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The object of this research is the BISINDO alpha-
bet gestures which are static hand movements used by 
the Deaf community in Indonesia to communicate, with 
each letter having a unique hand pattern influenced by 
culture and regional variations. The problem solved is 
the accuracy and performance of BISINDO hand gesture 
classification which is less than optimal due to complex 
gesture variations and computational limitations on 
lightweight devices.

This study examines the performance of BISINDO 
alphabet gesture classification using deep learning mod-
els with 4 architectures: VGG-19, ResNet-50, MobileNetV2, 
and Inception-V3. This object is a collection of images used 
as a dataset consisting of 10,400 images (7,280 training, 
2,080 validation, and 1,040 testing). The results show that 
the MobileNetV2 and VGG-19 architectures achieve the 
highest accuracy of 100%, followed by Inception-V3 (99%) 
and ResNet-50 (98%). The results of this study indicate 
that the superior performance of MobileNetV2 is due to 
its efficient depthwise separable convolutional architec-
ture, while the superiority of VGG-19 lies in its very deep 
architecture and the use of small convolutional filters  
to capture very detailed hierarchical features of gestures. 
Meanwhile, Inception-V3 excels thanks to the inception 
module that captures gesture features at various scales. 
The results of this performance comparison, MobileNetV2 
is the most superior because of its computational effi
ciency that supports high performance, as well as adapta-
tion to complex variations in BISINDO alphabet gestures. 
The results of this study can also be applied in the fields 
of education and communication for the deaf community, 
especially in embedded applications, thus enabling real-
time sign language accessibility
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1. Introduction

Sign language is the primary means of communication 
for the deaf community, enabling them to interact effectively 
in a variety of social and educational contexts [1]. In Indone­
sia, BISINDO (Indonesian Sign Language) is a widely used 
sign language system characterized by unique gestures that 
reflect cultural and regional nuances [2]. Despite its impor
tant role, a communication gap between the deaf community 
and the general public still exists due to limited understand­
ing of sign language and the lack of easily accessible assistive 
technology [3].

Recent advances in computer vision and deep learning 
have shown the potential to bridge this gap through automatic 
recognition of sign language gestures, facilitating real-time 
translation and increasing accessibility [4]. However, the 
application of these technologies to BISINDO remains un­
der-explored, especially in terms of achieving high accuracy 
and computational efficiency on resource-constrained de
vices, which are often the primary means of communication 
in developing regions such as Indonesia.

Further relevant issues currently include the low accuracy 
of BISINDO gesture classification, computational limitations 
on lightweight devices, the lack of comprehensive datasets, 
and the communication gap for the deaf community. The 
limitations of previous studies include the use of inefficient 
models, lack of comprehensive model comparison, limited 
datasets, a lack of focus on BISINDO, and model generaliza­
tion issues. This research idea is relevant because it directly 
addresses these issues by comparing deep learning models to 
find accurate, efficient, and applicable solutions in the context 
of BISINDO alphabet classification.

The model comparison consists of four leading deep 
learning (CNN) models: VGG-19, ResNet-50, MobileNetV2, 
and Inception-V3. These four classification models will later 
be viewed in terms of accuracy and loss performance from 
both the training, validation, and testing sets as well as time 
efficiency in processing them [5]. It should be noted that the 
four models used in this study do not have the same number of 
convolutional layers [6]. Therefore, each model gives different 
results in terms of its performance. Each model follows its own 
training architecture. To obtain the best accuracy. Initially, the 
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model is trained with a number of combinations of convolu­
tional layers, density layers, dropouts, and other optimizers 
that evaluate each model after each iteration; then, the com­
plexity is increased to obtain the best model performance [7].

Therefore, the scientific relevance of this topic lies in its 
contribution to the field of computer vision, the development 
of inclusive technologies, addressing local challenges such as 
BISINDO, and supporting the global agenda on accessibility, 
making it an important issue and worthy of continued re­
search. The findings of these studies are expected to provide 
valuable insights into the most optimal model for BISINDO 
gesture classification and can be applied to the creation of  
a BISINDO gesture translation system to text or speech direct­
ly, which can im`prove social inclusion by facilitating com­
munication between the Deaf community and the general 
public, for example in everyday interactions, public services, 
or education.

2. Literature review and problem statement

In paper [4] stated that the CNN model can detect video 
datasets and can even detect in real time, which is done on 
a smartphone device with the Android operating system. 
Regarding performance in recognition, real-time testing 
managed to achieve its best accuracy of 88.46%. Not only 
that, the model can also recognize images quickly, with an 
average detection duration of 24 milliseconds in real-time 
testing. The weaknesses of this study are still found where 
the model performance still has not achieved an accuracy 
above 90%. 

In the sign language prediction study [2], it was used the 
CNN+LSTM method and focused on filtering, layers, and BIS­
INDO objects. Based on the training, validation, and testing 
models, CNN+LSTM is the optimal model for this item. With 
this model, the accuracy reaches 90%, loss 19%, and testing 
80%. In this study, the weakness is that the testing is not as 
optimal as for training, which only gets 80% accuracy.

This study [3] introduces a new model that utilizes ex­
tracted key points to recognize gesture words in BISINDO. 
The use of MediaPipe to extract body posture and hand 
gesture data from videos is a significant step forward. Experi­
mental results demonstrate the effectiveness of the proposed 
LSTM model with an impressive testing accuracy of 92.857% 
on validation data and only one error in gesture classification. 
This study only uses one model, where the performance of 
other models may provide better performance results. 

In this study [8], the SLR conducted aims to provide in­
formation on how to develop an image classification model 
in BISINDO recognition. CNN, LSTM, and CNN-LSTM are 
the three most widely used algorithms in image recognition. 
Second, it was also found that the use of a combined CNN-
LSTM algorithm and a better dataset in terms of lighting con­
ditions, varying angles, and diverse gestures can help improve 
the performance of the predictive model. This is because it 
supports generalization and reduces bias in the model that 
can cause inaccurate results. This study doesn’t compare the 
performance of each model, but only combines CNN with 
LSTM and emphasizes the prediction results based on differ­
ences in conditions or variations of the image. 

This study shows [9] that CNN has a higher and more 
stable accuracy rate compared to the RNN model, where the 
CNN model produces an accuracy rate of 89%. While the RNN 
model shows an accuracy of 88.46%. Both results indicate that 

the CNN model is superior in classifying BISINDO dataset im­
ages. This study only compares the accuracy of the two CNN 
and RNN algorithms. Not comparing the architecture of one 
of the algorithms and the accuracy results also only reach 89% 
without measuring other performance. 

This study shows [10] that integrating quality evalua­
tion in a fundus image classification system achieves better 
performance than without quality evaluation for almost 
all CNN architectures used. DenseNet-201, without quality 
evaluation, achieves an overall accuracy of 78.68%, sensi­
tivity of 88.71%, and specificity of 95.92% for DR, sensitivity 
of 32.38% and specificity of 88.24 for GLC, sensitivity of 
34.78% and specificity of 98.30% for AMD, and sensitivity of 
86.18% and specificity of 81.48% for NR. For the same model, 
with quality assessment, the overall accuracy was 85.83%, 
sensitivity 89.83%, and specificity 96.69% for DR, sensitivity 
36.46%, and specificity 89.58% for GLC, sensitivity 72.73%, 
and specificity 100% for AMD, and sensitivity 87.93%, and 
specificity 89.52% for NR. This study also compared the per­
formance of several different CNN models, but not for Citra 
Bisindo but fundus images. 

In this paper [11], a lightweight autoencoder classification 
network based on CBAM mechanism is proposed for corn 
disease identification. This article compares CBAM-Autoen­
coder, Autoencoder, MobileNet, VGG16, Inception V3, Res­
Net-50, and DenseNet201. Experimental analysis proves that 
the CBAM-Autoencoder network has good performance in 
corn leaf disease classification, and the average accuracy rate 
reaches 99.44%. This study has compared the performance of 
more than 5 CNN models and obtained the maximum average 
accuracy results. But not about the Bisindo image but corn 
leaf disease.

Previous studies show that an unexplored problem is pro­
viding a comparative analysis of performance on Bisindo al­
phabet gesture classification using several CNN architectures. 
From previous research, this comparison of gesture classifica­
tion performance uses different deep learning algorithms, not 
one algorithm with other architectures. In this regard, this un­
derlines the need to research to answer three main questions:

1. Provide a comparative analysis of the performance of 
BISINDO alphabet classification using several CNN architec­
tures, including VGG-19, MobileNetV2, ResNet-50 and Incep­
tion-V3, especially in providing learning to improve and find 
the best training, validation and prediction testing performance 
that has never been studied before.

2. Provide a comparison of the model’s time speed in 
validating and testing data to impact classification efficiency.

3. Utilize models that are supported by fine-tuning to get 
the best model with the help of hyperparameter tuning from 
each architecture. The parameters chosen are the number 
of nodes in the final layer, the number of dropouts, and the 
learning rate applied to each architecture [12], which can 
provide an idea of how the best performance in classification 
is produced.

3. The aim and objectives of the study

The aim of the study is to identify the best models for 
BISINDO alphabet gesture classification. This will make it 
possible to provides a practical and scalable technological 
foundation to support the communication needs of the Deaf 
community, while encouraging further innovation in assistive 
technology.



Eastern-European Journal of Enterprise Technologies ISSN-L 1729-3774; E-ISSN 1729-4061	 6/2 ( 138 ) 2025

28

To achieve this aim, the following objectives are accom­
plished:

– to classify and predict BISINDO alphabet gesture images 
using four models (VGG-19, ResNet-50, MobileNetV2, and In­
ception-V3) and apply optimization techniques such as Adam 
optimizer, regularization and hyperparameter tuning to prevent 
overfitting;

– to measure the accuracy performance values of the four 
models (VGG-19, ResNet-50, MobileNetV2, and Inception-V3) 
from the testing process and compare the results of the test ac­
curacy with the confusion matrix to determine the best model;

– to analyze between accuracy and loss performance 
through comparative experiments in the training and valida­
tion processes, documenting the advantages and disadvan
tages of each model in terms of the stability of the accuracy 
and loss values;

– to recommend the best model based on the overall com­
parative analysis of the performance of the BISINDO alphabet 
classification using several architectures including VGG-19, 
MobileNetV2, ResNet-50 and Inception-V3 in terms of model 
performance during training, validation and testing, compar­
ison of time efficiency, accuracy and loss values and accuracy 
and doubt of alphabet prediction on the testing dataset. 

4. Materials and methods

The object of study is the BISINDO alphabet gesture (In­
donesian Sign Language), which is used to represent the let­
ters of the alphabet (A-Z). BISINDO is a natural sign language 
used by the Deaf community in Indonesia, which has unique 
gesture characteristics influenced by culture and regionality. 
This research specifically focuses on static gestures that repre­
sent the letters of the alphabet, which are then classified using 
four deep learning models: VGG-19, MobileNetV2, ResNet-50, 
and Inception-V3. In addition, this study also discusses model 
performance in terms of accuracy (calculated through metrics 
such as accuracy, precision, recall, and F1 Score using a con­
fusion matrix), computational efficiency (time spent on vali­
dation and testing and resource requirements) [13], and the 
balance between the two for practical applications on devices 
with limited resources. These subjects include Deaf individ­
uals whose gestures are represented in the dataset used for 
model training, validation, and testing. The Deaf community 
in Indonesia, estimated to number around 2.5 million people 
according to data from the Indonesian Ministry of Health in 
2022, is the main focus because they are the end users who 
will benefit from the BISINDO gesture recognition system. 
Hand gestures produced by individuals in the community, 
which vary based on factors such as personal style, age, cul­
tural background, or region of origin. 

The initial hypothesis in this study focused on the 
performance of deep learning models in BISINDO gesture 
classification. It was hypothesized that models with modern 
architectures such as Inception-V3 and ResNet-50 would 
provide the highest accuracy due to advanced mechanisms 
such as inception modules and residual connections that 
can capture complex gesture features. It was also expected 
that MobileNetV2 would be the most computationally effi­
cient with only 3.5 million parameters, suitable for mobile 
devices, thanks to depthwise separable convolution. Fur­
thermore, it was hypothesized that MobileNetV2 would be 
the most optimal model in balancing accuracy and efficiency 
for practical applications. In contrast, VGG-19 was predicted 

to be less efficient and prone to overfitting on the limited 
BISINDO dataset. 

It is assumed that the BISINDO alphabet gesture dataset 
used in this study is representative enough to train and test 
deep learning models, although it may have limitations in the 
amount and variety of data. It was assumed that the BISINDO 
alphabet gestures in the dataset (in the form of images or 
videos) have consistent visual features (e. g., hand shape, 
finger angle, hand position) that can be extracted by models 
such as VGG-19, ResNet-50, MobileNetV2, and Inception-V3. 
In addition, the researchers also assume that the data aug­
mentation techniques (such as rotation or lighting changes) 
or data preprocessing can compensate for the limited varia­
tions in the dataset, so that the model can learn the gesture 
features well.

It is assumed that the four selected deep learning models  – 
VGG-19, ResNet-50, MobileNetV2, and InceptionV3 can effec­
tively capture the BISINDO gesture features because of their 
architectures that have been proven in the task of alphabet 
gesture image recognition. It was assumed that modern archi­
tectures such as inception modules (Inception-V3) and resid­
ual connections (ResNet-50) will be superior in handling ges­
ture complexity compared to simpler models such as VGG-19,  
while MobileNetV2 will be efficient due to depthwise sep­
arable convolution. It was also assumed that optimization 
techniques such as Adam optimizer, dropout (range 0.3 to 0.7), 
and L2 regularization (coefficient 0.001) can prevent overfit­
ting [14], even on the limited BISINDO dataset.

It is assumed that the model trained on the BISINDO dataset 
can generalize well to unseen data (validation and testing data), 
especially after applying regularization techniques and hyperpa­
rameter tuning (e. g., learning rate 0.00001 to 0.001). It was also 
assumed that evaluation metrics such as accuracy, precision, 
recall, and F1 Score calculated through the confusion matrix 
will provide an accurate picture of the model’s performance, 
even though testing may be done under controlled conditions 
(e. g., uniform lighting or simple background).

It is assumed that BISINDO alphabet gesture recognition 
using deep learning models will have a significant social 
impact on the Deaf community in Indonesia, which is esti­
mated to number 2.5 million people (Ministry of Health of 
the Republic of Indonesia, 2022) [15]. It was assumed that 
this system could be applied in practical applications such as 
real-time translation or learning aids, which would support 
social inclusion and more effective communication for the 
Deaf community, although this research only focused on static 
alphabet gestures.

It is assumed that the images used in this study were ac­
quired using the same technique and equipment, which may 
not account for variations in imaging protocols.

In this study, several stages will be carried out, as seen 
in Fig. 1. The topic of this study Performance Comparison of 
VGG-19, ResNet-50, MobileNetv2, And Inception-V3 in the 
context of Bisindo alphabet gesture classification next, there 
are several steps taken as follows:

A. Data augmentation.
In the augmentation, it is possible to utilize 10,400 images 

of Bisindo alphabet gestures. These were split into 7280 for  
training, 2080 for experimental validation, and 1040 for test­
ing (70:20:10). During this stage, let’s configure normalization, 
image channels, image target sizes, batch sizes, validation 
sizes, as well as regularization and early stopping tech­
niques [16]. The data was then applied for training, validation, 
and testing, as illustrated in Fig. 2.
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Fig. 1. Proposed methodology

train_datagen = ImageDataGenerator( 
rescale = 1./255, #scalling 
rotation_range = 15, # image rotation 15 degrees 
width_shift_range = 0.2, # width shift 20% of image width 
height_shift_range = 0.2, # height shift 20% of image height 
horizontal_flip = True # rotate image horizontally 
) 
valid_datagen = ImageDataGenerator(rescale=1./255) 
test_datagen = ImageDataGenerator(rescale=1./255) 
#Data Training 
train_generator = train_datagen.flow_from_directory( 
train_directory, 
target_size=(224,224), # Image input standards for All Architectures 
batch_size = 32, 
class_mode = "categorical" 
) 
valid_generator = valid_datagen.flow_from_directory( 
valid_directory, 
target_size=(224,224), # Image input standards for All Architectures 
batch_size = 32, 
class_mode = "categorical" 
) 
test_generator = test_datagen.flow_from_directory( 
test_directory, 
target_size=(224,224), # Image input standards for All Architectures 
batch_size = 32, 
class_mode = "categorical", 
shuffle=False 
) 

Found 7280 images belonging to 26 classes(Training). 
Found 2080 images belonging to 26 classes(Validation). 
Found 1040 images belonging to 26 classes(Testing). 

Execution Result: 

Fig. 2. Train, validation, and test code

B. Training model.
The images are labeled into 26 classes based on the alpha­

bet A to Z. The dataset is then trained on 4 different architec­
tures (VGG-19, MobileNetV2, ResNet-50 and Inception-V3). 
Then each architecture is fine-tuned and adjusts the final 
layer based on the dataset (output layer 26). To get the best 
model, hyperparameter tuning is performed on each archi­
tecture. The parameters selected for tuning are the number 
of nodes in the final layer, the number of dropouts, and the 
learning rate applied to each architecture [17].

Letter A Letter B Letter C Letter D Letter E 

     
     

Letter F Letter G Letter H Letter I Letter J 

     
     

Letter K Letter L Letter M Letter N Letter O 

     
     

Letter P Letter Q Letter R Letter S Letter T 

     
     

Letter U Letter V Letter W Letter X Letter Y 

     
     

Letter Z     

 

    

 
 Fig. 3. Alphabet gesture images for 26 classes, A to Z

C. CNN.
CNN is a type of multi-layer artificial neural network. As 

shown in Fig. 4, CNN consists of four convolutional layers 
and, among other reduction layers, these layers are set alter­
nately, and finally, a total connection layer is added, similar to 
a multi-layer perceptron network [18]. In the following, each 
layer is discussed.

D. Convolution layers.
The convolutional layer is the core of CNN; the size of the 

area mapped to the input image on the feature map of each 
level of the convolutional neural network is called the recep­
tive field [19]. A larger receptive field can see a larger range of 
images, and more global and higher semantic level feature in­
formation can be extracted. On the contrary, a small receptive 
field can extract local features and details [20]. The features 
of the convolutional layer have hierarchical characteristics. 
Different convolutional layers have different semantic levels. 
Shallow convolutional layers respond to corner edges, and 
high-level convolutional layers respond more strongly to se­
mantically similar regions [11].

E. Hyperparameter tuning.
Hyperparameter tuning: Hyperparameters-such as batch 

size, learning rate, number of epochs, dropout, and learning 
rate decay-are set. These hyperparameters play a critical role 
in the training process and must be carefully selected through 
experimentation and validation [7].
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F. Model evaluation. 
Model evaluation; Each model uses metrics such as accu

racy, precision, recall, F1 score, receiver operating characteris­
tic curve, and confusion matrix analysis. These metrics provide 
a comprehensive understanding of the model’s performance, 
such as correctly classifying instances, handling imbalanced 
classes, and distinguishing between classes [7, 21].

G. Activation function.
An activation function (AF) is a function that returns the 

output generated by a neuron given an input. Each layer that 
makes up a neural network has an AF that allows prediction. 
AFs are divided into two types: linear and nonlinear. Linear 
functions allow the input data to be the same as the output 
data, and are also applied when linear regression is needed 
as the output. Meanwhile, nonlinear functions are applied 
when it is necessary to classify or when there is a categorical 
output [19]. Activation functions (e. g., ReLU) are applied to 
feature maps after convolution to add nonlinearity, helping 
the model capture complex patterns such as hand shapes in 
BISINDO gestures [22].

H. Pooling layer.
This layer is applied between two convolutional layers, as 

input, this layer receives the feature maps formed at the out­
put of the convolutional layer; its main function is to reduce 
the image size while preserving the most resolving features. 
Finally, in the output of each Pooling layer, the same number 
of features are obtained as in the output, but significantly 
compressed. The most common pooling techniques used with 
different models are maximum pooling and average pooling. 
In addition, maximum pooling is used to create feature maps 
with reduced sampling. Average pooling is used to calculate 
the average value of the filter size. The application of these 
two pooling techniques provides the ability to learn invariant 
features and also acts as a regularizer to reduce the problem of 
overfitting. In addition, these techniques significantly reduce 
the computational cost and training time of the network, 
which are important criteria to consider [9].

I. Optimizer.
An optimizer is an algorithm or method used to update 

model parameters (such as weights and biases in a neural 
network) during training to minimize a loss function. The 
loss function measures how far the model’s predictions are 
from the actual target, and the optimizer’s job is to find the 
parameter values that produce the smallest loss. Adam (adap-
tive moment estimation) Optimizer functions to combine mo­
mentum and RMSProp by tracking the exponential average of 
the gradient (first momentum) and the square of the gradient 
(second momentum) [8].

J. Dropout.
Dropout is a regularization technique that randomly 

disables neurons during training to prevent overfitting and 
improve model generalization. In BISINDO’s gesture recog­
nition, dropout helps models like ResNet-50 or InceptionV3 
learn robust gesture features, ensuring high accuracy on test 
data even though the dataset is limited. Dropout works with 
other components (convolution, fully connected layer, Adam 
optimizer) to produce a reliable model, as evaluated through 
the classification report and confusion matrix [23].

K. Fully connected layer.
The fully connected layer is a layer that combines features 

from previous layers to produce final predictions through 
linear and non-linear transformations. In BISINDO’s gesture 
recognition, this layer converts visual features into alphabeti­
cal probabilities, playing a central role in model accuracy [9]. 
The design influences the trade-off between accuracy and 
efficiency, as evaluated in the comparison of VGG-19, Res­
Net-50, MobileNetV2, and InceptionV3. The fully connected 
layer relies on feature quality from convolution, pooling, and 
optimization by Adam for optimal performance [24].

L. Model architecture.
1.VGG19: the VGG19 model is similar to VGG16; both fol­

low the same logic, with the difference that VGG19 has more 
layers, namely 19 layers, but the goal of both models is the 
same, namely to filter images by only storing discriminative 
information. The VGG19 model has five blocks, as shown  
in Fig. 5. The first two blocks contain two convolutional lay­
ers with filter sizes of 64 and 128; the middle block contains 
four convolutional layers with a filter size of 256, and the last 
two blocks contain two convolutional layers with a filter size  
of 512 each [7, 19].

2. MobileNetV2: MobileNetV2 is a mobile-embedded vision 
convolutional neural network. MobileNetV2 reduces compu­
tational cost and maintains accuracy using depth-separable 
convolution after 3 × 3 convolution. Depthwise separable con­
volutions use one filter per input channel and 1x1 pointwise 
convolutions to construct new features from the output [25]. 
This network-wide technique efficiently processes high-di­
mensional inputs. Point convolution expands the number of 
channels, depth convolution, and point convolution projects 
features back to lower dimensions in each block of inverted 
residuals with linear constraints [26]. A global average pooling 
layer reduces the spatial dimension to 1 × 1, a fully connected 
layer, and a softmax classification output completes the net­
work. The economical architecture with minimal latency and 
high precision is suitable for resource-constrained systems [21]. 
The mobilnetv2 architecture model can be seen in Fig. 6.

 
Fig. 4. The architecture of convolution neural networks
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3. ResNet50: Fig. 7 shows ResNet-50, a deep convolutional 
neural network that trains a deep network via residual learn­
ing. To reduce a 224 × 224 × 3 input image to 112 × 112, 7 × 7 
convolutional layers (Conv1) with 64 filters are used [27]. The 
architecture consists of four main phases (Layer1–Layer4) 
with several remaining blocks [28]. These blocks simplify 
gradient backpropagation by bypassing convolutional layers 
with shortcut connections. Addressing the vanishing gradient 
problem allows deeper network training. Each layer deepens 
and shrinks the network. Layer1 has 64 filters, Layer2 128, 
Layer3 256, and Layer4 512, reducing the spatial dimensions 

to 7 × 7 [23]. The feature map is flattened into a 512-dimen­
sional vector and classified using fully connected layers 
(Dense) and softmax after the last convolutional layer. With its 
processing depth and efficiency, ResNet-50 is a popular image 
categorization system [21].

4. InceptionV3: Fig. 8 illustrates Inception-v3, a deep 
image classification convolutional neural network. The input 
layer processes an image of size 299 × 299 × 3. The Inception 
modules (A, B, and C) in each stage provide parallel convolu­
tional pipelines with 1 × 1, 3 × 3, 5 × 5 filter sizes and pooling 
operations for multiscale feature extraction. 

Fig. 5. VGG-19 architecture
 

Fig. 6. The architecture of MobileNetV2

 

 
Fig. 7. The architecture of ResNet50
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The Inception A module was repeated five times to gather 
finer details [29]. Reducing the grid size maintains a robust 
feature representation when down-sampling the feature map. 
Four applications of Inception Module B improve the learn­
ing of abstract features. After another grid size reduction, the 
Inception C Module refines the high-level features twice [30]. 
The architecture contains additional classifiers to train con­
vergence. Finally, global average pooling, fully connected, and 
softmax classification layers are included. This setup allows 
efficient and deep networks to achieve high accuracy while 
managing computational complexity [31, 32].

Therefore, these four architectures will be used as models 
that will be evaluated and their performance compared from 
the training, validation to testing stages with the BISINDO 
alphabet image and the early stopping rule will also be used in 
the process according to the proposed methodology.

5. Results of the performance comparison of 4 CNN 
models for BISINDO alphabet gesture classification

5. 1. The workflow of each model (VGG-19, Mobile-
NetV2, ResNet50 and InceptionV3) in predicted and 
classification of BISINDO alphabet gestures

The stages in the process of predicted and classification 
BISINDO alphabet gestures are divided into two, namely the 
data pre-processing stage which applies equally to all four 
models and the data processing stage for each model. To show 
the initial steps to the final steps for these four models, an 
example is taken using the image of the hand gesture of the 
letter "A".

The following starts from the data pre-processing stage 
which applies equally to all four models with the following steps:

– image input: an image of a hand gesture for the letter "A" 
in BISINDO, with an original resolution of 300 × 300 pixels, 
3 RGB channels;

– resize and normalize: the image is resized to 224 × 224 
pixels to fit the input architecture. The pixel values are nor­
malized using ImageNet preprocessing (reducing the RGB 
mean, for example, (R: 123.68, G: 116.78, B: 103.94), resulting 
in an array of size (224, 224, 3);

– augmentation: for training, images may be rotated or 
re-illuminated, but for this example, it is possible to use the 
original processed images;

– input format: the images are converted to tensors with 
dimensions (1, 224, 224, 3) for batch size 1. After this, the data 
processing stage continues with an explanation of the stages 
for each architecture model.

The following explains the data processing stages with the 
workings of the VGG-19 architecture from the initial stage to 
the final stage:

– model initialization: VGG-19 (19 layers, 138 million para
meters) is initialized with pre-trained weights from ImageNet. 
The last fully connected layer is replaced with a 26-neuron 
layer (for the alphabet A–Z) with softmax activation;

– feature extraction: The gesture image is processed through 
16 convolution layers with 3 × 3 filters and 5 max pooling layers 
(2 × 2, stride 2). The convolution layers capture hierarchical 
features (finger edges to hand shapes), resulting in a 7 × 7 × 512 
feature map after the last layer (block5_conv4);

– initial convolution layer: The image is processed through 
a "block1_conv1" layer (3 × 3 filters, 64 filters). The filters cap­
ture basic features such as the finger edges in the "A" gesture. 
Output: (224, 224, 64);

– first max pooling: The block1_pool layer (2 × 2 filters, 
stride 2) reduces the dimensionality to (112, 112, 64);

– next convolution layer: The process continues until 
"block5_conv4" (the last convolution layer), resulting in  
a (7, 7, 512) feature map after several convolution layers and 
max pooling. This feature includes complex patterns such as 
the hand shape for "A";

– last max pooling: The "block5" pool layer reduces the 
dimensionality to (3, 3, 512);

– flattening and classification: The feature map is flat­
tened into a 1D vector (7 × 7 × 512 = 25,088 elements), then 
processed by a fully connected layer of 384 nodes with  
a dropout rate of 0.3 and a learning rate of 0.000099 (0.0001). 
The output layer produces probabilities for 26 classes (A–Z) 
using softmax;

– fully connected layer: This vector is processed by 
a fully connected layer, resulting in an output of 26 neu- 
rons (A–Z);

Fig. 8. InceptionV3 architecture
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– initial training: The model is trained with the Adam 
optimizer, categorical cross-entropy loss function, dropout 
(0.3 until 0.7), and L2 regularization (coefficient 0.001). Initial 
accuracy is 99%;

– hyperparameter tuning: tuning is done on the learning 
rate (minimum = 0.00001, maximum = 0.001), dropout rate 
(minimum = 0.3, maximum = 0.7, stride 0.1), and L2 regu­
larization. A small learning rate helps stable convergence, 
increasing accuracy to up to 100%;

– classification: to predict the class, the test image is 
processed through the trained model. The softmax output 
gives the probabilities for 26 classes (alphabet), and the class 
with the highest probability (e. g., "A") is selected as the 
prediction. The softmax output produces probabilities, for 
example: [0.92, 0.02, 0.01, ..., 0.01] (26 elements). The highest 
probability (0.92) is in class "A", so the gesture is predicted as 
the letter "A".

The working process of the MobileNetV2 architecture 
from the initial stage to the final stage is explained as follows:

– Model initialization: MobileNetV2 (3.5 million parame­
ters) is initialized with ImageNet weights. The output layer is 
adjusted for 26 classes with softmax activation;

– feature extraction: MobileNetV2 uses depthwise sep­
arable convolution, which consists of depthwise convolu­
tion (3 × 3 filters per channel) and pointwise convolution 
(1 × 1  filter to combine channels). This architecture has an 
inverted residual block with shortcut connections, resulting in 
a 7 × 7 × 1024 feature map before the final layer;

– initial layer: The image is processed through an initial 
convolution layer (3 × 3 filters, 32 filters). Output: (112, 112, 32)  
after stride 2;

– inverted residual blocks: using depthwise separable 
convolution (depthwise 3 × 3 and pointwise 1 × 1). The first 
block captures basic features such as the hand contour "A". 
The process continues through 17 blocks, producing a feature 
map of (7, 7, 1280) before the final layer;

– flattening and classification: The feature map is global 
average pooled into a 1D vector (1280 elements), then pro­
cessed by a fully connected layer with an output of 26 classes 
(A–Z) using softmax;

– initial training: Trained with the Adam optimizer, cate­
gorical cross-entropy loss function, dropout, and L2 regular­
ization, achieving 99% accuracy;

– hyperparameter tuning: Tuning the learning rate 
(0.00001 until 0.001) and dropout rate (0.3 until 0.7) improves 
the prediction probability distribution, despite high loss (19% in  
validation, 58% in testing);

– classification: The test image is processed, and the 
softmax output gives the probabilities for 26 classes. The 
class with the highest probability is selected as the predic­
tion (e. g., "A"). Softmax output: [0.88, 0.03, 0.02, ..., 0.01]. 
The highest probability (0.88) is in class "A", so it is predicted 
as the letter "A".

The following is the working process of the ResNet50 
architecture from the initial stage to the final stage explained 
as follows:

– model initialization: ResNet50 (50 layers, 25 million 
parameters) is initialized with ImageNet weights. The output 
layer is adjusted for 26 classes with softmax activation;

– feature extraction: using residual blocks with shortcut 
connections, each block has 1 × 1, 3 × 3, and 1 × 1 convo­
lutions and batch normalization. The final feature map is 
7 × 7 × 2048 before global average pooling. After pooling, the 
feature map becomes 1 × 1 × 2048;

– initial layers: the image is processed through initial 
convolution layers (7 × 7 filters, 64 filters, stride 2) and max 
pooling (3 × 3, stride 2). Output: (56, 56, 64);

– residual blocks: using residual blocks with shortcut con­
nections (1 × 1, 3 × 3, 1 × 1 convolution). The first block cap­
tures the basic features of the gesture "A". The process contin­
ues through 50 layers, resulting in a feature map of (7, 7, 2048);

– flattening and classification: the feature map is global av­
erage pooled into a 1D vector (2048 elements), then processed 
by a fully connected layer with an output of 26 classes (A–Z) 
using softmax;

– initial training: trained with the Adam optimizer, cate­
gorical cross-entropy loss function, dropout, and L2 regular­
ization, achieving 98% accuracy;

– hyperparameter tuning: tuning the learning rate (0.00001 
until 0.001) and dropout rate (0.3 until 0.7) improves general­
ization;

– classification: the test images are processed, and the soft­
max output gives the probabilities for 26 classes. The class with 
the highest probability (e. g., "A") is selected as the prediction. 
Softmax output: [0.85, 0.04, 0.03, ..., 0.02]. The highest prob­
ability (0.85) is in class "A", so it is predicted as the letter "A".

And here is the work process of the InceptionV3 archi­
tecture from the initial stage to the final stage explained as 
follows:

– model initialization: InceptionV3 (24 million parame­
ters) is initialized with ImageNet weights. The output layer is 
adjusted for 26 classes with softmax activation;

– feature extraction: using inception modules (1 × 1, 3 × 3, 
5 × 5 convolutions in parallel) and factorized convolution. The 
final feature map is 7 × 7 × 2048 before global average pooling;

– initial layer: the image is processed through an initial convo­
lution layer (3 × 3 filters, 32 filters, stride 2). Output: (111, 111, 32);

– inception modules: using inception modules (1 × 1, 
3 × 3, 5 × 5 convolutions in parallel). The first module cap­
tures the multiscale features of gesture "A". The process con­
tinues until the feature map is (5, 5, 2048);

– flattening and classification: the feature map is global av­
erage pooled into a 1D vector (2048 elements), then processed 
by a fully connected layer with an output of 26 classes (A–Z) 
using softmax;

– initial training: trained with the Adam optimizer, cate­
gorical cross-entropy loss function, dropout, and L2 regular­
ization, achieving an accuracy of up to 99%. Hyperparameter 
Tuning: Tuning the learning rate (0.00001 until 0.001) and 
dropout rate (0.3 until 0.7) improves accuracy and stability;

– classification: the test image is processed, and the soft­
max output gives the probabilities for 26 classes. The class with 
the highest probability (e. g., "A") is selected as the prediction. 
Softmax output: [0.95, 0.01, 0.01, ..., 0.01]. The highest prob­
ability (0.95) is in class "A", so it is predicted as the letter "A".

5. 2. The results of comparing the accuracy perfor-
mance of BISINDO gesture classification with confu-
sion matrix

For the testing data prediction values, all models are tested 
using a confusion matrix, where predictions are synthesized 
and compared to actual values [3]. For example, Fig. 9, 10 
show the confusion matrix of the VGG-19 and MobileNetV2 
models correctly predicting all 40 images per alphabet. Assum­
ing each class has 40 images in the test data (since total test 
data = 1.040 images, and 1040 images divided into 26 Classes re­
sulting 40 images per class, this shows perfect accuracy. If each 
class has 40 images, the total number of correct predictions is
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Fig. 11 shows that the model from the InceptionV3 ar­
chitecture gives lower confusion matrix results compared 
to VGG-19 and MobileNetV2. Where in this model there 
are 4 images from 3 exception alphabet classes that do not 
match the prediction (1040 – 4 = 1036). So, the accuracy is 
calculated below
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Furthermore, as seen in Fig. 12, it is very different from 
the three previous models. The ResNet50 model gives the 
worst confusion matrix results of the 4 models, where there 
are 18 images from 6 exception alphabet classes that do not 
match the predictions (1040 – 4 = 1036). So, the accuracy is 
calculated below
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Recall or sensitivity to measure the quality of a machine 
learning model is very important in classification tasks. Re­
call, which is responsible for calculating the percentage of 
hits, is also known as sensitivity. F1 score allows combining 
Accuracy and recall into one weighted measure. If the F1 
score is high, it means that false positives and false negatives 
are low [6]. A recapitulation of the comparison results of the 
confusion matrix test can also be seen in Table 1, where the 
column shaded in green indicates the highest value and the 
one shaded in red indicates the lowest value of the confusion 
matrix test variable from the 4 models.

 
Fig. 9. Confusion matrix of VGG19

In Fig. 13 below, let’s present the prediction results for the 
alphabet gesture image, because the results of the confusion 
matrix test state that the predictions of the 4 models have  

a percentage of above 98%, then the average prediction result 
for the alphabet gestures is stated to be correct and by the 
actual alphabet classification output.

 
Fig. 10. Confusion matrix of MobileNetV2

 
Fig. 11. Confusion matrix of InceptionV3

 
Fig. 12. Confusion matrix of ResNet50
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5. 3. Results of comparing accuracy and loss values 
from training, validation, and testing

This section presents the results of four models that were 
trained, validated, and tested using a dataset of 7,280 Bisindo 
alphabet gesture images for training, 2,080 images for val­
idation, and 1,040 images for testing. The same processing 
techniques, the same amount of data, the same number of 
hyperparameter partitions (learning rate and dropout) and the 
use of the same optimizer are used for all four models. Per­
formance evaluation is measured by comparing the accuracy 
values of training, validation, and testing with the loss values. 
Time performance is also obtained, how quickly or how long 
the model can process data.

Graphs are also made to evaluate the performance of 
each model, along with the development of epochs for 
accuracy values and missing values in the training and val­
idation processes. Fig. 14 displays the training set accuracy 
performance curve for each model. It can be seen that the 
MobileNetV2 model tends to be stable from 1st epoch, the 
network converges, and its performance is stable. Likewise, 
with VGG-19, although its performance seems to fluctuate 
slightly, it looks stable and converging from 1st epoch. In­
ception-V3 seems to converge after the 2nd network epoch, 
and the convergence speed is slightly lower than VGG-19 
and MobileNetV2. The ResNet50 model doesn’t seem to get 
maximum performance and doesn’t seem to converge, but 

it’s still above 80%. The rate of convergence is the slowest of 
all models. 

Fig. 15 shows the accuracy performance curve for each 
model on the validation set. The convergence performance of 
MobileNetV2, VGG19 and Inception-V3 on the validation set 
is not much different, and the network convergence speed is 
much higher than that of RessNet50. After 1st epoch on both 
the training set and validation set, the accuracy can reach 
above 99%, but on the training and validation set, Mobile­
NetV2 still looks very stable. The accuracy of the training set 
and validation set of MobileNetV2, VGG19 and Inception-V3 
is almost synchronous. The accuracy of the RessNet50 valida­
tion set has a level of performance that improves with increas­
ing epochs but still looks below 90%, and the convergence is 
not as visible as the previous 3 models.

The graph in Fig. 16 shows the loss performance curve of 
each model on the training set, and the graph in Fig. 17 shows 
the loss performance curve of each model on the validation set.  
Fig. 16, 17 shows that the loss performance of VGG-19, Mo­
bileNet and Inception V3 decreases synchronously on the 
training set and validation set, and all look stable, which 
proves that the number of iterations of the epoch network 
is quite stable. However, of the 3 models, VGG-19 seems to 
converge with a loss below 30% for training and success under 
20% during validation. For inception V3, although the loss 
performance decreases steadily, the percentage is relatively 

Fig. 13. Alphabet gesture image prediction results (Prediction results are positioned above the image)
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high, namely above 60% in both the training and validation 
sets. MobileNetV2 is better than Inception V3 with loss per­
formance below 60% but not as low as VGG-19 loss conver­
gence for both the training set and validation set. In contrast 
to ResNet-50 for the training set, the loss percentage is still 
above 50%, but on the validation set the loss value improves 
to a  value below 40%. However, the convergence loss perfor­
mance is unstable, so it is said that the training and validation 
sets are not as good as the previous 3 models.

So, from the results of the accuracy and loss performance 
on the training data and validation data based on the ex­

planation above, it can be concluded that the model with 
the VGG-19 architecture shows the best stability. because 
the resulting loss value is below 20%, with an accuracy of  
almost 100%. MobileNetV2 is the most reliable in terms of 
accuracy, but the loss value is still around and above 20%. 
And the other 2 models still provide relatively high loss per­
formance even though the accuracy performance obtained is 
above 90%. So, from this it is possible to understand that the 
InceptionV3 and ResNet50 architectures are still vulnerable to 
this BISINDO alphabet gesture prediction, especially if later 
using more real test data.

 
Fig. 14. Training accuracy performance comparison of VGG19, MobileNetV2, ResNet50 and InceptionV3

 
Fig. 15. Validation accuracy performance comparison of VGG19, MobileNetV2, ResNet50 and InceptionV3

 
Fig. 16. Training loss performance comparison of VGG19, MobileNetV2, ResNet50 and InceptionV3
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5. 4. Overall performance comparison results of VGG-19, 
ResNet-50, MobileNetV2 and Inception-V3 models

Table 1 shows the recapitulation results of the 4 model tests,  
consisting of accuracy, recall, F1 score and precision values 
based on the confusion matrix results. It is shown that there 
are two models that get perfect prediction results of 100%, 
namely the VGG-19 and MobileNetV2 models with overall 
accuracy, recall, F1 score and precision values, which are also 
both 100%. For the other two models, due to prediction errors 
from 4 images in 3 alphabet classes (K, N, R) in InceptionV3, 
the accuracy is 99% with the same F1 score and precision, 
slightly different for recall which is 98% and prediction er­
rors from 18 images in 6 alphabet classes (K, N, R, T, U, V) 
in ResNet50 make this model get the lowest accuracy, recall,  
F1 score and precision performance, namely 98% even though 
the value of 98% itself is considered to provide very good per­
formance results.

Table 2 shows that from the training data, the highest ac­
curacy performance was obtained by the MobileNetV2 model: 
99.89%, while the lowest was by the ResNet50 model: 87.80%. 
For the loss value, the VGG19 model got the lowest value, 
namely 18.79%, with the highest being the InceptionV3 
model, namely 65%. So, in this training data, the best perfor­
mance can be concluded to be VGG-19.

For validation data, the highest accuracy performance is 
achieved by two models, VGG-19 and MobileNetV2, which 
reach a value of 100%. The lowest accuracy is achieved by 
ResNet, with a slight difference of 99%. The lowest loss perfor­
mance is achieved by VGG-19, with 16.59%, and the highest 
is Inception-V3, at 61%. For validation data, it is also possible 
to observe the time performance, with Mobilenetv2 being the 
fastest at 38 seconds and VGG-19 being the longest at 310 sec­
onds. So, it can be concluded that the best validation data per­
formance is MobileNetV2. Next, for the test data, the highest 
accuracy performance of the 2 models is again VGG-19 and 
MobileNetV2, which are able to reach a value of 100%, and the 
lowest is ResNet50 with a slight decrease of 98%. The lowest 
loss performance is VGG-19, and the highest is Inception-V3, 
which reaches a value of 114%. For this test performance, it is 
also possible to see from the time performance that the fastest 
is on MobileNetV2, which is only 20 seconds, and the longest 
is on VGG-19, reaching 157 seconds. So, it can be concluded 
that the best test data performance is MobileNetV2, with the 
exception of the loss value and VGG-19, with the exception of 
the time value.

However, the almost perfect performance results of the four 
models require further validation with external test data under 
different conditions to ensure durability in the real world.

6. Discussion of the 
performance comparison  

of 4 CNN models for BISINDO 
alphabet gesture classification

Performance comparison in 
detecting BISINDO alphabet ges­
tures using 4 CNN models: VGG-19,  
MobileNetV2, ResNet50 and In­
ceptionV3 all use 7280 images for 
training, 2080 for validation and 
1040 for testing, which are divided 
into 26 alphabet classes (Fig. 2). In 
this case, the number of data sets 
(images) that have been cleaned of 
the background can significantly 
increase the level of accuracy 
compared to ordinary normal im­
ages. The BISINDO gesture image 
is pre-processed (resize 224 × 224, 

 
Fig. 17. Validation loss performance comparison of VGG19, MobileNetV2, ResNet50 and Inception-V3

Table 1

Comparison of VGG-19, MobileNetV2, ResNet50 and InceptionV3 with confusion matrix

Model/Co mp Var
Confusion matrix

Accuracy F1 Score Recall Precision
VGG-19 100% 100% 100% 100%

MobileNetV2 100% 100% 100% 100%
ResNet50 98% 98% 98% 98%

InceptionV3 99% 99% 98% 99%

Table 2

Comparison of VGG-19, MobileNetV2, ResNet50 and InceptionV3 for training, 	
validation and testing performance

Model/Comp Var
Training Validation Testing

Accu­
racy Loss Accu­

racy Loss Time 
(seconds)

Accu­
racy Loss Time 

(seconds)
VGG-19 99.48% 18.79% 100% 16.59% 310s 100% 30% 157s

MobileNetV2 99.89% 26% 100% 19% 38s 100% 58% 20 s
ResNet50 87.80% 59% 99% 23.80% 118s 98% 30% 66s

InceptionV3 99.49% 65% 99.86% 61% 133s 99.60% 114% 67s
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normalization), then its features are extracted by VGG-19 
through 16 convolution layers (3 × 3 filters) to a feature map 
of 7 × 7 × 512, MobileNetV2 with depthwise separable convo­
lution up to 7 × 7 × 1280, ResNet50 using residual blocks up 
to 7 × 7 × 2048, and InceptionV3 with inception modules up 
to 5 × 5 × 2048. This feature map is flattened or global average 
pooling, processed by a fully connected layer, and classified 
with softmax to produce a probability of 26 classes. Hyperpa­
rameter tuning (learning rate 0.00001–0.001, dropout 0.3–0.7) 
which functions to improve performance.

In the test results using the confusion matrix for VGG-19 
in Fig. 9, result of MobileNetV2 in Fig. 10, result of ResNet50 
in Fig. 11 and result of InceptionV3 in Fig. 12 it can be seen 
that alphabet prediction using the VGG-19 and MobileNetV2 
architecture models can produce a perfect value of 100%, fol­
lowed by InceptionV3 with 99% and ResNet50 with 98%. This 
shows that the results obtained are a very good achievement 
in overall performance besides considering the complexity 
that occurs in predicting finger gesture images, which often 
have features with various conditions.

The results of the confusion matrix are also summarized 
in Table 1, which can explain that the four models show 
accuracy above 98%, F1 score above 98%, precision above 
98%, and recall above 98%, which shows very superior and 
consistent performance in recognizing BISINDO gestures. 
Specifically, accuracy above 98% indicates that almost all 
gestures (98 out of 100) are correctly classified by the model, 
reflecting the ability of the four models to capture complex 
gesture features. Precision above 98% indicates that when 
the model predicts a gesture as a particular letter (e. g., "A"), 
above 98% of the predictions are correct, making it very 
reliable to minimize prediction errors. Recall above 98% 
indicates that the model is able to detect above 98% of all 
correct gesture instances for each letter, ensuring that almost 
no gestures are missed. F1 Score above 98% illustrates the 
perfect balance between precision and recall, confirming 
that the four models are not only accurate but also consistent 
in their performance. However, with accuracy, precision, 
recall and F1 score reaching 100%, making VGG-19 and 
MobileNetV2 a very reliable choice for BISINDO gesture rec­
ognition. With very high metrics, VGG-19 and MobileNetV2 
show that these models are able to distinguish similar ges­
tures (e. g., the letters "B" and "D" which are often confused) 
with no error rate (seen in the prediction results in Fig. 13), 
making them a powerful solution for future implementation 
in practical applications such as real-time gesture translation 
to support communication for the deaf community. This 
also answers previous research [2, 4] with the model only 
being able to produce performance below 90% for predicting 
BISINDO alphabet gestures. And in research [3], the model 
was only able to achieve an accuracy performance of 92.8%, 
which in fact is still below the performance of the four mod­
els studied.

For the results of the analysis of accuracy through com­
parative experiments in the training and validation process. 
Fig. 14 can discuss the training set accuracy performance 
curve for each model. MobileNetV2 and VGG-19 tend to be 
stable from the first epoch, the network converges, and its 
performance is stable. Inception-V3 appears to converge after 
the 2nd epoch but when it converges it is able to stabilize with 
an accuracy above 95%. The ResNet50 model does not get 
maximum performance with the slowest convergence rate 
of all models but still produces an accuracy level above 80%.  
Fig. 15 shows the accuracy performance curve for each model  

on the validation set. The convergence performance of  
MobileNetV2, VGG19, and Inception-V3 is not much dif­
ferent. After the 1st epoch the accuracy can reach 99%. The 
accuracy of the validation set on RessNet50 has an increased 
performance level but is still seen below 95% and convergence 
and stability are not seen like the other 3 models. In the end, 
the results of the analysis of the accuracy values of the train­
ing and validation sets are that MobileNetV2 is very stable. 
Meanwhile, the results of the loss performance analysis in 
the training and validation process. Fig. 16 shows the loss 
performance for the training set and Fig. 17 for the validation 
set. For both sets, the loss performance of VGG-19, MobileN­
et, and Inception V3 decreased simultaneously, which proves 
that the number of epoch network iterations is quite stable. 
Different from that shown by ResNet50 which tends to fluc­
tuate (unstable). VGG-19 appears more convergent with a loss 
below 30% for training and success below 20% during valida­
tion. Inception V3, although the loss performance decreases 
steadily, the percentage is relatively high (above 60%) in both 
the training and validation sets. MobileNetV2 is better than 
Inception V3 with a loss performance below 60%. ResNet-50 
for the training set, the loss performance is still above 50%, but 
in the validation set the loss value improves to a value below 
40%. So, it is concluded that for this loss performance, VGG-19 
has the best performance.

For efficiency performance in Table 2, it can also be seen 
that further model refinement greatly improves training 
efficiency and reduces the need for computing resources.  
As in the MobileNetV2 model, where the validation and test­
ing process only takes less than 40 seconds (38 seconds and 
20 seconds) but the VGG-19 model still provides the same 
high accuracy performance but the time required is longer 
than MobileNetV2, InceptionV3 and ResNet50 (Validation: 
310 seconds and testing 157 seconds). So, for efficiency per­
formance and process speed, the MobileNetV2 model is the 
most superior. 

From the results of this overall comparison, it can be 
concluded that the best recommended model is MobilenetV2 
which is slightly superior to VGG-19 due to the smaller num­
ber of parameters.

The distinction offered in this study is the high perfor­
mance produced by the MobileNetV2, VGG-19 and Inception 
V3 models is influenced by the use of hyperparameter tuning, 
where the configuration of the learning rate range for model 
training allows the search for optimal hyperparameters by 
setting a minimum learning rate value of 0.00001 and a max­
imum value of 0.001. This range was chosen to ensure stable 
and efficient convergence, while handling the complexity of 
the BISINDO gesture, with small values for fine tuning and 
larger values for fast initial learning, which supports high 
model performance. The use of the Adam optimizer also 
helps to adjust the learning rate adaptively. This range gives 
Adam the flexibility to adjust the learning step within safe 
limits, preventing divergence (if the learning rate is too large) 
or convergence too slow (if it is too small). Dropout value 
setting is also required to enable optimal hyperparameter 
search in the range of minimum 0.3 to maximum 0.7 with 
step 0.1. This range is chosen to provide balanced regulariza­
tion, preventing overfitting on the complex BISINDO dataset. 
Furthermore, support for the use of L2 regularization with 
a coefficient of 0.001 to add a penalty to the model weights, 
aims to prevent overfitting by keeping the weights small. The 
value of 0.001 provides balanced regularization, supporting 
the high performance of the model in BISINDO alphabet  
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gesture classification. However, the almost perfect perfor­
mance results of the four models require further validation 
with external test data under different conditions to ensure 
robustness in the real world.

This study has several advantages over previous similar 
studies, namely: a comprehensive comparison of 4 VGG-19 
architecture models, MobileNetV2, ResNet50 and Incep­
tionV3, focusing on BISINDO as a local sign language, the 
best efficiency performance provided by MobileNetV2 can 
be applied to practical applications, the use of modern op­
timization techniques, systematic hyperparameter tuning, 
contributions to social inclusion, and detailed evaluation 
metrics. These advantages make this study an important step 
in the development of BISINDO gesture recognition tech­
nology, with great potential to support communication for 
the Deaf community in Indonesia. This study also provides 
a strong foundation for further development, such as expan­
sion into dynamic gestures or the forerunner of integration 
with mobile devices.

Of course, this study is not free from limitations and 
weaknesses, including several limitations in terms of data­
set, gesture coverage, computing resources, hyperparameter 
tuning, and model generalization. The disadvantages include 
low efficiency, limited representation of BISINDO culture, 
varying accuracy, and high time and cost. To address this, 
future research can focus on collecting larger datasets, using 
efficient models, expanding gesture coverage, optimizing hy­
perparameters, real-world testing, and collaborating with the 
Deaf community. These steps will result in a more robust and 
practical BISINDO gesture classification system.

Potential developments of this study include expansion 
to dynamic gestures, optimization for mobile devices, in­
creasing robustness, multimodal integration, and building  
a public dataset. However, these processes will face mathemat­
ical (model complexity), methodological (dataset collection), 
experimental (real-world testing), computational (complex 
model), socio-cultural (collaboration with the community), 
and ethical (privacy and bias) difficulties. With solutions such 
as transfer learning, data augmentation, cultural collabora­
tion, and fairness techniques, these developments can result 
in a more inclusive, robust, and practical BISINDO recog­
nition system to support the Deaf community in Indonesia.

7. Conclusion

1. The workflow of each model in predicting and classi­
fying BISINDO alphabet gestures (A-Z) is summarized as fol­
lows: The gesture image is processed through pre-processing 
(resize 224 × 224, normalization), then its features are extracted 
by VGG-19 using a layered 3 × 3 filter up to a 7 × 7 × 512 fea­
ture map, MobileNetV2 with depthwise separable convolution 
up to 7 × 7 × 1280, ResNet50 through residual blocks up to 
7 × 7 × 2048, and InceptionV3 with inception modules up to 
5 × 5 × 2048. The feature map is flattened or global average 
pooling, processed by a fully connected layer, and classified 
with softmax to produce 26 class probabilities. Hyperpara
meter tuning (learning rate 0.00001–0.001, dropout 0.3–0.7) 
improves accuracy, with MobileNetV2 and VGG-19 reaching 
100% (accurate and efficient), Inception-V3 up to 99% and 
ResNet50 reaching 98%, enabling accurate BISINDO gesture 
prediction for Deaf community communication.

2. Comparing the accuracy performance of BISINDO ges­
ture classification using four deep learning models (VGG-19,  

ResNet-50, MobileNetV2, and Inception-V3) to identify the 
most accurate model, the confusion matrix results show that 
MobileNetV2 and VGG-19 achieve the highest accuracy of 
100% on the test data, followed by Inception-V3 with 99% 
accuracy, and ResNet-50 with 98%. In certain scenarios, Incep­
tion-V3 even achieves 99% accuracy, precision, recall, and F1 
Score, demonstrating its excellent ability in recognizing vari­
ous BISINDO gestures, mainly due to the inception modules 
that capture features at various scales.

3. The accuracy and loss performance on the training 
and validation data can be concluded that the model with 
the VGG-19 architecture shows the best stability. because 
the resulting loss value is below 20%, with an accuracy of al­
most 100%. MobileNetV2 is the most reliable in terms of accu­
racy, but its loss value is still around 20% and above. And the 
other 2 models still provide relatively high loss performance 
even though the accuracy performance obtained is above 90%.  
So the InceptionV3 and ResNet50 architectures are still vul­
nerable to this BISINDO alphabet gesture prediction, espe
cially when using real test data. 

4. Based on the overall performance and computational 
efficiency of each model, MobileNetV2 and VGG-19 are 
identified as the best models with 100% accuracy and high 
computational efficiency, making them ideal solutions for 
practical applications. However, MobilenetV2 is slightly 
superior to VGG-19 due to the smaller number of parame
ters. Meanwhile, Inception-V3 offers very high accuracy 
(up to 99%), but its computational requirements are larger, 
making it more suitable for scenarios that prioritize max­
imum accuracy. In contrast, ResNet-50 is considered the 
worst among the 3 models above due to its low efficiency 
and tendency to overfit on the limited BISINDO dataset. In 
terms of efficiency, MobileNetV2 is proven to be the most 
efficient where the time required for the validation and 
testing process is no more than 40 seconds, much faster 
than VGG-19 (310 and 157 seconds), ResNet-50 (118 sec­
onds and 66 seconds), and Inception-V3 (133 seconds 
and 67 seconds). This success is supported by the use of 
optimization techniques such as Adam optimizer, dropout 
(range 0.3 to 0.7), L2 regularization (coefficient 0.001), and 
hyperparameter tuning (e.g. learning rate 0.00001 to 0.001), 
which ensure the model is not only accurate but also able to 
generalize well. Thus, this study provides a strong founda­
tion for the development of an inclusive BISINDO gesture 
recognition system, with MobileNetV2 as the main choice 
for real-time applications that are accessible to the Deaf 
community in Indonesia.
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