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The study examines the numerical solution of vibration con-
trol problems in a coupled system consisting of two interacting 
objects. The problem is solved under the assumption that the left 
boundary of the distributed system is fixed, while an object with 
lumped parameters is attached to the right boundary, where  
a boundary control action is also applied to the distributed sys-
tem. Special attention is given to obtaining a numerical solution 
to the problem. The solution is approached using two methods: 
the gradient projection method and, due to the linearity of the 
boundary problem concerning phase coordinates and control 
inputs, the method of successive approximations. By introduc-
ing an additional variable, the one-dimensional wave equation 
is approximated using the method of lines, transforming it into 
a system of ordinary differential equations of the 2n-th order. 
The resulting variational problem for the system with lumped 
parameters is then numerically solved based on Pontryagin’s 
maximum principle. The approximately optimal controls, 
obtained using the gradient projection method with a specially 
chosen step size, form a minimizing sequence of controls. Based 
on the numerical results, functional convergence is established. 
The method of successive approximations provides an optimal 
control solution as early as the second iteration, regardless of 
the initial control. This demonstrates the method’s efficiency 
and reliability for solving linear optimal control problems. The 
developed numerical techniques can be applied to optimize the 
dynamic behavior of complex mechanical structures, enhance 
system stability, and improve operational efficiency in various 
engineering applications
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1. Introduction

The study of coupled systems with distributed and lumped 
parameters remains a highly relevant scientific topic due to its 
broad applicability in engineering, mechanics, and industrial 
systems. In recent years, significant advancements have been 
made in the theory of systems with distributed parameters, 
enriching the field with new analytical and computational 
methods. These developments have contributed to more ef­
fective approaches in modeling and controlling dynamic pro­
cesses in coupled structures, enabling improved performance 
and stability in various applications. Integrating modern 
mathematical techniques and computational tools has further 
enhanced the precision and efficiency of control strategies for 
such systems.

The control of vibrations in coupled systems with distrib­
uted and lumped parameters is crucial in numerous practical 
applications. Oscillatory processes occur in various industrial 
and engineering domains, necessitating effective control mech­
anisms to enhance performance, reduce wear, and prevent 
structural failures. Examples include ship roll stabilization [1], 
where unwanted oscillations must be minimized to ensure nav­
igational safety, and crane boom damping [2], which requires 
precise control to prevent excessive swaying. Other applications 
include vibratory conveyors used in material handling [3], ac­
tive vibration protection systems in aerospace engineering, and 

shock absorption mechanisms in structural design [4]. These 
diverse applications highlight the necessity for further research 
into vibration control strategies tailored to systems with both 
distributed and lumped parameters [5].

The mathematical modeling of such systems typically relies 
on methods of mathematical physics, where governing equa­
tions are often expressed as partial differential equations (PDEs) 
subject to specific boundary and initial conditions. While ex­
act analytical solutions exist for certain simplified cases, most 
practical problems necessitate the use of approximate and 
numerical methods to determine feasible control strategies. In 
particular, the wave equation serves as a fundamental model 
for describing the propagation of vibrations in elastic media, 
mechanical systems, and structural elements. The choice of 
boundary conditions significantly affects the system’s behav­
ior and the available control methodologies. Fixed boundaries 
restrict movement, while free boundaries allow oscillations 
that must be managed effectively.

Given the complexities associated with coupled systems 
exhibiting both distributed and lumped parameters, the 
study of their controllability and optimal control remains 
a critical scientific and engineering challenge. Addressing 
these issues contributes not only to advancing theoretical 
knowledge in mathematical modeling and control theory 
but also to developing innovative and effective vibration 
control techniques applicable to a wide range of technical 
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systems. Therefore, research devoted to the development of 
advanced control methods for such coupled vibratory sys­
tems is of significant relevance.

2. Literature review and problem statement

One of the relevant applied problems in vibration control 
is the problem of damping vibrations in coupled systems. 
Due to numerous applications and its important theoretical 
significance, the control of vibratory processes with various 
boundary conditions has long attracted the attention of 
researchers, and there is extensive literature dedicated to 
this  topic [5].

The paper [6] presents a comprehensive study on ap­
plied engineering solutions in industries such as automo­
tive, maritime, aviation, and power generation. It is shown 
that innovative practical solutions have been developed for 
controlling nonlinear oscillations induced by limited energy 
sources. However, unresolved issues remain concerning the 
fundamental theoretical aspects of nonlinear oscillations, 
which are not deeply explored in this work. The reason for 
this may be the focus on industrial applications rather than on 
mathematical modeling and dynamic system analysis. A way 
to overcome this gap is to integrate advanced mathematical 
approaches into practical engineering solutions, ensuring 
a  more comprehensive understanding of oscillatory behavior.

The study [7] presents methods that expand the under­
standing of optimization problems and their application to 
dynamic systems with oscillations. It is shown that optimi­
zation algorithms used in telecommunications networks or 
time series processing can be adapted for vibration control 
in mechanical systems. However, unresolved issues remain 
regarding the practical implementation of these optimization 
methods for real vibration control tasks. The reason for this 
may be the lack of specific examples and detailed discussions 
on their adaptation to mechanical systems. A possible way 
to overcome this limitation is to conduct case studies that 
demonstrate the real-world applicability of these algorithms 
in vibration suppression tasks.

The research in [8] provides a valuable resource on clas­
sical control methods, including the use of transfer functions 
and state-space representations for controlling oscillatory pro­
cesses. It is shown that these approaches offer efficient strate
gies for vibration control, including the design of controllers 
to minimize unwanted oscillations. However, unresolved 
issues exist regarding the adaptation of these methods to 
complex, multi-component, or nonlinear systems. The reason 
for this may be that traditional methods require significant 
computational resources or may be inadequate for highly 
dynamic environments. A way to address this challenge is 
the development of hybrid control strategies that combine 
classical and modern optimization techniques for improved 
performance in complex vibratory systems.

The paper [9] explores the use of Dynamic Light Scatter­
ing (DLS) for monitoring and characterizing the aggregation 
dynamics of nanoparticles in colloidal systems. It is shown 
that DLS is a valuable tool for analyzing particle size dis­
tribution and aggregation, which can have implications for 
vibrational process optimization. However, unresolved issues 
remain regarding the comparison of DLS with alternative ana­
lytical methods, which could provide a more complete under­
standing of particle behavior under different conditions. The 
reason for this may be the methodological limitations of DLS 

in handling complex colloidal systems. A potential way to 
address this issue is the integration of complementary analy­
sis techniques alongside DLS for a more robust assessment of 
vibrational process stability.

The study [10] investigates the oscillatory behavior of 
third-order differential equations, which is essential for opti­
mizing oscillatory processes in various dynamic systems. It  is 
shown that understanding relationships between solutions 
and their derivatives enables the development of new crite­
ria for analyzing oscillatory behavior. However, unresolved 
issues exist in applying these theoretical results to practical 
engineering applications. The reason for this may be the lack 
of a detailed analysis of potential limitations and challenges 
in real vibration systems. A way to overcome these difficulties 
is to develop experimental validation studies that compare 
theoretical predictions with empirical data.

The numerical study in [11] presents computational 
experiments that confirm the theoretical results obtained 
in [10]. It is shown that numerical simulations provide valu­
able insights into system behavior. However, unresolved 
issues remain concerning the accuracy and sensitivity of the 
method to variations in initial data. The reason for this may 
be the absence of a thorough error analysis. A way to address 
this limitation is to implement rigorous error estimation tech­
niques and sensitivity analyses to enhance the reliability of 
numerical results in practical applications.

The paper [12] examines the use of a reliable position 
controller for managing an elastic joint to suppress vibrations. 
It is shown that the Resonance Ratio Control (RRC) method 
effectively regulates system oscillations by setting a fixed ratio 
between resonance and anti-resonance frequencies. Howev­
er, unresolved issues arise regarding the adaptability of this 
method to dynamic systems with variable characteristics. The 
reason for this may be the fixed nature of the frequency ratio, 
which may not be suitable for changing external conditions 
or system parameters. A way to overcome this limitation is to 
develop adaptive control techniques that can adjust control 
parameters in real time based on system dynamics.

All this suggests that it is advisable to conduct a study on 
the development of advanced vibration control strategies that 
integrate modern optimization techniques, adaptive control 
methodologies, and experimental validation approaches. Ad­
dressing the unresolved challenges identified in the literature 
will contribute to the advancement of effective vibration sup­
pression solutions in coupled dynamic systems.

3. The aim and objectives of the study

The study aims to develop effective numerical method 
for solving optimal control problems in vibrating systems, 
where the parameters are distributed along two boundaries. 
This will make it possible to enhance control strategies for 
vibrations in coupled systems, ensuring improved stability 
and performance.

To achieve this aim, the following objectives are accom­
plished:

– to formulate the optimal control problem for vibrations 
of coupled systems and finding numerical solutions to the 
control problems;

– to develop algorithms for finding a sequence of controls 
that minimize the functional;

– to justify the convergence of the functional based on the 
conducted calculations.
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4. Materials and methods

The object of the study is the dynamic behavior and control 
of vibrations in coupled systems with distributed and lumped pa­
rameters. The main hypothesis of the study is that the application 
of advanced numerical optimization techniques enables effective 
control of vibrations in coupled systems, ensuring stability and 
improved performance. The study is based on several assump­
tions: the system’s equations of motion are accurately described 
by known mathematical models, the control inputs can be 
continuously adjusted to optimize system behavior, the applied 
numerical methods provide sufficient accuracy and convergence 
for solving the control problem, and the system parameters re­
main within a predefined range during operation. To simplify the 
analysis, certain approximations were adopted: the system dy­
namics were linearized to facilitate the application of analytical 
and numerical methods, external disturbances and noise were 
neglected in the primary model formulation, ideal boundary 
conditions were assumed without material degradation or non­
linearity, and spatial variables were discretized to reduce com­
putational complexity while maintaining sufficient accuracy.

The research employed a range of numerical methods to 
solve optimal control problems for vibrations in coupled sys­
tems, addressing both spatial and temporal parameters of the 
model [13]. Optimization approaches and variational princi­
ples were utilized to determine optimal control inputs and reg­
ulate the system’s dynamic behavior throughout its operation. 
The study primarily relied on the gradient projection method 
and the method of successive approximations, both of which 
are well-established in scientific practice due to their efficien­
cy and convergence properties in solving complex problems.

The gradient projection method was applied within the 
variational framework to minimize a functional dependence 
on both system states and control inputs. This functional, 
representing the quality or effectiveness of control, guided 
the optimization process. The method involved iterative 
calculations of the functional’s gradient, allowing control 
adjustments in the direction of the negative gradient to incre­
mentally improve the system’s behavior.

The method of successive approximations was used for 
solving linear boundary value problems that model system 
dynamics. This iterative approach refined control inputs at 
each step based on the system’s current state. The optimiza­
tion procedure incorporated the Hamiltonian function, which 
was maximized concerning the control variable, enabling the 
computation of optimal control inputs at each stage.

To enhance numerical accuracy, spatial variable discretiza
tion was employed, allowing for more precise modeling of the 
system’s dynamic behavior. Additionally, temporal integration 
was performed using the Runge-Kutta method, a highly accu­
rate and stable numerical technique well-suited for differen­
tial equations with distributed parameters. This integration 
method ensured computational precision, which is essential 
for obtaining reliable control solutions [14].

For practical implementation, specialized software was 
developed to automate computations, including discretiza­
tion, gradient calculation, and iterative control adjustments. 
The software effectively integrated all methodological steps, 
facilitating efficient and precise optimization processes.

The research methodology was validated through nu­
merical experiments, ensuring that the proposed approach 
could be effectively applied under various conditions. The 
structured combination of numerical techniques, including 
optimization algorithms, spatial discretization, and temporal 

integration, provided a robust framework for addressing vi­
bratory control problems in coupled systems.

5. Results of the development of numerical methods 
for vibration control

5. 1. Formulation of the optimal control problem and 
deriving the computational formula

In the area Q = {0 < x < 1.0 ≤ t ≤ T} let’s consider the vibra­
tions of the system described by the following boundary value 
problem [4]:

u x t a u x ttt xx, , ,� � � � �2  x t Q, ,� �� 	 (1)

u x x, ,0� � � � ��  u x g xt , ,0� � � � �  0 1≤ ≤x ,	 (2)

u t u t y t0 0 1, , , ,� � � � � � � �  0 � �t T,	 (3)

y t a y t p t bu tx( ) , ,� � � � � � � � � � ��
2 1  0 � �t T,	 (4)

y y0 0� � � , y y0 1� � � ,	 (5)

where φ(x) ∈C2[0,1] is the initial state of an object with dis­
tributed parameters, g(x) ∈C1[0,1] is the initial velocity of 
movement of an object with distributed parameters. The ex­
ternal force p(t) ∈C[0,T] is selected as a control. It is assumed 
that 0 ≤ p(t) ≤ pmax, where pmax is the value specified based on 
technological conditions.

From the alignment of initial and boundary conditions, it 
is possible to obtain that:
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The first condition in (3) indicates that the left end of the 
distributed system is fixed, while the second condition in (3) 
means that a lumped system is attached to the right end of 
this system, and there, an external force p(t) is applied to the 
distributed system.

It is required to control the external force p(t) in such 
a  way that at time t = T, the system is in a state that differs little 
from its rest state. Such a deviation is taken as the functional:

F u x T u x T xt� � � � � ��� ��� 2 2

0

1

, , .d 	 (7)

The control p(t) that satisfies the above-mentioned condi­
tions is called a permissible control. In particular, if inf F = 0, 
then it is possible to completely dampen the vibrations of the 
coupled system by time T. 

The results that determine the general solution of the 
boundary value problem (1)–(5) depend on how the coefficients 
α, β, and µ are related. It can be obtained by separately solving 
the problem with zero initial conditions y0 = 0, y1 = 0 and the 
problem with homogeneous boundary conditions. In this case, 
the general solution of the boundary value problem (1)–(5) is the 
sum of the solutions of the considered boundary problems [5].

Let’s find the solution y(t) to the Cauchy problem (4), (5): 
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a

y a t

a
p bu a tx

( ) cos sin

, sin

� � � � � � �

� � � � � �� � ��

0 11

1 1

�
�

�

�
� � � ���� �� d�

0

t

.	 (8)



Mathematics and Cybernetics – applied aspects 

9

Considering the condition u(1, t) = y(t), it is possible to 
write the boundary condition that the function u(x,t) must 
satisfy at the point x = 1:

u t y a t
a

y a t

a
p bu a tx

1 1

1 1

0 1, cos sin

, sin

� � � � � � � � �
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�
�

�

�
� � � �� �� �� �� d

0

t

.	 (9)

If the variable y(t) is excluded from the conditions (3)–(5), 
then (3)–(5) can be represented in the following form:

u t0 0, ,� � �  u t a u t p t bu ttt x1 1 12, , , ,� � � � � � � � � � � � �� 	 (10)

u y1 0 0, ,� � �  u yt 1 0 1, .� � � 	 (11)

It should be noted that depending on the sign of the 
product b2–4a4µ2, in [16], using the continuation method, 
formulas for the general solution of the boundary value prob­
lem (1)–(5) were derived, and control laws were determined.

From the results obtained in this paper, as a special case, 
the control laws for the vibration of a string with first-kind 
boundary conditions can be derived, i.e., for the control prob­
lem described by the boundary value problem (1)–(3), where 
the control function is y(t).

In this paper, two methods are used for the numerical 
solution of the considered problem – the gradient projection 
method and the method of successive approximations. The 
boundary value problem describing the control process is 
replaced by ordinary differential equations using the direct 
method, and the resulting variational problem is solved nu­
merically based on Pontryagin’s maximum principle.

Let ut(x,t) = υ(x,t) be denoted. Then, the boundary value 
problem (1)–(5) and the functional (7) can be written in the 
following form:

u x t x tt , , ,� � � � �� 	 (12)

�t xxx t a u x t, , ,� � � � �2  0 1 0� � � �x t T. ,	 (13)

u x x, ,0� � � � ��  � x g x, ,0� � � � �  0 1≤ ≤x ,	 (14)

u t0 0, ,� � �  � �t xt a u t p t bu t1 1 12, , , ,� � � � � � � � � � � � � 	 (15)

0 � �t T,

u y1 0 0, ,� � �  � 1 0 1, ,� � � y 	 (16)

F u x T x T x� � � � � ��� ��� 2 2

0

1

, , .� d 	 (17)

Therefore, the problem (1)–(7) reduces to determining 
the function p(t) from the condition of minimizing the func­
tional (17) subject to the constraints (12)–(16).

Using the direct method, it is possible to construct a  fi­
nite-dimensional approximation of the boundary value prob­
lem (12)–(16). Let xi = ih, i = 0,1,…,n is the grid of lines 
with a step h = 1/n on the segment [0,1]. Let ui(t) = u(xi,t),  
υi(t) = v(xi,t), i = 1,2,…,n be denoted. Then, taking into account 
the conditions u0(t) = 0, the problem (12)–(16) at the grid 
nodes can be approximated by a system of ordinary differen­
tial equations:
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with the following initial conditions:
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Thus, the original problem (12)–(17) reduces to determin­
ing the external force p(t) from the condition of minimizing 
the approximating sum:

F h u T Ti i
i

n
� � � � � ��� ��

�
� 2 2

1
� .	 (20)

To bring the system (18) into the canonical Cauchy form, 
let’s introduce an 2n-dimensional vector with components 
(u1, u2,…,un, un+1, un+2,…,u2n), where un+i = υi, i = 1, 2, …, n, 
and rewrite the system of equations (18), (19) as follows:
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with the following initial conditions:
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The functional (20) takes the form:

F h u Ti
i

n
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�
� 2

1

2
.	 (23)

Thus, the problem is reduced to determining the func­
tion p(t) from the condition of minimizing (23) subject to the 
constraints (21), (22). Let’s construct the Hamiltonian func­
tion for the problem (21)–(23):
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For the convenience of constructing the conjugate system 
of functions H, let’s first represent them in the following form:
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Then, the system of conjugate equations, according to the 
standard formulation of the maximum principle, can be writ­
ten in the following form:





� � �

� � � �

1

2

2 1 2

2

2 1 1

2

2

� � � ��� ��

� � � ��� ��

� �

� � � � �

a
h
a
h

n n

i n i n i n i

,

,ii n

a
h

hb
an n n n

n

� �

� � � �
�

�
�

�

�
�

� �

� � �

2 3 2

21

2

2 2 2 2 1 2 2

, ,..., ,

,



� � � �

�
aa
h

h
a

b h a

i n

n n

n i i

2

2 2 1 2
2

2

1 2

� � �

� �

�

�

� � � �� ��

�
�

�

�
�

� � �

�

�

,

, , ,..., .

��
�
�
�
�
�

�

�
�
�
�
�
�

	 (26)

The boundary conditions for ψi(T) and F ′ = –dH/dp are as 
follows:

�i iT hu T i n� � � � � � �2 1 2 2, , ,..., ,	 (27)

�� � � � � �F p tn�2 .	 (28)

To compute the gradient for a given control p(t), it is first 
necessary to solve the system of equations (21) with the initial 
conditions (22), which allows determining the state function 
values ui(T), where i = 1,2,…,n at the final time T. Then, the 
obtained values ui(T) are substituted into expression (27), 
after which the adjoint system of equations (26) is integrated 
with the boundary conditions (27) defined over the final time 
interval. Once the adjoint system is solved, the gradient F′(p) 
can be computed using formula (28), which enables determin­
ing the direction for optimizing the control parameter p(t).

5. 2. The development of an algorithm for determin-
ing the minimizing sequence

When using the gradient projection method, a sequence 
of control functions is constructed, starting from some admis­
sible control p*(t). The main work when transitioning from 
one control p*(t) to the next pk+1(t) is related to calculating the 
gradient of the functional using the formula (28).

The algorithm for solving the problem consists of the 
following steps:

Step 1. An admissible control pk(t) is selected. Based on 
the selected pk(t) using the Runge-Kutta method (or the Euler 
method, if stability conditions allow), the system of equa­
tions (21), (22) is integrated with the "forward direction". The 
values of ui(t), i = 1, 2,…, 2n are computed and stored. It should 
be noted that for linear systems, it is not necessary to store all 
the values of the functions ui(t), i = 1, 2,…, 2n in the computer’s 
memory. Only their final values need to be remembered, and 
then the conjugate system (26) can be integrated simultaneous­
ly with the system (21) from t = T to t = 0. However, this approach 
increases the computational load and, the computation process, 
especially for nonlinear systems, often becomes unstable. 

Step 2. The values of the approximating sum (23) are 
computed.

Step 3. The values of ψi(T), i = 1, 2, …, 2n are computed 
using the formulas (27).

Step 4. In the "backward direction" of time, the system 
(26), (27) is integrated, and the gradient of the functional (23) 
is computed using the formulas (28).

Step 5. Taking into account pk+1(0) = a2φ′(1)–bφ(1), the new 
control pk+1(t) for the values tj = j∆t, j = 1,2,…,m, m∆t = T is com­
puted using the formula:

p t
p t p t

p p t p t p
p t

k

k k

k k

k
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� � � � � �
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0 0, ,
, ,max max

if
if

�

�

�� �p t p t p t pk k k� � � � � � � � �

�

�
�

�
� , .maxif 0

	 (29)

Here:

� �
�

�
p t

t

t
kk n

k

n
k� � � �
� �
� �

�2

2
0 1

max
, , ,...,	 (30)

where ∆t is the discretization step in time, k is the iteration 
number, and the parameter α>0 is chosen using one of the 
methods described in [3]. 

Step 6. A step is taken with the new control pk+1(t), return­
ing to Step 2.

5. 3. Obtaining a numerical solution to the problem
To obtain a numerical solution to the problem (21)–(23) 

using the described algorithm, computer codes were devel­
oped. The code allows for the automatic numerical solution of 
a fairly wide range of optimal control problems. To verify the 
correctness of the entire computational process, intermediate 
computational results were checked using an unconditional 
jump operator. This included analyzing the behavior of the 
Cauchy problem (21), (22) with fixed admissible control, 
evaluating the sum (23) immediately after integrating the 
system of equations (21), (22), and examining the behavior 
of the adjoint problem (26), (27). Additionally, the boundary 
conditions (27) for system (26) were computed, along with the 
gradient values F ′(p) using formula (28).

The systems of equations (21), (22) and the adjoint system 
(26), (27) were integrated using a constant step size ∆t = 0.01, 
and results were output at step size ∆t = 0.05. The interval [0, 1] 
was divided into ten equal parts with a step size h = 0.1. Clear­
ly, for the chosen values of ∆t and h, the stability condition 
∆t2 ≤ 0.5h2 holds, meaning that the system of equations (21), 
(22) and the system (26), (27) could also be integrated using 
Euler’s method.

The problem was solved with the following parameter and 
function values:

T = 0 2. , pmax ,= 4  � � 0 2. , a =1, b = 6, � � 3,

� x x x g x x x� � � �� � � � � �� �3 1 1, .

As the initial approximation, the function p0(t) was taken as:

p t p t
T

0 � � � �max .	 (31)

The value of the functional (23) for the initial approxi­
mation (31) was found to be 0.123, which is computed after 
integrating the system of equations (21), (22). It is important 
to note that condition (6) in the boundary problem (1)–(5) 
does not allow for a wide variation of the functions and initial 
data. It is easy to see that for the selected parameter values and 
functions, the following conditions are satisfied:
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Taking these conditions into account, the solution of the 
boundary problem (1)–(5) for 0 ≤ t ≤ 2 has the following form:

u x t x t x t

G z z s s
x t

x t
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d
0

0

3

�
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� �exp , 	 (33)

where � � � �� � � � � � � � � � � �x t t x x t t x, , , ,1 1  and p t� �, used 
in solving the problem with zero initial conditions, has the 
form of:

p t
p t t
t� � � � � �
�

�
�
�

��

, ,
, .

0
0 0

In formula (33), the functions Ф(z) and G(z) are extensions 
of the functions φ(z) and g(z), respectively. These extensions 
for 1 ≤ z ≤ 2 are determined as follows:
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� � � � �exp ,d 	 (35)

where 2 ≤ z ≤ 3:

� z z z z� � � � � �3 29
2

2 3
2

3 2 .	 (36)

The extensions of the functions φ(z) and ψ(z) for 2 ≤ z ≤ 3 
are determined using similar formulas, while for –2 ≤ z ≤ 0, they 
are given by specific formulas Ф(z) = –Ф(–z), G(z) = –G(–z) [5].

As seen from the given formulas (33)–(36), their practical 
implementation involves significant computational difficul­
ties. To overcome this challenge in the numerical solution of 
the boundary value problem (12)–(16), the method of straight 
lines is applied. Table 1 shows the convergence of the func­
tional for the controls given in equation (31).

Table 1

Convergence of the functional for the given controls

No. of iteration F max ψ2n(t)

0 1.2299 E-01 3.8597 E-01

1 1.1871 E-01 3.7337 E-0.1

2 1.1462 E-01 3.6082 E-01

3 1.1071 E-01 3.4835 E-01

4 1.0699 E-01 3.3599 E-01

5 1.0348 E-01 3.2384 E-01

6 1.0015 E-01 3.1178 E-01

7 9.6985 E-02 2.9979 E-01

10 8.8550 E-02 2.6475 E-01

14 7.9548 E-02 2.1995 E-01

26 6.8265 E-02 1.3540 E-01

27 6.8245 E-02 1.3495 E-01

28 6.8245 E-02 1.3494 E-01

In further iterations, the functional value did not change. 
The data presented in the table clearly show that the approxi­
mated optimal control exhibits convergence of the functional. 
It should be noted that convergence of the functional always oc­
curs if the solution of the approximating system (21) converges 
to the solution of the original boundary value problem [1].

The sequence of controls obtained in some intermediate it­
erations is shown in Fig. 1. From the analysis of this figure and 
the table data, it follows that the gradient projection method in 
problem (21), (22) provides a minimizing sequence of controls.
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Fig. 1. Sequence of intermediate controls

It should be noted that when using the method of suc­
cessive approximations, at each step, the control variable is 
selected according to the maximum principle based on the 
condition of maximizing the Hamiltonian function, i.e., during 
iterations, according to the formula:

p t p t kk
n
k� � � � � � �� �� � �1
22

1 0 1max , , ,... .sign � 	 (37)

The question of the convergence conditions for this process 
of successive approximations remains open. Even in the case 
of convergence, it is generally unknown whether the obtained 
control is truly optimal, as the maximum principle provides only 
a necessary condition for optimality. Nevertheless, for certain 
variational problems where the existence and uniqueness of the 
solution are clear from physical considerations, the method of 
successive approximations can be used to find optimal controls.

Due to the linearity of the system of equations (21) with 
respect to the phase variables and control, the method of suc­
cessive approximations in the problem (21)–(23), regardless 
of the initial control, yields the optimal control as early as the 
second iteration:
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if
if

0
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It is easy to see that as the number of iterations increases, 
the sequence of controls constructed using formulas (29), (30) 
converges to the function p*(t).

6. Discussion of experimental results relative 
to vibration control strategies in coupled systems with 

distributed and lumped parameters

Based on the data provided in Table 1, the functional’s 
convergence of the control sequence is confirmed. The graphs 
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shown in Fig. 1 demonstrate that, despite the incorrectness 
of problem (1)–(5) with the quadratic functional (7), the gra
dient projection method (31), (32) with a special step selection 
produces a converging sequence of controls and requires only 
a small number of iterations. Calculations show that the use 
of the method of successive approximations allows a solution 
to be obtained as early as the second approximation.

A key advantage of the proposed method compared to 
similar studies [5, 7, 8] is its ability to eliminate the need for 
complex mathematical transformations and computationally 
intensive operations. This simplifies the problem-solving 
process, reduces computational load, and still maintains high 
accuracy and reliability of the results.

Within the scope of this work, the direct method is ap­
plied, which has proven effective both in solving boundary 
problems of mathematical physics and in addressing optimal 
control problems for systems with distributed parameters. 
This approach significantly reduces the labor intensity of 
numerical calculations while maintaining high accuracy in 
the obtained solutions. Moreover, due to its versatility, the 
direct method is particularly well-suited for optimal control 
problems in dynamic systems, whose processes are described 
by nonlinear boundary conditions.

Unlike the approaches presented in [9, 10], which rely on 
iterative numerical schemes requiring multiple recalculations 
per step, the proposed method provides a more computation­
ally efficient framework. While methods in [11] emphasize 
spectral decomposition techniques for vibration suppression, 
they often suffer from sensitivity to parameter variations, mak­
ing them less robust for practical applications. Additionally, the 
control strategies described in [12] incorporate adaptive ele­
ments, but their implementation demands high computational 
power, making real-time applications challenging. In contrast, 
the developed approach ensures stability and efficiency even 
with limited computational resources, making it well-suited for 
engineering applications where real-time control is essential.

It should be noted that the results of research on vibration 
control in coupled systems consisting of two objects hold 
significant theoretical importance. However, the practical ap­
plication of the formulas derived in these works is associated 
with substantial computational challenges when constructing 
and solving boundary value problems and control variables. 
The present study aims to develop practical applications of vi­
bration control methods in coupled systems and to refine the 
conditions of controllability. The results obtained may find 
applications in various fields of engineering, including trans­
portation mechanics, robotics, construction, and vibration 
isolation, contributing to the further advancement of vibra­
tion suppression technologies in complex technical systems.

One of the significant limitations of the conducted re­
search is the lack of a detailed and rigorous analysis of the 
convergence of the approximate solution to the Cauchy prob­
lem (21), (22), which is related to the original boundary value 
problem (1)–(5). This aspect represents an important issue, as 
the convergence of the solutions to the approximation prob­
lem (21)–(23) directly affects the accuracy and reliability of 
the results obtained. Future research could focus on deriving 
a priori estimates for linear and non-homogeneous systems 
of ordinary differential equations, which would allow for 
a deeper understanding of the behavior of the solution when 
approximating boundary problems. Moreover, the issue of 
the convergence of approximate solutions in the context of 
optimal control, due to the ill-posed nature of the considered 
optimal control problem, remains unresolved and requires 

further investigation. Verifying the correctness and accuracy 
of the proposed method, especially in practical applications, 
is essential for evaluating its real effectiveness and suitability 
for solving complex optimal control problems.

One of the most promising directions for future research 
is the extension of the proposed method to more complex 
systems involving more than two interconnected objects. 
Such an expansion will open new horizons for applying this 
approach, enabling the solution of larger-scale and more 
complex problems involving interactions between different 
elements. In particular, studying multi-component systems 
with interconnected elements provides a unique opportunity 
to significantly improve the accuracy and efficiency of the 
method, especially in the context of optimal control.

The introduction of additional objects and more complex 
interconnections between them implies that the methods 
used to solve problems within a single object must be adapt­
ed to the new, more intricate structure. This will require the 
development of new algorithms that can effectively account 
for numerous variables and their interactions. Given the 
multi-component nature of such systems, new approaches 
must be flexible and efficient in considering all interacting ele
ments, minimizing errors arising from model simplifications.

An additional benefit of expanding the scope of the meth­
od is the potential for more accurate modeling of real systems, 
where elements often interact with one another in varying 
degrees of complexity. Therefore, further development of op­
timal control methods for such complex systems will not only 
contribute theoretically but also have practical value, enabling 
the solution of problems that are traditionally too complex for 
existing methods.

7. Conclusions

1. In the course of the research, the optimal control prob­
lem for a system with distributed and lumped parameters was 
formulated, taking into account controllability and optimality 
criteria. Constraints on admissible controls and system states 
were defined, and the necessary optimality conditions were 
derived. It was shown that, in this problem, the optimal con­
trol formally represents a piecewise constant function, succes­
sively taking the specified boundary values. 

2. An algorithm was developed to find the minimizing se­
quence of controls that ensures the optimal result in a system 
with distributed and lumped parameters. The algorithm is 
based on an iterative method, which involves the successive 
refinement of controls, considering the specified optimality 
criterion. For constrained problems where a function of the 
final state is minimized, the gradient projection method is 
more efficient than the method of successive approximations.

3. Numerical methods for solving vibration control problems 
in a coupled system consisting of two interacting objects have 
been implemented. These methods are based on the discretiza
tion of the original model for spatial coordinates and the appli­
cation of the gradient method, ensuring the convergence of the 
minimizing control sequence in terms of the functional, as well 
as the method of successive approximations. Computational 
schemes have been developed to efficiently determine an ap­
proximately optimal control solution. Based on numerical exper­
iments, it has been established that when using the method of 
successive approximations, if the initial control p0(t) is relay-type, 
then all subsequent uk(t) controls also remain relay-type, and the 
optimal control is found as early as the second iteration. 
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