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The object of this study is the processes of parallel vertical-group
data processing and minimization of equipment costs, which enable
the synthesis of real-time recursive neural elements with high effi-
ciency of equipment use. A model of a recursive-type neural element
has been built, which, through the use of a parallel vertical-group
method for calculating the scalar product and the ability to choose
the number of bits in the group for the formation of partial prod-
ucts, coordinates the time of receipt of weights and input data with
the time of calculating the result at the output of the neural element.
This approach provides a hardware implementation of the neural
element with minimal use of equipment.

The basic structure of the neural element has been designed,
which, through the use of hardware mapping of the constructed
graph model, regularity, and modularity of the structure, provides
the synthesis of hardware for a specific application. The application
of pipelines and spatial parallelism of data processing, as well as the
organization of the process of calculating the scalar product, as the
performance of a single operation, enables the implementation of a
neural element for real-time operation.

Analytical expressions have been built to estimate the parame-
ters of a neural element depending on the bit depth of operands, the
number of data inputs, and the number of bits in the group. A meth-
od for synthesizing a recursive-type neural element has been devised,
which, due to the use of the basic structure, enables mechanisms for
matching the time of receipt of weight coefficients and input data
with the time of calculating the output, thus ensuring its implemen-
tation for specific applications. Considering ways to minimize equip-
ment costs ensures the construction of a neural element with mini-
mal hardware costs.

The synthesized neural element for a data depth of 16 bits with
an increase in the number of bits that are simultaneously processed
in a group, from 2 to 8, provides a decrease in the processing time by
2.8 times with a reduction in the efficiency of using the equipment of
the neural element by no more than 1.6 times
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1. Introduction

The current stage of development of neural network tech-
nologies is characterized by the expansion of application ar-
eas, a significant part of which requires real-time processing.
Such hardware and software tools must take into account
data streams of different intensity and meet restrictions on
dimensions and power consumption [1,2]. Most existing
neural network tools have a structural organization of a uni-
versal type, which is functionally and structurally redundant,
does not take into account the requirements of specific appli-
cations for performance, dimensions, power consumption,
and has low efficiency of equipment use.

Designing highly efficient real-time neural network tools re-
quires the development of new models and structures of a neural
element (NE) and requires the widespread use of a modern el-
ement base (processors, programmable logic integrated circuits
(PLD), etc.). Such NEs should be oriented towards implementa-
tion in very-large-scale integration (VLSI) circuits, for example,
FPGA. When designing a model and a basic VLSI-structure of a
NE, it is necessary to ensure the ease of adapting the NE to the
requirements of specific applications, real-time operation, and
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high efficiency of equipment use [2]. These requirements can be
met by using recursive methods and NE structures with parallel
vertical-group data processing.

Real-time mode when processing data streams of different
intensity in a recursive-type NE is enabled by coordinating the
time of incoming input data with the time of calculating the
output signal of NE. This is achieved by using parallelization
and pipelined calculation processes, choosing the number of
bits in a group for forming partial products. The orientation of
NE structure to VLSI implementation with high efficiency of
equipment use requires a reduction in the number of interface
pins and hardware costs while ensuring real-time mode [3].

The design of a recursive-type NE with parallel verti-
cal-group data processing is most expedient to be carried out
on the basis of an integrated approach. It covers the modern
element base, models, and structures of NEs, as well as meth-
ods for calculating the scalar product, and takes into account
the intensity of data flow and the requirements of specific
applications.

Therefore, research into designing recursive-type NEs
with parallel vertical-group data processing in real time is
relevant.




2. Literature review and problem statement

Analysis of the means for implementing artificial neural
networks (ANNs) reveals [4, 5] that the overwhelming ma-
jority of the means used to implement ANN are software.
The main disadvantages of software means for implementing
ANNSs are low performance. The unresolved issue is the pro-
vision of processing intensive data streams, which can be im-
plemented by hardware means. Increasing the performance
of software means for implementing ANNs can be achieved
by jointly using general-purpose processors supplemented by
a graphics processor [6]. However, unresolved issues for such
systems are compliance with the limitations on dimensions
and power consumption. Papers [7, 8/ show that for neural
network processing of data streams in real time it is advisable
to use hardware VLSI implementation, which simultaneous-
ly provides small dimensions and high performance.

Our analysis of [9, 10] reveals that the main components
on the basis of which hardware neural networks are synthe-
sized are NEs, but the issue of synthesizing the NE architec-
ture taking into account the specified parameters remains
unresolved. The characteristics of NEs largely depend on
the approaches to the hardware implementation of the scalar
product calculation operation. However, the issue of synthe-
sizing such elements oriented to data stream processing with
specified characteristics is not considered. In [11], approach-
es to the hardware implementation of the scalar product
calculation operation are investigated, the first of which is
based on the operations of multiplication, addition, and the
second - on elementary arithmetic operations of addition,
inversion, and shift. However, in these approaches, the issue
of optimizing the structure of the device and calculating its
time parameters and equipment costs remains unresolved.

In [12], the architectures of neural networks and their
practical application are considered; various types of neural
networks are reviewed; the latest achievements are sum-
marized. However, the issue of hardware implementation
of such networks remains unresolved, which requires the
development of appropriate structures of neural elements.
In [13] it is shown that the use of the basis of elementary
arithmetic operations and the multi-operand approach, in
which the calculation of the scalar product is considered as
the execution of a single operation, provides optimization of
the device structure in terms of speed and hardware costs.
Our analysis reveals that the algorithms for calculating the
scalar product using the multi-operand approach and the
basis of elementary operations mainly use the direct forma-
tion of partial products with their subsequent addition. The
disadvantage of existing algorithms for calculating the scalar
product is the complexity of implementation; the unresolved
issue is the coordination of the intensity of the receipt with
the intensity of the calculation.

Our analysis of work [14] revealed that the hardware im-
plementation of scalar product calculation algorithms using a
multi-operand approach, and a basis of elementary arithme-
tic operations can be carried out using devices with a recur-
sive and non-recursive structure. Analysis of non-recursive
scalar product calculation devices shows that the structural
feature of such devices is the absence of inverse connections,
and calculations in such devices are performed when data
passes from inputs to outputs through all operational mod-
ules. Non-recursive scalar product calculation devices are
divided into two classes: the first is matrix, which use parallel
formation and summation of all partial products, the second

is parallel-stream, which use sequential formation and addi-
tion with a corresponding shift of partial products. The disad-
vantage of non-recursive scalar product calculation devices is
the difficulty of matching the intensity of the input with the
intensity of the calculation and the high hardware costs for
their implementation. The disadvantage of neural network
structures using recursive devices is the presence of inverse
connections; an unsolved problem is the calculation of the
scalar product in several iterations, the number of which is
determined by the partial product formation algorithm.

In [15], a modified mathematical model of the Izhykevych
neuron is described to provide a simple digital hardware
implementation. However, the specified implementation, al-
though it has reduced hardware costs, provides low computa-
tional intensity. The modeling and hardware implementation
of the neural element is described in [16]. The reported neural
digital circuit of the piecewise linear neuron (PLSN) model
is built and implemented on PLIC. However, this implemen-
tation of the neural element is not used for streaming com-
puting, but for modeling various types of behavior of brain
neurons. In [17], a model of a neuron with a delay in pulse
propagation is proposed to solve the problem of signal propa-
gation in the reverse direction for a more accurate implemen-
tation of its biological function. However, this NE model is
oriented towards hardware implementation in an analog way
using capacitance charging models. The analyzed models of
NE:s differ in the techniques of input data and weighting co-
efficients, in the techniques for calculating the postsynaptic
excitation signal. The disadvantage of these solutions is the
use of a spike model of a neural element, in which informa-
tion is encoded by the duration of discrete pulses as the main
information carrier, which limits the performance of NE.

In [18], the implementation of a neural element in an
analog format is proposed, which requires the use of a spe-
cialized element base; the issue of providing an interface
with digital means of computing systems remains unre-
solved. In [19, 20], the issues of implementing the neural
element activation function are considered, which, unlike
the one presented, can be implemented by a tabular method.
In [21], a generalized model of a neural element of the paral-
lel-stream type is considered, the peculiarity of which is the
orientation towards VLSI implementation. The disadvan-
tage of the considered NE models is the difficulty of coordi-
nating the time of data arrival with the time of calculation
of the output signal of the neural element. In addition, an
unresolved problem is the assessment of the neural element
parameters, namely, equipment costs, speed, and efficiency
of equipment use. These parameters largely depend on the
bit size of the operands, the amount of data, and the number
of bits in the group.

Therefore, the disadvantages of existing parallel-vertical
NE models are the difficulty of matching the time of arrival
of input data and weighting coefficients with the time of cal-
culation of the output signal. Their implementation does not
enable the minimization of equipment use when designing
the structure of the neural element.

3. The aim and objectives of the study

The aim of our work is to synthesize neural elements of
the recursive type with parallel vertical-group data process-
ing in real time, which meet the requirements of specific
applications and have high efficiency of equipment use.



To achieve this goal, the following main research tasks
have been defined:

—to build a generalized model and basic structure of the
recursive-type NE with parallel vertical-group data processing;

- to estimate parameters of the recursive-type NE with
parallel vertical-group data processing;

- to devise a method for synthesizing the recursive-type
NE with parallel vertical-group data processing in real time.

4. The study materials and methods

The object of our study is the processes of parallel verti-
cal-group data processing and minimization of equipment
costs, which enable the synthesis of neural elements of the re-
cursive type in real time with high efficiency of equipment use.

The subject of the study is models, methods, algorithms,
and recursive structures for the implementation of NEs with
parallel vertical-group data processing in real time.

NEs of the recursive type with parallel vertical-group
data processing were designed taking into account the mini-
mization of hardware costs while ensuring the calculation of
the scalar product and the activation function in real time.
Enabling parallel vertical-group data processing in real time
was carried out by coordinating the time of arrival of weight
coefficients and input data with the time of calculation of
the NE output. Coordination of the time of arrival of weight
coefficients and input data with the time of calculation of
NE output was carried out by selecting the number of bits in
the group for forming partial products and by pipelining the
process of summing group partial products.

The following research methods were used in our re-
search:

- the method of serial-parallel transformation, the meth-
od of recursive parallel vertical-group calculation of the sca-
lar product, and the method of parallel-time coordination - to
build a generalized model of recursive-type NE with parallel
vertical-group data processing;

- the theory of digital automata, methods of synthesis of
neural networks of coordinated-parallel data processing in
real time, methods of calculating the scalar product;

- methods for evaluating the main parameters of NEs in
the process of designing computational structures.

5. Results of research on the development of a
recursive-type neural element with parallel vertical
group processing

5.1. Generalized model and basic structure of a
recursive-type neural element with parallel vertical
group data processing

The principal components on the basis of which neural
networks are synthesized are Nes that function according to
the following formula

y=f(ZW,-X,-], 6

where y is the output signal of NE, X is the input data, W is
the weight coefficients, N is the number of data inputs and
weight coefficients, f is the activation function, j=1, ..., N.
From formula (1) it follows that the operation of NE is based

on the mathematical operations of calculating the weighted
sum (scalar product) Z =ZWJ.XJ. and the activation func-
tion f(Z). =

When building the NE model, it is necessary to
use methods of calculating the scalar product, which
have mechanisms for coordinating the time of arrival of
weight coefficients and input data with the time of cal-
culations. Such methods include the method of recursive
parallel vertical-group calculation of the scalar product,
in which the calculation time depends on the number of
digits in the groups that are analyzed to obtain partial
products. Parallel vertical-group calculation of the scalar
product is performed in accordance with the following
formula
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where k is the number of bits of the input data in the group,
which are analyzed to obtain partial products; r=1, ..., k;

n
m is the number of groups, which is calculated as m= P ;

- rounding sign to a larger integer, n is the number of
bits of the input data; Pgj, is the j-th group product for the g-th
group of bits; g =1, ..., m.

In formula (2), the sum of all j-th group products for the
g-th group of bits can be replaced by the g-th macropartial
result Py, which is calculated as follows

N
PMg = 2 Png : (3)

The calculation of the scalar product using the mac-
ropartial result Py, is performed according to the following
formula

Z=32"p . @
g=1

For recursive calculation of the scalar product in accor-
dance with formula (4) it is necessary to perform m cycles of
calculations. In each g-th cycle of such calculation the follow-
ing operations are performed:

- calculation for each j-th pair of operands of k partial
products in accordance with formula Pjyr = WiXjq;

- calculation of the j-th group product for the g-th group
of bits in accordance with formula Pgjg = Pjg; + ... + 27"V
Pjg2r + ...+ 2 (k- I)Pjgzk;

— calculation of the g-tg macropartial result Py, in accor

dance with formula PMg :ZPGJ.g;
j=1

- addition of the g-th macropartial result Pgy, to the
summation result, which is shifted to the right by k digits,
in accordance with expression Zy=27%Z,; + Pgy, where
Zo =0.

The generalized analytical model of the recur-
sive-type NE with parallel vertical-group data processing
is written as
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where y is the output of the recursive-type NE; fyz) is the activa-

tion function; f,;, —buffer storage of the g-th partial result of the
8 . .

scalar product; f, - calculation of the g-th partial result of the

scalar product acéording to formula Z, = 2"‘Zg,1 + Py, where

Zo=0; BSp,, buffer storage of the g-th mac-

cal-group data processing is enabling the combination in time
of the execution of data input operations of the next array with
N weight coefficients W; and N input data X; with the process-
ing of the previous data array.

At the current stage of development of integrated technol-
ogy, the main goal of designing appropriate data processing
tools is to obtain a modular and regular structure oriented
towards the VLSI implementation. The initial information
for designing the basic structure of the recursive-type NE
with parallel vertical-group data processing in real time is:

- generalized graph model of the recursive-type NE with
parallel vertical-group data processing;

- algorithm of parallel vertical-group calculation of the
scalar product;

- number of weight coefficients and input data N;

- intensity of the input data flow Pd;

-requirements for the NE interface, including the fre-
quency of receiving and issuing information;

- bit depth of input data and accuracy of calculations;

- technical and economic requirements and limitations.
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lel-group transformation of input data;

w,-nw.x,-nx) — serial-parallel transformation
of weight coefficients and input data.

Based on the analytical model (5), a gener-
alized graph model of recursive-type NE with
parallel vertical-group data processing has been
built, which is shown in Fig. 1.

The main components of the general-
ized graph model of the recursive-type NE
with parallel vertical-group data process-
ing are a serial-parallel converter of weight
coefficients and input data f(WﬁNW,XﬁNX),
N parallel-group converters of input data
f( X, o DXy )’ (INxk) nodes for calculating
partial products Pj,, N k-input adders for
calculating group partial products Pgj, N-in-
put adder for calculating the g-th macropar-
tial result Ppg, a macropartial result adder
Zy= 2‘ng_1 + Pgy;, an activation function cal-
culator fuz).

To reduce the bit size of the macropartial
result adder Py, it is advisable to calculate
the partial products Pj,. starting from the
lower bits of the input data. A feature of the
proposed model is the simultaneous calcula-
tion of k partial products for each j-th pair of
operands, which provides a reduction in the
number of cycles of calculating the scalar
product by k times. One of the criteria for
choosing the number of bits in the group for
calculating partial products is to enable re-
al-time data processing.

A feature of the generalized graph model
of the recursive-type NE with parallel verti-

(X)X, g Do Xy 29X )

Fig. 1. Generalized graph model of a recursive-type neural element with
parallel vertical group data processing



Using the graph model of NE (Fig. 1), the basic struc-
ture of the recursive-type NE with parallel vertical-group
data processing was designed. The basic recursive-type NE
structure with parallel vertical group data processing was
designed according to the following principles:

- hardware mapping of the constructed graph model of NE;

- ensuring regularity and modularity of the structure;

- enabling a balance between the duration of I/O and
calculation operations;

- extensive use of pipelines and spatial parallelism for
data processing;

- performing calculations based on elementary arithme-
tic operations - addition, inversion, and shift;

- calculating the scalar product as a single operation;

- reducing the number of outputs of the NE interface.

The basic structure of a recursive-type NE with par-
allel vertical-group data processing (Fig.2) was built
by hardware mapping of the generalized graph model
of NE.

The process of recursive parallel-vertical calculation
of the scalar product in NE can be divided into two
stages.
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Fig. 2. The basic structure of a recursive-type neural element with parallel vertical group data processing, where TI1, TI2, TI3,
and Tl4 are the first, second, third, and fourth inputs of clock signals, respectively, SWAddr is the address for switches,
R is the reset input, y is the output of NE. The designed structure includes: Rg — register, Sw — switch, BRg — buffer register,
kAdd — k-input adder, NAdd — N-input adder, Add — adder. The components of NE are PP — partial product receiving node
and AFC — activation function calculator. Control over NE operation is provided by control unit CU



At the first stage, a serial-parallel conversion of input
data and weight coefficients is performed. In the process of
such conversion, an array of N input data and N weight co-
efficients is sequentially written to registers RgX, ..., RgXy
and RgWj, ..., RgWy using clock pulses TI1. After N clock
pulse TI1, an array of N input data X, ..., Xy and N weight
coefficients W, ..., Wy will be stored in registers RgXj, ...,
RgXy and RgWy, ..., RgWy, which are rewritten to buffer
registers BRgXj,..., BRgXy and BRgWy,..., BRgWy by clock
pulse TI2.

At the second stage, a clock-by-clock parallel-vertical cal-
culation of the scalar product is performed.

In the first cycle of the calculation, the output of the
switch Swj receives k lower bits of the input data Xj, which
come from nodes jPP1,..,jPPk. At the outputs of nodes jP-
P1,...,jPPk , we receive partial products Pj,..., Pjix, which,
shifted to the right by (r-1) bits, are fed to the inputs of adder
kAddj. At the output of this adder, we receive the group par-
tial product Pg;;, which is fed to the input of register RgPgjg.
The leading edge of pulse TI3 writes the group partial prod-
ucts Pg;; to registers RgPgje.

In the second cycle of the calculation, switch Swyj is set to
the position when its output receives the second group of k
subsequent bits of the input data X;. The data from the output
of switch Swj are fed to the inputs of nodes jPP1,..,jPPk, at
the outputs of which we obtain the second partial products
Pjs1;..., Pjok. These partial products with a shift to the right
by (r - 1) bits are fed to the inputs of adder kAddj, at the output
of which we obtain the group partial product Pgj,. The first
group partial products Pg;; from the outputs of registers RgPg;,
are fed to the inputs of adder NAdd, where they are summed.
At the output of adder NAdd we obtain the first macropartial
result Pys. The leading edge of the second pulse TI3 writes the
second group partial products Pg;; and the first macropartial
result Py to registers RgPg;, and RgPy, respectively.

In the third calculation cycle, switch Swj is set to the posi-
tion when the third group of k subsequent digits of input number
X; arrives at its output, and the pulse from input R resets register
RgZ, to zero. In this cycle, we obtain the third group partial
products Pgj; at the outputs of adders kAddj, the second mac-
ropartial result Py, at the output of adder NAdd, and the first
macropartial result Py at output AddZ,. The leading edge of the
third pulse TI3 writes the third group partial products Pg;s, the
second macropartial result Py, and the first macropartial result
Py to registers RgPg;je, RgPyy, and RgZ, respectively.

In the following cycles of operation, the scalar product cal-
culation is performed similarly. The result of the scalar product
calculation Z is obtained after (m + 3)-th cycle of operation. This
result is written to register RgZ by the leading edge of clock
pulse TI4 and from its outputs is fed to the AFC inputs. The
value of the output signal y of NE is obtained at the AFC outputs.

5.2. Estimating the parameters of a recursive-type
neural element with parallel vertical-group data pro-
cessing

The basic parameters used to evaluate the recursive-type
NE with parallel vertical-group data processing are equip-
ment costs, the time of calculating the output signal y, and the
efficiency of equipment use.

Since the structure of the recursive-type NE with parallel
vertical-group data processing is oriented towards the VLSI im-
plementation, it is advisable to take a logic gate (inverter, AND,
OR type element) as the unit of calculation of equipment costs.

The equipment costs for implementing the recursive-type
NE with parallel vertical-group data processing are determined
from the following expression

Wy, =(5N +3) W, + NW,, +kNW,,, +
FNWaa T Wnaa T Waaa  Ware *Wes ©)

kAdd NAdd

where Wy, - equipment costs for implementing the register;
Wsw —equipment costs for implementing the switch; Wpp —equip-
ment costs for implementing the PP node; Wya4q — equipment
costs for implementing the k-input adder; Wyaqq — equipment
costs for implementing the N-input adder; Wapc — equipment
costs for implementing the activation function calculator; Wey —
equipment costs for implementing the control unit.

To estimate the costs in logic gates, it is necessary to reveal
the structure of the PP node, the activation function calculator
AFC, and the control unit CU. The PP node is implemented on
the basis of N 2-input AND gates. Depending on the tasks for
which the artificial neural network is oriented, the following
activation functions can be used in NE: sigmoid, hyperbolic
tangent, ReLU, Leaky ReLU, ELU, Swish, and threshold. Each
of these activation functions has its own advantages and disad-
vantages. The choice of activation functions for NE depends on
the specific task and architecture of the neural network. For the
recursive-type NE with parallel vertical-group data processing,
the ReLU activation function was selected, which is implement-
ed on the basis of a 2-input n-bit switch.

In the CU control unit, the generation of clock pulses and con-
trol signals is carried out by firmware. The implementation of such
a firmware control unit CU requires the following hardware costs

Weu =Weon T Wen + Wy (7

where Wey — equipment costs for implementing the counter,
Wrowm - equipment costs for implementing ROM.

From formulas (6) and (7) it is clear that the main func-
tional units on the basis of which a recursive-type NE with
parallel vertical-group data processing is synthesized are
adders, registers, switches, counter, and memory. To estimate
the equipment costs for functional units (in the number of
logic gates), analytical expressions have been built, which
are given in Table 1, where n - bit depth of functional units,
m — number of inputs. The specified values were obtained by
modeling functional units when implementing specialized
VLSI processors for parallel-stream data processing.

Table 1

Equipment costs for implementing functional nodes and
corresponding delay time

No. Names of functional Cost of equipment | Number of delay

units (gates) stages (T gates)

1 n-bit register Tn 3

2 n-bit adder 20n 7 logon

3 m-input n-bit adder (m—1)20n 7 logyn logom

m-nput

4 n-bit S\Iz/itch 3mn m

5 | m-address n-bit ROM 2"n (m+3)

6 binary counter 12n 5 logon

To estimate the costs in logic gates, the value of the equip-
ment costs for the implementation of individual functional units is
substituted into formula (6) from the table. As a result, we obtain:
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where N is the number of input data (weight coeffi-
cients), n is the number of bits of input data and weight
coefficients, k is the number of bits in the group.

The estimation of the time of calculation of the output sig-
nal y in NE is carried out in units of the delay of data passage
through the logic gate t. The calculation time of the output
signal y in the recursive-type NE with parallel vertical-group
data processing depends on the number of clocks and their
duration. To determine the duration of the clock, the values of
the delay of data passage through the functional nodes, which
are given in the table, were used. Applying values from Table 1,
an analytical expression was derived for calculating the time of
calculation of the output signal y in the recursive-type NE with
parallel vertical-group data processing. The analytical expres-
sion for estimating the time of calculation of the output signal y
in NE is written as

- =H ﬂ+3}wd =Uﬂ+3)(7log2 [log, N))z. (9

For the integral assessment of NE, the equipment effi-
ciency criterion E was used, which links performance to
equipment costs and gives an assessment of elements (logic
gates) by performance. The quantitative value for assessing
equipment efficiency is determined from the following
formula

E — RNE
NEp W
NE

NE

(10)

where Ryg - complexity of the algorithm for calculating
the NE output signal y, Wyg - equipment costs in the logic

By substituting the Ryg values from formula (11), #xg from
formula (9), and Wyg from formula (8) into formula (10), an
analytical expression for calculating the efficiency of equipment
use is derived

For operands with a bit size of n =24 and k=2, k=4,
k=6, k=38, k=12, using the analytical expression (8), plots
of equipment costs for the implementation of NEs were con-
structed, which are shown in Fig. 3.

Analysis of the plots (Fig. 3) reveals that the highest
equipment costs when implementing NE will be for value
k =12, the lowest - for k = 2.

For operands with a bit depth of n =24 and k=2, k=4,
k=6, k=38, k=12, using the analytical expression (9), plots
of the calculation time of NE output signal were constructed,
which are shown in Fig. 4.

The plots (Fig. 4) demonstrate that the smallest calcula-
tion time of the output signal of NE is obtained for k =12,
and the largest for k = 2.

For operands with a bit depth of n =24 and k=2, k=4,
k =6,k =8, k=12, using the analytical expression (12), plots
of the efficiency of using the NE equipment are construct-
ed (Fig. 5).

From the plots (Fig. 5) it is clear that the highest effi-
ciency of NE equipment use will be for k = 4, and the lowest
for k = 12. At the same time, for a data bit depth of 16 bits,
increasing the number of k bits that are simultaneously pro-
cessed in a group from 2 to 8 leads to a 2.8-fold reduction in
processing time while simultaneously reducing the efficien-
cy of equipment use of the neural element by no more than
1.6 times.
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Fig. 3. Equipment cost plots for implementing a neural element
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5.3. Method for synthesizing a recursive-type
neural element with parallel vertical-group data pro-
cessing in real time

The task of synthesizing a recursive-type NE with par-
allel vertical-group data processing is reduced to enabling
real-time operation with minimal hardware costs for its
implementation. The output data for synthesis of a recur-
sive-type NE with parallel vertical-group data processing is
the time of arrival of an array of N input data X, .., Xy and
N weight coefficients Wy, .., Wy, which is determined from

a = N (13)

where Trp; is the duration of the period of arrival of input
data X; and weight coefficients W;.

To enable real-time operation of NE, the following con-
dition must be met

t, 2t (14)

where tyg is the time of calculation of the output signal y NE.

The time of calculation tyg depends on the number of
bits in group k, which are used to obtain partial products,
the volume of data N, the bit depth of the input data n, and is
determined from formula (9).

The main parameter that reduces the time of calculation
tnE is k, the value of which can vary in the range k=2, ..., n/2.
Increasing the value of k leads to a decrease in the number
of processing cycles m and increases the hardware costs for
the implementation of PP receiving nodes and k-input adders
of the nodes. The second parameter on which the time of cal-
culation tyg depends is the time of summing N group partial
products B, , ..., By, which determines the period of clock
pulses TI3. This time can be reduced by pipelining the N-in-
put adder, that is, dividing it into steps using registers.

To select a variant of implementing recursive-type NE
with parallel vertical-group data processing in real time, the
criterion of efficiency of using the equipment Eyg is used. High
efficiency of using the equipment Eng when implementing
recursive-type NE with parallel vertical-group data processing
in real time is achieved by matching the time of data arrival ¢4
with the time of calculation of the output signal y NE tyg. Such
matching may require both an increase and a decrease in tyg.

The main ways to reduce tyg are:

- increasing the number of bits k in the group, which are
used to obtain partial products;

- pipelining the N-input adder by dividing it into stages;

- parallel inclusion of two or more devices for calculating
the scalar product, the number of which is determined main-
ly by the time of arrival of input data ¢,.



In the case when the data arrival time t; is significantly
greater than time tyg, to ensure high efficiency of equipment
use, they must be coordinated. Such coordination can be
achieved as follows:

- reducing the number of bits k in the group, which are
used to obtain partial products;

- using devices with smaller numbers of product pairs to
calculate the scalar product

N/2 N/4
Z, =Y WX, or Z,=Y WX

=1 p=1

(15)

For the synthesis of a recursive-type NE with parallel ver-
tical-group data processing in real time with a given time ¢4
of data arrival, the designed NE (Fig. 2) was used as the base.
The synthesis of such an NE requires the following stages:

1) estimate the time typgq Of summing N group partial
products By, ..., (duration of the period of clock

pulses TI3);
2) determine the number of groups of bits m (processing

GN’

t
cycles) from formula m=| —%— [-3, where m must be with

tN Add
inn/2>m>2;
3) for the case when m < 2, it is necessary to reduce time
tnadd by dividing the N-input adder into stages so that the
operation time of the conveyor stage tcs ensures the fulfill

t
ment of condition n / 2 > m > 2, where m=|—% |, or by using

two or more parallel operating devices for Ccsa culating the
scalar product;

4) for the case when n/2>m> 2, the number of digits
in the group to obtain partial products is determined from

formula k= .

’

m

5) for the case when m >n /2, the calculation of the

scalar product is implemented on devices with lower hard
N/2

WareN(/:Psts that calculate scalar products Z =ZWIX1 or
=1

Z, =2{WPXP;

6)P600rdinate time t; of data arrival with time tyg of
calculating the output signal y NE by using appropriate
coordination procedures. To do this, one can change the
number of bits in group k to obtain partial products, divide
the N-input adder into stages, or use two or more parallel
operating scalar product calculation devices to calculate the
scalar product. OneN can implement the calculation of the

scalar product Z = ZWJX ; on devices that calculate scalar
Jj=1

productsZ ZWX or 7, ZWX

7) perform an assessment of the efficiency of equipment
use for different implementation options for recursive-type
NE with parallel vertical-group data processing and select the
NE option that has the highest efficiency of equipment use.

6. Discussion of results related to the synthesis of a
recursive-type neural element with parallel vertical-
group data processing

A feature of parallel-vertical type NE models described
in [22, 23] is the complexity of matching the time of data
arrival with the time of calculation of the NE output signal.

The proposed recursive-type NE model with parallel verti-
cal-group data processing ensures the matching of the time
of arrival of weight coefficients and input data with the time
of calculation of the NE output. This is achieved by choosing
the number of bits in the group for forming partial products.
The basis of the analytical (5) and graph models (Fig. 1) is
the operation of calculating the scalar product by the par-
allel vertical-group method (2), which, through the choice
of the number of bits in the group for forming partial prod-
ucts, provides a change (decrease or increase) in the time of
calculation of the scalar product in NE. Due to the use of a
serial-parallel converter of weight coefficients and input data,
parallel-group converters of input data and nodes for calcu-
lating partial products, the timing of the arrival of weight
coefficients and input data with the time of calculating the
output of NE is ensured.

In [24], an FPGA-based implementation of NE with four
inputs and a sigmoid activation function using 16-bit fixed-
point numbers is described. The designed recursive-type
neural element with parallel vertical-group data processing
allows the use of various activation functions by using their
tabular implementation.

Unlike the NE model described in [25] that has a more
complex implementation, in our NE model the process of
calculating the scalar product is reduced to the operation of
group summation of partial products. Additionally, the use of
a parallel vertical-group algorithm and the pipeline process
provides the possibility of hardware implementation of the
real-time neural element on FPGA.

In [26], a bit-wise implementation of NE for a spiking
neural network based on FPGA is reported to construct a
neural model scheme based on a biologically plausible model
of a neuron with quadratic spikes. However, the proposed
sequential bit-wise design of NE does not work for data with
a small bit depth. In the case of a larger data depth, such an
NE implementation does not require additional data process-
ing cycles. In the case of the neural element proposed in the
work, the data depth can be 8-32 bits, which increases com-
puting performance.

The authors of [27] consider implementations of NE for
Spiking Neural Networks (SNNs), which represent neural
network models as an analogy to biological neurons. Infor-
mation during transmission between neurons is encoded
using time and amplitudes (weights). This approach slows
down information transmission and reduces the performance
of the neural network as a whole. The proposed NE operates
on high-dimensional data in a parallel format, which pro-
vides high performance and streaming data processing in
real time. By using the analytical expression for evaluating
the efficiency of equipment utilization (12), the choice of the
implementation option of recursive-type NE with parallel
vertical-group data processing in real time is made.

In [28], the task of designing the architecture of a neural
network during its implementation is considered. As the
authors note, such an architecture is obtained manually by
exploring its hyperparameter space and is kept fixed during
training, and modern applications require small models due
to the imposed resource limitations of embedded devices.
The cited paper considers the SCANN methodology, which
uses three main operations of changing the architecture,
namely, increasing the number of connections, increasing
the number of neurons, and cutting off connections. In
the proposed synthesis method, minimizing the cost of
equipment during the synthesis of recursive-type NE with



parallel vertical-group data processing is achieved by using
matching mechanisms that can reduce or increase the time
of computing the NE output ¢yg. The main mechanisms for
reducing tyg are increasing the number of bits k in the group;
pipelining the N-input adder; parallel inclusion of two or
more dot product calculation devices. To increase time tyg,
the following mechanisms are used: reducing the number of
bits k in the group; reducing the number of product pairs in
the dot product calculation device (15).

However, it is necessary to take into account the lim-
itations of our study, which imply the implementation of a
recursive-type neural element focused on parallel stream-
ing data processing. The considered NE model is focused
specifically on hardware implementation based on FPGA
and on the possibility of parallel data processing. Software
implementations of the developed neural element will not be
appropriate.

The lack of analysis of implementation options for the
proposed neural element with reference to specific architec-
tures of programmable logic integrated circuits, for exam-
ple, CPLD, can be considered a disadvantage of this study.

Further research on the synthesis of recursive-type NE
with parallel vertical-group data processing will be aimed
at designing high-speed pipeline multi-input adders used
to sum partial products and group partial products. Also
relevant is research aimed at developing algorithms and
structures for recursive-type NEs with tabular formation of
macropartial results.

7. Conclusions

1. A generalized recursive-type NE model with par-
allel vertical-group data processing has been built, the
main components of which are nodes for calculating partial
products, multi-input adders of group partial products, a
multi-input adder for calculating the macropartial result,
and a macropartial result summator. The model uses a se-
rial-parallel converter of weight coefficients and input data,
parallel-group converters of input data, and an activation
function calculator. The designed NE model uses a parallel
vertical-group method for calculating the scalar product
with the ability to select the number of bits in the group for
forming partial products. In the model, the coordination of
the time of arrival of weight coefficients and input data with
the time of calculating the NE output provides real-time data
processing. The designed graph model of the neural element
is oriented towards hardware implementation. The basic
structure of NE has been developed, which, due to the use
of hardware mapping of the designed graph model of NE,
provides a reduction in the time of NE synthesis for specific
applications. The specified result is achieved due to the regu-
larity and modularity of the structure, pipelining, and spatial

parallelism of data processing, as well as organization of the
process of calculating the scalar product as the execution of
a single operation.

2. For the designed recursive-type neural element with
parallel vertical-group data processing, the parameters for es-
timating equipment costs, speed, and efficiency of equipment
use have been determined. The estimation of NE parameters
is carried out depending on the bit depth of the operands,
the amount of data, and the number of bits in the group to
obtain partial products. The use of the proposed estimation
parameters allows us, at the stage of synthesis of neural ele-
ments for specific applications, to estimate their quantitative
parameters and select the optimal structure with given time
characteristics.

3. A method for synthesizing recursive-type NEs has
been devised, which, by using the basic structure of NEs,
mechanisms for coordinating the time of arrival of weight co-
efficients and input data with the time of output calculation,
ensures the implementation of NEs for specific applications.
The proposed method takes into account ways to minimize
equipment costs and provides the synthesis of recursive-type
NEs with parallel vertical-group data processing, which im-
plements data processing in real time.
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