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The object of this study is the process
that improves the efficiency of data trans-
mission in monitoring systems that arrive
Jfrom low-power devices within the mobile
high-density Internet of Things. The task
addressed was to reduce the average delay
time of information transmission through
the transmitting station of the monitor-
ing system gateway. To this end, it was
proposed to improve the multiple output
procedure and use the technique for build-
ing temporary dynamic clusters of depen-
dent sources.

During the research, a model of a mon-
itoring system with multiple node outputs
was built. Its process involved the proce-
dure for constructing a temporary subset
of active devices dependent on data. That
made it possible to reduce the redundan-
¢y of data coming to the monitoring sys-
tem gateway.

An approach has been proposed for
finding the values of the upper and lower
limits of the average data transmission
delay. The approach is based on simplify-
ing calculations by switching to a one-di-
mensional Markov chain. The use of a uni-

form distribution of active subscribers
has made it possible to find an analytical
expression for the upper limit of the aver-
age delay. A feature of the lower bound
calculation process is the introduction of
a fixed division of the receiving zone of the
transmitting station into equal sectors.

The algorithm developed for multiple
node output is aimed at reducing the aver-
age data transmission delay with a lim-
ited number of subscribers. A feature of
the method is the limitation of the num-
ber of tranmsitions when forming a sta-
tionary distribution of the Markov chain.
As a result of using the method, the aver-
age delay is reduced and the speed of
data transmission increases. Studies of
the proposed method have shown that the
speed of data transmission increases in
comparison with existing methods from
510 50%. The research results are attributed
to the use of the procedure of multiple
subscriber output
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1. Introduction

healthcare, and smart home systems [1]. One of the most com-

Internet of Things (IoT) systems are gaining popularity in
various industries. They are already used in industry, agriculture,

mon scenarios for implementing the Internet of Things is the
massive Machine-Type Communications (mMTC) scenario [2].
This scenario describes the operation of systems with a large




number of low-power devices and is the basis of most modern
monitoring systems. Typically, mMTC scenarios are used to
monitor changes in the system served by the IoT. Such sys-
tems are called monitoring systems, and changes occurring in
the system are termed events. System changes are understood
as changes in some environmental parameters, for example,
changes in temperature, humidity, or air pollution [3].

When distributing channel resources between a large
number of devices in any system, only random access can be
used. Random multiple access systems (RMAS) are capable of
providing stable system operation with a potentially unlimited
number of subscribers [4]. The basic idea of random access
is that subscribers who have data to transmit send them to
the channel with some probability. Most IoT systems built
according to the mMTC scenario use RMA at the lower level:
when transmitting information about an event to the general
communication channel.

But when choosing the number of devices necessary to
ensure the efficiency of data delivery and other indicators of
system performance, the following contradiction arises [5]:

- a large number of IoT devices increases the probability
of event detection by individual devices;

- a large number of devices increases the number of con-
flicts in the general communication channel.

Therefore, the use of a large number of IoT devices reduc-
es the probability of event data delivery. This can worsen the
operation of the corresponding monitoring system, especially
built on the basis of mobile high-density IoT.

It has been observed that in IoT systems, data transmit-
ted from different sensors is highly correlated [6]. Research
into such systems has begun to exploit data dependences to
improve the quality of IoT operation. As a result, the mMTC
scenario has been supplemented with a multiple-output pro-
cedure that is robust to any input flow intensities [7].

In monitoring systems based on mobile high-density
IoT (MHIoT), IoT devices often detect the same event [8].
Such devices are located close to each other when an event
is detected. In the mMTC scenario, this can lead to duplica-
tion of data transmission for some events. As a result of the
transmission of such redundant information, transmission
delays increase, and, accordingly, the quality of service (QoS)
indicators decrease [9].

Therefore, the issue of reducing the redundancy of infor-
mation received from MHIoT devices built according to the
mMTC scenario is relevant. Solving this issue could improve
the efficiency of the MHIOT system.

2. Literature review and problem statement

In [10], a model of a wireless sensor network is consid-
ered, in which the signals of IoT devices are highly correlated.
For data transmission in this model, the random multiple
access algorithm "multichannel ALOHA" is used. The paper
proposes an adaptive approach to data transmission using
Slepian-Wolf coding to increase the energy efficiency of the
system. However, this approach does not take into account the
emerging data redundancy, which, at a high sensor density,
could lead to undesirable data transmission delays.

In [11], a random access model with dependent sources is
considered. This model uses a modified "ALOHA" algorithm.
The paper considers industrial Internet of Things systems.
A model of a system with dependent sources is investigated,
depending on which the calculation of Gaussian correlated

random variables is described. Like the previous paper, the
model is focused on energy efficiency but does not involve the
use of the multiple output procedure.

The method for forming a mobile cluster, proposed in [12],
is focused on increasing the stability of mobile components
consisting of mobile MHIoT devices. However, the issue of
improving the operability is not considered in the work. There-
fore, with a high density of MHIoT nodes, QoS requirements
may be violated.

The study reported in [13] considers a mobile system based
on the Internet of Things, designed for monitoring air pollu-
tion. The advantages of this system are its cost-effectiveness,
automation of data collection and operational analysis, and the
possibility of real-time monitoring. However, with the increase
in operational data, which occurs when the analyzed parame-
ters change significantly, the real-time mode is violated.

The study conducted in [14] proposes a monitoring system
that uses data analysis and forecasting to prevent communica-
tion system failures. In the event of abnormal situations, the
monitoring system sends notifications to users, which allows
for immediate problem resolution and prevention of serious
problems. However, the study does not assume the presence
of clusters of IoT devices, which is typical for MHIoT systems.
And in the methods proposed in [15], the main criterion is
not the speed of data processing but the stability of mobile
clusters. In addition, these methods do not take into account
the specific features of MHIoT systems.

Random multiple access with multiple dispatch is consid-
ered in [16]. A model of random multiple access systems with
a non-standard dispatch policy is built. All incoming messages
are evenly distributed over a finite circle. If a message is suc-
cessfully transmitted, it leaves the system together with all
neighbors within the circle centered at the location of the mes-
sage. However, the specificity of MHIoT is not taken into ac-
count when choosing the radius of the circle. Similar problems
arise when applying the random access procedure to support
mass connectivity of Internet of Things devices, given in [17].

The algorithms proposed in [18] are aimed at reducing the
number of losses of Internet of Things information packets by
using stabilizing load control. However, in places where IoT
devices are concentrated, an unacceptably large amount of
information redundancy arises.

In[19], a model of an Internet of Things system with
a large number of devices is considered. The issues of detect-
ing active devices and estimating channel bandwidth due to
the temporal correlation of device activity are investigated.
However, this model does not reduce data redundancy.

The method presented in [20] is aimed at reducing the
execution time of IoT transactions. To this end, part of the
computational load is transferred to peripheral devices of the
Internet of Things. However, under the conditions of low-power
devices of the mobile high-density Internet of Things, this
method is unacceptable.

Therefore, the reviewed scientific works on the proposed
algorithms and methods for improving the efficiency of data
transmission do not sufficiently take into account the char-
acteristic features of monitoring systems based on MHIoOT.
In addition, the cited papers do not focus on the possible dupli-
cation of information when using RMA systems. This can lead
to both increased delays in the transmission of operational
processing information and reduced QoS indicators. Thus, it
is advisable to conduct a study aimed at reducing the average
delay time in the transmission of operational information
from MHIoT devices to the monitoring system.



3. The aim and objectives of the study

The aim of our work is to devise a method for improving
the efficiency of data transmission in monitoring systems that
receive input information from mobile Internet of Things
sensors. This would make it possible, at a high density of
MHIoT devices, to meet the requirements of quality of ser-
vice (QoS) by reducing the average delay time of information
transmission.

To achieve this goal, the following tasks were set:

- to build a model of a monitoring system with multiple
node outputs that will receive data from MHIoT devices;

- to propose an approach to finding the average data trans-
mission delay with an unlimited number of active MHIoT
devices;

- to develop an algorithm for multiple node outputs with
a limited number of subscribers.

4. The study materials and methods

The object of our study is the process of improving the ef-
ficiency of data transmission in monitoring systems that come
from low-power devices of the mobile high-density Internet of
Things. The work considers the monitoring system gateways
of a limited reception radius that receive data coming from
MHIoT devices.

The main hypothesis of the study assumes that the imple-
mentation of a new method for improving the efficiency of
data transmission in monitoring systems could make it pos-
sible to reduce the average data transmission delay time. The
method is based on the construction of temporary dynamic
clusters of dependent MHIoT sources. This would ensure an
increase in the efficiency of the monitoring system, the data
to which come from mobile MHIoT devices.

When devising the method, the following conditions were
followed:

Condition 1. MHIoT mobile devices in the coverage area
of the monitoring system gateway have a high density.

Condition 2. Receiving information from MHIoT devices
occurs in discrete time intervals — time windows.

Condition 3. When opening a window, the gateway can
receive information from only one MHIoT device.

Condition 4. The monitoring system gateway randomly
selects the current device for receiving information.

Condition 5. The process of the appearance of active
MHIoT mobile devices in the system is described by a point
Poisson process with intensity 1. At the moment of appear-
ance, the mobile device contains a single message and after
successful transmission leaves the system.

In the process of devising a method for improving the
efficiency of data transmission in monitoring systems based
on MHIOT, a number of different methods and algorithms
were used.

When calculating the average data transmission delay in the
monitoring system gateway coverage area, Little’s formula was
used [21]. Little’s formula describes the relationship between
the average number of requests in the system, the average time
a request stays in the system, and the intensity of requests

L=1-W, €Y)

where L is the average number of requests in the queue for
service or being serviced; A is the average intensity of requests,

i.e., the number of requests received per unit of time; W'is the
average time the request spends in the system.

When building a model of a monitoring system based on
MHIoT with dependent mobile sources, the ALOHA algo-
rithm was considered [22]. ALOHA is a simple protocol for
accessing the data transmission environment. It allows several
users to share one wireless communication channel. Two
main versions of ALOHA are used:

- Pure ALOHA - the station transmits data at any time
and waits for confirmation [23];

- Slotted ALOHA - time is divided into slots (windows),
and transmission is possible only at the beginning of the win-
dow, which reduces the probability of collisions [24].

The Slotted ALOHA algorithm was chosen to simulate the
operation of the monitoring system gateway.

This algorithm works as follows:

Action 1 - synchronization. All MHIoT mobile nodes and
the monitoring system gateway are synchronized in time.
Time is divided into equal slots (time windows), and transmis-
sion is possible only at the beginning of the window.

Action 2 - readiness to transmit. When the MHIoT node
has data to transmit, it assumes the status of an active node
and waits for the beginning of the next window.

Action 3 - transmission of a data packet. When the window
opens, the MHIoT node transmits a data packet to the channel.

Action 4 - waiting for confirmation of receipt. The MHIoT
node waits for confirmation of receipt from the gateway
during the window opening.

Action 5 - success or collision. If the reception is con-
firmed and the data packet is delivered, the MHIOT node goes
into inactive mode.

Action 6 - if the reception is not confirmed due to a col-
lision with another transmission, the transmission is consid-
ered to have failed.

Action 7 - retry. The MHIoT node waits for a random
time (random backoff) and returns to action 3 to retry in
another window.

When comparing the proposed method of servicing MHIoT
node requests with existing ones, the Group-based ALOHA al-
gorithm, which is used in modern mobile IoT [25], was applied.
In this algorithm, in the event of a collision, MHIoT nodes are
divided into subgroups. Each subgroup in turn receives access
to an open time window of the monitoring system gateway.
This helps reduce collisions during data transmission.

The Group-based ALOHA algorithm is mainly used in
high-density IoT. At the same time, it has the following advan-
tages over similar algorithms:

- fewer collisions occur because fewer devices compete for
each time window;

- horizontal scalability is allowed when working with
a large number of devices;

- delays are predictable, i.e., access to the gateway can be
controlled;

- in mobile IoT, energy consumption is reduced due to the
fact that devices are active only in their phase.

But at the same time, this algorithm also has a number of dis-
advantages, among which the most important are the following:

- the complexity of implementing the grouping proce-
dure, because centralized coordination or a decentralized
group formation algorithm is required;

— the presence of an unacceptable delay if a device is in
a group that is waiting for service for a long time;

- inefficiency with a small number of devices due to down-
time between groups.



Non-Orthogonal Multiple Access (NOMA) technology
was considered as the basic technology for MHIoT.

A set of MHIoT devices can be considered a system
with multiple access (SMA) [4]. SMAs provide sharing of
a resource between many users or devices. The specificity
of MHIoT suggests the possibility of analyzing this set as
a random multiple access system (RMAS). Devices in RMAS
are usually called subscribers. Therefore, information collec-
tion devices (sensors) when analyzing MHIoT as RMAS are
termed subscribers.

RMAS systems can be divided into two classes:

- class 1: models with the appearance of events [26];

- class 2: models with the appearance of subscribers [27].

For monitoring systems that receive information from
mobile low-power IoT devices, second-class models are con-
sidered [28].

A fragment of a monitoring system model based on
MHIoT with dependent sources is considered. Let’s describe
this model verbally.

The fragment receives data from MHIoT mobile devices
using a gateway equipped with a base station for receiving
information. MHIoT devices appear in the coverage area of
the base station randomly. The number of MHIoT devices
in the system is not limited. Random access without source
identification is used for transmission.

In order to reduce information redundancy in the process
of model operation, data dependence is taken into account. In
case of successful transmission, MHIoT devices whose data
are dependent simultaneously leave the system.

To determine the quality of the model, a number of indi-
cators can be considered:

—average number of successful transmissions per unit
of time;

- probability of delivering information about an event;

—average number of successfully transmitted messages
about the same event;

- average data transmission latency (ADTL);

- average age of information (Aol);

- energy efficiency;

- average number of retransmissions.

In monitoring systems, when receiving operational infor-
mation, the most significant indicator is ADTL [29]. There-
fore, within the framework of this work, the average data
transmission delay in a system with an unlimited number of
users and dependent sources is investigated.

When finding the average data transmission delay with
an unlimited number of active MHIoT devices, the Markov
chain model with a uniform arrangement of subscribers [30]
was used.

The set of subscribers is divided into Q sections. In the
case of subscriber success, a multiple exit occurs, i.e., all sub-
scribers of the corresponding sector leave the set.

Let us denote by U(j, q) the set of coordinates of the loca-
tions of active subscribers that are in the g-th section of the
base station reception boundary circle. The current number of
active subscribers is recognized as N(j, q)| = U(j, q)|. Then the
following partition holds

u(j)=U,.U(ia) @)

The behavior of the time process T2 can be represented
as a Markov chain with Q dimensions and described by the
following system of equations

N(j+11)=N(j1)-

~F(N(j1),N(j2),.N(5:Q))+V (4.1);
N(j+12)=N(j.2)-
~Fy(N(j1),N(j2),...N(5,Q))+V (5.2); ©)

N(j+1,Q)=N(j:Q)-
~Fo(N(j:1),N(j;2),....N(j:Q))+V (jiQ),

where V{j, q) is the number of subscribers who entered the
system in window j and got to section q. This system of equa-
tions will be valid for the time process T2 because the coordi-
nates of the location of subscribers in each section g will be
distributed uniformly. Since the random variable V(j, q) has
a Poisson distribution with parameter Ad, then

M [V(j, )] = Ad. 4

The random variables Fy(N(j, 1), N(j, 2), ..., N(j, Q)) are
calculated in the model as follows

E,(N(j1).N(j:2).-.N(1.Q))=
L (5e[O;N(j,Q)/N(j)))&(nzl); (5)

0, else,

where £is a continuous random variable uniformly distributed
on a unit interval; # is a random Boolean function equal to
unity with probability

B =(1- N ()0, ®

5. Results related to devising and investigating
a method for improving the efficiency of data
transmission in monitoring systems

5.1. Model of a monitoring system with multiple
node outputs that receives data from MHIoT devices

In the Internet of Things systems operating under the
mMTC scenario, neighboring devices often transmit similar in-
formation. The readings of neighboring sensors may be differ-
ent but will have a high correlation. Devices whose data are the
same or almost the same are called correlated sources (CSs).
Devices that have been affected by the same event initiate
correlated activation (CA). In both cases, their data may differ
but will be close. Note that the absence of data correlation does
not mean the absence of dependence between the information
transmitted by nearby sources. Therefore, nearby sources are
considered dependent sources. This concept will combine the
concepts of correlated sources and correlated activation. Tak-
ing into account the dependence of data from different devices
is one of the ways to solve some problems of MHIoT systems.
In particular, this will help reduce the redundancy of informa-
tion coming from MHIoT devices to the monitoring system.

As an indicator of quality, our model uses the value of the
average data transmission delay in a system with an unlimited
number of users and dependent sources.

Usually, when constructing models of SMA mobile sys-
tems, the surface of a sphere is considered as the boundary of
the base station coverage area. In the following, to simplify the
analysis of the monitoring system, we shall limit ourselves to
a planar version.



Also, when building a model of a monitoring system based
on MHIoT with dependent sources, a number of conditions
and input data are considered.

The exchange of messages between subscribers (low-
power mobile IoT devices) and the base station of the moni-
toring system occurs over a radio channel. The base station
is able to receive messages from subscribers located at a dis-
tance R from it.

Therefore, the location of available subscribers can be de-
picted on a circle of length L with radius R = L/2z, as shown
in Fig. 1.
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Fig. 1. Example of outputting dependent active subscribers

In Fig. 1, the points on the circle indicate the coordinates
of the entries of active subscribers to the range of the gateway
base station. The gateway base station C is located in the
center of the coordinates. The yellow point corresponds to
the entry point of the subscriber U0, which was served during
the last open window. This subscriber has left the set of active
subscribers. At the same time, all distance-dependent sub-
scribers leave the set of active subscribers: Ul, U2, U3, U4.
These points are marked in red.

Subscribers enter the range of the base station according
to a point Poisson process with parameter 1. Each subscriber
is characterized by the time of entry into the system and the
coordinates of the location on the circle. Therefore, the time
periods between the subscriber entries are random variables
distributed according to the exponential law. Also, the coor-
dinates of the subscriber positions on the circle are random
variables distributed according to the uniform law.

The time for receiving messages from subscribers of the
monitoring system by the base station is divided into equal
time intervals. This interval is called the reception window.
The time during which the message will be sent to the base
station is equivalent to the duration of one window. Subscrib-
ers have information about the beginning of the next window,
which is the time for sending messages.

All subscribers who have a message to send when they
log in to the system are considered active subscribers. The
base station determines the number of active subscribers N(j)
before the beginning of window j and sends this information
to subscribers. Subscribers have the opportunity to send mes-
sages to the base station with the probability: p(j) = 1/N(j).

When a window is opened, the following situations may
occur:

— A0 or "success’, if exactly one subscriber sends a message;

- Al or "empty” (all subscribers do not send messages;

- A2 or "conflict” (the number of subscribers who sent mes-
sages is more than one).

When closing the window, subscribers learn what situa-
tion has arisen in the window.

The subscriber is removed from the set of active sub-
scribers after successful transmission of the message. Other
subscribers learn from the base station the coordinate of this
subscriber’s location on the circle — U0. Next, for each i-th
active subscriber, /; is calculated - the length of the arc of the
circle from it to the point c0. Let d be the length of the arc
that defines the subset of subscribers dependent on the data.
If [; < d/2, then the i-th subscriber is also removed from the
set of active subscribers.

The discrete time process of opening windows of the base
station is considered

T:{tj}’jeN’ 7

where j is the current window number, ¢; is the time of open-
ing the current window, N is a set of natural numbers.

Let the following sets be defined:

U(j) is the set of coordinates of the locations of active sub-
scribers at the moment of opening the j-th window; |U(j)| = N(j);

X(j) is the set of coordinates of the positions of active
subscribers who entered the system during the opening of
window j; |X(j)| = V(j);

Y(j) is the set of coordinates of the locations of subscribers
who left the system during the opening of window j; |Y(j)| = W()).

Then the functioning of the discrete time process T can be
represented as a multidimensional Markov chain:

UG+1) = (UD\Y(G)) © X(); ®)
N(j+1) = N() - W(j) + V(j). ©)

The intensity of subscriber appearance in the considered
Markov process is a finite quantity. Therefore, the multidi-
mensional Markov chain (8) is ergodic. Therefore, the Markov
chain, reflecting the model of the monitoring system, has a sta-
tionary distribution regardless of the intensity of subscriber
appearance in the system. In order to obtain the average delay
in the monitoring system based on MHIOT, it is necessary
to find the stationary distribution of the Markov chain (8).

But solving this problem is quite difficult because the
number of states of this Markov chain is uncountable.
Therefore, further techniques for obtaining upper and lower
estimates of the average delay are considered, which do not
require consideration of Markov chains with an uncountable
number of states.

5.2. Finding the average data transmission delay
with an unlimited number of active MHIoT devices

To find the upper estimate of the average delay, assume
that after the event AO the location of active subscribers on
the circles changes accordingly with a uniform distribution.
Such a time discrete process 71 will differ from process T. But
the Markov chain for the process 71 will also have a stationary
distribution.

Let the average number of subscribers in monitoring
systems with process models T and T1 be Ny and Nlgep,



respectively. Then, regardless of the intensity of the appear-
ance of subscribers in the system, the following inequality
will hold
Nlaer 2 Nayer (10)
According to the process model T1, the coordinates of
the location of subscribers will always be distributed evenly
around the circle. Therefore, unlike the process model T,
the operation of the process model T1 can be represented by
a one-dimensional Markov chain.
Let us calculate the mathematical expectation from the
left and right parts of expression (9)
MING+1)] = MING) - W() + V(). (1)
Consider processes T and T1 at j — . Then M[N(j + 1)] =
=M[N(j)], hence
MIV()] = M[W()]. (12)
Since the random variable equal to the number of active
subscribers who entered the monitoring system during win-
dow j has a Poisson distribution, then
M[V(j)] = 2. (13)
Let us denote by @ the indicator of the situation that has

arisen in the current window j. The indicator € can take the
following values

1, if Ao;
M[60(j)]=10, if AL; 14)
2, if A2.
Then M[W(j)] can be calculated as follows
M[W(j)]:P{e(j)zl}-(1+d-(M[W(j)]—1)). (15)

The probability that a "success” situation has arisen in the
window can be calculated as

o=l

At large values of the intensity of the incoming flow 4,
the number of active subscribers in window j begins to grow
significantly. Therefore, at large values of N(j), the proba-
bility of the situation A0 "success” will be approximately
equal to

(16)

N(j)-1
P{B(j)—l}—(l—th)J ~el, (17)
Then
MW (j)]=e(1+a-(M[N(})]-1)). (18)

Based on (11), (13), and (18), let’s calculate the mathe-
matical expectation of the number of active subscribers for
window j

M[N(j)]-2erdt, 19)

d

Considering j — o we obtain

tim MN(j)]=Nlae (20)
Hence

le+d-1
Nlaver = T (21)

Knowing the average number of active subscribers in the
system and the intensity of their arrival, we calculate the up-
per limit of the average delay using Little’s formula

N1, _ Ae+d-1

Zaver?mp :T 2d (22)

To find the lower estimate of the average delay, we shall
change the procedure for removing subscribers from the set
of active subscribers after a successful message transmission.

Suppose that the circle of the base station reception bound-
ary is divided into several sectors. Let us denote their number
by Q. The subscriber leaves the system after the successful
transmission of the message. Other subscribers learn from
the base station the coordinates of the location of this sub-
scriber and determine in which sector s/he was. If s/he was
in the same sector, then this subscriber also leaves the system.
Let d denote the length of the sector of the circle on which
subscribers are located, simultaneously leaving the system.
Let us denote the time process with such conditions as T2.

An example of a schematic representation of the process
model T2 for Q = 4 is shown in Fig. 2.
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Fig. 2. Example of a model for process 72 at Q=4

The subscriber from the first sector successfully transmit-
ted the message (yellow color), so all other subscribers of the
first sector leave the set of active subscribers (Fig. 2).

Let N2, be the average number of subscribers in the
monitoring system built according to the T2 model. Then,
regardless of the intensity of the appearance of subscribers in
the system, the following inequality will hold

Naver 2 NZQV@T' (23)



Simulation modeling of the time process T2 by building
a model of the above-described Markov chain makes it possible
to obtain a lower estimate of the average delay of this process.

With an unlimited number of subscribers, the difference
between the lower and upper estimates of the average delay
increases with the number of subscribers. In addition, the
computational complexity of the corresponding model begins
to grow significantly. But in practical implementation, the
number of subscribers that can be served by a fixed gateway
is always limited.

5. 3. Algorithm for multiple node output with a limited
number of subscribers

We consider the time discrete process T'1. Let no more than
K subscribers reach the coverage area of a specific gateway of
the monitoring system. In order to find the limits of the average
delay, it is necessary to find the stationary distribution of the
Markov chain. The number of its states will be K+1 (Fig. 3).
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The transition probabilities of such a Markov chain p;
for any two arbitrarily chosen states i and j depend on the
main indicator of the formation of dependent subsets d. For
a time-discrete process T1, they will take the following form:

J
if i=0then pi,j :)%'e_l; (24)
J!

if (i>0)&(j=i)then p;;(d)=

L g )
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m=1

(25)

if (i >0) & (j<i) then p, ; (d) =

i-1 j o o - m
:[1—1_] Z(Ci‘l”mld“!*m‘l(l—d)] ’"’;'e-lj. (26)

l m=0

Let 7; be the probability that the system is in state i. It is
equivalent to the probability that the number of subscribers in
the system is i, that is

w; = P{N(j) = i}. (27)

In order to find the stationary probabilities of a given Markov
chain, it is necessary to solve the following system of equations

oo (d) =y Poo + @ Pro(d)+...+ ox -pro(d);

o, (d) =y Po1 (d)+w1 ‘P11 (d)+...+a)K ‘Pxa (d);
, (d):a)o Doz (d)+a)1 ‘D1 (d)+...+a)K ‘Px2 (d ;
(28)
O -1 (d) =@ *Po,x-1 (d)+ @y D1 (d)+

+...+ o0 'pK,K—l(d);

o (d)+w1(d)+a)2 (d)+...+wK(d)=1.

Having obtained the stationary probabilities, one can calcu-
late the average number of subscribers in the system as follows

(29)

Using expression (28), let’s calculate the average delay in
the system

Zuerop ()= 31001 (d) /x.

i=0

(30)

Note that as the power of the subset of data-dependent
subscribers increases, the average data transmission delay de-
creases. The power of the subset of subscribers increases with
increasing parameter d. But at the same time, as the average
data transmission delay decreases, the average probability of
data loss Pg,.{(d) increases. This parameter is the sum of two
components

Paver(d) = Paverl(d)+Paver2(d)a (31)
where Py, is the average probability of data loss due to the
subscriber exceeding the maximum allowable waiting time for
data transmission; P, is the average probability of data loss
due to the removal of a subscriber with event data that has
not yet been received by the monitoring system from the set
of active subscribers.

When the parameter d increases, the first term of the
sum (31) decreases, and the second term increases. To find
the optimal ratio between the average delay and the average
probability of data loss, an indicator of data transmission effi-
ciency is introduced

n (d) - Lﬂ(d) (32)
1+ Zaver?top (d)

The indicator (32) takes values from the interval (0, 1].
The maximum value of the indicator 7(d) =1 is achieved in
the absence of data transmission delay and zero probability
of data loss.

To assess the effectiveness of the proposed method, a sim-
ulation model of a gateway of a monitoring system with mul-
tiple outputs of mobile high-density Internet of Things nodes
was used. The radius of stable reception of the base station
is 1600 m. The length of the base station coverage circle is ap-
proximately 10 km. The maximum length of the arc that de-
fines the subset of subscribers dependent on data on this circle
is 450 m. MHIoT devices (subscribers) that must transmit data
appear in the coverage area of the base station randomly.

The quality of the monitoring system that receives data from
MHIoT devices was assessed based on the length of the interval
for determining the subset of subscribers dependent on data.
The value of the parameter d varied from 50 to 450 m. Three
variants of the model were considered for restrictions on the
maximum number of subscribers K: 100, 500, 900 subscribers.
The simulation results for these values of K are shown in Fig. 4.

The effectiveness of the proposed method for increasing
the speed of data transmission in monitoring systems based on
MHIoT was evaluated in comparison with standard methods.
For comparison, methods based on the ALOHA algorithm were
considered. For mobile high-density IoT, the method based on
the Group-based ALOHA algorithm is usually used, therefore
this algorithm was chosen for modeling. The evaluation was



carried out using the data transmission speed evaluation in-
dicator #(d) (expression (32)). Various options for limiting the
maximum number of subscribers from 100 to 900 subscribers
were simulated. The generalized modeling results are shown in
the plots of Fig. 5.
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Fig. 4. Dependence of the indicator for assessing the
efficiency of data transmission on the length of the interval
for determining a subset of subscribers

14
0.9
0.8
0.7
0.6
0.5

S04
0.3
0.2
0.1
0 T T T T T T T
100 200 300 400 500 600 700 800 900

K
—Group-based ALOHA

Fig. 5. Dependence of data transmission efficiency on
restrictions on the maximum number of subscribers

During simulation, the limit on the maximum number of
subscribers varied within the specified limits from the mini-
mum to the maximum value with a step of AK = 20.

6. Discussion of results based on investigating
the method for improving the efficiency of data
transmission in monitoring systems

A model of a monitoring system that will receive data from
MHIoT devices with multiple node outputs has been proposed.
The main difference of this model is the reduction of data
redundancy entering the monitoring system gateway. The re-
duction occurs by forming a temporary subset of devices that
depend on the data entering the current open window. When
the current window is closed, all MHIoT devices that depend
on the transmitted data leave the system (Fig. 1). The model is
described as a multidimensional Markov chain (3), (4). This
model takes into account the specific features of the mobile
high-density Internet of Things.

‘We have proposed an approach for finding the limits of the
average data transmission delay with an unlimited number of
active MHIoT devices. A feature of this approach is a signif-
icant simplification of calculations by switching to a one-di-
mensional Markov chain. The use of a uniform distribution of
active subscribers allowed us to find an analytical expression
for the upper limit of the average delay - formula (17). A fea-

ture of the process of calculating the lower limit of the average
delay is the introduction of a fixed division of the receiving
zone of the transmitting station into equal sectors (Fig. 2, (17)).

A multiple node output algorithm has been developed,
focused on reducing the average data transmission delay with
a limited number of subscribers. The main difference of this
algorithm is the limitation of the number of transitions when
forming a stationary Markov chain distribution (Fig. 3). That
has made it possible to determine the optimal indicator of
the formation of dependent subsets d (28), (30) relative to
the minimum of the average data transmission delay. When
developing the algorithm, the characteristic features of the
MHIoT system were taken into account. The proposed al-
gorithm made it possible to reduce the average delay and
improve the efficiency of data transmission in the case of
a high-density arrangement of IoT devices.

Comparative testing of the standard and proposed methods
(Fig. 4, 5) showed the following results:

- with an increase in the density of IoT devices, the opti-
mal value of the length of the interval for determining a sub-
set of subscribers increases, and the indicator of the efficiency
of data transmission decreases (Fig. 4);

- with a low density of IoT devices (K < 100), the use of
multiple subscriber output is impractical due to an increase
in the probable data loss;

- at a high density of IoT devices (K > 300), the use of the
proposed method makes it possible to improve the efficiency
of data transmission from 5 (K = 300) to 50% (K ~ 1000).

Our results of the study on the method for improving the
efficiency of data transmission in monitoring systems based
on MHIoT are attributed to the use of the procedure of mul-
tiple subscriber exit.

Unlike [10], in which a model of a wireless sensor net-
work is considered, in which the signals of IoT devices have
a high correlation, our method takes into account the emerg-
ing data redundancy. Also, data redundancy is reduced when
using the modified ALOHA algorithm [11]. This becomes
possible due to the use of the multiple node output procedure.

Unlike [12, 13], in the case of an increase in operational
data, the real-time mode is not violated when using the pro-
posed method. Unlike [14, 15], our method assumes the pres-
ence of clusters of IoT devices, which is typical for MHIoT
systems. Unlike [16, 17], the proposed method can be used
with a high-density location of IoT devices. Also, unlike [18],
in places where IoT devices are concentrated, information
redundancy is significantly reduced. This becomes possible
due to the reduction of delays in the transmission of opera-
tional information.

Unlike [19], in which a model of the Internet of Things
system with a large number of devices is proposed, our method
has made it possible to reduce the average data transmission
delay. This becomes possible due to the consideration of the
specific features of monitoring systems based on the mobile
high-density Internet of Things. Unlike [20], the proposed
method allows the use of low-power devices of the mobile
high-density Internet of Things. This becomes possible due
to the acceleration of the information flow to the base station.

Thus, our results have made it possible to improve the
efficiency of data transmission from MHIoT devices through
the monitoring system gateway. Depending on the density of
MHIoT devices, the efficiency of data transmission increased
from 10 to 50%.

But it is worth noting that the proposed results should
be applied only at a high density of IoT devices (K > 300).



In addition, a significant limitation of the study is the re-
striction on the sequential passage of messages through the
monitoring system gateway.

As a drawback of this study, it is necessary to note the
lack of analysis of possible correlation between individual
monitoring system gateways. To eliminate this drawback, it is
necessary to conduct additional research on the possibility of
interaction of neighboring gateways in order to reduce data
transmission delay.

As a development of this study, the following can be noted.

First, it is necessary to conduct a separate study to reduce
delays in monitoring systems that use intelligent gateways
to receive information from MHIoT sensors. Secondly, it is
necessary to consider the possibility of load balancing of mon-
itoring system gateways.

7. Conclusions

1. A model of a monitoring system that will receive data
from mobile high-density Internet of Things devices with
multiple node outputs has been built. The model is based on
a dynamic change in the set of active MHIoT devices. During
the current window, the set is replenished with new activated
elements. When the window is closed, all MHIoT devices that
depend on the transmitted data are removed from the set.
The main difference of this model is the reduction of data
redundancy entering the monitoring system gateway. To this
end, a procedure for forming a temporary subset of devices
that depend on the data entering the currently open gateway
window was used. This model allowed for an estimate of the
average data transmission delay.

2. An approach to finding the average data transmission
delay with an unlimited number of active MHIoOT devices
has been proposed. In particular, algorithms are suggested
for obtaining upper and lower estimates of the average data
transmission delay. A feature of this approach is a significant
simplification of calculations by switching to a one-dimen-
sional Markov chain. The use of a uniform distribution of ac-
tive subscribers allowed us to find an analytical expression for
the upper limit of the average delay. To find the lower limit,
a fixed division of the reception area of the gateway transmit-
ting station into equal sectors was proposed. This approach
was used in the development of a multiple node output algo-
rithm with a limited number of subscribers.

3. A multiple node output algorithm has been developed,
focused on reducing the average data transmission delay with
a limited number of subscribers. The main difference of this
algorithm is the limitation of the number of transitions when
forming a stationary Markov chain distribution. That has
made it possible to determine the optimal indicator of the for-
mation of dependent subsets relative to the minimum of the
average data transmission delay. Taking into account the char-
acteristic features of MHIoT has made it possible to improve
the efficiency of data transmission by reducing the average
delay. The results of the study have made it possible to com-
pare the efficiency of the standard and proposed methods by
the criterion of data transmission efficiency. At a low density
of MHIoT devices (K < 100), the proposed method has no ad-
vantages over standard ones, therefore its use is inexpedient.
At a high density of MHIoT devices (K > 300), the use of the
proposed method allows one to improve the efficiency of data
transmission from 5 to 50%. It has been also proven that the
maximum efficiency of the proposed method is achieved at
the highest values of the density of MHIoT devices, K ~ 1000.
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