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The study examines the numerical solution of vibration con-
trol problems in a coupled system consisting of two interacting
objects. The problem is solved under the assumption that the left
boundary of the distributed system is fixed, while an object with
lumped parameters is attached to the right boundary, where
a boundary control action is also applied to the distributed sys-
tem. Special attention is given to obtaining a numerical solution
to the problem. The solution is approached using two methods:
the gradient projection method and, due to the linearity of the
boundary problem concerning phase coordinates and control
inputs, the method of successive approximations. By introduc-
ing an additional variable, the one-dimensional wave equation
is approximated using the method of lines, transforming it into
a system of ordinary differential equations of the 2n-th order.
The resulting variational problem for the system with lumped
parameters is then numerically solved based on Pontryagin’s
maximum principle. The approximately optimal controls,
obtained using the gradient projection method with a specially
chosen step size, form a minimizing sequence of controls. Based
on the numerical results, functional convergence is established.
The method of successive approximations provides an optimal
control solution as early as the second iteration, regardless of
the initial control. This demonstrates the method’s efficiency
and reliability for solving linear optimal control problems. The
developed numerical techniques can be applied to optimize the
dynamic behavior of complex mechanical structures, enhance
system stability, and improve operational efficiency in various
engineering applications

Keywords: Pontryagin’s maximum principle, wave equation,
method of straight lines, functional convergence
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1. Introduction shock absorption mechanisms in structural design [4]. These

diverse applications highlight the necessity for further research

The study of coupled systems with distributed and lumped
parameters remains a highly relevant scientific topic due to its
broad applicability in engineering, mechanics, and industrial
systems. In recent years, significant advancements have been
made in the theory of systems with distributed parameters,
enriching the field with new analytical and computational
methods. These developments have contributed to more ef-
fective approaches in modeling and controlling dynamic pro-
cesses in coupled structures, enabling improved performance
and stability in various applications. Integrating modern
mathematical techniques and computational tools has further
enhanced the precision and efficiency of control strategies for
such systems.

The control of vibrations in coupled systems with distrib-
uted and lumped parameters is crucial in numerous practical
applications. Oscillatory processes occur in various industrial
and engineering domains, necessitating effective control mech-
anisms to enhance performance, reduce wear, and prevent
structural failures. Examples include ship roll stabilization [1],
where unwanted oscillations must be minimized to ensure nav-
igational safety, and crane boom damping [2], which requires
precise control to prevent excessive swaying. Other applications
include vibratory conveyors used in material handling 3], ac-
tive vibration protection systems in aerospace engineering, and

into vibration control strategies tailored to systems with both
distributed and lumped parameters [5].

The mathematical modeling of such systems typically relies
on methods of mathematical physics, where governing equa-
tions are often expressed as partial differential equations (PDEs)
subject to specific boundary and initial conditions. While ex-
act analytical solutions exist for certain simplified cases, most
practical problems necessitate the use of approximate and
numerical methods to determine feasible control strategies. In
particular, the wave equation serves as a fundamental model
for describing the propagation of vibrations in elastic media,
mechanical systems, and structural elements. The choice of
boundary conditions significantly affects the system’s behav-
ior and the available control methodologies. Fixed boundaries
restrict movement, while free boundaries allow oscillations
that must be managed effectively.

Given the complexities associated with coupled systems
exhibiting both distributed and lumped parameters, the
study of their controllability and optimal control remains
a critical scientific and engineering challenge. Addressing
these issues contributes not only to advancing theoretical
knowledge in mathematical modeling and control theory
but also to developing innovative and effective vibration
control techniques applicable to a wide range of technical




systems. Therefore, research devoted to the development of
advanced control methods for such coupled vibratory sys-
tems is of significant relevance.

2. Literature review and problem statement

One of the relevant applied problems in vibration control
is the problem of damping vibrations in coupled systems.
Due to numerous applications and its important theoretical
significance, the control of vibratory processes with various
boundary conditions has long attracted the attention of
researchers, and there is extensive literature dedicated to
this topic [5].

The paper [6] presents a comprehensive study on ap-
plied engineering solutions in industries such as automo-
tive, maritime, aviation, and power generation. It is shown
that innovative practical solutions have been developed for
controlling nonlinear oscillations induced by limited energy
sources. However, unresolved issues remain concerning the
fundamental theoretical aspects of nonlinear oscillations,
which are not deeply explored in this work. The reason for
this may be the focus on industrial applications rather than on
mathematical modeling and dynamic system analysis. A way
to overcome this gap is to integrate advanced mathematical
approaches into practical engineering solutions, ensuring
a more comprehensive understanding of oscillatory behavior.

The study [7] presents methods that expand the under-
standing of optimization problems and their application to
dynamic systems with oscillations. It is shown that optimi-
zation algorithms used in telecommunications networks or
time series processing can be adapted for vibration control
in mechanical systems. However, unresolved issues remain
regarding the practical implementation of these optimization
methods for real vibration control tasks. The reason for this
may be the lack of specific examples and detailed discussions
on their adaptation to mechanical systems. A possible way
to overcome this limitation is to conduct case studies that
demonstrate the real-world applicability of these algorithms
in vibration suppression tasks.

The research in [8] provides a valuable resource on clas-
sical control methods, including the use of transfer functions
and state-space representations for controlling oscillatory pro-
cesses. It is shown that these approaches offer efficient strate-
gies for vibration control, including the design of controllers
to minimize unwanted oscillations. However, unresolved
issues exist regarding the adaptation of these methods to
complex, multi-component, or nonlinear systems. The reason
for this may be that traditional methods require significant
computational resources or may be inadequate for highly
dynamic environments. A way to address this challenge is
the development of hybrid control strategies that combine
classical and modern optimization techniques for improved
performance in complex vibratory systems.

The paper [9] explores the use of Dynamic Light Scatter-
ing (DLS) for monitoring and characterizing the aggregation
dynamics of nanoparticles in colloidal systems. It is shown
that DLS is a valuable tool for analyzing particle size dis-
tribution and aggregation, which can have implications for
vibrational process optimization. However, unresolved issues
remain regarding the comparison of DLS with alternative ana-
lytical methods, which could provide a more complete under-
standing of particle behavior under different conditions. The
reason for this may be the methodological limitations of DLS

in handling complex colloidal systems. A potential way to
address this issue is the integration of complementary analy-
sis techniques alongside DLS for a more robust assessment of
vibrational process stability.

The study [10] investigates the oscillatory behavior of
third-order differential equations, which is essential for opti-
mizing oscillatory processes in various dynamic systems. It is
shown that understanding relationships between solutions
and their derivatives enables the development of new crite-
ria for analyzing oscillatory behavior. However, unresolved
issues exist in applying these theoretical results to practical
engineering applications. The reason for this may be the lack
of a detailed analysis of potential limitations and challenges
in real vibration systems. A way to overcome these difficulties
is to develop experimental validation studies that compare
theoretical predictions with empirical data.

The numerical study in[11] presents computational
experiments that confirm the theoretical results obtained
in [10]. It is shown that numerical simulations provide valu-
able insights into system behavior. However, unresolved
issues remain concerning the accuracy and sensitivity of the
method to variations in initial data. The reason for this may
be the absence of a thorough error analysis. A way to address
this limitation is to implement rigorous error estimation tech-
niques and sensitivity analyses to enhance the reliability of
numerical results in practical applications.

The paper [12] examines the use of a reliable position
controller for managing an elastic joint to suppress vibrations.
It is shown that the Resonance Ratio Control (RRC) method
effectively regulates system oscillations by setting a fixed ratio
between resonance and anti-resonance frequencies. Howev-
er, unresolved issues arise regarding the adaptability of this
method to dynamic systems with variable characteristics. The
reason for this may be the fixed nature of the frequency ratio,
which may not be suitable for changing external conditions
or system parameters. A way to overcome this limitation is to
develop adaptive control techniques that can adjust control
parameters in real time based on system dynamics.

All this suggests that it is advisable to conduct a study on
the development of advanced vibration control strategies that
integrate modern optimization techniques, adaptive control
methodologies, and experimental validation approaches. Ad-
dressing the unresolved challenges identified in the literature
will contribute to the advancement of effective vibration sup-
pression solutions in coupled dynamic systems.

3. The aim and objectives of the study

The study aims to develop effective numerical method
for solving optimal control problems in vibrating systems,
where the parameters are distributed along two boundaries.
This will make it possible to enhance control strategies for
vibrations in coupled systems, ensuring improved stability
and performance.

To achieve this aim, the following objectives are accom-
plished:

- to formulate the optimal control problem for vibrations
of coupled systems and finding numerical solutions to the
control problems;

— to develop algorithms for finding a sequence of controls
that minimize the functional;

— to justify the convergence of the functional based on the
conducted calculations.



4. Materials and methods

The object of the study is the dynamic behavior and control
of vibrations in coupled systems with distributed and lumped pa-
rameters. The main hypothesis of the study is that the application
of advanced numerical optimization techniques enables effective
control of vibrations in coupled systems, ensuring stability and
improved performance. The study is based on several assump-
tions: the system’s equations of motion are accurately described
by known mathematical models, the control inputs can be
continuously adjusted to optimize system behavior, the applied
numerical methods provide sufficient accuracy and convergence
for solving the control problem, and the system parameters re-
main within a predefined range during operation. To simplify the
analysis, certain approximations were adopted: the system dy-
namics were linearized to facilitate the application of analytical
and numerical methods, external disturbances and noise were
neglected in the primary model formulation, ideal boundary
conditions were assumed without material degradation or non-
linearity, and spatial variables were discretized to reduce com-
putational complexity while maintaining sufficient accuracy.

The research employed a range of numerical methods to
solve optimal control problems for vibrations in coupled sys-
tems, addressing both spatial and temporal parameters of the
model [13]. Optimization approaches and variational princi-
ples were utilized to determine optimal control inputs and reg-
ulate the system’s dynamic behavior throughout its operation.
The study primarily relied on the gradient projection method
and the method of successive approximations, both of which
are well-established in scientific practice due to their efficien-
cy and convergence properties in solving complex problems.

The gradient projection method was applied within the
variational framework to minimize a functional dependence
on both system states and control inputs. This functional,
representing the quality or effectiveness of control, guided
the optimization process. The method involved iterative
calculations of the functional’s gradient, allowing control
adjustments in the direction of the negative gradient to incre-
mentally improve the system’s behavior.

The method of successive approximations was used for
solving linear boundary value problems that model system
dynamics. This iterative approach refined control inputs at
each step based on the system’s current state. The optimiza-
tion procedure incorporated the Hamiltonian function, which
was maximized concerning the control variable, enabling the
computation of optimal control inputs at each stage.

To enhance numerical accuracy, spatial variable discretiza-
tion was employed, allowing for more precise modeling of the
system’s dynamic behavior. Additionally, temporal integration
was performed using the Runge-Kutta method, a highly accu-
rate and stable numerical technique well-suited for differen-
tial equations with distributed parameters. This integration
method ensured computational precision, which is essential
for obtaining reliable control solutions [14].

For practical implementation, specialized software was
developed to automate computations, including discretiza-
tion, gradient calculation, and iterative control adjustments.
The software effectively integrated all methodological steps,
facilitating efficient and precise optimization processes.

The research methodology was validated through nu-
merical experiments, ensuring that the proposed approach
could be effectively applied under various conditions. The
structured combination of numerical techniques, including
optimization algorithms, spatial discretization, and temporal

integration, provided a robust framework for addressing vi-
bratory control problems in coupled systems.

5. Results of the development of numerical methods
for vibration control

5.1. Formulation of the optimal control problem and
deriving the computational formula

In the area Q={0<x<1.0<t<T} let’s consider the vibra-
tions of the system described by the following boundary value
problem [4]:

Uy (%,t) = @Pug (x,1), (x,6) €Q, 1)
u(x,0)=(x),u (x,0)=g(x), 0<x <1, @
u(0,)=0,u(Lt)=y(t),0<t<T 3)
F(O)+(an)’ y(¢)=p(t)+buy (1, ) 0<t<T, @)
y(0)=y°, y(0)=y", ©)

where ¢(x) eC?[0,1] is the initial state of an object with dis-
tributed parameters, g(x) eC'[0,1] is the initial velocity of
movement of an object with distributed parameters. The ex-
ternal force p(t) eC[0,T] is selected as a control. It is assumed
that 0<p(t) < pmax, Where pmay is the value specified based on
technological conditions.

From the alignment of initial and boundary conditions, it
is possible to obtain that:

$(0)=0,0"(0)=0,g(0)=0,
o(1)=»° M=y, (6)

p(0)=a" (1) b/ (1) + ()" (1).

The first condition in (3) indicates that the left end of the
distributed system is fixed, while the second condition in (3)
means that a lumped system is attached to the right end of
this system, and there, an external force p(t) is applied to the
distributed system.

It is required to control the external force p(f) in such
a way that at time ¢=T, the system is in a state that differs little
from its rest state. Such a deviation is taken as the functional:

FI[

The control p(t) that satisfies the above-mentioned condi-
tions is called a permissible control. In particular, if inf F=0,
then it is possible to completely dampen the vibrations of the
coupled system by time T.

The results that determine the general solution of the
boundary value problem (1)~(5) depend on how the coefficients
o, B, and p are related. It can be obtained by separately solving
the problem with zero initial conditions y°=0, y'=0 and the
problem with homogeneous boundary conditions. In this case,
the general solution of the boundary value problem (1)-(5) is the
sum of the solutions of the considered boundary problems [5].

Let’s find the solution y(t) to the Cauchy problem (4), (5):

x,T)+u?(x, T)]dx @)

— 1,0 i 1o
y(t)=y° cos(aut)+ a y*sin(apt)+
t

+Lj(p(t)+bux (l,t))sin(au(t—r))dr. ®

apy



Considering the condition u(1, £)=y(¢), it is possible to
write the boundary condition that the function u(x,t) must
satisfy at the point x=1:

u(1,t)=y° cos(aut) +a—luy1 sin(aut)+

L (o5 1:5) sinfano ) ®

apy

If the variable y(t) is excluded from the conditions (3)—(5),
then (3)-(5) can be represented in the following form:

u(0,)=0,u, (Le)+ (an) u(Le)=p(t) +buy (Lr),  (10)

u(1,0)=° u,(1,0) =y [¢8))

It should be noted that depending on the sign of the
product b*~4a*u?, in[16], using the continuation method,
formulas for the general solution of the boundary value prob-
lem (1)-(5) were derived, and control laws were determined.

From the results obtained in this paper, as a special case,
the control laws for the vibration of a string with first-kind
boundary conditions can be derived, i.e., for the control prob-
lem described by the boundary value problem (1)-(3), where
the control function is y(t).

In this paper, two methods are used for the numerical
solution of the considered problem - the gradient projection
method and the method of successive approximations. The
boundary value problem describing the control process is
replaced by ordinary differential equations using the direct
method, and the resulting variational problem is solved nu-
merically based on Pontryagin’s maximum principle.

Let u,(x,t)=v(x,t) be denoted. Then, the boundary value
problem (1)—(5) and the functional (7) can be written in the
following form:

u (x,t)=v(x,t), (12)
v (x,1) =%y (x,1),0<x<1.0<t<T, (13)
u(x,0)=¢(x),v(x,0)=g(x),0<x<1, (14)
u(0,)=0, 0, (L6)+ (an) u(Lt) = p(t) +bue (Le), (15
0<t<T,

u(1,0)=%,0v(1,0)=y", (16)
F= [ () o2 (e T)Jax an

0

Therefore, the problem (1)-(7) reduces to determining
the function p(t) from the condition of minimizing the func-
tional (17) subject to the constraints (12)-(16).

Using the direct method, it is possible to construct a fi-
nite-dimensional approximation of the boundary value prob-
lem (12)-(16). Let x;=ih, i=0,1,...,n is the grid of lines
with a step h=1/n on the segment [0,1]. Let u;(t)=u(x;t),
vi()=v(x;,t), i=1,2,...,n be denoted. Then, taking into account
the conditions uy(¢)=0, the problem (12)-(16) at the grid
nodes can be approximated by a system of ordinary differen-
tial equations:

Lli :Ui,i:1,2,...,n,

2
Uy ::—2[—21,{1 +u2],

v; :Z—z[ui,l72ui+ui+1],i:2,3,...,n—1, (18)
O, = %[fbun,l + (b fh(au)z)un}+ p(t),

with the following initial conditions:
ul-(0):¢(xi),ui(0)=g(xi),i:1,2,...,n, (19)
u, (0):y°,un (O):yl.

Thus, the original problem (12)—(17) reduces to determin-
ing the external force p(f) from the condition of minimizing
the approximating sum:

F= hg[u,? (1)+v2(T)]

To bring the system (18) into the canonical Cauchy form,
let’s introduce an 2n-dimensional vector with components
(U1, Unyeeesllyyy Upyg1s Upgas.. Uon), Where u,;=v;, i=1, 2, ..., 1,
and rewrite the system of equations (18), (19) as follows:

(20)

U =U,,;,i=12,..,n,

a2
Up1 = ﬁl:_zul + u2:|’
@D

a? ;
Uy :ﬁ[ui_l —2uy; +ui+1],l =23,...,n—-1,
. 1 2
Uy, :ﬁ[—bum1 +(b—h(ap) )un}+p(t),
with the following initial conditions:

{ui (0)=0(x; )sttnsi (%) =8(x:),i =1,2,..0n—1,

u, (0):y°,u2n (0):y1. @22)

The functional (20) takes the form:

2n
F=hY u?(T).
i=1

Thus, the problem is reduced to determining the func-
tion p(t) from the condition of minimizing (23) subject to the
constraints (21), (22). Let’s construct the Hamiltonian func-
tion for the problem (21)-(23):

(23)

n 2
a
H= Z Villpi t Wni ﬁ(—Zul U, ) +
i=1
2 n-1

+ W Zz: Wi (ui—l —2U; + U ) +
iz

+ Wap %K—bun_l + (b - h(au)2 )unj + hp(t)}.

For the convenience of constructing the conjugate system
of functions H, let’s first represent them in the following form:

(24)

n a2
H= Z Up Vi + P
i=1
2 n=2
+ ﬁ z U; (\Vnﬂ'—l - 2\Vn+i T Wntitl ) +
i=2

U (_2W1 ') ) +

a? hb
+ ﬁun—l Wan-2 ~2Wa,-1 _aT\VZn +
a2

h
+ ﬁun (\VZn—l +a7(b_h(h”)2 )]""VZ" -p(t).



Then, the system of conjugate equations, according to the
standard formulation of the maximum principle, can be writ-
ten in the following form:

. a?

Y1 :_hiz —2Ypi1 +‘Vn+2:|’

. a?

Vi = _ﬁ[\l’nﬂ'—l 2y, + \Vn+i+1:|’i =2,3,..,n-2,
2

. a hb

Yy = —hz{‘hnz —2Y,1 —azllfzn}a (26)
. a? h 2

Yy = _hz|:w2n1 +a7(b—h(au) Wm)}

Vi =—Vpi=12,..,1.

The boundary conditions for y(T) and F'=-dH/dp are as
follows:

v (T)=-2hu;(T),i=1,2,...,2n, 27)

F'(p)=-va(t). (28)

To compute the gradient for a given control p(¢), it is first
necessary to solve the system of equations (21) with the initial
conditions (22), which allows determining the state function
values uy(T), where i=1,2,...,n at the final time T. Then, the
obtained values u(T) are substituted into expression (27),
after which the adjoint system of equations (26) is integrated
with the boundary conditions (27) defined over the final time
interval. Once the adjoint system is solved, the gradient F'(p)
can be computed using formula (28), which enables determin-
ing the direction for optimizing the control parameter p(f).

5.2. The development of an algorithm for determin-
ing the minimizing sequence

When using the gradient projection method, a sequence
of control functions is constructed, starting from some admis-
sible control p(f). The main work when transitioning from
one control p*(f) to the next p*+1(¢) is related to calculating the
gradient of the functional using the formula (28).

The algorithm for solving the problem consists of the
following steps:

Step 1. An admissible control pX(¢) is selected. Based on
the selected pX(t) using the Runge-Kutta method (or the Euler
method, if stability conditions allow), the system of equa-
tions (21), (22) is integrated with the "forward direction”. The
values of ut), i=1, 2,..., 2n are computed and stored. It should
be noted that for linear systems, it is not necessary to store all
the values of the functions u(t), i=1, 2,..., 2n in the computer’s
memory. Only their final values need to be remembered, and
then the conjugate system (26) can be integrated simultaneous-
ly with the system (21) from t=T to t=0. However, this approach
increases the computational load and, the computation process,
especially for nonlinear systems, often becomes unstable.

Step 2. The values of the approximating sum (23) are
computed.

Step 3. The values of y«(T), i=1, 2, ..., 2n are computed
using the formulas (27).

Step 4. In the "backward direction” of time, the system
(26), (27) is integrated, and the gradient of the functional (23)
is computed using the formulas (28).

Step 5. Taking into account p*+1(0)=a?¢'(1)-bo(1), the new
control p1(¢) for the values t;=jAt, j=1,2,....,m, mAt=T is com-
puted using the formula:

0,if p*(£)+8p*(t) <o,

P (t) = Prmax» if P¥(£)+ 8% (£)> Prva (29)
P (t)+8p*(¢),if 0< p*(t)+8p* (£) < Prax-
Here:
k
5p* (1) wi () k=0,1,..., (30)

a0

where At is the discretization step in time, k is the iteration
number, and the parameter a>0 is chosen using one of the
methods described in [3].

Step 6. A step is taken with the new control p**!(¢), return-
ing to Step 2.

5. 3. Obtaining a numerical solution to the problem

To obtain a numerical solution to the problem (21)-(23)
using the described algorithm, computer codes were devel-
oped. The code allows for the automatic numerical solution of
a fairly wide range of optimal control problems. To verify the
correctness of the entire computational process, intermediate
computational results were checked using an unconditional
jump operator. This included analyzing the behavior of the
Cauchy problem (21), (22) with fixed admissible control,
evaluating the sum (23) immediately after integrating the
system of equations (21), (22), and examining the behavior
of the adjoint problem (26), (27). Additionally, the boundary
conditions (27) for system (26) were computed, along with the
gradient values F'(p) using formula (28).

The systems of equations (21), (22) and the adjoint system
(26), (27) were integrated using a constant step size At=0.01,
and results were output at step size At=0.05. The interval [0, 1]
was divided into ten equal parts with a step size h=0.1. Clear-
ly, for the chosen values of At and h, the stability condition
Af2<0.5h? holds, meaning that the system of equations (21),
(22) and the system (26), (27) could also be integrated using
Euler’s method.

The problem was solved with the following parameter and
function values:

T=0.2,ppax =4 0 =0.2,a=1,b=6,n=3,
o(x)=x*(1-x),g(x)=x(1-x).
As the initial approximation, the function p°(f) was taken as:

po(t):pmax'i' (3D
T

The value of the functional (23) for the initial approxi-
mation (31) was found to be 0.123, which is computed after
integrating the system of equations (21), (22). It is important
to note that condition (6) in the boundary problem (1)-(5)
does not allow for a wide variation of the functions and initial
data. It is easy to see that for the selected parameter values and
functions, the following conditions are satisfied:

(32)




Taking these conditions into account, the solution of the
boundary problem (1)-(5) for 0<¢<2 has the following form:

deﬁ)=%[®(x+t)+®(x—ﬂ}+

= G(z)dz+§(9—s)exp(3(6—s))f)(s)ds—

xX—t

- T(n—s)exp(3(n —S))z_)(s)ds,

0

(33)

where 0 :e(x,t) =t-1+x,m :n(x,t) =t-1-x,and [)(t), used
in solving the problem with zero initial conditions, has the
form of:

ﬁ(t):{p(t),t>0,

0,6<0.

In formula (33), the functions ®(z) and G(z) are extensions
of the functions ¢(z) and g(z), respectively. These extensions
for 1<z<2 are determined as follows:

(2)=(z-1)exp(3(z-1))+

+J(z—c)exp(3(z-¢))r (¢)de, (34)
1
G(z)=[[1+3(2~¢) Jexp(3(2~¢))p(c)dc, (35)
1
where 2<z<3:
p(z)=323 —%zz +2z+%. (36)

The extensions of the functions ¢(z) and y(z) for 2<z<3
are determined using similar formulas, while for -2<z<0, they
are given by specific formulas ®(z)=-®(-z), G(z)=-G(-z) [5].

As seen from the given formulas (33)—(36), their practical
implementation involves significant computational difficul-
ties. To overcome this challenge in the numerical solution of
the boundary value problem (12)—(16), the method of straight
lines is applied. Table 1 shows the convergence of the func-
tional for the controls given in equation (31).

Table 1
Convergence of the functional for the given controls
No. of iteration F max o,(t)
0 1.2299 E-01 3.8597 E-01
1 1.1871 E-01 3.7337 E-0.1
2 1.1462 E-01 3.6082 E-01
3 1.1071 E-01 3.4835 E-01
4 1.0699 E-01 3.3599 E-01
5 1.0348 E-01 3.2384 E-01
6 1.0015 E-01 3.1178 E-01
7 9.6985 E-02 2.9979 E-01
10 8.8550 E-02 2.6475 E-01
14 7.9548 E-02 2.1995 E-01
26 6.8265 E-02 1.3540 E-01
27 6.8245 E-02 1.3495 E-01
28 6.8245 E-02 1.3494 E-01

In further iterations, the functional value did not change.
The data presented in the table clearly show that the approxi-
mated optimal control exhibits convergence of the functional.
It should be noted that convergence of the functional always oc-
curs if the solution of the approximating system (21) converges
to the solution of the original boundary value problem [1].

The sequence of controls obtained in some intermediate it-
erations is shown in Fig. 1. From the analysis of this figure and
the table data, it follows that the gradient projection method in
problem (21), (22) provides a minimizing sequence of controls.

0 5
e
£ 4
° k=1
2 —
E 3 _
g o
=0
= — k=14
g X — k=22
= — k=26
e _
&

0

0 2 4 6 8 10 12 14 16 18 20

Nodal point numbers by time coordinate t

Fig. 1. Sequence of intermediate controls

It should be noted that when using the method of suc-
cessive approximations, at each step, the control variable is
selected according to the maximum principle based on the
condition of maximizing the Hamiltonian function, i.e., during
iterations, according to the formula:

pk+1(t):pm7“(1+sign(\y§n (t))),k:O,l,.... 37)

The question of the convergence conditions for this process
of successive approximations remains open. Even in the case
of convergence, it is generally unknown whether the obtained
control is truly optimal, as the maximum principle provides only
a necessary condition for optimality. Nevertheless, for certain
variational problems where the existence and uniqueness of the
solution are clear from physical considerations, the method of
successive approximations can be used to find optimal controls.

Due to the linearity of the system of equations (21) with
respect to the phase variables and control, the method of suc-
cessive approximations in the problem (21)-(23), regardless
of the initial control, yields the optimal control as early as the
second iteration:

* _ pmax’ift>0’
P (t)_{o,iftzo.

(3%)

It is easy to see that as the number of iterations increases,
the sequence of controls constructed using formulas (29), (30)
converges to the function p(t).

6. Discussion of experimental results relative
to vibration control strategies in coupled systems with
distributed and lumped parameters

Based on the data provided in Table 1, the functional’s
convergence of the control sequence is confirmed. The graphs



shown in Fig. 1 demonstrate that, despite the incorrectness
of problem (1)-(5) with the quadratic functional (7), the gra-
dient projection method (31), (32) with a special step selection
produces a converging sequence of controls and requires only
a small number of iterations. Calculations show that the use
of the method of successive approximations allows a solution
to be obtained as early as the second approximation.

A key advantage of the proposed method compared to
similar studies [5, 7, 8] is its ability to eliminate the need for
complex mathematical transformations and computationally
intensive operations. This simplifies the problem-solving
process, reduces computational load, and still maintains high
accuracy and reliability of the results.

Within the scope of this work, the direct method is ap-
plied, which has proven effective both in solving boundary
problems of mathematical physics and in addressing optimal
control problems for systems with distributed parameters.
This approach significantly reduces the labor intensity of
numerical calculations while maintaining high accuracy in
the obtained solutions. Moreover, due to its versatility, the
direct method is particularly well-suited for optimal control
problems in dynamic systems, whose processes are described
by nonlinear boundary conditions.

Unlike the approaches presented in [9, 10], which rely on
iterative numerical schemes requiring multiple recalculations
per step, the proposed method provides a more computation-
ally efficient framework. While methods in [11] emphasize
spectral decomposition techniques for vibration suppression,
they often suffer from sensitivity to parameter variations, mak-
ing them less robust for practical applications. Additionally, the
control strategies described in [12] incorporate adaptive ele-
ments, but their implementation demands high computational
power, making real-time applications challenging. In contrast,
the developed approach ensures stability and efficiency even
with limited computational resources, making it well-suited for
engineering applications where real-time control is essential.

It should be noted that the results of research on vibration
control in coupled systems consisting of two objects hold
significant theoretical importance. However, the practical ap-
plication of the formulas derived in these works is associated
with substantial computational challenges when constructing
and solving boundary value problems and control variables.
The present study aims to develop practical applications of vi-
bration control methods in coupled systems and to refine the
conditions of controllability. The results obtained may find
applications in various fields of engineering, including trans-
portation mechanics, robotics, construction, and vibration
isolation, contributing to the further advancement of vibra-
tion suppression technologies in complex technical systems.

One of the significant limitations of the conducted re-
search is the lack of a detailed and rigorous analysis of the
convergence of the approximate solution to the Cauchy prob-
lem (21), (22), which is related to the original boundary value
problem (1)-(5). This aspect represents an important issue, as
the convergence of the solutions to the approximation prob-
lem (21)—(23) directly affects the accuracy and reliability of
the results obtained. Future research could focus on deriving
a priori estimates for linear and non-homogeneous systems
of ordinary differential equations, which would allow for
a deeper understanding of the behavior of the solution when
approximating boundary problems. Moreover, the issue of
the convergence of approximate solutions in the context of
optimal control, due to the ill-posed nature of the considered
optimal control problem, remains unresolved and requires

further investigation. Verifying the correctness and accuracy
of the proposed method, especially in practical applications,
is essential for evaluating its real effectiveness and suitability
for solving complex optimal control problems.

One of the most promising directions for future research
is the extension of the proposed method to more complex
systems involving more than two interconnected objects.
Such an expansion will open new horizons for applying this
approach, enabling the solution of larger-scale and more
complex problems involving interactions between different
elements. In particular, studying multi-component systems
with interconnected elements provides a unique opportunity
to significantly improve the accuracy and efficiency of the
method, especially in the context of optimal control.

The introduction of additional objects and more complex
interconnections between them implies that the methods
used to solve problems within a single object must be adapt-
ed to the new, more intricate structure. This will require the
development of new algorithms that can effectively account
for numerous variables and their interactions. Given the
multi-component nature of such systems, new approaches
must be flexible and efficient in considering all interacting ele-
ments, minimizing errors arising from model simplifications.

An additional benefit of expanding the scope of the meth-
od is the potential for more accurate modeling of real systems,
where elements often interact with one another in varying
degrees of complexity. Therefore, further development of op-
timal control methods for such complex systems will not only
contribute theoretically but also have practical value, enabling
the solution of problems that are traditionally too complex for
existing methods.

7. Conclusions

1. In the course of the research, the optimal control prob-
lem for a system with distributed and lumped parameters was
formulated, taking into account controllability and optimality
criteria. Constraints on admissible controls and system states
were defined, and the necessary optimality conditions were
derived. It was shown that, in this problem, the optimal con-
trol formally represents a piecewise constant function, succes-
sively taking the specified boundary values.

2. An algorithm was developed to find the minimizing se-
quence of controls that ensures the optimal result in a system
with distributed and lumped parameters. The algorithm is
based on an iterative method, which involves the successive
refinement of controls, considering the specified optimality
criterion. For constrained problems where a function of the
final state is minimized, the gradient projection method is
more efficient than the method of successive approximations.

3. Numerical methods for solving vibration control problems
in a coupled system consisting of two interacting objects have
been implemented. These methods are based on the discretiza-
tion of the original model for spatial coordinates and the appli-
cation of the gradient method, ensuring the convergence of the
minimizing control sequence in terms of the functional, as well
as the method of successive approximations. Computational
schemes have been developed to efficiently determine an ap-
proximately optimal control solution. Based on numerical exper-
iments, it has been established that when using the method of
successive approximations, if the initial control p%(%) is relay-type,
then all subsequent u*(£) controls also remain relay-type, and the
optimal control is found as early as the second iteration.
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