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The object of this research is the BISINDO alpha-
bet gestures which are static hand movements used by
the Deaf community in Indonesia to communicate, with
each letter having a unique hand pattern influenced by
culture and regional variations. The problem solved is
the accuracy and performance of BISINDO hand gesture
classification which is less than optimal due to complex
gesture variations and computational limitations on
lightweight devices.

This study examines the performance of BISINDO
alphabet gesture classification using deep learning mod-
els with 4 architectures: VGG-19, ResNet-50, MobileNetV2,
and Inception-V3. This object is a collection of images used
as a dataset consisting of 10,400 images (7,280 training,
2,080 validation, and 1,040 testing). The results show that
the MobileNetV2 and VGG-19 architectures achieve the
highest accuracy of 100%, followed by Inception-V3 (99%)
and ResNet-50 (98%). The results of this study indicate
that the superior performance of MobileNetV2 is due to
its efficient depthwise separable convolutional architec-
ture, while the superiority of VGG-19 lies in its very deep
architecture and the use of small convolutional filters
to capture very detailed hierarchical features of gestures.
Meanwhile, Inception-V3 excels thanks to the inception
module that captures gesture features at various scales.
The results of this performance comparison, MobileNetV2
is the most superior because of its computational effi-
ciency that supports high performance, as well as adapta-
tion to complex variations in BISINDO alphabet gestures.
The results of this study can also be applied in the fields
of education and communication for the deaf community,
especially in embedded applications, thus enabling real-
time sign language accessibility
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1. Introduction

Sign language is the primary means of communication
for the deaf community, enabling them to interact effectively
in a variety of social and educational contexts [1]. In Indone-
sia, BISINDO (Indonesian Sign Language) is a widely used
sign language system characterized by unique gestures that
reflect cultural and regional nuances [2]. Despite its impor-
tant role, a communication gap between the deaf community
and the general public still exists due to limited understand-
ing of sign language and the lack of easily accessible assistive
technology [3].

Recent advances in computer vision and deep learning
have shown the potential to bridge this gap through automatic
recognition of sign language gestures, facilitating real-time
translation and increasing accessibility [4]. However, the
application of these technologies to BISINDO remains un-
der-explored, especially in terms of achieving high accuracy
and computational efficiency on resource-constrained de-
vices, which are often the primary means of communication
in developing regions such as Indonesia.
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Further relevant issues currently include the low accuracy
of BISINDO gesture classification, computational limitations
on lightweight devices, the lack of comprehensive datasets,
and the communication gap for the deaf community. The
limitations of previous studies include the use of inefficient
models, lack of comprehensive model comparison, limited
datasets, a lack of focus on BISINDO, and model generaliza-
tion issues. This research idea is relevant because it directly
addresses these issues by comparing deep learning models to
find accurate, efficient, and applicable solutions in the context
of BISINDO alphabet classification.

The model comparison consists of four leading deep
learning (CNN) models: VGG-19, ResNet-50, MobileNetV2,
and Inception-V3. These four classification models will later
be viewed in terms of accuracy and loss performance from
both the training, validation, and testing sets as well as time
efficiency in processing them [5]. It should be noted that the
four models used in this study do not have the same number of
convolutional layers [6]. Therefore, each model gives different
results in terms of its performance. Each model follows its own
training architecture. To obtain the best accuracy. Initially, the




model is trained with a number of combinations of convolu-
tional layers, density layers, dropouts, and other optimizers
that evaluate each model after each iteration; then, the com-
plexity is increased to obtain the best model performance [7].

Therefore, the scientific relevance of this topic lies in its
contribution to the field of computer vision, the development
of inclusive technologies, addressing local challenges such as
BISINDO, and supporting the global agenda on accessibility,
making it an important issue and worthy of continued re-
search. The findings of these studies are expected to provide
valuable insights into the most optimal model for BISINDO
gesture classification and can be applied to the creation of
a BISINDO gesture translation system to text or speech direct-
ly, which can im'prove social inclusion by facilitating com-
munication between the Deaf community and the general
public, for example in everyday interactions, public services,
or education.

2. Literature review and problem statement

In paper [4] stated that the CNN model can detect video
datasets and can even detect in real time, which is done on
a smartphone device with the Android operating system.
Regarding performance in recognition, real-time testing
managed to achieve its best accuracy of 88.46%. Not only
that, the model can also recognize images quickly, with an
average detection duration of 24 milliseconds in real-time
testing. The weaknesses of this study are still found where
the model performance still has not achieved an accuracy
above 90%.

In the sign language prediction study [2], it was used the
CNN+LSTM method and focused on filtering, layers, and BIS-
INDO objects. Based on the training, validation, and testing
models, CNN+LSTM is the optimal model for this item. With
this model, the accuracy reaches 90%, loss 19%, and testing
80%. In this study, the weakness is that the testing is not as
optimal as for training, which only gets 80% accuracy.

This study [3] introduces a new model that utilizes ex-
tracted key points to recognize gesture words in BISINDO.
The use of MediaPipe to extract body posture and hand
gesture data from videos is a significant step forward. Experi-
mental results demonstrate the effectiveness of the proposed
LSTM model with an impressive testing accuracy of 92.857%
on validation data and only one error in gesture classification.
This study only uses one model, where the performance of
other models may provide better performance results.

In this study [8], the SLR conducted aims to provide in-
formation on how to develop an image classification model
in BISINDO recognition. CNN, LSTM, and CNN-LSTM are
the three most widely used algorithms in image recognition.
Second, it was also found that the use of a combined CNN-
LSTM algorithm and a better dataset in terms of lighting con-
ditions, varying angles, and diverse gestures can help improve
the performance of the predictive model. This is because it
supports generalization and reduces bias in the model that
can cause inaccurate results. This study doesn’t compare the
performance of each model, but only combines CNN with
LSTM and emphasizes the prediction results based on differ-
ences in conditions or variations of the image.

This study shows [9] that CNN has a higher and more
stable accuracy rate compared to the RNN model, where the
CNN model produces an accuracy rate of 89%. While the RNN
model shows an accuracy of 88.46%. Both results indicate that

the CNN model is superior in classifying BISINDO dataset im-
ages. This study only compares the accuracy of the two CNN
and RNN algorithms. Not comparing the architecture of one
of the algorithms and the accuracy results also only reach 89%
without measuring other performance.

This study shows [10] that integrating quality evalua-
tion in a fundus image classification system achieves better
performance than without quality evaluation for almost
all CNN architectures used. DenseNet-201, without quality
evaluation, achieves an overall accuracy of 78.68%, sensi-
tivity of 88.71%, and specificity of 95.92% for DR, sensitivity
of 32.38% and specificity of 88.24 for GLC, sensitivity of
34.78% and specificity of 98.30% for AMD, and sensitivity of
86.18% and specificity of 81.48% for NR. For the same model,
with quality assessment, the overall accuracy was 85.83%,
sensitivity 89.83%, and specificity 96.69% for DR, sensitivity
36.46%, and specificity 89.58% for GLC, sensitivity 72.73%,
and specificity 100% for AMD, and sensitivity 87.93%, and
specificity 89.52% for NR. This study also compared the per-
formance of several different CNN models, but not for Citra
Bisindo but fundus images.

In this paper [11], a lightweight autoencoder classification
network based on CBAM mechanism is proposed for corn
disease identification. This article compares CBAM-Autoen-
coder, Autoencoder, MobileNet, VGG16, Inception V3, Res-
Net-50, and DenseNet201. Experimental analysis proves that
the CBAM-Autoencoder network has good performance in
corn leaf disease classification, and the average accuracy rate
reaches 99.44%. This study has compared the performance of
more than 5 CNN models and obtained the maximum average
accuracy results. But not about the Bisindo image but corn
leaf disease.

Previous studies show that an unexplored problem is pro-
viding a comparative analysis of performance on Bisindo al-
phabet gesture classification using several CNN architectures.
From previous research, this comparison of gesture classifica-
tion performance uses different deep learning algorithms, not
one algorithm with other architectures. In this regard, this un-
derlines the need to research to answer three main questions:

1. Provide a comparative analysis of the performance of
BISINDO alphabet classification using several CNN architec-
tures, including VGG-19, MobileNetV2, ResNet-50 and Incep-
tion-V3, especially in providing learning to improve and find
the best training, validation and prediction testing performance
that has never been studied before.

2. Provide a comparison of the model’s time speed in
validating and testing data to impact classification efficiency.

3. Utilize models that are supported by fine-tuning to get
the best model with the help of hyperparameter tuning from
each architecture. The parameters chosen are the number
of nodes in the final layer, the number of dropouts, and the
learning rate applied to each architecture [12], which can
provide an idea of how the best performance in classification
is produced.

3. The aim and objectives of the study

The aim of the study is to identify the best models for
BISINDO alphabet gesture classification. This will make it
possible to provides a practical and scalable technological
foundation to support the communication needs of the Deaf
community, while encouraging further innovation in assistive
technology.



To achieve this aim, the following objectives are accom-
plished:

- to classify and predict BISINDO alphabet gesture images
using four models (VGG-19, ResNet-50, MobileNetV2, and In-
ception-V3) and apply optimization techniques such as Adam
optimizer, regularization and hyperparameter tuning to prevent
overfitting;

- to measure the accuracy performance values of the four
models (VGG-19, ResNet-50, MobileNetV2, and Inception-V3)
from the testing process and compare the results of the test ac-
curacy with the confusion matrix to determine the best model;

—to analyze between accuracy and loss performance
through comparative experiments in the training and valida-
tion processes, documenting the advantages and disadvan-
tages of each model in terms of the stability of the accuracy
and loss values;

- to recommend the best model based on the overall com-
parative analysis of the performance of the BISINDO alphabet
classification using several architectures including VGG-19,
MobileNetV2, ResNet-50 and Inception-V3 in terms of model
performance during training, validation and testing, compar-
ison of time efficiency, accuracy and loss values and accuracy
and doubt of alphabet prediction on the testing dataset.

4. Materials and methods

The object of study is the BISINDO alphabet gesture (In-
donesian Sign Language), which is used to represent the let-
ters of the alphabet (A-Z). BISINDO is a natural sign language
used by the Deaf community in Indonesia, which has unique
gesture characteristics influenced by culture and regionality.
This research specifically focuses on static gestures that repre-
sent the letters of the alphabet, which are then classified using
four deep learning models: VGG-19, MobileNetV2, ResNet-50,
and Inception-V3. In addition, this study also discusses model
performance in terms of accuracy (calculated through metrics
such as accuracy, precision, recall, and F1 Score using a con-
fusion matrix), computational efficiency (time spent on vali-
dation and testing and resource requirements) [13], and the
balance between the two for practical applications on devices
with limited resources. These subjects include Deaf individ-
uals whose gestures are represented in the dataset used for
model training, validation, and testing. The Deaf community
in Indonesia, estimated to number around 2.5 million people
according to data from the Indonesian Ministry of Health in
2022, is the main focus because they are the end users who
will benefit from the BISINDO gesture recognition system.
Hand gestures produced by individuals in the community,
which vary based on factors such as personal style, age, cul-
tural background, or region of origin.

The initial hypothesis in this study focused on the
performance of deep learning models in BISINDO gesture
classification. It was hypothesized that models with modern
architectures such as Inception-V3 and ResNet-50 would
provide the highest accuracy due to advanced mechanisms
such as inception modules and residual connections that
can capture complex gesture features. It was also expected
that MobileNetV2 would be the most computationally effi-
cient with only 3.5 million parameters, suitable for mobile
devices, thanks to depthwise separable convolution. Fur-
thermore, it was hypothesized that MobileNetV2 would be
the most optimal model in balancing accuracy and efficiency
for practical applications. In contrast, VGG-19 was predicted

to be less efficient and prone to overfitting on the limited
BISINDO dataset.

It is assumed that the BISINDO alphabet gesture dataset
used in this study is representative enough to train and test
deep learning models, although it may have limitations in the
amount and variety of data. It was assumed that the BISINDO
alphabet gestures in the dataset (in the form of images or
videos) have consistent visual features (e. g., hand shape,
finger angle, hand position) that can be extracted by models
such as VGG-19, ResNet-50, MobileNetV2, and Inception-V3.
In addition, the researchers also assume that the data aug-
mentation techniques (such as rotation or lighting changes)
or data preprocessing can compensate for the limited varia-
tions in the dataset, so that the model can learn the gesture
features well.

It is assumed that the four selected deep learning models —
VGG-19, ResNet-50, MobileNetV2, and InceptionV3 can effec-
tively capture the BISINDO gesture features because of their
architectures that have been proven in the task of alphabet
gesture image recognition. It was assumed that modern archi-
tectures such as inception modules (Inception-V3) and resid-
ual connections (ResNet-50) will be superior in handling ges-
ture complexity compared to simpler models such as VGG-19,
while MobileNetV2 will be efficient due to depthwise sep-
arable convolution. It was also assumed that optimization
techniques such as Adam optimizer, dropout (range 0.3 to 0.7),
and L2 regularization (coefficient 0.001) can prevent overfit-
ting [14], even on the limited BISINDO dataset.

It is assumed that the model trained on the BISINDO dataset
can generalize well to unseen data (validation and testing data),
especially after applying regularization techniques and hyperpa-
rameter tuning (e. g., learning rate 0.00001 to 0.001). It was also
assumed that evaluation metrics such as accuracy, precision,
recall, and F1 Score calculated through the confusion matrix
will provide an accurate picture of the model’s performance,
even though testing may be done under controlled conditions
(e. g., uniform lighting or simple background).

It is assumed that BISINDO alphabet gesture recognition
using deep learning models will have a significant social
impact on the Deaf community in Indonesia, which is esti-
mated to number 2.5 million people (Ministry of Health of
the Republic of Indonesia, 2022) [15]. It was assumed that
this system could be applied in practical applications such as
real-time translation or learning aids, which would support
social inclusion and more effective communication for the
Deaf community, although this research only focused on static
alphabet gestures.

It is assumed that the images used in this study were ac-
quired using the same technique and equipment, which may
not account for variations in imaging protocols.

In this study, several stages will be carried out, as seen
in Fig. 1. The topic of this study Performance Comparison of
VGG-19, ResNet-50, MobileNetv2, And Inception-V3 in the
context of Bisindo alphabet gesture classification next, there
are several steps taken as follows:

A. Data augmentation.

In the augmentation, it is possible to utilize 10,400 images
of Bisindo alphabet gestures. These were split into 7280 for
training, 2080 for experimental validation, and 1040 for test-
ing (70:20:10). During this stage, let’s configure normalization,
image channels, image target sizes, batch sizes, validation
sizes, as well as regularization and early stopping tech-
niques [16]. The data was then applied for training, validation,
and testing, as illustrated in Fig. 2.
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Fig. 1. Proposed methodology

train_datagen = ImageDataGenerator(

rescale = 1./255, #scalling

rotation_range = 15, #image rotation 15 degrees
width_shift range = 0.2, #width shifi 20% of image width
height shift range = 0.2, # height shift 20% of image height
horizontal flip = True # rotate image horizontally

valid_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)

#Data Training

train_generator = train_datagen.flow_from_directory(
train_directory,

target_size=(224,224), #Image input standards for All Architectures
batch size =32,

class_ mode = "categorical"

)
valid_generator = valid_datagen.flow_from_directory(
valid_directory,

target size=(224,224),#Image input standards for All Architectures
batch_size =32,

class_mode = "categorical"

)
test_generator = test_datagen.flow_from_directory(
test_directory,

target_size=(224,224), #Image input standards for All Architectures
batch_size =32,

class_mode = "categorical",

shuffle=False

)

Execution Result:

Found 7280 images belonging to 26 classes(Training).
Found 2080 images belonging to 26 classes(Validation).
Found 1040 images belonging to 26 classes(Testing).

Fig. 2. Train, validation, and test code

B. Training model.

The images are labeled into 26 classes based on the alpha-
bet A to Z. The dataset is then trained on 4 different architec-
tures (VGG-19, MobileNetV2, ResNet-50 and Inception-V3).
Then each architecture is fine-tuned and adjusts the final
layer based on the dataset (output layer 26). To get the best
model, hyperparameter tuning is performed on each archi-
tecture. The parameters selected for tuning are the number
of nodes in the final layer, the number of dropouts, and the
learning rate applied to each architecture [17].

Letter A Letter B Letter C Letter D Letter E
Ya et B Hl»
Letter F Letter G Letter H Letter I Letter J

R b R
Letter K Letter L Letter M Letter N Letter O
A L il d
Letter P Letter Q Letter R Letter S Letter T
Letter U Letter V Letter W Letter X Letter Y
Letter Z

Fig. 3. Alphabet gesture images for 26 classes, A to Z

C.CNN.

CNN is a type of multi-layer artificial neural network. As
shown in Fig. 4, CNN consists of four convolutional layers
and, among other reduction layers, these layers are set alter-
nately, and finally, a total connection layer is added, similar to
a multi-layer perceptron network [18]. In the following, each
layer is discussed.

D. Convolution layers.

The convolutional layer is the core of CNN; the size of the
area mapped to the input image on the feature map of each
level of the convolutional neural network is called the recep-
tive field [19]. A larger receptive field can see a larger range of
images, and more global and higher semantic level feature in-
formation can be extracted. On the contrary, a small receptive
field can extract local features and details [20]. The features
of the convolutional layer have hierarchical characteristics.
Different convolutional layers have different semantic levels.
Shallow convolutional layers respond to corner edges, and
high-level convolutional layers respond more strongly to se-
mantically similar regions [11].

E. Hyperparameter tuning.

Hyperparameter tuning: Hyperparameters-such as batch
size, learning rate, number of epochs, dropout, and learning
rate decay-are set. These hyperparameters play a critical role
in the training process and must be carefully selected through
experimentation and validation [7].
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Fig. 4. The architecture of convolution neural networks

F. Model evaluation.

Model evaluation; Each model uses metrics such as accu-
racy, precision, recall, F1 score, receiver operating characteris-
tic curve, and confusion matrix analysis. These metrics provide
a comprehensive understanding of the model’s performance,
such as correctly classifying instances, handling imbalanced
classes, and distinguishing between classes [7, 21].

G. Activation function.

An activation function (AF) is a function that returns the
output generated by a neuron given an input. Each layer that
makes up a neural network has an AF that allows prediction.
AFs are divided into two types: linear and nonlinear. Linear
functions allow the input data to be the same as the output
data, and are also applied when linear regression is needed
as the output. Meanwhile, nonlinear functions are applied
when it is necessary to classify or when there is a categorical
output [19]. Activation functions (e. g., ReLU) are applied to
feature maps after convolution to add nonlinearity, helping
the model capture complex patterns such as hand shapes in
BISINDO gestures [22].

H. Pooling layer.

This layer is applied between two convolutional layers, as
input, this layer receives the feature maps formed at the out-
put of the convolutional layer; its main function is to reduce
the image size while preserving the most resolving features.
Finally, in the output of each Pooling layer, the same number
of features are obtained as in the output, but significantly
compressed. The most common pooling techniques used with
different models are maximum pooling and average pooling.
In addition, maximum pooling is used to create feature maps
with reduced sampling. Average pooling is used to calculate
the average value of the filter size. The application of these
two pooling techniques provides the ability to learn invariant
features and also acts as a regularizer to reduce the problem of
overfitting. In addition, these techniques significantly reduce
the computational cost and training time of the network,
which are important criteria to consider [9].

I. Optimizer.

An optimizer is an algorithm or method used to update
model parameters (such as weights and biases in a neural
network) during training to minimize a loss function. The
loss function measures how far the model’s predictions are
from the actual target, and the optimizer’s job is to find the
parameter values that produce the smallest loss. Adam (adap-
tive moment estimation) Optimizer functions to combine mo-
mentum and RMSProp by tracking the exponential average of
the gradient (first momentum) and the square of the gradient
(second momentum) [8].

J. Dropout.

Dropout is a regularization technique that randomly
disables neurons during training to prevent overfitting and
improve model generalization. In BISINDO’s gesture recog-
nition, dropout helps models like ResNet-50 or InceptionV3
learn robust gesture features, ensuring high accuracy on test
data even though the dataset is limited. Dropout works with
other components (convolution, fully connected layer, Adam
optimizer) to produce a reliable model, as evaluated through
the classification report and confusion matrix [23].

K. Fully connected layer.

The fully connected layer is a layer that combines features
from previous layers to produce final predictions through
linear and non-linear transformations. In BISINDO’s gesture
recognition, this layer converts visual features into alphabeti-
cal probabilities, playing a central role in model accuracy [9].
The design influences the trade-off between accuracy and
efficiency, as evaluated in the comparison of VGG-19, Res-
Net-50, MobileNetV2, and InceptionV3. The fully connected
layer relies on feature quality from convolution, pooling, and
optimization by Adam for optimal performance [24].

L. Model architecture.

1.VGG19: the VGG19 model is similar to VGG16; both fol-
low the same logic, with the difference that VGG19 has more
layers, namely 19 layers, but the goal of both models is the
same, namely to filter images by only storing discriminative
information. The VGG19 model has five blocks, as shown
in Fig. 5. The first two blocks contain two convolutional lay-
ers with filter sizes of 64 and 128; the middle block contains
four convolutional layers with a filter size of 256, and the last
two blocks contain two convolutional layers with a filter size
of 512 each [7, 19].

2. MobileNetV2: MobileNetV2 is a mobile-embedded vision
convolutional neural network. MobileNetV2 reduces compu-
tational cost and maintains accuracy using depth-separable
convolution after 3 x 3 convolution. Depthwise separable con-
volutions use one filter per input channel and 1x1 pointwise
convolutions to construct new features from the output [25].
This network-wide technique efficiently processes high-di-
mensional inputs. Point convolution expands the number of
channels, depth convolution, and point convolution projects
features back to lower dimensions in each block of inverted
residuals with linear constraints [26]. A global average pooling
layer reduces the spatial dimension to 1 x 1, a fully connected
layer, and a softmax classification output completes the net-
work. The economical architecture with minimal latency and
high precision is suitable for resource-constrained systems [21].
The mobilnetv2 architecture model can be seen in Fig. 6.



3. ResNet50: Fig. 7 shows ResNet-50, a deep convolutional
neural network that trains a deep network via residual learn-
ing. To reduce a 224 X 224 X 3 input image to 112X 112, 7 X 7
convolutional layers (Convl) with 64 filters are used [27]. The
architecture consists of four main phases (Layerl-Layer4)
with several remaining blocks [28]. These blocks simplify
gradient backpropagation by bypassing convolutional layers
with shortcut connections. Addressing the vanishing gradient
problem allows deeper network training. Each layer deepens
and shrinks the network. Layerl has 64 filters, Layer2 128,
Layer3 256, and Layer4 512, reducing the spatial dimensions

224 x 224 x 64

112 x 112 x 128

56 x 56 x 256

to 7 x 7[23]. The feature map is flattened into a 512-dimen-
sional vector and classified using fully connected layers
(Dense) and softmax after the last convolutional layer. With its
processing depth and efficiency, ResNet-50 is a popular image
categorization system [21].

4. InceptionV3: Fig. 8 illustrates Inception-v3, a deep
image classification convolutional neural network. The input
layer processes an image of size 299 X 299 X 3. The Inception
modules (A, B, and C) in each stage provide parallel convolu-
tional pipelines with 1 X 1, 3 X 3, 5 X 5 filter sizes and pooling
operations for multiscale feature extraction.

28 x 28 x 512
14 x 14 x 512

axﬁool 2x

Maxpool (2 x 2). Maxpool (2x2) Maxpool (2 x2)  Maxpool (2 x 2).

Filter = 64 Filter = 128 Filter = 256 Filter = 512 Filter = 512 Size = 4096
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Fig. 5. VGG-19 architecture
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Fig. 7. The architecture of ResNet50
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The Inception A module was repeated five times to gather
finer details [29]. Reducing the grid size maintains a robust
feature representation when down-sampling the feature map.
Four applications of Inception Module B improve the learn-
ing of abstract features. After another grid size reduction, the
Inception C Module refines the high-level features twice [30].
The architecture contains additional classifiers to train con-
vergence. Finally, global average pooling, fully connected, and
softmax classification layers are included. This setup allows
efficient and deep networks to achieve high accuracy while
managing computational complexity [31, 32].

Therefore, these four architectures will be used as models
that will be evaluated and their performance compared from
the training, validation to testing stages with the BISINDO
alphabet image and the early stopping rule will also be used in
the process according to the proposed methodology.

5. Results of the performance comparison of 4 CNN
models for BISINDO alphabet gesture classification

5.1. The workflow of each model (VGG-19, Mobile-
NetV2, ResNet50 and InceptionV3) in predicted and
classification of BISINDO alphabet gestures

The stages in the process of predicted and classification
BISINDO alphabet gestures are divided into two, namely the
data pre-processing stage which applies equally to all four
models and the data processing stage for each model. To show
the initial steps to the final steps for these four models, an
example is taken using the image of the hand gesture of the
letter "A".

The following starts from the data pre-processing stage
which applies equally to all four models with the following steps:

- image input: an image of a hand gesture for the letter "A"
in BISINDO, with an original resolution of 300 X 300 pixels,
3 RGB channels;

- resize and normalize: the image is resized to 224 X 224
pixels to fit the input architecture. The pixel values are nor-
malized using ImageNet preprocessing (reducing the RGB
mean, for example, (R: 123.68, G: 116.78, B: 103.94), resulting
in an array of size (224, 224, 3);

- augmentation: for training, images may be rotated or
re-illuminated, but for this example, it is possible to use the
original processed images;

- input format: the images are converted to tensors with
dimensions (1, 224, 224, 3) for batch size 1. After this, the data
processing stage continues with an explanation of the stages
for each architecture model.

The following explains the data processing stages with the
workings of the VGG-19 architecture from the initial stage to
the final stage:

- model initialization: VGG-19 (19 layers, 138 million para-
meters) is initialized with pre-trained weights from ImageNet.
The last fully connected layer is replaced with a 26-neuron
layer (for the alphabet A-Z) with softmax activation;

- feature extraction: The gesture image is processed through
16 convolution layers with 3 X 3 filters and 5 max pooling layers
(2% 2, stride 2). The convolution layers capture hierarchical
features (finger edges to hand shapes), resulting in a 7 X 7 X 512
feature map after the last layer (block5_conv4);

- initial convolution layer: The image is processed through
a "block1_convl" layer (3 x 3 filters, 64 filters). The filters cap-
ture basic features such as the finger edges in the "A" gesture.
Output: (224, 224, 64);

- first max pooling: The blockl_pool layer (2 x 2 filters,
stride 2) reduces the dimensionality to (112, 112, 64);

—next convolution layer: The process continues until
"block5_conv4” (the last convolution layer), resulting in
a (7,7, 512) feature map after several convolution layers and
max pooling. This feature includes complex patterns such as
the hand shape for "A";

- last max pooling: The "block5" pool layer reduces the
dimensionality to (3, 3, 512);

- flattening and classification: The feature map is flat-
tened into a 1D vector (7 X 7 X 512 = 25,088 elements), then
processed by a fully connected layer of 384 nodes with
a dropout rate of 0.3 and a learning rate of 0.000099 (0.0001).
The output layer produces probabilities for 26 classes (A-Z)
using softmax;

- fully connected layer: This vector is processed by
a fully connected layer, resulting in an output of 26 neu-
rons (A-Z);



—initial training: The model is trained with the Adam
optimizer, categorical cross-entropy loss function, dropout
(0.3 until 0.7), and L2 regularization (coefficient 0.001). Initial
accuracy is 99%;

- hyperparameter tuning: tuning is done on the learning
rate (minimum = 0.00001, maximum = 0.001), dropout rate
(minimum = 0.3, maximum = 0.7, stride 0.1), and L2 regu-
larization. A small learning rate helps stable convergence,
increasing accuracy to up to 100%;

- classification: to predict the class, the test image is
processed through the trained model. The softmax output
gives the probabilities for 26 classes (alphabet), and the class
with the highest probability (e. g., "A") is selected as the
prediction. The softmax output produces probabilities, for
example: [0.92, 0.02, 0.01, ..., 0.01] (26 elements). The highest
probability (0.92) is in class "A”, so the gesture is predicted as
the letter "A".

The working process of the MobileNetV2 architecture
from the initial stage to the final stage is explained as follows:

- Model initialization: MobileNetV2 (3.5 million parame-
ters) is initialized with ImageNet weights. The output layer is
adjusted for 26 classes with softmax activation;

- feature extraction: MobileNetV2 uses depthwise sep-
arable convolution, which consists of depthwise convolu-
tion (3 x 3 filters per channel) and pointwise convolution
(1 x 1 filter to combine channels). This architecture has an
inverted residual block with shortcut connections, resulting in
a7 X 7 X 1024 feature map before the final layer;

- initial layer: The image is processed through an initial
convolution layer (3 X 3 filters, 32 filters). Output: (112, 112, 32)
after stride 2;

—inverted residual blocks: using depthwise separable
convolution (depthwise 3 X 3 and pointwise 1 X 1). The first
block captures basic features such as the hand contour "A".
The process continues through 17 blocks, producing a feature
map of (7, 7, 1280) before the final layer;

- flattening and classification: The feature map is global
average pooled into a 1D vector (1280 elements), then pro-
cessed by a fully connected layer with an output of 26 classes
(A-Z) using softmax;

- initial training: Trained with the Adam optimizer, cate-
gorical cross-entropy loss function, dropout, and L2 regular-
ization, achieving 99% accuracy;

— hyperparameter tuning: Tuning the learning rate
(0.00001 until 0.001) and dropout rate (0.3 until 0.7) improves
the prediction probability distribution, despite high loss (19% in
validation, 58% in testing);

- classification: The test image is processed, and the
softmax output gives the probabilities for 26 classes. The
class with the highest probability is selected as the predic-
tion (e. g., "A"). Softmax output: [0.88, 0.03, 0.02, ..., 0.01].
The highest probability (0.88) is in class "A”", so it is predicted
as the letter "A”".

The following is the working process of the ResNet50
architecture from the initial stage to the final stage explained
as follows:

-model initialization: ResNet50 (50 layers, 25 million
parameters) is initialized with ImageNet weights. The output
layer is adjusted for 26 classes with softmax activation;

- feature extraction: using residual blocks with shortcut
connections, each block has 1x 1, 3x 3, and 1X 1 convo-
lutions and batch normalization. The final feature map is
7 X 7 X 2048 before global average pooling. After pooling, the
feature map becomes 1 X 1 X 2048;

—initial layers: the image is processed through initial
convolution layers (7 X 7 filters, 64 filters, stride 2) and max
pooling (3 X 3, stride 2). Output: (56, 56, 64);

- residual blocks: using residual blocks with shortcut con-
nections (1 X 1, 3 X 3, 1 X 1 convolution). The first block cap-
tures the basic features of the gesture "A". The process contin-
ues through 50 layers, resulting in a feature map of (7, 7, 2048);

- flattening and classification: the feature map is global av-
erage pooled into a 1D vector (2048 elements), then processed
by a fully connected layer with an output of 26 classes (A-Z)
using softmax;

- initial training: trained with the Adam optimizer, cate-
gorical cross-entropy loss function, dropout, and L2 regular-
ization, achieving 98% accuracys;

- hyperparameter tuning: tuning the learning rate (0.00001
until 0.001) and dropout rate (0.3 until 0.7) improves general-
ization;

- classification: the test images are processed, and the soft-
max output gives the probabilities for 26 classes. The class with
the highest probability (e. g., "A") is selected as the prediction.
Softmax output: [0.85, 0.04, 0.03, ..., 0.02]. The highest prob-
ability (0.85) is in class "A”", so it is predicted as the letter "A".

And here is the work process of the InceptionV3 archi-
tecture from the initial stage to the final stage explained as
follows:

- model initialization: InceptionV3 (24 million parame-
ters) is initialized with ImageNet weights. The output layer is
adjusted for 26 classes with softmax activation;

— feature extraction: using inception modules (1 X 1, 3 X 3,
5 X 5 convolutions in parallel) and factorized convolution. The
final feature map is 7 X 7 x 2048 before global average pooling;

— initial layer: the image is processed through an initial convo-
lution layer (3 x 3 filters, 32 filters, stride 2). Output: (111, 111, 32);

—inception modules: using inception modules (1 X 1,
3 X3, 55 convolutions in parallel). The first module cap-
tures the multiscale features of gesture "A". The process con-
tinues until the feature map is (5, 5, 2048);

- flattening and classification: the feature map is global av-
erage pooled into a 1D vector (2048 elements), then processed
by a fully connected layer with an output of 26 classes (A-Z)
using softmax;

- initial training: trained with the Adam optimizer, cate-
gorical cross-entropy loss function, dropout, and L2 regular-
ization, achieving an accuracy of up to 99%. Hyperparameter
Tuning: Tuning the learning rate (0.00001 until 0.001) and
dropout rate (0.3 until 0.7) improves accuracy and stability;

- classification: the test image is processed, and the soft-
max output gives the probabilities for 26 classes. The class with
the highest probability (e. g., "A") is selected as the prediction.
Softmax output: [0.95, 0.01, 0.01, ..., 0.01]. The highest prob-
ability (0.95) is in class "A”", so it is predicted as the letter "A".

5.2. The results of comparing the accuracy perfor-
mance of BISINDO gesture classification with confu-
sion matrix

For the testing data prediction values, all models are tested
using a confusion matrix, where predictions are synthesized
and compared to actual values [3]. For example, Fig. 9, 10
show the confusion matrix of the VGG-19 and MobileNetV2
models correctly predicting all 40 images per alphabet. Assum-
ing each class has 40 images in the test data (since total test
data = 1.040 images, and 1040 images divided into 26 Classes re-
sulting 40 images per class, this shows perfect accuracy. If each
class has 40 images, the total number of correct predictions is



a percentage of above 98%, then the average prediction result

for the alphabet gestures is stated to be correct and by the

actual alphabet classification output.
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Fig. 10. Confusion matrix of MobileNetV2
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Fig. 11. Confusion matrix of InceptionV3

Fig. 12. Confusion matrix of ResNet50
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Fig. 13. Alphabet gesture image prediction results (Prediction results are positioned above the image)

5. 3. Results of comparing accuracy and loss values
from training, validation, and testing

This section presents the results of four models that were
trained, validated, and tested using a dataset of 7,280 Bisindo
alphabet gesture images for training, 2,080 images for val-
idation, and 1,040 images for testing. The same processing
techniques, the same amount of data, the same number of
hyperparameter partitions (learning rate and dropout) and the
use of the same optimizer are used for all four models. Per-
formance evaluation is measured by comparing the accuracy
values of training, validation, and testing with the loss values.
Time performance is also obtained, how quickly or how long
the model can process data.

Graphs are also made to evaluate the performance of
each model, along with the development of epochs for
accuracy values and missing values in the training and val-
idation processes. Fig. 14 displays the training set accuracy
performance curve for each model. It can be seen that the
MobileNetV2 model tends to be stable from 1%t epoch, the
network converges, and its performance is stable. Likewise,
with VGG-19, although its performance seems to fluctuate
slightly, it looks stable and converging from 1% epoch. In-
ception-V3 seems to converge after the 2"¢ network epoch,
and the convergence speed is slightly lower than VGG-19
and MobileNetV2. The ResNet50 model doesn’t seem to get
maximum performance and doesn’t seem to converge, but

it’s still above 80%. The rate of convergence is the slowest of
all models.

Fig. 15 shows the accuracy performance curve for each
model on the validation set. The convergence performance of
MobileNetV2, VGG19 and Inception-V3 on the validation set
is not much different, and the network convergence speed is
much higher than that of RessNet50. After 1 epoch on both
the training set and validation set, the accuracy can reach
above 99%, but on the training and validation set, Mobile-
NetV2 still looks very stable. The accuracy of the training set
and validation set of MobileNetV2, VGG19 and Inception-V3
is almost synchronous. The accuracy of the RessNet50 valida-
tion set has a level of performance that improves with increas-
ing epochs but still looks below 90%, and the convergence is
not as visible as the previous 3 models.

The graph in Fig. 16 shows the loss performance curve of
each model on the training set, and the graph in Fig. 17 shows
the loss performance curve of each model on the validation set.
Fig. 16, 17 shows that the loss performance of VGG-19, Mo-
bileNet and Inception V3 decreases synchronously on the
training set and validation set, and all look stable, which
proves that the number of iterations of the epoch network
is quite stable. However, of the 3 models, VGG-19 seems to
converge with a loss below 30% for training and success under
20% during validation. For inception V3, although the loss
performance decreases steadily, the percentage is relatively



high, namely above 60% in both the training and validation
sets. MobileNetV2 is better than Inception V3 with loss per-
formance below 60% but not as low as VGG-19 loss conver-
gence for both the training set and validation set. In contrast
to ResNet-50 for the training set, the loss percentage is still
above 50%, but on the validation set the loss value improves
to a value below 40%. However, the convergence loss perfor-
mance is unstable, so it is said that the training and validation
sets are not as good as the previous 3 models.

So, from the results of the accuracy and loss performance
on the training data and validation data based on the ex-

planation above, it can be concluded that the model with
the VGG-19 architecture shows the best stability. because
the resulting loss value is below 20%, with an accuracy of
almost 100%. MobileNetV2 is the most reliable in terms of
accuracy, but the loss value is still around and above 20%.
And the other 2 models still provide relatively high loss per-
formance even though the accuracy performance obtained is
above 90%. So, from this it is possible to understand that the
InceptionV3 and ResNet50 architectures are still vulnerable to
this BISINDO alphabet gesture prediction, especially if later
using more real test data.

Train Accuracy per Model

1.000 1
0.975 1
0.950
., 09251 —— VGG-19
E —— ResNet-50
g 09001 —— MobileNet-V2
< el fon
0875 | Inception-V3 e
I
0.850 1 /‘//
g
0.825 1 =t
-———)—_—/
0.800 +—| i i
0 2 4 ¢ ;

Epoch

Fig. 14. Training accuracy performance comparison of VGG 19, MobileNetV2, ResNet50 and InceptionV3
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Fig. 15. Validation accuracy performance comparison of VGG 19, MobileNetV2, ResNet50 and InceptionV3

T Train Loss per Model
— VGG-19
— ResNet-50
104 —— MobileNet-V2
Inception-V3
0.8 1 “““‘\_{4\
2 06 ] i e - PO W 5.
0.4
0.2 1 \
0 2 4 6 8
Epoch

Fig. 16. Training loss performance comparison of VGG 19, MobileNetV2, ResNet50 and InceptionV3
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Fig. 17. Validation loss performance comparison of VGG 19, MobileNetV2, ResNet50 and Inception-V3

5. 4. Overall performance comparison results of VGG-19,
ResNet-50, MobileNetV2 and Inception-V3 models

Table 1 shows the recapitulation results of the 4 model tests,
consisting of accuracy, recall, F1 score and precision values
based on the confusion matrix results. It is shown that there
are two models that get perfect prediction results of 100%,
namely the VGG-19 and MobileNetV2 models with overall
accuracy, recall, F1 score and precision values, which are also
both 100%. For the other two models, due to prediction errors
from 4 images in 3 alphabet classes (K, N, R) in InceptionV3,
the accuracy is 99% with the same F1 score and precision,
slightly different for recall which is 98% and prediction er-
rors from 18 images in 6 alphabet classes (K, N, R, T, U, V)
in ResNet50 make this model get the lowest accuracy, recall,
F1 score and precision performance, namely 98% even though
the value of 98% itself is considered to provide very good per-
formance results.

Table 2 shows that from the training data, the highest ac-
curacy performance was obtained by the MobileNetV2 model:
99.89%, while the lowest was by the ResNet50 model: 87.80%.
For the loss value, the VGG19 model got the lowest value,
namely 18.79%, with the highest being the InceptionV3
model, namely 65%. So, in this training data, the best perfor-
mance can be concluded to be VGG-19.

Comparison of VGG-19, MobileNetV2, ResNet50 and InceptionV3 with confusion matrix

For validation data, the highest accuracy performance is
achieved by two models, VGG-19 and MobileNetV2, which
reach a value of 100%. The lowest accuracy is achieved by
ResNet, with a slight difference of 99%. The lowest loss perfor-
mance is achieved by VGG-19, with 16.59%, and the highest
is Inception-V3, at 61%. For validation data, it is also possible
to observe the time performance, with Mobilenetv2 being the
fastest at 38 seconds and VGG-19 being the longest at 310 sec-
onds. So, it can be concluded that the best validation data per-
formance is MobileNetV2. Next, for the test data, the highest
accuracy performance of the 2 models is again VGG-19 and
MobileNetV2, which are able to reach a value of 100%, and the
lowest is ResNet50 with a slight decrease of 98%. The lowest
loss performance is VGG-19, and the highest is Inception-V3,
which reaches a value of 114%. For this test performance, it is
also possible to see from the time performance that the fastest
is on MobileNetV2, which is only 20 seconds, and the longest
is on VGG-19, reaching 157 seconds. So, it can be concluded
that the best test data performance is MobileNetV2, with the
exception of the loss value and VGG-19, with the exception of
the time value.

However, the almost perfect performance results of the four
models require further validation with external test data under
different conditions to ensure durability in the real world.

Table 1

6. Discussion of the

Comparison of VGG-19, MobileNetV2, ResNet50 and InceptionV3 for training,

validation and testing performance

Confusion matrix performance comparison

Model/Co mp Var of 4 CNN models for BISINDO
Accuracy F1 Score Recall Precision alphabet gesture classification

VGG-19 100% 100% 100% 100%
MobileNetV2 100% 100% 100% 100% Performance comparison in
ResNet50 98% 98% 98% 98% detecting BISINDO alphabet ges-
InceptionV3 99% 99% 98% 99% tures using 4 CNN models: VGG-19,
MobileNetV2, ResNet50 and In-

Table 2

ceptionV3 all use 7280 images for
training, 2080 for validation and
1040 for testing, which are divided

into 26 alphabet classes (Fig. 2). In

Training Validation Testing .
- - this case, the number of data sets
Model/Comp Var | Accu- Accu- Time Accu- Time .
Loss Loss Loss (images) that have been cleaned of
racy racy (seconds) | racy (seconds) the back d ionifi i

ackground can significan
VGG-19 99.48% | 18.79% | 100% | 16.59% 310s 100% 30% 157s . € ckgrou ¢ S1g ¢ y
- increase the level of accuracy

MobileNetV2 99.89% 26% 100% 19% 38s 100% 58% 20s . .
compared to ordinary normal im-
ResNet50 87.80% 59% 99% 23.80% 118s 98% 30% 66s ages. The BISINDO gesture image
InceptionV3 99.49% 65% 99.86% 61% 133s 99.60% | 114% 67s is pre-processed (resize 224 x 224,




normalization), then its features are extracted by VGG-19
through 16 convolution layers (3 x 3 filters) to a feature map
of 7 X 7 X 512, MobileNetV2 with depthwise separable convo-
lution up to 7 X 7 x 1280, ResNet50 using residual blocks up
to 7 X 7 X 2048, and InceptionV3 with inception modules up
to 5 X 5 x 2048. This feature map is flattened or global average
pooling, processed by a fully connected layer, and classified
with softmax to produce a probability of 26 classes. Hyperpa-
rameter tuning (learning rate 0.00001-0.001, dropout 0.3-0.7)
which functions to improve performance.

In the test results using the confusion matrix for VGG-19
in Fig. 9, result of MobileNetV2 in Fig. 10, result of ResNet50
in Fig. 11 and result of InceptionV3 in Fig. 12 it can be seen
that alphabet prediction using the VGG-19 and MobileNetV2
architecture models can produce a perfect value of 100%, fol-
lowed by InceptionV3 with 99% and ResNet50 with 98%. This
shows that the results obtained are a very good achievement
in overall performance besides considering the complexity
that occurs in predicting finger gesture images, which often
have features with various conditions.

The results of the confusion matrix are also summarized
in Table 1, which can explain that the four models show
accuracy above 98%, F1 score above 98%, precision above
98%, and recall above 98%, which shows very superior and
consistent performance in recognizing BISINDO gestures.
Specifically, accuracy above 98% indicates that almost all
gestures (98 out of 100) are correctly classified by the model,
reflecting the ability of the four models to capture complex
gesture features. Precision above 98% indicates that when
the model predicts a gesture as a particular letter (e. g., "A"),
above 98% of the predictions are correct, making it very
reliable to minimize prediction errors. Recall above 98%
indicates that the model is able to detect above 98% of all
correct gesture instances for each letter, ensuring that almost
no gestures are missed. F1 Score above 98% illustrates the
perfect balance between precision and recall, confirming
that the four models are not only accurate but also consistent
in their performance. However, with accuracy, precision,
recall and F1 score reaching 100%, making VGG-19 and
MobileNetV2 a very reliable choice for BISINDO gesture rec-
ognition. With very high metrics, VGG-19 and MobileNetV2
show that these models are able to distinguish similar ges-
tures (e. g., the letters "B" and "D" which are often confused)
with no error rate (seen in the prediction results in Fig. 13),
making them a powerful solution for future implementation
in practical applications such as real-time gesture translation
to support communication for the deaf community. This
also answers previous research [2, 4] with the model only
being able to produce performance below 90% for predicting
BISINDO alphabet gestures. And in research [3], the model
was only able to achieve an accuracy performance of 92.8%,
which in fact is still below the performance of the four mod-
els studied.

For the results of the analysis of accuracy through com-
parative experiments in the training and validation process.
Fig. 14 can discuss the training set accuracy performance
curve for each model. MobileNetV2 and VGG-19 tend to be
stable from the first epoch, the network converges, and its
performance is stable. Inception-V3 appears to converge after
the 2" epoch but when it converges it is able to stabilize with
an accuracy above 95%. The ResNet50 model does not get
maximum performance with the slowest convergence rate
of all models but still produces an accuracy level above 80%.
Fig. 15 shows the accuracy performance curve for each model

on the validation set. The convergence performance of
MobileNetV2, VGG19, and Inception-V3 is not much dif-
ferent. After the 1st epoch the accuracy can reach 99%. The
accuracy of the validation set on RessNet50 has an increased
performance level but is still seen below 95% and convergence
and stability are not seen like the other 3 models. In the end,
the results of the analysis of the accuracy values of the train-
ing and validation sets are that MobileNetV2 is very stable.
Meanwhile, the results of the loss performance analysis in
the training and validation process. Fig. 16 shows the loss
performance for the training set and Fig. 17 for the validation
set. For both sets, the loss performance of VGG-19, MobileN-
et, and Inception V3 decreased simultaneously, which proves
that the number of epoch network iterations is quite stable.
Different from that shown by ResNet50 which tends to fluc-
tuate (unstable). VGG-19 appears more convergent with a loss
below 30% for training and success below 20% during valida-
tion. Inception V3, although the loss performance decreases
steadily, the percentage is relatively high (above 60%) in both
the training and validation sets. MobileNetV2 is better than
Inception V3 with a loss performance below 60%. ResNet-50
for the training set, the loss performance is still above 50%, but
in the validation set the loss value improves to a value below
40%. So, it is concluded that for this loss performance, VGG-19
has the best performance.

For efficiency performance in Table 2, it can also be seen
that further model refinement greatly improves training
efficiency and reduces the need for computing resources.
As in the MobileNetV2 model, where the validation and test-
ing process only takes less than 40 seconds (38 seconds and
20 seconds) but the VGG-19 model still provides the same
high accuracy performance but the time required is longer
than MobileNetV2, InceptionV3 and ResNet50 (Validation:
310 seconds and testing 157 seconds). So, for efficiency per-
formance and process speed, the MobileNetV2 model is the
most superior.

From the results of this overall comparison, it can be
concluded that the best recommended model is MobilenetV2
which is slightly superior to VGG-19 due to the smaller num-
ber of parameters.

The distinction offered in this study is the high perfor-
mance produced by the MobileNetV2, VGG-19 and Inception
V3 models is influenced by the use of hyperparameter tuning,
where the configuration of the learning rate range for model
training allows the search for optimal hyperparameters by
setting a minimum learning rate value of 0.00001 and a max-
imum value of 0.001. This range was chosen to ensure stable
and efficient convergence, while handling the complexity of
the BISINDO gesture, with small values for fine tuning and
larger values for fast initial learning, which supports high
model performance. The use of the Adam optimizer also
helps to adjust the learning rate adaptively. This range gives
Adam the flexibility to adjust the learning step within safe
limits, preventing divergence (if the learning rate is too large)
or convergence too slow (if it is too small). Dropout value
setting is also required to enable optimal hyperparameter
search in the range of minimum 0.3 to maximum 0.7 with
step 0.1. This range is chosen to provide balanced regulariza-
tion, preventing overfitting on the complex BISINDO dataset.
Furthermore, support for the use of L2 regularization with
a coefficient of 0.001 to add a penalty to the model weights,
aims to prevent overfitting by keeping the weights small. The
value of 0.001 provides balanced regularization, supporting
the high performance of the model in BISINDO alphabet



gesture classification. However, the almost perfect perfor-
mance results of the four models require further validation
with external test data under different conditions to ensure
robustness in the real world.

This study has several advantages over previous similar
studies, namely: a comprehensive comparison of 4 VGG-19
architecture models, MobileNetV2, ResNet50 and Incep-
tionV3, focusing on BISINDO as a local sign language, the
best efficiency performance provided by MobileNetV2 can
be applied to practical applications, the use of modern op-
timization techniques, systematic hyperparameter tuning,
contributions to social inclusion, and detailed evaluation
metrics. These advantages make this study an important step
in the development of BISINDO gesture recognition tech-
nology, with great potential to support communication for
the Deaf community in Indonesia. This study also provides
a strong foundation for further development, such as expan-
sion into dynamic gestures or the forerunner of integration
with mobile devices.

Of course, this study is not free from limitations and
weaknesses, including several limitations in terms of data-
set, gesture coverage, computing resources, hyperparameter
tuning, and model generalization. The disadvantages include
low efficiency, limited representation of BISINDO culture,
varying accuracy, and high time and cost. To address this,
future research can focus on collecting larger datasets, using
efficient models, expanding gesture coverage, optimizing hy-
perparameters, real-world testing, and collaborating with the
Deaf community. These steps will result in a more robust and
practical BISINDO gesture classification system.

Potential developments of this study include expansion
to dynamic gestures, optimization for mobile devices, in-
creasing robustness, multimodal integration, and building
a public dataset. However, these processes will face mathemat-
ical (model complexity), methodological (dataset collection),
experimental (real-world testing), computational (complex
model), socio-cultural (collaboration with the community),
and ethical (privacy and bias) difficulties. With solutions such
as transfer learning, data augmentation, cultural collabora-
tion, and fairness techniques, these developments can result
in a more inclusive, robust, and practical BISINDO recog-
nition system to support the Deaf community in Indonesia.

7. Conclusion

1. The workflow of each model in predicting and classi-
fying BISINDO alphabet gestures (A-Z) is summarized as fol-
lows: The gesture image is processed through pre-processing
(resize 224 X 224, normalization), then its features are extracted
by VGG-19 using a layered 3 x 3 filter up to a 7 X 7 X 512 fea-
ture map, MobileNetV2 with depthwise separable convolution
up to 7 X 7 x 1280, ResNet50 through residual blocks up to
7 X 7 %X 2048, and InceptionV3 with inception modules up to
5% 5X 2048. The feature map is flattened or global average
pooling, processed by a fully connected layer, and classified
with softmax to produce 26 class probabilities. Hyperpara-
meter tuning (learning rate 0.00001-0.001, dropout 0.3-0.7)
improves accuracy, with MobileNetV2 and VGG-19 reaching
100% (accurate and efficient), Inception-V3 up to 99% and
ResNet50 reaching 98%, enabling accurate BISINDO gesture
prediction for Deaf community communication.

2. Comparing the accuracy performance of BISINDO ges-
ture classification using four deep learning models (VGG-19,

ResNet-50, MobileNetV2, and Inception-V3) to identify the
most accurate model, the confusion matrix results show that
MobileNetV2 and VGG-19 achieve the highest accuracy of
100% on the test data, followed by Inception-V3 with 99%
accuracy, and ResNet-50 with 98%. In certain scenarios, Incep-
tion-V3 even achieves 99% accuracy, precision, recall, and F1
Score, demonstrating its excellent ability in recognizing vari-
ous BISINDO gestures, mainly due to the inception modules
that capture features at various scales.

3. The accuracy and loss performance on the training
and validation data can be concluded that the model with
the VGG-19 architecture shows the best stability. because
the resulting loss value is below 20%, with an accuracy of al-
most 100%. MobileNetV2 is the most reliable in terms of accu-
racy, but its loss value is still around 20% and above. And the
other 2 models still provide relatively high loss performance
even though the accuracy performance obtained is above 90%.
So the InceptionV3 and ResNet50 architectures are still vul-
nerable to this BISINDO alphabet gesture prediction, espe-
cially when using real test data.

4. Based on the overall performance and computational
efficiency of each model, MobileNetV2 and VGG-19 are
identified as the best models with 100% accuracy and high
computational efficiency, making them ideal solutions for
practical applications. However, MobilenetV2 is slightly
superior to VGG-19 due to the smaller number of parame-
ters. Meanwhile, Inception-V3 offers very high accuracy
(up to 99%), but its computational requirements are larger,
making it more suitable for scenarios that prioritize max-
imum accuracy. In contrast, ResNet-50 is considered the
worst among the 3 models above due to its low efficiency
and tendency to overfit on the limited BISINDO dataset. In
terms of efficiency, MobileNetV2 is proven to be the most
efficient where the time required for the validation and
testing process is no more than 40 seconds, much faster
than VGG-19 (310 and 157 seconds), ResNet-50 (118 sec-
onds and 66 seconds), and Inception-V3 (133 seconds
and 67 seconds). This success is supported by the use of
optimization techniques such as Adam optimizer, dropout
(range 0.3 to 0.7), L2 regularization (coefficient 0.001), and
hyperparameter tuning (e.g. learning rate 0.00001 to 0.001),
which ensure the model is not only accurate but also able to
generalize well. Thus, this study provides a strong founda-
tion for the development of an inclusive BISINDO gesture
recognition system, with MobileNetV2 as the main choice
for real-time applications that are accessible to the Deaf
community in Indonesia.
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