and the development of
effective algorithms for its update. From a practical point of
view, the results of the research could be used to increase the
performance of web systems operating in real time, reduce
infrastructure costs, and ensure stable operation of services
under high loads. The proposed solutions could be used in
various industries, in particular in e-commerce, financial
technologies, streaming services, and other areas where fast
data processing is critically important [3].

Thus, the problem of data consistency and effective cache
management in microservice architecture remains relevant,
especially in highly loaded systems. A declarative approach
to cache invalidation can help reduce the complexity of cach-
ing management and improve the performance of distributed
applications.

2. Literature review and problem statement

Effective cache management in distributed systems is a criti-
cal aspect of optimizing performance and data consistency. Cur-
rent research focuses on memory allocation mechanisms, cache
invalidation strategies, and adaptive approaches to data updates.

In [4], an analysis of memory allocation mechanisms in
Memcached was conducted. The study showed that the use
of the slab-based allocation approach, which involves static
memory allocation between object classes, can lead to its “cal-
cification”. This limits the flexibility of the cache when data
access patterns change, which, in turn, reduces memory effi-
ciency and increases the frequency of database accesses. At the
same time, the issues of dynamic cache adaptation to changing
access conditions remain unresolved. The main reason for this
is the limitation of conventional memory allocation algorithms,
which do not take into account the change in the popularity of
objects over time and require complex mechanisms for dynamic
reallocation.

An approach to automatic dependence management be-
tween services and the use of the lazy-invalidation mechanism
is discussed in [5]. It has been demonstrated that automating
cache update processes in microservice systems can significant-
ly reduce data update delays. However, the accuracy of tracking
changes in complex call graphs between services remains a
problem, due to unpredictable interaction scenarios and the pos-
sibility of superimposing independent changes on the same data.

In [6], the scalability and reliability of Redis in the context
of cache invalidation were analyzed. The authors showed
that Redis provides high query processing speed due to the
key-value mechanism, but its cache update is based on an
imperative approach, which can complicate integration in
complex microservice architectures.

An important aspect of cache management is memory
optimization mechanisms. In [7], the use of a segment ap-

Eastern-European Journal of Enterprise Technologies ISSN-L 1729-3774; E-ISSN 1729-4061	 2/2 (134) 2025

70

nisms for separating the business logic of microservices from
cache update processes;

– to optimize mechanisms for adding, updating, and delet-
ing cache elements to reduce delays and speed up data retrieval.

4. The study materials and methods

The object of our study is the mechanisms of cache inval-
idation in microservice architecture.

The main research hypothesis assumes that the use of a
declarative approach to cache invalidation, which involves
the separation of microservice business logic and cache
update rules, makes it possible to increase system perfor-
mance and ensure data relevance without excessive load on
services.

The following assumptions are accepted in the study:
– cache invalidation is a critical aspect of the operation of

highly loaded microservice systems, which affects the perfor-
mance and accuracy of data;

– the use of an asynchronous messaging mechanism
reduces delays in cache updating and increases the system’s
resilience to loads;

– the division of responsibility between microservices
and the cache makes it possible to reduce inter-service depen-
dences and increase the scalability of the architecture.

To implement the cache invalidation mechanism, a tech-
nology stack based on TypeScript and NestJS was used.
NestJS provides built-in support for microservices architec-
ture, and communication between services is done through
the @nestjs/microservices library, which allows for
event-driven interaction between components. This provides
efficient and asynchronous handling of cache invalidation
events, which is critical for scalable solutions.

Redis is used as a message broker for asynchronous ex-
change between microservices. It acts as a Publish/Subscribe
(Pub/Sub) mechanism that provides reliable message delivery
without the need for direct calls between services. This ap-
proach allows microservices to remain loosely coupled and
handle cache invalidation events independently of each oth-
er, which helps increase system perfor-
mance and stability.

For the practical implementation
of the proposed approach, the main
structural components of the system
are defined:

– client sends requests to the API
gateway;

– API gateway routes requests to
the corresponding services, manages
caching and data updates;

– business logic service is the main
service that contains business logic
and processes requests;

– caching service is responsible for
managing the cache and performing
data invalidation;

– cache storage is a storage where
cached data is stored.

An architecture diagram of an appli-
cation with a cache invalidation system
has been developed, which illustrates
the interaction of these components and
cache update mechanisms.

5. Results of the study of cache invalidation based on
the declarative approach

5. 1 Separation of responsibilities between micros-
ervices for autonomous cache management and mini-
mizing inter-service dependences

Effective cache management in a microservice archi-
tecture requires a clear division of responsibilities between
services, which makes it possible to minimize inter-service
dependences and ensure their autonomy. One of the key as-
pects of this approach is the isolation of separate components
for cache management, its updating and invalidation without
interfering with the business logic of microservices [10].

Fig. 1 proposes an architectural model of a cache invali-
dation system that enables data consistency between differ-
ent services in a distributed environment. This architecture
includes five key components:

– client;
– API gateway;
– business logic service;
– caching service;
– cache storage.
The client acts as the initial point of interaction with the

system, sending requests to retrieve or update data. These
requests are directed to the API gateway, which acts as an
intermediary responsible for routing incoming requests to
the appropriate backend services. In addition to forwarding
requests, the API gateway also receives responses from ser-
vices and manages cache update schemes. This enables that
after processing the request, all necessary changes to the
cache are made to maintain data integrity.

The business logic service implements the core function-
ality of the application by processing requests, interacting
with databases or external APIs, and generating responses
with the necessary data. In addition, in the case of data up-
dates, this service generates a cache invalidation scheme – a
structured set of instructions that determines which cached
records should be updated or deleted. This scheme, along
with the corresponding data, is passed to the API gateway,
which routes it to the caching service for execution.

Fig. 1. Application architecture with cache invalidation system

Information technology

71

The caching service is a specialized component responsi-
ble for managing cached data and implementing invalidation
operations based on the received instructions. It acts as an
abstraction between the business logic and the main caching
mechanism, ensuring consistency between cached and cur-
rent data. The invalidation scheme received from the business
logic service is processed in the Caching Service, which deter-
mines the need to update or delete specific entries in the cache.

At the lowest level of the architecture is the cache store,
which is the physical storage of cached data. Its implementa-
tion can be based on technologies such as Redis, Memcached,
or other caching systems in RAM. The cache store is used
to quickly retrieve stored data, as well as to update or delete
entries according to requests from the caching service [11].

Thus, the distribution of responsibility between micros-
ervices allows for autonomous cache management, reducing
inter-service dependences, and increasing system scalability.

5. 2. Conceptual model of a declarative approach to
cache invalidation

To separate the business logic of microservices from the
cache update mechanisms, a conceptual model of a declar-
ative approach to cache invalidation is proposed, which is
based on the use of external configuration files in YAML for-
mat. These files contain instructions for the cache processing
service, which makes it possible to clearly define the invalida-
tion rules without interfering with the business logic
of microservices.

Fig. 2 shows a scheme for registering a business
logic service in the API gateway under the identifier
“BUSINESS_SERVICE”. Redis is used for messaging,
the connection parameters are defined by the environ-
ment variables “HOST_REDIS” and “PORT_REDIS”.
The API gateway routes client requests to microser-
vices and also passes requests to the caching service
to execute invalidation instructions according to the
configuration.

Fig. 2. Registering a business logic service in the API
Gateway module

To implement the declarative approach, a YAML
configuration is used that contains cache invalida-
tion instructions (Fig. 3).

When processing requests in business logic mi-
croservices, YAML file instructions are used. For
example, when receiving a list of items (Fig. 4), the
cache is checked first. If the data is missing, the
microservice performs a query to the database and
passes the results along with the YAML instructions
to the caching service.

Similarly, when creating a new element, the correspond-
ing cache invalidation instruction is transmitted (Fig. 5).

The caching service processes the YAML file instructions
through the “runInstructions” method, which performs the
corresponding invalidation operations (Fig. 6).

@Module({
 imports: [
 ClientsModule.register([
 {name: 'BUSINESS_SERVICE',
 transport: Transport.REDIS,
 options: {
 host: HOST_REDIS,
 port: PORT_REDIS,
 }}])],
 controllers: [GatewayController]})

title: 'cache invalidate instructions'
 service: 'Business'
 operations:
 get:
 actions:
 - operation: "add"
 target: "list"
 key: "item_get"
 action_type: "set"
 - operation: "add"
 target: "slug"
 key: "item_get_one"
 action_type: "set"
 getOne:
 actions:
 - operation: "add"
 target: "slug"
 key: "item_get_one"
 action_type: "set"
 create:
 actions:
 - operation: "add"
 target: "slug"
 key: "item_get_one"
 action_type: "update"

Fig. 3. Cache refresh configuration for a business logic service

@MessagePattern({ cmd: BUSINESS_EVENTS.ITEMS_GET })
 async getItems({ payload }: PayloadDto<GetItemsDto>):

 Promise<Item[]> {
 const cacheConfig =

 this.businessService.getBusinessConfig();
 const dataFromCache = await firstValueFrom(
 this.cacheServiceClient.send(
 {cmd: CACHE_EVENTS.CACHE_CHECK},
 {key: BUSINESS_EVENTS.ITEMS_GET,payload}));
 if (dataFromCache) return dataFromCache;
 const items = await this.businessService.getItems();
 this.cacheServiceClient
 .send({cmd: CACHE_EVENTS.CACHE_RUN_INSTRUCTIONS},
 {cmd: INSTRUCTION_OPERATIONS.GET,
 instructions: cacheConfig,
 payload,
 data: items})
 return items;}

Fig. 4. Method for processing a request to obtain a list of items

@MessagePattern({ cmd: BUSINESS_EVENTS.ITEM_CREATE })
 async createItem({payload }: PayloadDto<Item>):

Promise<SuccessWithoutDataResponseDto> {
 const cacheConfig = this.businessService.getBusinessConfig();
 const newItem = await

 this.businessService.createItem(payload);
 this.cacheServiceClient.send(
 {cmd: CACHE_EVENTS.CACHE_RUN_INSTRUCTIONS},
 {cmd: INSTRUCTION_OPERATIONS.CREATE,
 instructions: cacheConfig, data: newItem});
 return successEmptyResponse;}

Fig. 5. Method for creating a new element

Eastern-European Journal of Enterprise Technologies ISSN-L 1729-3774; E-ISSN 1729-4061	 2/2 (134) 2025

72

Fig. 6. Processing cache update instructions

Thus, the proposed conceptual model of the declarative
approach allows for a clear separation of business logic from
cache update mechanisms, providing declarative manage-
ment of invalidation instructions through configuration files.
This increases flexibility and simplifies the maintenance of
the microservice architecture.

5. 3. Optimization of mechanisms for adding, up-
dating, and deleting cache elements to reduce delays
and accelerate data retrieval

Fig. 7 shows the implementation of the algorithm for
adding or updating an array of elements in the cache. The al-
gorithm allows for efficient management of cache entries
using unique keys and provides fast access to data.

The main principle of the algorithm is to create a
unique key for accessing cached records. This ensures
that there are no conflicts between different data sets.
Additionally, a backlink mechanism is implemented
for fast navigation and updating of elements in complex
structures.

To manage individual elements in the cache, the
“setItemToCache” algorithm is used, which provides ef-
ficient updating and the ability to quickly delete related
records (Fig. 8).

The algorithm above creates:
– a primary key for the list containing the element;
– a unique key for the element itself;
– a backlink that stores all contexts in which the

element is used.
This makes it easy to track where a record has been

used and to ensure consistent data updates. For example, if
a record is included in several categories or lists, the system
can quickly update or delete them.

Similarly, the “removeItemFromCache” algorithm guaran-
tees correct deletion of elements along with their links (Fig. 9).

This approach enables:
– avoiding residual records after deletion;

async runInstructions(data: { cmd: INSTRUCTION_OPERATIONS;
 instructions: any;
 data: any;
 payload?: Record<string, string | number>;
}): Promise<void> {
 data.instructions?.operations?.[data?.cmd]?.actions?.forEach(
 (operation) => {
 const args = {
 key: operation.key,
 filters: data.payload,
 data: data?.data,
 actionType: operation.action_type};
 switch (operation) {
 case operation.operation === OPERATION.ADD:
 if (operation.target === TARGET.LIST)
 return this.setItemsToCache(args);
 if (operation.target === TARGET.SLUG) {
 if (this.isObject(args.data)) this.setItemToCache(args);
 else if (Array.isArray(args.data)) {
 return (async () => {
 for (const item of args.data) {
 await this.setItemToCache(item); }})();}}
 break;
 case operation.operation === OPERATION.REMOVE:
 if (operation.target === TARGET.SLUG) {
 if (this.isObject(args.data)) return this.removeItemFromCache(args);
 else if (Array.isArray(args.data)) {
 return (async () => {
 for (const item of args.data) {
 await this.removeItemFromCache(item); }})();}}}});

generateKey(baseKey, filters) {
 if (!filters || Object.keys(filters).length === 0) return baseKey;
 const sortedFilters = Object.entries(filters)
 .sort(([a], [b]) => a.localeCompare(b))
 .map(([key, value]) => `${key}=${value}`)
 .join(':');
 return `${baseKey}:${sortedFilters}`;}

async setItemsToCache({
 key, filters = {}, data, actionType
 }: ISetItemsToCache): Promise<void> {
 const listKey = this.generateKey(key, filters);
 const list = (await this.getCacheByKey(listKey)) || [];
 switch (actionType) {
 case ACTION_TYPE.SET:
 await this.setCacheByKey(listKey, data);
 break;
 case ACTION_TYPE.UPDATE:
 await this.setCacheByKey(listKey, [...list, ...data]);}}

Fig. 7. Algorithm for adding/updating an array of elements
in the cache

async setItemToCache({ key, filters = {}, data, actionType }) {
 const { slug } = data;
 const listKey = this.generateKey(key, filters);
 const slugKey = `${key}:${slug}`;
 const referencesKey = `${key}:references:${slug}`;
 const references = [listKey, slugKey];
 switch (actionType) {
 case ACTION_TYPE.SET:
 await this.setCacheByKey(slugKey, data);
 await this.setCacheByKey(referencesKey, references);
 break;
 case ACTION_TYPE.UPDATE:
 const existingData = await this.getCacheByKey(slugKey);
 const updatedData = { ...existingData, ...data };
 await this.setCacheByKey(slugKey, updatedData);
 await this.setCacheByKey(referencesKey, references);
 break;
 default:
 throw new HttpException(
 exceptions.UNSUPPORTED_ACTION_TYPE,
 HttpStatus.UNPROCESSABLE,
);}}

Fig. 8. Cache item addition/update algorithm

async removeItemFromCache({ key, data }) {
 const { slug } = data;
 const slugKey = `${key}:${slug}`;
 const referencesKey = `${key}:references:${slug}`;
 const relatedKeys = await this.getCacheByKey(referencesKey)) || [];
 for (const key of relatedKeys) {
 const list = await this.getCacheByKey(key);
 if (Array.isArray(list)) {
 const updatedList = list.filter((book) => book.slug !== slug);
 if (updatedList.length === 0) await this.removeCacheByKey(key);
 else await this.setCacheByKey(key, updatedList);
 }}
 await this.removeCacheByKey(slugKey); }

Fig. 9. Algorithm for deleting/updating a single item in the cache

Information technology

73

– updating all lists in which the element appeared;
– maintaining cache consistency when updating or de-

leting data.
The proposed caching optimization significantly im-

proves data processing efficiency. The back-referenced struc-
ture allows for fast retrieval and update of elements in com-
plex structures and avoids duplicate or out-of-sync records.
This is especially important in high-load systems where
caching plays a key role in data performance and availability.

6. Discussion of results related to the study of cache
invalidation based on the declarative approach

The results of our study on the separation of responsi-
bility between microservices confirm that the use of clearly
defined areas of responsibility for each microservice makes it
possible to reduce the level of inter-service dependences and
increase autonomy. As shown in Fig. 1, the general architec-
ture of the cache invalidation system provides a clear sepa-
ration between the business logic of microservices and the
mechanisms for updating the cache. The concept is proposed
in which the cache update is initiated directly by the service
that owns the relevant business data, avoiding the need for
global coordination between services.

The results of our study on the development of a concep-
tual model of the declarative approach to cache invalidation
are represented in a series of program listings and diagrams.

Registering a business logic service in the API gate-
way (Fig. 2) provides a centralized entry point for interaction
with cached data, simplifying access management to services
and their integration. The cache refresh configuration for a
business logic service (Fig. 3) defines caching rules, making
it possible to separate business logic from cache management
aspects.

The algorithm for processing a request for a list of ele-
ments (Fig. 4) implements efficient caching for fast data ac-
cess, while the algorithm for creating a new element (Fig. 5)
is responsible for updating the cache when adding new re-
cords. Processing cache update instructions (Fig. 6) ensures
correct and consistent changes to cached data in accordance
with defined policies, which prevents inconsistent states in
the cache.

Optimization of the mechanisms for adding, updating,
and deleting cache elements is aimed at reducing delays and
accelerating data retrieval. The use of unique keys allows
for quick identification of records and enables high cache
performance.

The algorithm for adding or updating an array of elements
in the cache (Fig. 7) implements a batch change mechanism,
which minimizes the number of read-write operations,
thereby improving overall system performance. Thanks to
this approach, large amounts of data can be quickly updated
without significant load on the caching system.

To manage individual items in the cache, the “setItemTo-
Cache” algorithm is used, which provides efficient updating
of individual records and allows for quick deletion of related
data (Fig. 8). This makes it easy to track where a record has
been used and ensures consistent updates. For example, if a
record is included in multiple categories or lists, the system
automatically updates or deletes all related cached copies,
preventing the use of outdated data [12].

Similarly, the “removeItemFromCache” algorithm en-
ables correct removal of items along with their links (Fig. 9).

This mechanism prevents situations when records that are no
longer used remain in the cache but occupy memory and can
lead to incorrect data display.

Comparison of our results with previous studies demon-
strates significant advantages of the proposed approach.
For example, unlike the slab-based allocation approach [4],
which turned out to be less flexible due to memory calcifi-
cation, the proposed dynamic caching makes it possible to
reduce fragmentation and increase resource efficiency. Sim-
ilarly, the lazy-invalidation mechanism [5] reduces update
delays, but has limitations in complex service interaction
graphs. The approach proposed in this study uses declarative
cache update mechanisms to eliminate these shortcomings.

The Redis study [6] demonstrated high query process-
ing speed but noted the difficulty of integrating imperative
cache updates into microservice architectures. The proposed
approach solves this problem through declarative cache in-
validation, which simplifies management and improves scal-
ability. In addition, the problems of accumulation of inactive
objects in Redis, identified in [7], were taken into account in
the system design (Fig. 8), which makes it possible to avoid
inefficient use of resources.

Unlike FPGA caching [8], which has scalability limita-
tions, our approach (Fig. 9) is based on backlinks, which
makes it possible to maintain cache consistency and flexi-
bly adapt the system to changing conditions. The proposed
declarative caching rules minimize coordination risks with
high update competition, which was noted in [9].

Thus, the proposed solutions directly resolve the iden-
tified problems by eliminating inter-service dependences,
simplifying cache invalidation, and increasing performance.
The cache invalidation architecture minimizes inter-service
connections (Fig. 1), the conceptual model of the declarative
approach to cache invalidation provides a clear separation
of business logic and caching mechanisms (Fig. 2–6), and
the use of backlinks in the presented algorithms “setItemTo-
Cache” and “removeItemFromCache” (Fig. 7–9) guarantees
data consistency and prevents incorrect cached states.

A feature of the proposed solutions is the construction
of a conceptual model of a declarative approach to cache
invalidation, which defines the structure and mechanisms
for separating the business logic of microservices from cache
update processes. The proposed model allows us to formalize
and automate cache management, which helps minimize
the overhead of updating it and improve data consistency
between microservices.

The main limitations of the study are related to the pecu-
liarities of caching implementation in microservice architec-
ture. The proposed methods are effective under conditions
of stable data structure but may require adaptation in the
case of dynamic changes in the model or high variability of
requests [13]. Also, the cache invalidation system depends
on the correct configuration of return links, which requires
careful tuning. To confirm the results, it is worth conducting
additional testing on real distributed systems with different
loads. In further studies, it is advisable to consider optimiza-
tion for real scenarios and mechanisms for automated cache
dependence management.

7. Conclusions

1. Mechanisms for dividing responsibility between mi-
croservices have been defined to ensure their autonomy and

Eastern-European Journal of Enterprise Technologies ISSN-L 1729-3774; E-ISSN 1729-4061	 2/2 (134) 2025

74

reduce inter-service dependences in caching processes. A
special feature is that the separation of cache update pro-
cesses from the business logic of microservices is provided.
This is achieved by implementing a separate cache service
in combination with a centralized caching management
mechanism at the API gateway level. This approach makes it
possible to automate cache updates, improve data consistency
in a distributed environment, increase system scalability, and
simplify its maintenance.

2. A conceptual model of a declarative approach to cache
invalidation has been built, which defines the structure and
mechanisms for separating microservices business logic from
cache update processes. The proposed model provides flexi-
bility in caching management and makes it possible to easily
adapt to changes in the data structure, while maintaining the
autonomy of microservices. It makes it possible to effectively
separate business logic and caching mechanisms without the
need for changes in the microservices code when updating
cache rules.

3. Optimization of the mechanisms for adding, updating,
and deleting cache elements provides effective management
of cached data. The proposed approach warrants the avoid-
ance of residual records after deletion, updating all lists in
which the element appeared, as well as maintaining cache
consistency when updating or deleting data. Creating a
unique key for accessing cached records makes it possible to
avoid conflicts between different data sets. The implementa-
tion of the backlink mechanism provides fast navigation and

updating of elements in complex structures, preserving the
contexts of element use. This approach makes it possible to
work effectively with the cache in distributed environments
and supports the stability of data update processes.

Conflicts of interest

The authors declare that they have no conflicts of interest
in relation to the current study, including financial, personal,
authorship, or any other, that could affect the study, as well
as the results reported in this paper.

Funding

The study was conducted without financial support.

Data availability

The data will be provided upon reasonable request.

Use of artificial intelligence

The authors confirm that they did not use artificial intel-
ligence technologies when creating the current work.

References

1.	 Falkevych, V., Lisniak, A. (2024) Client state management using backend for frontend pattern architecture in B2B segment. Artificial
Intelligence, 29 (2), 49–60. https://doi.org/10.15407/jai2024.02.049

2.	 Falkevych, V. G., Lisniak, A. O. (2023). Methodology of cache invalidation in microservices architecture of the web applications. Scientific
Notes of Taurida National V.I. Vernadsky University. Series: Technical Sciences, 1, 131–135. https://doi.org/10.32782/2663-5941/2023.1/20

3.	 Faridi, M. T., Singh, K., Soni, K., Negi, S. (2023). Memcached vs Redis Caching Optimization Comparison using Machine Learning.
2023 2nd International Conference on Automation, Computing and Renewable Systems (ICACRS), 1153–1159. https://doi.org/10.1109/
icacrs58579.2023.10404339

4.	 Carra, D., Michiardi, P. (2014). Memory partitioning in Memcached: An experimental performance analysis. 2014 IEEE International
Conference on Communications (ICC), 1154–1159. https://doi.org/10.1109/icc.2014.6883477

5.	 Zhang, H., Kallas, K., Pavlatos, S., Alur, R., Angel, S., Liu, V. (2024). MuCache: A General Framework for Caching in Microservice
Graphs. Proceedings of the 21st USENIX Symposium on Networked Systems Design and Implementation (NSDI 24), 221–238.
Available at: https://www.usenix.org/system/files/nsdi24-zhang-haoran.pdf

6.	 Chen, S., Tang, X., Wang, H., Zhao, H., Guo, M. (2016). Towards Scalable and Reliable In-Memory Storage System: A Case Study with
Redis. 2016 IEEE Trustcom/BigDataSE/ISPA. https://doi.org/10.1109/trustcom.2016.0255

7.	 Liu, Q. (2019). A High Performance Memory Key-Value Database Based on Redis. Journal of Computers, 14 (3), 170–183. https://doi.org/
10.17706/jcp.14.3.170-183

8.	 Fukuda, E. S., Inoue, H., Takenaka, T., Dahoo Kim, Sadahisa, T., Asai, T., Motomura, M. (2014). Caching memcached at reconfigurable
network interface. 2014 24th International Conference on Field Programmable Logic and Applications (FPL), 1–6. https://doi.org/10.1109/
fpl.2014.6927487

9.	 Ji, Z., Ganchev, I., O’Droma, M., Ding, T. (2014). A Distributed Redis Framework for Use in the UCWW. 2014 International Conference
on Cyber-Enabled Distributed Computing and Knowledge Discovery, 241–244. https://doi.org/10.1109/cyberc.2014.50

10.	 Yang, J., Yue, Y., Vinayak, R. (2021). Segcache: a memory-efficient and scalable in-memory key-value cache for small objects. 18th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 21), 503–518. Available at: https://www.usenix.org/
conference/nsdi21/presentation/yang-juncheng

11.	 Rahul, Singh, K., Vrinda, Dipanshu (2024). Review Paper on Machine Learning Based Memcached Cluster Auto Scaling. Emerging
Trends in IoT and Computing Technologies, 330–337. https://doi.org/10.1201/9781003535423-55

12.	 Almeida, D., Lopes, M., Saraiva, L., Abbasi, M., Martins, P., Silva, J., Váz, P. (2023). Performance Comparison of Redis, Memcached,
MySQL, and PostgreSQL: A Study on Key-Value and Relational Databases. 2023 Second International Conference On Smart
Technologies For Smart Nation (SmartTechCon), 902–907. https://doi.org/10.1109/smarttechcon57526.2023.10391649

13.	 Chopade, R., Pachghare, V. (2021). A data recovery technique for Redis using internal dictionary structure. Forensic Science
International: Digital Investigation, 38, 301218. https://doi.org/10.1016/j.fsidi.2021.301218

