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The object of this study is the processes of identifying
sources and networks of disinformation dissemination in
the cyberspace of the world. With the growing influence of
social networks on public opinion, the issue of identifying
and neutralizing propaganda messages is becoming partic-
ularly relevant. Conventional methods of combating propa-
ganda such as manual content moderation have proven to
be insufficiently effective due to the large amount of infor-
mation generated daily.

It is important to use natural language processing and
machine learning methods to analyze text, identify sources
of disinformation dissemination and inauthentic behavior
of bots. Based on the analysis of existing methods of intel-
ligent disinformation search, methods have been devised to
identify sources and ways of disinformation dissemination
in cyberspace by searching for similar text chains and ana-
lyzing the similarity of writing style.

Hybrid vector representation makes it possible to capture
surface frequency characteristics of the text and semantic fea-
tures, which has a positive effect on the quality of classification.
Cosine similarity, Jacquard, Levenstein and Word2Vec are
used to measure similarity. Clustering (DBSCAN, K-Means)
helps group fake messages. Graph analysis detects central
accounts and bot networks.

Evaluation of the model’s performance by key metrics
showed reliable results for identifying sources of disinforma-
tion distribution: accuracy - 0.82, F1.3 - 0.8, ROC-AUC - 0.86.
The identified differences in lexical patterns for the "fake”
and "true” classes confirm the model’s ability to capture the
content features of texts. The proposed method for detect-
ing disinformation distribution paths serves as the basis for
building scalable systems for monitoring the information
space and adapting to other text classification tasks
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1. Introduction

In today’s world, disinformation has become one of the
key threats to society, as information from unreliable sources
spreads rapidly via the internet and social media [1]. False or
distorted information can have serious consequences for pub-
lic opinion, politics, the economy, and security [2]. A variety of
actors, from private individuals to government agencies, can
deliberately spread disinformation with the aim of manipu-
lation or creating chaos [3]. One of the most difficult aspects
of countering disinformation is its detection and separation
from reliable facts [4]. In an environment where the volume of
information is constantly growing, automating the processes
of verifying the veracity of texts is an urgent need [5]. With
the increasing influence of social networks on public opinion,
the issue of detecting and neutralizing propaganda messages
becomes particularly relevant [6]. Propaganda influences po-
litical decisions, causes social tension, and spreads disinforma-
tion. Conventional methods of combating propaganda, such
as manual moderation of content, are not effective enough be-
cause of the large volume of information generated every day.
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Therefore, research on identifying sources and networks of
disinformation dissemination in the global cyberspace is rele-
vant and promising in the modern world of information wars
among different segments of the population. This is especially
relevant when manipulation of facts and fake news create
new realities of the living space for the average citizen of any
country. In addition, the spread of disinformation significantly
affects the economy, social effects and challenges, politics,
public sentiment, and public opinion.

2. Literature review and problem statement

Many studies investigate methods for detecting disinfor-
mation using content analysis and user behavioral characteris-
tics [1-6]. One reference is "many studies”. Combining different
approaches, such as natural language processing and social
network analysis, has been shown to increase the effectiveness
of fake news detection [7]. However, issues related to adapting
models to new disinformation tactics and ensuring scalability of
solutions remain unresolved [8]. The likely reason is objective




difficulties associated with the rapid evolution of disinformation
methods and the limited available data for training models [9].
An option to overcome these difficulties may be the development
of adaptive machine learning algorithms that can respond quick-
ly to new threats [10]. This approach has been used in some mod-
ern studies, but its implementation requires significant resources
and interdisciplinary collaboration. All this gives grounds to ar-
gue that it is advisable to conduct further research on the design
of effective and scalable fake news detection systems that can
adapt to the rapidly changing information environment.

Study [11] presents an overview of methods for detecting
fake news in social networks, including analysis of content,
social context, and distribution models. It is shown that com-
bined approaches that take into account both the content
of messages and the behavioral characteristics of users can
increase the accuracy of disinformation detection. However,
issues related to the processing of multimedia content and
taking into account cultural characteristics in different regions
remain unresolved. The likely reason is associated with the
variety of data formats and the lack of universal models for
different cultural contexts. An option to overcome these diffi-
culties may be the development of adaptive models that take
into account the specificity of a particular region or platform.
This is the approach used in [12], in which the authors built
a model adapted to detect disinformation in specific cultural
contexts. However, the model requires significant amounts
of localized data for training, which can be difficult to im-
plement. All this gives grounds to argue that it is advisable to
conduct research on the development of universal methods for
detecting disinformation that can adapt to different cultural
and linguistic contexts with minimal additional training costs.

In [13], the spread of true and false information on Twit-
ter was investigated. It was proven that fake news spreads
faster, deeper, and wider than true news. However, the issues
related to the mechanisms that contribute to such spread of
disinformation remained unresolved. The reason for this is the
objective difficulties associated with the complexity of human
behavior and psychological factors that affect the perception
and spread of news. An option to overcome the difficulties may
be the integration of psychological models into the analysis
of information spread. This approach was used in [14], which
investigated the role of cognitive biases in the perception and
spread of fake news. However, the integration of psychological
aspects into machine learning models remains a difficult task.
This gives grounds to argue that it is advisable to conduct re-
search on the development of interdisciplinary approaches that
combine data analysis and psychological theories for a deeper
understanding of the mechanisms of disinformation spread.

In study [15], methods for detecting disinformation based
on the analysis of social network graphs were proposed.
It was shown that taking into account the structural features
of the network can improve the efficiency of detecting fake
news. However, issues related to the processing of large
amounts of data and the dynamism of networks remained
unresolved. The likely reason is associated with the scalabil-
ity of social networks and rapid changes in their structure.
An option for overcoming the difficulties may be the use of
distributed computing systems and algorithms capable of
processing streaming data. This is the approach used in the
work [16], in which a scalable system for detecting disinfor-
mation in real time was designed. However, the implemen-
tation of such systems can be costly in terms of resources
and infrastructure. All this gives grounds to argue that it is
advisable to conduct a study on the optimization of disinfor-

mation detection algorithms for their effective application in
large and dynamic networks.

In [17], an approach to detecting disinformation based on
fact-checking using natural language processing methods is
reported. It is shown that automated systems can effectively
identify false statements. However, issues related to the lim-
itations of knowledge bases and the complexity of processing
unstructured information remain unresolved. This may be due
to objective difficulties associated with the ambiguity of natural
language and the lack of complete and up-to-date knowledge
bases. An option to overcome these difficulties may be the in-
tegration of multiple data sources and the use of deep learning
methods to process unstructured content. This is the approach
used in [18], which combines several models to improve the ac-
curacy of fact-checking. However, such systems can be difficult
to implement and require significant computational resources.

Papers [11-18] report the results of research on the use of
artificial intelligence (AI) to detect disinformation. It is shown
that existing tools make it possible to use Al to distinguish
between organic and coordinated content distribution, detect
automated spam distribution systems, assess the impact on the
audience of different social media user accounts, distinguish
bots from real users, etc. However, issues related to the adapta-
tion of Al to new disinformation tactics and ensuring its effec-
tiveness in a constantly changing information environment re-
main unresolved. The likely reason is associated with the rapid
evolution of disinformation methods and the limited available
data for training models. An option to overcome the difficulties
may be the development of adaptive machine learning algo-
rithms capable of quickly responding to new threats. This is the
approach used in some modern studies, but its implementation
requires significant resources and interdisciplinary coopera-
tion. All this gives reason to argue that it is advisable to conduct
further research on the development of effective and scalable
systems for detecting sources of disinformation that are able
to adapt to the rapidly changing information environment.

Work [19] reports the results of research aimed at applying
artificial intelligence to design and improve cyber-warfare tools.
In particular, the research focuses on combating disinforma-
tion, fakes, and propaganda in the Internet space, as well as
identifying sources of disinformation and inauthentic behav-
ior (bots) of coordinated groups. It is shown that the use of
natural language processing (NLP) and machine learning (ML)
methods can be effective in detecting and countering disinfor-
mation. However, issues related to contextual ambiguity and
the development of linguistic nuances remain unresolved. The
likely reason is associated with the constant evolution of lan-
guage and the adaptation of disinformation to new contexts,
which complicates the recognition of such messages. An option
to overcome the difficulties may be the integration of multi-
modal analysis, which combines text and visual elements for
a more holistic understanding of the content. This approach
was used in [20], but it requires significant computational
resources and a complex infrastructure for processing hetero-
geneous data. All this gives grounds to argue that it is advis-
able to conduct research on the development of effective and
resource-saving methods of integrating multimodal analysis
to detect and counteract disinformation in the Internet space.

In [21], various approaches to NLP and machine learning
for detecting disinformation in social networks are consid-
ered. In particular, linear regression, the k-nearest neigh-
bors method (KNN), the support vector method (SVM), long
short-term memory (LSTM), artificial neural networks, and
many others are considered. It is shown that these methods



are effective for detecting disinformation, but issues related
to scalability and real-time analysis remain unresolved. The
likely reason is associated with the large volume of data and
the speed of their updating in social networks, which makes
relevant research impractical without the appropriate infra-
structure. An option to overcome these difficulties may be
the use of distributed computing systems and optimization of
algorithms for real-time operation. This is the approach used
in [22], but it requires significant resources and complexity of
implementation. All this gives grounds to argue that it is advis-
able to conduct research on the development of more effective
and scalable methods for detecting disinformation in social
networks that can operate in real time with limited resources.

Paper [23] analyzes various types of false information spread
in modern information systems and characterizes the dangers
that the spread of inaccurate information in society entails.
It is shown that the spread of disinformation can have serious
consequences for society, but issues related to the effectiveness of
existing methods for detecting and countering disinformation re-
main unresolved. The likely reason is related to the constant evo-
lution of methods for spreading disinformation and adaptation
to new technologies, which makes relevant research impractical
without constant updating and adaptation of methods [24]. An
option for overcoming these difficulties may be the development
of adaptive disinformation detection systems that can learn
and change along with the evolution of methods for spreading
disinformation. This is the approach used in [25], but it requires
constant monitoring and updating, which can be resource-inten-
sive. All this gives reason to argue that it is advisable to conduct
research on the design of automated and self-learning disinfor-
mation detection systems that can adapt to new methods of dis-
information dissemination with minimal human intervention.

3. The aim and objectives of the study

The aim of our work is to devise an information technology
for detecting sources and networks of disinformation dissemina-
tion in cyberspace based on NLP and Machine Learning, taking
into account the similarity of the content and style of writing text
content. This will make it possible to increase the security levels
of cyberspace of societies, communities, countries, international
platforms, and other subjects of the information space in real time.

To achieve this aim, the following objectives were accom-
plished:

- to define general functional requirements for the typical
architecture of the subsystem for detecting a set of disin-
formation in the Internet space as the main part of scalable
information space monitoring systems;

- to devise a method for detecting sources and networks
of disinformation dissemination in cyberspace based on the
automation of the search for similar text chains;

- to devise a method for detecting ways of disinformation
dissemination in cyberspace based on the definition of stylis-
tically similar content;

- to validate the proposed methods for detecting sources
and paths of disinformation based on the developed software.

4. The study materials and methods

The object of our study is the processes for identifying
sources and networks of disinformation distribution in the
global cyberspace.

The principal hypothesis of the study assumes that the
use of an improved method to search for similar text chains to
identify disinformation similar in content and/or writing style
could increase the accuracy of identifying sources of disinfor-
mation and its distribution network. The accuracy result can
also be influenced by professional/expert filling of the dataset
for training the model, the choice of the training model, and
the design/implementation of effective and scalable systems
for detecting sources of disinformation that are able to adapt
to the rapidly changing information environment.

The basic assumption in the process of conducting the
study is the fact that fake news is written according to thematic
narratives using the appropriate set of keywords according
to a certain template by a group of people/bots with the ap-
propriate style. Another assumption is that the spread of fake
news requires multiple accounts that repost all news from
relevant sources at certain intervals or immediately after the
news is published in the relevant source.

The main simplification is that bots have a peculiar behav-
ior in social networks, in relation to people, in particular the pe-
riodicity and regularity of activity (publication or repost, people
are more chaotic in any activity), and they also have a template
writing style compared to people (short sentences, uniformity of
sentence structure and punctuation, limited word usage, lack of
synomization and sarcasm, non-emotional coloring of the text
or, conversely, uniform emotional coloring of the texts, for ex-
ample, only aggressive, etc.). All this significantly simplifies the
process of identifying sources/ways of spreading fakes. There-
fore, it is important to use NLP and machine learning methods
for automated analysis of text data. Before identifying sources
and networks of spreading disinformation in cyberspace, it
is necessary to first train the model to detect sets of fakes,
then form subsets of text content similar in content and/or
writing style and record the dates/place of publication. This will
subsequently make it possible to build a graph of the distribu-
tion of similar content over time and encourage to identify the
original sources/authors of the generated fake content.

A typical algorithm for detecting disinformation sets in
social networks performs automatic detection of propaganda
messages on Twitter. The attention is paid to methods of data
collection and preparation, text pre-processing, vectorization,
model training, and evaluation of its effectiveness. The basic
classical and typical processes of the disinformation set de-
tection subsystem for scalable information space monitoring
systems are as follows: Loading and preparing data from the
dataset (module 1) — Research of unique characters (mod-
ule 2) — Search for substrings (module 3) — Pre-processing of
text (module 4) — Text vectorization (module 5) — Model train-
ing (module 6) - Model effectiveness evaluation (module 7).

Module 1 "Loading and Preparing Data from a Dataset”
performs several key operations: it removes unnecessary
columns, estimates class balance, detects missing values, an-
alyzes text length and distribution, and normalizes text data.
This ensures high-quality data preparation before further
processing and training the model. If this stage is performed
incorrectly, even the most sophisticated models can demon-
strate poor results due to "dirty” or unevenly distributed input
data. Unique characters play an important role in text analy-
sis, as they can indicate text features, such as the use of special
characters, emojis, punctuation, or different alphabets. Ex-
ploring these characters helps better prepare the data for fur-
ther processing and training the model. Therefore, at the stage
of exploring unique characters (module 2), the unique charac-
ters used in the texts are first identified. Next, we analyze the



frequency distribution of characters in tweets, examine the
use of punctuation, emojis, and different alphabets, and iden-
tify possible patterns that may be characteristic of propaganda
messages. This analysis helps solve the following:

- Should rare characters be removed?

- What role does punctuation play in manipulative texts?

- Can emojis be markers of propaganda messages?

- Is mixing alphabets a suspicious factor?

The results obtained are used for further text processing
and building an effective machine learning model.

Punctuation marks play an important role in text ana-
lytics. Frequent use of exclamation marks (!), questions (?),
quotation marks (", ) or periods (.) may indicate a certain
writing style, emotionality, or manipulative nature of the text.
Emojis can be markers of the emotional coloring of the text.
It is important to assess their frequency in messages, as they
can be significant for classification. Propaganda tweets may
contain mixed alphabets (Latin, Cyrillic, Arabic script, etc.).

In text analysis of fake news and disinformation, it is often
necessary to find certain substrings in texts to identify specific
patterns, words, or symbols. For example, in the task of propa-
ganda detection, keywords, manipulative phrases or specific
symbols are searched for.

The substring search module (3) makes it possible:

- to determine the presence of certain words or phrases
in texts;

- to calculate the number of occurrences of substrings in
texts;

- to build statistics on the use of certain terms.

Substring search methods can be used for:

- detection of keywords (e.g., "fake", "conspiracy”, "be-
trayal”, etc.).

- search for specific expressions from propaganda narratives;

—analysis of the emotional coloring of the text (e.g.,
search for the words "hate", "support”, "traitor");

- detection of anomalous use of symbols (e.g., emojis or
special marks).

Example of use in the context of propaganda analy-
sis: keywords = [«elik», «MaHinyaayia», «3pada», «azeHm»,
«Opexrs»], df]"contains_keywords"| = df] "text"].apply(lambda x:
any(kmp_search(x.lower(), kw) for kw in keywords)). The
pseudocode adds a column that shows whether a tweet con-
tains at least one of the given keywords. Substring search
methods help quickly find keywords or phrases in texts. Naive
substring search is simple but slow (O(nm)). The Knuth-
Morris-Pratt (KMP) algorithm is efficient (O(n)) and makes it
possible to quickly find matches without unnecessary checks.
Substring search is used to detect manipulative phrases, spe-
cific vocabulary, and other signs of propaganda. Text prepro-
cessing is a critically important step in NLP tasks, as text data
often contains noise, unnecessary characters, different word
forms, etc. This step makes it possible to normalize the text
and improve the performance of machine learning models. In
the work, text data undergo the following preprocessing steps:

- removing special characters (removing URLS, emojis,
punctuation);

- tokenizing text (dividing text into individual words);

- changing case (converting all words to lowercase);

- removing stop words (extra words that do not carry sig-
nificant meaning);

- lemmatizing (reducing words to their basic form).

These steps reduce the dimensionality of the text space
and allow for a high-quality representation of the texts before
vectorization.

Text vectorization is the process of converting text data
into numerical vectors for further use in machine learning
models. Since algorithms work with numbers, text data must
be converted into a format that can be used for calculations.
There are several approaches to text vectorization: One-Hot
Encoding (OHE), Bag-of-Words (BoW), TF-IDF (Term Fre-
quency - Inverse Document Frequency), Word Embeddings
(Word2Vec, GloVe, FastText). After vectorizing text data into
numerical format, a machine learning model can be trained
on these features to automatically detect propaganda mes-
sages. SVM often gives the best results because it effectively
separates the data. Logistic regression works well with a large
number of features. Decision trees are well explained but
can be overtrained. The best model is chosen based on the
Fl-measure. The Fl-measure is a key metric, as it is import-
ant not to miss propaganda, but also not to generate many
false alarms. ROC-AUC shows how well the model is able
to distinguish between classes. Cross-validation helps assess
generalization ability. Error analysis makes it possible to find
weaknesses in the model (for example, the model may con-
fuse sarcasm with propaganda).

5. Results of research into the detection of sources
and networks of disinformation dissemination in
cyberspace based on machine learning methods

5.1. General functional requirements for a typical
architecture of a subsystem for detecting a set of disin-
formation in the Internet space for scalable information
space monitoring systems

Main processes of module 1 "Data loading and preparation”:
Data loading — Removing unnecessary columns — Analysis
of class distribution — Detection of missing values — Analysis
of tweet length — Estimation of statistical characteristics of
text length — Visualization of length distribution — Pre-nor-
malization of texts. The function (program) "Data loading"
works with text data from Twitter, stored in CSV format (com-
ma-separated values). This format is convenient for pro-
cessing using the pandas library. The main object of work is
a data frame, which contains columns with tweets and their
labels (whether they are propaganda). To load data, one uses
function df = pd.read_csv(data.csv), where df is a data frame
with the loaded data; data.csv is the path to the data file.

Before processing the texts, the "Remove Unnecessary
Columns” process analyzes the structure of the dataset. Some
columns, such as Unnamed: 0, id, may not contain useful
information for propaganda analysis, so they are removed:
df.drop(["Unnamed: 0","id"], axis = 1, inplace = True), where
axis =1 indicates that columns (not rows) are removed;
inplace = True means that the changes are applied directly
to df. Before training the model, it is important to assess the
class balance in the data based on the "Class Distribution
Analysis” process. Propaganda and non-propaganda tweets
should be evenly represented to avoid class imbalance, which
can affect the accuracy of the model. The proportion of each
class is determined by P(y;) = |yi|/N, where P(y;) is the proba-
bility of class i in the sample; [y;| is the number of examples
of class i; N is the total number of examples in the dataset.
If P(y,) # P(y;) and one class is significantly dominant, data
balancing should be applied, for example, through oversam-
pling (increasing the number of less represented examples)
or undersampling (decreasing the number of more repre-
sented examples).



If there are missing values (NaN) in the text column, they
should be removed or filled in through the "Missing Value
Detection” process df.dropna(subset = ["text"], inplace = True).
This ensures that the model will not work with empty texts
that do not contain useful information.

Texts can have different lengths, which affects the quality
of the model. To estimate the length distribution through the
"Tweet Length Analysis” process, a new column is added:
dfltextiengin] = dfl text].apply(len). Mathematically, the average
text length (arithmetic mean) is defined as
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where w1 is the average tweet length; N is the number of
tweets; [; is the length of the i-th tweet. If a significant part of
the data contains very short messages (for example, less than
3-5words), such tweets are removed or specially processed
because they do not have enough context for the model. The
following characteristics are also evaluated in the process "Es-
timation of statistical characteristics of text length":

- median (the value located in the center of the sorted data)
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—standard deviation, showing the variability of tweet
lengths
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where o is the standard deviation; [; is the length of the i-th
tweet; 1 is the mean value. The higher o, the more scattered
the text lengths are. To assess the nature of the length distri-
bution, the process "Visualization of length distribution” uses
a histogram. If the histogram shows a long tail on the right,
i.e., there are tweets with a very long length, they can be trun-
cated to a certain maximum threshold, for example, 280 char-
acters, which corresponds to the Twitter limit.

At the final stage "Pre-normalization of texts”, the texts are
normalized to simplify further processing:

- converting the text to lowercase (to avoid case-sensitive
words): df]"text"] = df] "text"].str.lower();

- removing extra spaces (removing double spaces, spaces at
the beginning and at the END): df"text"] = df] "text"].str.strip().

These steps help unify text data by reducing the number of
variations of the same word (for example, "Propaganda’, "pro-
paganda”,and"PROP A G AND A "result in "propaganda”).

The main processes of module 2 "Research of unique
characters”: Identification of unique characters — Frequency
of characters — Analysis of punctuation — Analysis of emoji
usage — Analysis of usage of different alphabets — Visualiza-
tion of character distribution.

Let D be the set of all text data, where each tweet is rep-
resented as a sequence of characters D = {T,T5,...,Tn}, where
T; is an individual tweet, and N is the total number of tweets.
The set of characters in the dataset is defined as

N
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where C; is the set of all characters contained in the tweet T;.
This makes it possible to detect all characters in the process of
"Determining unique characters” that occur in texts, including
Latin, Cyrillic, special characters, emojis, and other charac-
ters. To understand which characters are most often found
in texts, we calculate the frequency of occurrence of each
character in the process of "Character occurrence frequency”

N
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where f{s) is the relative frequency of the symbol s, count(s,T;) is
the number of occurrences of symbol s in the tweet T;, M is the
total number of all symbols in the dataset. This approach
makes it possible to identify the dominant symbols that are
most often used in texts. To study the use of punctuation, the
total proportion in texts was calculated in the process of "Punc-
tuation Analysis”

i > count(s,T;)
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where Spun is the set of punctuation characters (.,!17;:-),
Ppunet is the total proportion of punctuation characters in the
dataset. If P, is too large, this may indicate emotionally
charged or manipulative texts, which are more common in
propaganda.

To highlight emojis, the emoji library is used in the "Emoji
Usage Analysis” process. The proportion of texts containing at
least one emoji

Pomji :|{Ti GD:J;E\](Ti);&@H’ 7

where E(T)) is the set of emojis in tweet T. If Pepgy; is high,
emojis may be important for analyzing propaganda texts.

For the process "Analysis of the use of different alphabets”,
the distribution of characters by alphabets is applied. Let Siyin,
Seyrillic» Sarabic b€ the sets of characters of the corresponding
alphabets. Then the share of each alphabet in the dataset is
calculated
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If the texts contain a mixture of alphabets, this may be
a sign of manipulative content. In the process "Visualization
of character distribution’, a character distribution graph is
built to analyze the obtained data.

The main processes of module 3 "Substring search” are
based on a linear/optimization substring search algorithm,
for example, on the Knuth-Morris-Pratt (KMP) algorithm. Let
us have a text T of length n, i.e., T = {t;,t,,t3,....t,}, Where each
character ¢ belongs to the set of characters of some alphabet X.
Let us also have a given substring (template) P of length m:
P ={p1.p2.D3-.-.Dm}- The task of the substring search module
is to find all indices i, where substring P completely coincides
with some subsequence in T: T[i:i + m] = P. That is, it finds
all i such that t;=p1,tis1=Dpay-oslit m—1=DPm The simplest
way to find a substring is a naive algorithm that checks all
possible positions of i in text T. Its complexity in the worst



case is O(nm). This algorithm goes through all positions of i
in text T and checks whether substring P matches a part of the
text. Since the naive algorithm has complexity O(nm), it can
be improved to O(n) using the Knuth-Morris-Pratt (KMP) al-
gorithm. The main idea of KMP is to avoid unnecessary com-
parisons by using a prefix function 7 that, for each prefix of
a substring P, determines the largest proper suffix that is
also a prefix. Formally, the prefix function is defined as
7t{j] = max{k|P[0:k] = P[j — k + 1:j]}, where P[0:k] is a prefix
of length k, P[j — k + 1:j] is a suffix of length k. After con-
structing the prefix function, the KMP algorithm performs
a substring search in O(n). This algorithm is significantly
faster than the naive method since it does not perform un-
necessary comparisons. Detailed analysis of the results makes
it possible to improve text classification and automatically
detect potentially manipulative messages.

The main processes of module 4 "Text Preprocessing":
Removing special characters — Text tokenization — Case
changing — Stop word removal — Lemmatization. Text data
often contains characters that do not carry useful information
for analysis, for example:

- special characters (@, #, !, %, &, *, etc.);

— URLs (https://example.com, www.test.com, etc.);

- emojis (© @ YXL1J, etc.).

Such characters can complicate the analysis and therefore
should be removed. Tokenization is the process of splitting
the text into individual words (tokens). Formally, for text T
consisting of a sequence of characters T = fy,b,t3,....t,, a list
of words W is formed: W = {wy,w,,...,w,,}, where w; are the
words after splitting the text. Since machine learning models
do not distinguish between the words "Propaganda” and "pro-
paganda”, all words are reduced to lower case w;" = lower{(w).
Stop words are frequently used words (for example, "this",
"that”, "and", "we") that do not carry essential information.
Formally, for a set of words in the text W= {w;,w,,...Wy},
after removing stop words, W’ = W — S is calculated, where
S is the set of stop words. Lemmatization is the reduction
of words to their base form (lemmas). For example: "learn-
ing" — "learn”, "working" — "work". Formally, lemmatization
function L transforms each word w; into its normal form L(w;):
W' = {L(w), L(Wy,),..., L(wy,)}. After all stages of text prepro-
cessing, each document d; is represented as a set of lemma-
tized tokens d; = {w;,w,,...,wi}, Where k is the number of words
left after filtering. Now text data can be converted into numer-
ical representations for models to work with. Text preprocess-
ing improves the quality of analysis and increases the effi-
ciency of models. Filtering out unnecessary elements (URLs,
emojis) helps clean up the data. Lemmatization and removal
of stop words reduce the size of the text while preserving the
content. After processing, the text becomes more structured
and ready for further analysis and vectorization.

The main processes of module 5 "Text Vectorization":
One-Hot Encoding (OHE)/Bag-of-Words (BoW)/TF-IDF (Term
Frequency — Inverse Document Frequency)/Word Embeddings
(Word2Vec, GloVe, FastText). The program uses the TF-IDF
method since it makes it possible to assess the importance
of words in texts and works well for classification tasks. The
TF-IDF method calculates the weight of each word in the text
depending on its frequency in the document and rarity in the
entire corpus of texts. The formula for calculating TF-IDF for
term t in document d: TF-IDF(t,d) = TF(t,d) X IDF(t), where
TF (Term Frequency) is the frequency of the word in a specific
document TF(t,d) = n,/Ny, n, is the number of occurrences
of word ¢t in document d, Ny is the total number of words in

document d. IDF (Inverse Document Frequency) - inverse
document frequency for a word IDF(t) = log(D/(1 + d,)), where
D is the total number of documents, d, is the number of doc-
uments in which word ¢t occurs. As a result, a matrix is built,
where each row corresponds to a document, and each column
to a specific word. The values in the matrix are the TF-IDF
weights for each word in each document. Suppose there are
three documents with the following words: d; = "propagan-
da analysis dangerous”, d,="analytics machine learning”,
d; ="propaganda machine text". After calculating TF-IDF,
a matrix of size D X T is built, where D is the number of doc-
uments, T is the number of unique words, and each value X;;
is the TF-IDF weight for word j in document i

05 0.7 00 00 00 0.5
X=/00 05 07 07 00 00]. 9
0.5 0.0 0.0 00 0.7 0.5

TF-IDF takes into account the frequency of words in the
entire corpus (IDF), which helps reduce the influence of
common words. It is easy to implement and works well on
small to medium-sized datasets. It is also easy to interpret.
However, it does not take into account word order (it ignores
syntax and grammar). It is also not context-sensitive (words
with the same spelling but different meanings will have the
same weight). TF-IDF is sensitive to unbalanced datasets. In
addition to TF-IDF, neural network methods can be used to
represent text:

- Word2Vec trains word vectors based on their context;

- GloVe builds word vectors based on a co-occurrence
matrix;

— FastText takes into account the morphological structure
of words.

However, for the propaganda detection problem, TF-IDF
is an effective method because it works well with short texts
such as tweets. TF-IDF makes it possible to transform text
data into a numerical matrix that can be used in machine
learning. The method estimates the importance of words,
taking into account their frequency in documents. The vector-
ized data will be used in the next step - training a propaganda
detection model. After vectorizing text data into a numerical
format, a machine learning model can be trained on these
features to automatically detect propaganda messages.

Main processes of Module 6 "Loading and Preparing Data":
Selecting machine learning algorithms [Logistic Regression (LR)/
Support Vector Machine (SVM)/Decision Trees (DT)/...] — Sam-
ple partitioning — Selecting the best model. Different machine
learning algorithms are used to classify texts. Three main ap-
proaches LR, SVM, and DT were tested in the program. These
algorithms are used to solve a binary classification problem,
where each input text has label y € {0,1}, where 0 means "not
propaganda” and 1 means "propaganda’. Logistic regression
is one of the simplest and most efficient methods for classifi-
cation. It is based on the use of a sigmoid activation function
o(z) =1/(1 + e7%), where z is a linear combination of input fea-
tures Z = wix; + wyx; + ... + WX, + b, w; is the feature weights,
x; is the feature value (TF-IDF weights), b is the bias. The loss
function for logistic regression is

](W):—%-g[% ~log(;’i)-F(l—yi)log(l—;iﬂ,

(10)

where m is the number of examples in the sample, y; is the
predicted value of the model.



The support vector method searches for a hyperplane that
maximally separates two classes in the feature space. Formal-
ly, it solves the problem

mw.il?[;“W”z] provided y;-(w'-x +b)21 Vi, (1)

where w is the model weights, x; is the feature vector, y; is the
class (0 or 1), b is the bias.

SVM uses kernels to work in nonlinear space. For exam-
ple, the radial basis kernel (RBF kernel)

K(xi,xj):eXp(_y.“xi_xj||2j. (12)

Decision trees partition the feature space into regions
using conditional branches: if x; < @, then it is classified into
C;, otherwise C,. The algorithm works using the information
entropy metric

H(S)= Y loga (py)

i=1

(13)

where p; is the probability that the object belongs to class i.
When constructing the tree, the information gain criterion
is used

(14)

IG(S,A)=H(S)- ZM~H(HV),

veV |S |
where IG(S, A) is the information gain when partitioning by
attribute A, H(S) is the entropy of the initial set, H(S,) is the
entropy of the subsets after partitioning. Before training, the
model needs to split the data into training and test samples.
Usually, a ratio of 80/20 or 70/30 is used.

The main processes of module 7 "Model evaluation™
Error matrix — Classification metrics - ROC-curve and
AUC — Cross-validation — Error analysis. After training the
model, it is necessary to evaluate its quality on test data.
This helps understand how well the model can generalize
knowledge on new examples. The evaluation is performed
using classification metrics such as accuracy, completeness,
Fl-measure, and confusion matrix analysis. The confusion
matrix shows how the model predicts correct and incorrect
classes based on metrics such as

- TP (True Positive) — correct prediction of class "1" (pro-
paganda);

- TN (True Negative) — correct prediction of class "0" (not
propaganda);

- FP (False Positive) - falsely predicted "1" (false alarm);

- FN (False Negative) — falsely predicted "0" when class "1"
(missed propaganda case).

To select the best model, performance metrics such as
Accuracy, Recall, and F1-measure are used:

TP+TN TP
Accuracy = ;, Recall=——, (15)
TP+ TN +FP+FN TP+FN
Precision TP Fl=2. Precision -Recall ' (16)
TP+FP Precision + Recall

The Accuracy metric measures the overall proportion
of correct predictions. It is good if the sample is balanced
but can be misleading if one class is significantly dominant.

Recall measures the proportion of positive cases that the mod-
el correctly finds. The higher the recall, the fewer real cases of
propaganda the model misses. Precision measures how true
the positive predictions are. The higher the precision, the few-
er false positives the model produces. The F1 measure is a bal-
ance between precision and completeness. If the F1 measure
is high, the model balances well between finding all cases of
propaganda and minimizing errors. The ROC curve (Receiver
Operating Characteristic) shows how the accuracy of predic-
tions changes when the probability threshold is changed. The
Area Under Curve (AUC) measures the quality of the model:
AUC =1 means a perfect model, AUC = 0.5 means a random
guess. To avoid dependence on a single sample partition,
k-fold cross-validation is used. It divides the data into k parts
and trains the model k times on different parts

Re— P ind FPR=— % 17)
TP +FN

" FP+TN’

To understand the model, one needs to revise the most
erroneous predictions. The next step is to optimize the model
to improve the results.

5.2. Method for detecting sources and networks of
disinformation dissemination in cyberspace based on
the automation of the search for similar text chains

Discovery of a disinformation dissemination network
involves the automated search for text messages that have
a common origin or structure. This helps:

- identify the original source (source of fake news);

- identify bot networks that spread propaganda;

- build a graph of information dissemination.

The method is based on the comparison of text messages,
authors, date and time of publication, style of writing the text,
and the order of appearance to detect networks of propagan-
da, disinformation, and fake news dissemination. The main
stages of automating the detection of sources and networks of
fake news dissemination:

Stage 1. Text preprocessing (cleaning, tokenization, lem-
matization) based on modules 1-4 of the subsystem for
detecting disinformation in cyberspace as part of scalable
information space monitoring systems.

Stage 2. Calculation of similarity between texts (cosine
similarity metrics, Jacquard, Word2Vec).

Stage 3. Clustering of similar texts (K-Means, DBSCAN
algorithms).

Stage 4. Construction of an information dissemination
graph (network analysis).

Stage 5. Analysis of the results to identify sources of disin-
formation dissemination.

At Stage 2 "Calculation of similarity between texts", the
first step is to measure the similarity between text messages.
The code uses various metrics such as Cosine Similarity, Jac-
card Similarity, Levenstein Distance, and embedding similar-
ity (Word2Vec Cosine Similarity). Cosine Similarity (TF-IDF,
Count Vectorizer) works well for short texts. Jaccard Similar-
ity is effective for simple comparison by words. Levenstein
is more suitable for analyzing similarity at the symbol level.
Word2Vec makes it possible to take into account the seman-
tic content of words. A similarity matrix S is defined for all
texts S(i,j) = Similarity(T;,Tj), where T;, T are two texts, and
Similarity() is one of the metrics (TF-IDF Cosine Similarity,
Word2Vec, Jaccard). A similarity matrix between texts is built,
for example
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This matrix shows how similar the texts are to each other.
Cosine similarity or editing metrics are used to compare the texts.
Cosine similarity determines the similarity of two texts based on
the angular distance between their vectors. CountVectorizer and
TfidfVectorizer are used. The formula for the cosine coefficient
is cos(6) =A x B/(||A|| X ||B||), where A and B are vector repre-
sentations of the two texts; ||A|| Ta ||B|| are the norms (lengths)
of the vectors; A X B is the scalar product of the vectors. Cosine
similarity works well if the texts contain common words, but it
does not take into account synonyms and word meanings.

Jaccard similarity is based on the ratio of common words
to the total number of words in the two texts. The formula:
J(A,B) = |A N B|/|A U B|, where A and B are sets of words in the
two texts; |A M B| is the number of common words; |A U B| - the
total number of unique words. The Jaccard coefficient is suit-
able for short texts but does not work well with paraphrased sen-
tences. The Levenstein metric determines how many insertion,
deletion, or replacement operations are required to transform
one text into another. The formula for the recursive approach

max (i, j),if (i=0)|/(j=0),
D(i-1,j)+1,

min< D(i,j-1)+1, else,
D(i—l,j—1)+cost,

D(i,j)= (18)

where cost =0 if the characters are the same, otherwise 1.
Levenstein is used to check for grammatical errors and spell-
ing differences.

Embeddings transform words into multidimensional vec-
tors that take into account their semantic meaning. The co-
sine similarity formula for embeddings is

n
D A-B

i=1
n - n ’
> A2 D B?
i=1 i=1

Word2Vec makes it possible to detect similarities even be-
tween synonyms and paraphrased texts. The choice of metric de-
pends on the specific task. If the texts are short like posts on social
networks - Jacquard or Levenstein are better suited for analysis. If
you need to compare long documents like articles in the media -
TF-IDF+Cosine Similarity is the best choice. If semantics are
important when analyzing disinformation — choose Word2Vec.

At Stage 3, the grouping of similar messages into propaganda
networks is further clustered (K-Means, DBSCAN). Clustering is
the process of combining similar texts into groups to highlight
the centers of disinformation. One of two approaches is used:
K-Means (effective if the number of clusters is specified) and
DBSCAN (automatically finds clusters of any shape, convenient
for disinformation networks). K-Means divides texts into k clus-
ters using the Euclidean distance between vectors. The centroid
update formula

cos(A,B) = (19)
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(20)

where C; is the center of cluster i, S; is the set of texts belong-
ing to cluster i.

DBSCAN is well suited for finding botnets that spread
fakes. The main idea is that texts with similarity > & form
a cluster. If a point has <min_samples of neighbors, it is an
outlier, i.e., N.(x)={y e X|distance(x,y) <&}, where ¢ is the
similarity threshold between texts, min_samples is the mini-
mum number of points in the cluster. Clusters of similar mes-
sages are obtained, where each cluster can indicate a botnet.

At Stage 4, a graph is constructed to visualize the disinfor-
mation network. The spread of disinformation can be repre-
sented as a graph, where nodes are individual messages, users,
or accounts that spread information, and edges are connec-
tions between vertices that reflect the similarity of texts or the
fact of reposting (high similarity). This approach makes it pos-
sible to identify sources and find networks that spread disin-
formation. Graph G can be represented as an undirected or di-
rected graph containing a set of vertices V and a set of edges E:
G =(V,E), where V = {v,1,,...,u,,} is the set of vertices (for ex-
ample, texts or users), E = {(v;,v))|Similarity(T;, T;) > threshold}
is the set of connections between vertices. Depending on the
type of connections, the graph can be directed (if the direc-
tion of propagation is important, for example, retweets) and
undirected (if only the similarity between texts is taken into
account). The adjacency matrix A is an n X n square matrix,
where n is the number of texts or accounts

A(i’j):{l,if S(ij)>r, @)

0,else,

where S(i,j) is the similarity measure between texts (e.g., co-
sine similarity), z is the similarity threshold (e.g., 0.8), A(ijj) = 1
means that there is a connection between the texts. The Net-
workX library was used to construcy a graph based on the
similarity matrix (simulation) S=np.array([[1, 0.9, 0.2, 0.0],
[0.9,1,0.3,0.1], [0.2,0.3, 1,0.85], [0.0,0.1,0.85,1]]). A graph
was built where the vertices are texts, and the connections
between them show the level of similarity. Next, an analysis of
key nodes was performed (identification of sources of disinfor-
mation). Some accounts or texts may be central in the spread
of propaganda. The following vertices are identified using
the metrics Degree Centrality and Betweenness Centrality.
Degree Centrality shows the number of connections of a node
Cp(v) = deg(v)/(n - 1). The higher the degree, the more this
account spreads information. Betweenness Centrality shows
how often a node is on the shortest paths between other nodes

CB(v)z Z G(S,t|v)

v o(st)”

(22)

where ofs, t) is the number of shortest paths between vertices s, t;
o(s, tv) is the number of paths passing through v. The graph
helps identify central accounts that spread information (find-
ing the most connected nodes). It also makes it possible to
detect automated campaigns (for example, groups of accounts
with strong connections between identical texts). Analysis of
the graph structure and the formed connections encourages
one to understand the structure of propaganda distribution.

If accounts form dense clusters, this may be a bot network.
The process of detecting bot networks is implemented based
on the clustering coefficient and spectral partitioning of the
graph (detection of subgroups). The clustering coefficient
shows how connected a node is to other nodes

C(v) = number of triangles with v/maximum number of
possible triangles.



The spectral decomposition of the graph is based on the
DBSCAN method. If dense groups of accounts publishing the
same content are detected, this may indicate an automated bot
network. Automation of the analysis of similar texts allows for
the effective detection of fake networks. Cosine similarity, Jac-
card, Levenstein, and Word2Vec are used to measure similari-
ty. Clustering (DBSCAN, K-Means) helps group fake messages.
Graph analysis detects central accounts and bot networks.
Further improvements will consist in temporal analysis (the
dynamics of the spread of fakes over time). Neural networks
are also used to automatically classify texts before building the
graph. It is advisable to use the main manipulators through
betweenness and clustering analysis.

5. 3. Method for identifying ways of disinformation
dissemination in cyberspace based on the identification
of stylistically similar content

The graph of disinformation dissemination can be sup-
plemented with an analysis of text authorship, which will
make it possible to identify bots that use template phrases
and automatic generators. It will also help identify accounts
of individual people or groups that write disinformation in
a characteristic style. Methods for linking the graph to authors
are based on stylometry (analysis of text style), generative pat-
terns (detection of template content of bots), graph connec-
tivity of accounts (who interacts with whom), and temporal
analysis (when and how often content is disseminated). The
main stages and steps of analyzing text authorship through
the graph of disinformation dissemination:

Stage 1. Stylometry for authorship detection:

Step 1. 1. Frequency analysis of word and symbol usage.

Step 1. 2. Determination of average sentence and word length.

Step 1. 3. Punctuation and grammar analysis.

Step 1. 4. Vectorization of author style (TF-IDF) and clus-
tering of authors.

Step 1. 5. Analysis of clustering results and prediction
on test samples based on deep neural network models for
stylometry.

Stage 2. Detection of template content of bots:

Step 2. 1. Detection of repeating patterns in texts.

Step 2. 2. Analysis of syntactic structure of text.

Step 2. 3. Analysis of text length.

Step 2. 4. Detection of cyclic publications (timer bots).

Step 2. 5. Visualization of bot network.

Stage 3. Linking the graph to authors through shared sources:

Step 3. 1. Building a graph of shared sources.

Step 3. 2. Identifying common phrases between authors.

Step 3. 3. Analyzing the author’s style (stylometry).

Step 3. 4. Building a graph of authors.

Step 3. 5. Analyzing the most influential sources of disin-
formation.

Stage 4. Interaction analysis and the time factor:

Step 4. 1. Analyzing the interaction graph.

Step 4. 2. Analyzing the time of publication of messages.

Step 4. 3. Combining the analysis of style and time of pub-
lication.

Step 4. 4. Visualizing the graph with temporal relationships.

Stage 5. Visualizing the distribution graph with authors:

Step 5. 1. Identifying the most important authors (central-
ity in the graph).

Step 5. 2. Detecting bots in the graph.

Step 5. 3. Combining the graph with the analysis of the
author’s style.

Step 5. 4. Visualizing the graph with distribution routes.

Description of stage 1. Stylometry is a method of ana-
lyzing the writing style of texts to identify the author or
group of authors. It is based on the fact that each person has
a unique vocabulary, grammatical constructions, punctua-
tion, and other language features. People and bots use dif-
ferent word patterns. The author is characterized by unique
word combinations, sentence structure, and punctuation.
For each author, a vector characteristic F, is defined, which
contains the frequency distribution of words, the average
length of sentences, and an analysis of the use of punctuation
marks. For each author, the distribution of words used (word
frequency distribution) can be calculated. The probability of
the occurrence of word wj; in text d is determined from the
following formula

P(w;) = number of occurrences of word w;/total number
of words in text d.

If certain words occur more often for one author, this may
be his/her lexical signature. In addition to word frequency,
one can analyze the use of symbols, for example: the number
of punctuation marks, the use of capital letters, the frequency

of specific symbols, such as "!" or "...". The formula for calcu-
lating punctuation

P4 =number of punctuation marks in text A/total number
of characters in text A.

If the author often uses "..." or "I, this may be his/her
stylistic feature. People also have different writing styles. Some
write long sentences using complex constructions. Others
write short, using simple sentences. The average length of
sentences L, and words W, respectively

n
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where L, is the average sentence length of author A, S; is the
length of the i-th sentence, n is the total number of sen-
tences in the text, W, is the average word length in the texts
by author A, wj is the i-th word, m is the total number of
words in the text. If a person writes long sentences and a bot
writes short ones, this will be noticeable. TF-IDF helps find
unique words that the author uses more often than others
TF-IDF(w,d) = n,,/Ny x log(D/d,,), where n,, is the number of
occurrences of word w in document d, Ny is the total number
of words in document d, D is the total number of documents,
dy, is the number of documents containing word w. When
clustering author styles, a cluster of authors who write in
a similar style is determined. To group authors, one can use
K-Means or DBSCAN. The formula for updating the centers
of K-Means clusters

(29)

Authors have unique language patterns that can be identi-
fied. Word and character frequency analysis makes it possible
to find unique features of authors. TF-IDF and clustering help
combine texts of the same author into groups. If accounts
have the same style, they may belong to the same source. The
next steps of the research are based on deep neural networks
for stylometric analysis. It will be necessary to analyze the



time patterns of writing texts and compare author patterns
with the database of known accounts.

Description of Stage 2. Bots often generate texts according
to the same/similar template for mass distribution or use GPT
models, which allows them to be identified. To identify them,
the number of repeating patterns in texts, sentence structure
(frequent use of the same constructions) and distribution of
the same text by different accounts were analyzed. The main
detection methods:

— analysis of repeated phrases using N-grams;

- detection of syntactic and semantic matches;

- analysis of sentence structure and message length;

- detection of cyclic publications (posting on a timer).

To analyze similar texts generated by a template, N-gram
analysis is used - splitting the text into sequences of N words.
The N-gram frequency formula

P(N) = the number of occurrences of N-grams/the total
number of N-grams in the text.

If certain phrases are frequently repeated among bots, it
means that they are using a text generator (© humans — a wide
variety of phrases| @ bots — similar patterns in most messages).
The formula for the frequency of grammatical structures

F(S) = number of sentences with a certain grammatical
structure/total number of sentences.

If a bot uses repetitive sentence structures, it is different
from a human. Bots often have repetitive sentence structures
(e.g., "subject + predicate + object”). This can be done by
parsing the text into parts of speech (POS tags) and compar-
ing patterns. Bots also often generate short, clearly structured
messages, and are often of a fixed length or range of lengths
(e.g., 10-15 words). Humans have variable sentence lengths
(short and long messages) and can use more detail. The for-
mula for average text length is

N
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where |T;| is the length of text i, N is the total number of
messages.

Bots often publish messages at certain time intervals. This
can be determined by analyzing time patterns. The formula
for distributing posts over time is

R4 =number of posts per time period/duration of the period.

If R, is constant, then the account may be a bot. If the
posts are made evenly (for example, every 4 hours) - it is a bot.
If bots and template content are identified, a graph of fakes
is built, for example, red nodes are bots, blue nodes are the
same content that they spread, and connections between bots
indicate a coordinated campaign. N-gram analysis reveals
template phrases of bots. POS tags help find a repeating sen-
tence structure. The length of bot texts is often the same. Time
analysis makes it possible to detect timer bots. Graph analysis
shows connections between bots and template content. The
next steps of the study are to analyze the emotional coloring of
bots. It is necessary to use GPT detectors to detect artificially
created texts and implement deep neural networks for stylo-
metric analysis of bots.

Description of Stage 3. After clustering styles, one can add
authors as attributes to the graph. This will make it possible to
identify the source if the same text styles belong to multiple ac-
counts (perhaps the same person or group) and bot accounts are
spreading texts with template N-grams. To link the graph of dis-
information spread to specific authors, it is necessary to consider:

- writing style (who created the text);

- distribution graph structure (who retweeted or copied
the text);

-reuse of phrases and patterns (is the content repeated
across different accounts).

Then the source of disinformation is identified, and which
groups of accounts work together are determined. Each ac-
count or text can be represented as a graph, where the vertices
are authors/texts and the edges are the similarity between
texts or actual interaction (retweet, copy). Let there be a set of
authors A = (a4, ay,..., a,} and a set of texts T ={Ty, Ta,..., T}
Then graph G can be described as G = (V,E), where V=AU T
is the set of authors and texts, E = {(a;, Tj)|author a; wrote or
distributed Tj}, E = {(T}, T))| Similarity(T;, Tj) > 7} (if the texts
are similar). If two different accounts use the same phrases,
this may mean that they copy each other and/or they belong
to the same bot network. N-gram analysis was used to detect
such connections. The formula for similarity between texts

S(T.T;)=

where N(T;) is the set of N-grams in text T;, [N(T;) N N(Tj)|
is the number of common N-grams between the texts.
If accounts A and B publish similar texts, an edge is created
between them in the graph. If accounts use the same phrases
regularly, they may be part of the same network. Stylometric
methods are used to detect authors using the same style.
If two authors use similar phrases and style, they may work
together. After finding similar texts, a graph of common
sources can be constructed. Betweenness Centrality (22) is
used to find key authors. If an account has high betweenness
centrality, it is a likely source of disinformation. The graph
makes it possible to detect networks of accounts using similar
texts. N-gram analysis detects common phrases between bots
and people. Stylometry helps find authors with similar styles.
Graph analysis of betweenness centrality identifies the most
influential sources of fakes. If accounts have the same style,
similar phrases, and related texts, they can work together. The
next step of the research is automated analysis using neural
networks (LSTM, BERT).

Description of Stage 4. Identifying sources of disinforma-
tion is possible not only through the analysis of text content
but also through the analysis of interactions between users
and the rate of publication of messages. Key methods:

- analysis of interactions in the graph (who retweets or
copies whom);

- temporal analysis of message distribution (activity spikes);

- coincidence of authorship style over time (similar
style + simultaneous publication = coordinated attack);

- detection of bots through uniform intervals of posts.

The key signal of coordinated attacks is simultaneous publi-
cations of similar texts. Bots act quickly and synchronously, peo-
ple act chaotically. One can track the time of publication of texts
to find suspicious patterns. The formula for the intensity of posts

N(m)oN ()

N(T)oN () 9

R4 =number of posts per period of time/duration of
the period,



where R, is the author’s posting rate. If R, is large and sta-
ble, it may indicate an automated account. Bots often have
a high R4, which distinguishes them from humans. If posts
are made at a fixed interval, it is likely a bot. If we have an in-
formation dissemination graph, then nodes can be © sources
of fakes (authors who create misinformation), @ reposters
(those who spread), and @ intermediate accounts (may be bots).
The graph G(V, E) contains V - a set of users, E - a set of links
(u, v), where user u spread information from v. The adjacency
matrix for the graph is given by formula (21). The central
node (the largest number of outgoing links) is a likely source
of disinformation. If accounts spread messages at the same
time, this is a coordinated campaign. If several accounts
simultaneously publish similar text, they can be bots or
participants in an information campaign. Publication time
correlation formula

n

(e =0) (8= 1)

C(n.1;)=——= ;

JZ() JZ()

where ¢ is the time of the k-th publication of account i,
t; is the average publication time of account i. If the correla-
tion of publication times is high (C > 0.9), this indicates coor-
dinated dissemination. To determine the relationship between
style and publication time, we compare:

- time intervals between posts (bots act evenly);

- stylistic similarity of texts (similar style = probable com-
mon author). Calculation of stylistic similarity between accounts
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where f; 4 is the frequency of word i in the texts by author A,
fip is the frequency of word i in the texts by author B,
S(A, B) is the cosine similarity between styles. If two accounts
have a similar style (S>0.8) and a synchronous posting
time (C > 0.9), they may be part of the same network. Con-
nections between accounts that post at the same time and
have a similar style indicate a network of disinformation
distribution. If accounts post at the same time, this may be
a coordinated attack. Graph analyses makes it possible to de-
termine connections between authors through the style and
time of posts. Posting frequency analysis detects bots (uniform
time intervals). The combination of stylometry and temporal
analyses indicates the real authors of fakes. The next step is to
use LSTM or Transformer models to detect anomalies in the
style and time of posts.

Description of stage 5. The information dissemination
graph allows one to:

- identify the main sources of disinformation (key authors);

- find bots and coordinated groups;

- trace the distribution chains (who reposts whom, who
creates content);

- combine the style of the text and the structure of the
graph to establish a connection between authors.

Recommended designations on the graph:

- © Source of fakes — accounts with many outgoing links.
Central nodes are possible sources of fakes.

- @ Reposters and/or real accounts of users copying the text.

- @ Bots — accounts acting in a coordinated manner.

When building a graph to identify disinformation au-
thors, the results of the analysis of several parameters and
criteria are taken into account. In particular, clustering by
style (stylometry) of the text helps find one person or group.
If many accounts have the same style, they may be bots (pat-
tern analysis). If accounts with the same style closely interact,
they may work together (connectivity graph). Bots act faster
than people (temporal analysis). When identifying a network
of bots and the source of fakes, the results of the analysis of
several parameters and criteria are also taken into account. In
particular, the most central accounts in the graph are likely
primary sources. Groups of accounts with the same style and
graph connections are possible coordination. Bots have short
intervals between publications and a template structure of
messages. The graph G consists of nodes V=AU T, where
A are authors, T are texts, and edges E = {(a;, T))|author q;
wrote or distributed Tj}. The graph is represented as a directed
graph G = (V, E), where the edges from the author to the text
are — who created the content and the edges between the texts
are — who copied whom. The adjacency matrix of the graph
and is calculated based on the formulas:

.« |i,if author A, spread text T},
A(l’J): 0,else, @9
O'(S,t|v)
C = —, 30
s0)= 2 e (30)

where o(s, t) is the number of shortest paths between vertices
sand t; ofs, t|v) is the number of paths passing through v. If an
account has high betweenness, it is a likely source of misin-
formation. If an account has high betweenness, it may be the
main source of misinformation. Clustering Coefficient

C(v) = number of triangles with v/maximum number of
possible triangles.

If accounts form very dense groups, it may be a bot net-
work. Bots often have a high clustering coefficient (closely
interconnected). To link the graph structure to the author’s
style, style similarity between accounts is added:

1. Style similarities (TF-IDF+cosine measure) are calcu-
lated according to (28).

2.If S(A, B) > 0.8 and there is a connection in the graph,
coordination is possible. If two accounts have a similar style
and are connected in the graph, they may be part of the same
network. Red nodes are authors, and blue nodes are their
texts. If the texts are connected, the authors may be part of
the same network.

For more accurate analysis and identification of sources of
disinformation distribution, it is necessary to use GPT detec-
tors to detect generated content. It is also necessary to analyze
the emotional tone of texts (neutral, aggressive, manipulative)
and add time graphs to see when a wave of disinformation
begins. Graph visualization shows sources of disinformation.
Betweenness indicates the most important authors. Cluster-
ing coefficient helps find bot networks. The combination of
stylometry and graph shows who works together. If accounts
have a similar style, spread the same content and are closely
connected in the graph, they may be part of a coordinated
information attack. The next step is to use LSTM/BERT for
extended/deeper analysis of styles/graphs.



5. 4. Validation of the proposed methods for identi-
fying sources and paths of disinformation based on the
developed software

The program interacts with a dataset containing tweets clas-
sified as propaganda or neutral. The input data is provided in
CSV format, which contains the main columns: text (tweet con-
tent) and label (class label, where 0 is not propaganda, 1 is pro-
paganda). In addition, there are additional technical parameters,
such as tweet identifier, publication date, publication author
and publication time. The pandas library is used to process the
data. At the initial stage, the following operations are performed:

1. Removing unnecessary columns that are not relevant
for the analysis.

2. Checking the balance of classes in order to assess the
evenness of the representation of each category. In case of
significant unevenness, balancing methods such as oversam-
pling or undersampling can be applied. The current state of
the dataset consists of 61.7% of records with label 1 and 38.3%
with label 0. 10 experiments were conducted, the description
of which is given in Table 1.

Table 1

Description of experiments to identify sources of
disinformation

No. | Machine learning Yect_or- Cleanup
ization
1 | ComplementNB TF-IDF | - Remove HTML tags;
- Remove Special Characters;
— Convert to Lowercase;
2 | GaussianNB FastText | - Normalize Whitespace;
— Tokenize;
- Stem Words (UkrStemmer lib)
3 | ComplementNB TF-IDF | - Convert to Lowercase;
- Tokenize;
4 | GaussianNB w2v |- Remove stopwords;
- Lemmatize(spaCy lib)
5 | ComplementNB TF-IDF |- Remove punctuation;
HistGradient - Replace numbers with
. words;
6 | Boosting
. - Convert to Lowercase;
Classifier
- Remove stopwords;
7 | RandomForest Glove |- Traps.lates English words to
Ukrainian
8 | MultinominalNB - Remove stopwords;
9 | RandomForest - Lemmatize; .
- Remove emojis
10 | Logistic Regression | TF-IDF

3. Checking for missing values in the text column. If they
are found, they can be deleted or filled in depending on the
context of the task.

4. Adding a new column containing the length of the
tweet, which makes it possible to assess the possible impact of
short/long messages on the effectiveness of the model.

Since Twitter supports a large set of characters, including
emojis and special characters, it is important to take into ac-
count their presence in texts. For this purpose, a set of unique
characters is formed, which makes it possible to identify
potential problems when processing the text. The analysis
reveals that the following are often found:

- emojis, which can carry the emotional context of the
message;

- characters from other alphabets, which may indicate
multilingualism of the dataset;

- special characters and punctuation marks that affect
tokenization.

Based on this analysis, a decision is made on further
processing of such characters (deletion, replacement, or in-
clusion in the analysis). To identify thematic keywords related
to propaganda, the substring_check(substring) function has
been implemented, which makes it possible to find certain
words or phrases in tweets and analyze their frequency in
different classes. This makes it possible to:

— identify patterns of keyword usage in fakes;

- analyze the impact of certain terms on the classification
result;

- improve the model by expanding the set of features.

Tweet texts undergo several stages of processing:

- removal of special characters, links, emojis and punc-
tuation;

- tokenization - dividing the text into separate elements;

- converting all words to lowercase;

- removal of stop words (for example, "and”, "this", "or");

- lemmatization - reducing words to their base form.

Various algorithms were used to train the model (Table 2),
in particular:

- Complement Naive Bayes (ComplementNB) - a variant
of Multinomial Naive Bayes, adapted for processing unbal-
anced classes in classification problems;

- Gaussian Naive Bayes — a variant of Naive Bayes, which
assumes a normal (Gaussian) distribution of features;

- HistGradientBoostingClassifier - a powerful gradient
boosting algorithm based on an ensemble of decision trees
using histogram binning;

- Multinomial Naive Bayes — a Naive Bayes algorithm for
classification;

- RandomForest algorithm for detecting complex nonlin-
ear dependences.

Table 2
Algorithm comparison table
Algorithm Advantages Purpose Disadvantages
Complement | Resistant to un- Text data Not for numeric
NB balanced classes features
Does not work
Gaussian Simple. fast Numerical well with
NB ple, data non-Gaussian
distributions
HlstGra.d lent Fast, robust Large data Complex setup
Boosting sets
Random . Different Difficult to
Scalable, flexible types of R
Forest interpret
features
Multinomial Fast, good at Text classifi- | Does not support
NB word frequencies cation numeric features

The ratio of 80:20 was used to form the training and test
samples. The final results for class F (Fake) are shown in Fig. 1.
The best indicators at the moment are demonstrated by exper-
iment 5, which is based on the TF-IDF and ComplementNB
methods. At the same time, anomalies are observed in the se-
ries of experiments (in particular, in experiment 7, which uses
Glove and RandomForest), which require further analysis. For
processing text data, the most suitable methods are Multino-
mialNB and ComplementNB. For working with numerical
features, it is recommended to use GaussianNB or ensemble
methods, such as RandomForest. For large volumes of data,



the use of HistGradientBoosting is effective. RandomForest is
optimal for working with combined features that include both
numerical and categorical data. The plot (Fig. 2) shows the
change in the number of fakes, propaganda, and manipula-
tions during 2024. Such visualization makes it possible:

- to determine periods with a peak level of disinformation
distribution;

- to compare trends in the dynamics of different types of
disinformation;

— to use the obtained data for further training of classifi-
cation models, forecasting and construction of graphs (net-
works) of the spread of fake information (Fig. 3).

The proposed module demonstrates high efficiency in
detecting propaganda. Further improvement is possible by
expanding the dataset and adapting the model to multilingual
analysis.
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Fig. 1. Analysis plots of metrics for detecting sources of disinformation:
a — Recall, Precision, and F1-Score; b — sources of fakes
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Fig. 2. Changes in the number of fakes, propaganda, and manipulations

over time

6. Discussion of results related to identifying sources
of disinformation in cyberspace based on machine
learning

The bulk of news messages have a length of 50-500 char-
acters, and the number of words in most texts is from 24 to 41.
The distribution of text lengths is characterized by a right-side
shift. This is explained by the fact that a significant proportion
of messages are short, although there are individual cases with
an abnormally long length. Such characteristics are essential
for further data processing, in particular during model training,
analysis of its errors, and assessment of classification quality.
By default, the test_size parameter in the FakeNewsClassifier
class constructor is set to 0.2, which corresponds to 20% of the
total number of records - a typical ratio for machine learning
tasks. The distribution is implemented taking into account the

preservation of proportions between classes, which
makes it possible to maintain a balance between
fake and authentic news in both samples. In most
texts of the training sample, the number of tokens is
in the range from 18 to 42. Moreover, the maximum
concentration is observed in the range of 37-42 to-
kens. In contrast, the distribution of the lengths of
the tokenized texts in the test sample is more vari-
able and is characterized by a less pronounced peak

& & value (Fig. 1, b). These results indicate the relative
SN constancy of the lengths of the texts after tokeniza-

tion. This indicates the homogeneity of the corpus
and the proper quality of the data preprocessing
before their transfer to the Granite model.

The classification model was trained using the
log_reg_and_report() method, which implements
logistic regression based on the hybrid feature space
generated using embedding(). Within the framework
of the approach, the model is trained on the matrix
x_train_hybrid and the corresponding labels y_train,
after which class prediction is performed for the test

& sample. Logistic regression is initialized with the

\,\,’} parameters penalty =12, solver =’lbfgs’ and class_
weight =’balanced’. The latter parameter makes it
possible to compensate for a slight imbalance be-
tween classes, ensuring automatic scaling of weights
according to their representation in the training set.

Fig. 3. Example of a fake news distribution network:

a — o source of fake news and o reposters — accounts that copy the text; b — I

Bots — accounts that act in coordination

and o real users — accounts that copy the text



This helps increase the sensitivity of the model to the
less represented class (Fig. 1, a). Within the framework of
classification tasks, it is advisable to evaluate the effectiveness
of the model not only by the general accuracy indicators but
also by taking into account its ability to correctly identify each
class separately (Tables 1, 2). For this purpose, metrics such as
recall and precision are widely used, which reflect the quality
of the model from different analytical perspectives. The recall
indicator shows what proportion of objects of the positive
class, which in this study is fake news, the model was able to
correctly classify. That is, how effectively it detects all relevant
examples, without allowing them to be missed. In contrast,
precision shows the proportion of objects that truly belong
to the "fake” class among all those that were assigned to it.
In other words, this indicator characterizes the accuracy of
the model’s prediction in terms of avoiding false positive solu-
tions. Depending on the specific requirements of the applied
problem and the possible consequences of errors, one of these
metrics is often preferred in machine learning practice. This
necessitates a comprehensive analysis.

Unlike the results reported in [19], in which the focus is
on the analysis of the accuracy of disinformation detection
at the level of English-language articles/sentences, the main
emphasis in this experiment is on recall. This is explained
by the fact that the goal of the model is to timely and fully
detect multilingual fake news (in Ukrainian, English, and
Russian) (Fig. 2). Even with a partial decrease in precision,
such a compromise is justified within the framework of the
task since the priority is to detect as many fake news as possi-
ble. According to the results of the classification analysis, the
overall accuracy of the model is 0.82. This indicates a high
level of consistency between the model predictions and the
actual class labels. The F1-measure for the "true” class is 0.84,
and for the "fake” class is 0.80. This demonstrates a relatively
balanced effectiveness of the model in recognizing both types
of news. The values of the macro average and weighted aver-
age metrics are also at the level of 0.82. This indicates a stable
classification quality under the condition of both uniform and
weighted consideration of classes. For a deeper assessment of
the classification quality, a method was used that generates
three types of discrepancy matrices: without normalization,
normalized by precision, and normalized by recall. Such
a multidimensional approach allows for a comprehensive
analysis of the model’s behavior with respect to both classes,
revealing a tendency to false positive or false negative decisions.

Within the framework of this method, the value of the
Ff-measure with the parameter /= 1.3 is also calculated. This
provides a weight shift to the recall indicator - a critically im-
portant aspect in the context of detecting fake messages. The
obtained values: precision for the "fake" class - 81%, recall - 79%.
This is an acceptable balance for the task, where the priority
is to minimize the omission of fakes. The corresponding
value of the Ff-measure is approximately 0.79, which con-
firms the effectiveness of the model in detecting the target
(positive) class. To assess the discriminatory ability of the
model, regardless of the classification threshold, the method
of constructing the ROC-curve (Receiver Operating Charac-
teristic) and calculating the area under it (AUC) was used.
In the study, the "fake" category was defined as the positive
class (via the pos_label parameter). When the method is
called, the probabilities of belonging to this class are calculated,
which are used to construct the ROC-curve. The obtained
AUC value =0.86 indicates a high ability of the model to
differentiate between fake and true news. The closer the area

under the curve is to 1.0, the higher the quality of the clas-
sification distinction. It should be emphasized that, unlike
the accuracy metric, which is based only on classification
decisions at a fixed threshold, the ROC-AUC indicator makes
it possible to evaluate the performance of the model over the
entire range of threshold values. This approach is especially
valuable in cases where errors of different types have unequal
weight or when it is necessary to adapt the decision-mak-
ing system to specific conditions. To analyze the impact of
individual terms on the classification results, the tfidf fea-
ture_importance() function was used. It displays the logistic
regression weights associated with TF-IDF features. This
makes it possible to identify which words have the greatest
impact on the model’s decisions. To avoid including obvious
predictors such as functional or very frequent words, the
20 most important features were removed from the output.
Signs with positive coefficients indicate an association with
the "fake" class - among them, in particular, the words "bo-
evik”, "zapad" and "ocherednoy”. In contrast, negative coeffi-
cients correspond to terms characteristic of the "truth” class,
such as "ukraine”, "actually”, "video", "also", "untrue". This
makes it possible to conclude that the model identifies the
“"truth” class with neutral or Ukrainian-language vocabulary,
while the "fake" class is characterized by Russian-language
words, often colored by manipulative or propaganda rhetoric.

Unlike [20], in which the study focuses only on identifying
sources of English-language disinformation, this study is not
limited to one language. Usually, when identifying sources
and networks of disinformation, a combination of different
approaches is used, such as natural language processing and
social network analysis. However, the use of well-known ma-
chine learning models is justified only if there is English-lan-
guage content and standard disinformation distribution tactics.
In particular, this is confirmed by the content and results of
studies in [11-18]. When trying to overcome these limitations
to increase the speed, accuracy, and quality of the processes of
identifying sources and networks of disinformation distribu-
tion in the global cyberspace, objective difficulties arise, which
are associated with the uncertainty of the mechanisms of the
process of adapting models to new disinformation distribution
tactics and ensuring the scalability of solutions. Our study
proposes a way to overcome these difficulties. It is based on the
fact that the procedure for determining the mechanism should
be preceded by a stylistic analysis of the content, an analysis
of inauthentic behavior of chatbots, a temporal analysis of in-
formation dissemination and an analysis of the graph (routes)
of dissemination (Fig. 3), which is the basis for increasing the
accuracy of identifying the distribution networks of the cor-
responding set of fake news from one group of authors. This
method allowed us to obtain a graph of the spread of disinfor-
mation by time slices in social communities. This means that
the scientific result in the form of an information technology
for identifying sources and networks of disinformation dis-
semination in cyberspace based on machine learning methods
is interesting from a theoretical point of view.

From a practical point of view, the identified mechanism
for finding text content similar in content and writing style in
certain time periods in the relevant social networks (Fig. 3)
allows for the identification of central accounts and botnets
for the spread of disinformation in the cybersecurity technol-
ogy of a country/company. Thus, the applied aspect of using
our scientific result is the possibility of improving the typi-
cal technological process of identifying information threats
and supporting the country’s information defense capability.



This creates the prerequisites for the transfer of the obtained
technological solutions in the cyberspace of the country and
the world. All this gives grounds to assert that the goal of the
study has been fully achieved.

The study identifies mechanisms for identifying sources
and networks for the spread of disinformation in the global
cyberspace, which can adapt to different cultural and lin-
guistic contexts with minimal additional training costs. This
makes it possible to reasonably approach the identification of
a set of central accounts-distributors of fake news and bot net-
works and to obtain certain effects from the implementation
in production. In particular, the accuracy of the technological
process of detecting sources and networks of disinformation
distribution in cyberspace of the world can be increased and
the cost of production of such systems can be reduced. Also,
additional results of the study were the detection and analy-
sis of inauthentic behavior of chatbots, which differs from
the content and results of research reported in [21-25]. This
significantly improves the results of detecting sources and
networks of fake news distribution.

Our solutions and research results based on the developed
information technology for detecting sources and networks
of disinformation resolve the task set. The influence of the
substantive and stylistic features of the text content of dis-
information, written according to methodological narratives
and with certain keywords, on the mechanisms and processes
(frequency and period of publication, order and frequency of
reposts, methodical patter, etc.) of the spread of disinforma-
tion in the Internet space has been proven. This is important
because the introduction of additional parameters and coef-
ficients for identifying disinformation distribution networks
significantly changes the mechanism and accuracy of their
detection. But there are objective difficulties associated with
the rapid evolution of disinformation methods and the limited
availability of data for training models because there is a lack
of adaptation of models to new tactics.

The limitations of our study are the imbalance of classes
(since propaganda tweets are rare) and the large resource
consumption in identifying primary sources of disinformation
using retweet analysis.

The shortcomings of the study include the lack of a de-
tailed analysis of the time of message distribution to build
a dynamic graph. It is necessary to analyze the time patterns
of writing texts and compare author’s patterns with a database
of known accounts.

The development of our research implies adding deep
neural networks (LSTM, BERT) to improve the quality of
training and stylometric analysis. It is necessary to investigate
the results of using neural network models (BERT, GPT-4) to
improve classification. It is also necessary to use class balanc-
ing and optimize hyperparameters (GridSearch, Randomized-
Search). It is desirable to analyze the emotional coloring of
bots. It is necessary to use GPT detectors to detect artificially
created texts and implement deep neural networks (LSTM,
BERT, Transformer) for stylometric analysis of bots and detect
anomalies in the style and time of posts.

7. Conclusions

1. Based on our analysis of existing information technol-
ogies for identifying fake news, a set of general functional
requirements for a typical architecture of a subsystem for de-
tecting multiple disinformation for scalable information space

monitoring systems has been determined. That has made it
possible to define a set of criteria and parameters for detecting
sources and networks of disinformation distribution. Pre-pro-
cessing of text improves the quality of analysis and increases the
efficiency of models. Filtering of unnecessary elements (URLs,
emojis) helps clean the data. Lemmatization and removal
of stop words reduce the volume of text while preserving its
content. After processing, the text becomes more structured
and ready for further analysis and vectorization. TF-IDF takes
into account the frequency of words in the entire corpus (IDF),
which helps reduce the influence of common words. It is easy
to implement and works well on small and medium-sized data
sets. It is also easy to interpret. But it does not take into account
word order (it ignores syntax and grammar). It also does not
distinguish between contexts (words with the same spelling
but different meanings will have the same weight). TF-IDF is
sensitive to unbalanced datasets. In addition to TF-IDF, the
following neural network methods can be used to represent
text: Word2Vec (learns word vectors based on their context),
GloVe (constructs word vectors based on a co-occurrence
matrix), and FastText (takes into account the morphological
structure of words). However, for the problem of propaganda
detection, TF-IDF is an effective method because it works well
with short texts such as tweets. TF-IDF makes it possible to
transform text data into a numerical matrix that can be used
in machine learning. The method estimates the importance of
words, taking into account their frequency in documents. The
vectorized data will be used in the next step — training a model
for propaganda detection. After vectorizing the text data into
a numerical format, a machine learning model can be trained
on these features to automatically detect propaganda messag-
es. The highest efficiency at the current stage is demonstrated
by the fifth experiment, which uses the Complement Naive
Bayes model based on TF-IDF features. At the same time,
some deviations were found among the results, in particular in
the seventh experiment, which combines GloVe embeddings
with the Random Forest algorithm, which require additional
analysis to clarify the reasons for their occurrence. Our experi-
mental data can be used as the basis for further research aimed
at improving approaches to identifying sources of disinforma-
tion, inauthentic activity in network communications, as well
as malicious content in order to increase information security
and the defense capability of the state.

2. Based on our analysis of existing methods of intelligent
search for disinformation, a method for detecting sources and
networks of disinformation distribution in cyberspace has
been devised through the automation of the search for similar
text chains. Automation of the analysis of similar texts allows
for the effective detection of fake networks. Cosine similar-
ity, Jaccard, Levenstein, and Word2Vec are used to measure
similarity. Clustering (DBSCAN, K-Means) helps group fake
messages. Graph analysis detects central accounts and bot
networks. In particular, the graph model allows for the analy-
sis of connections between accounts and messages. The use
of centrality makes it possible to identify the main sources of
disinformation. Clustering methods detect bot networks and
groups of accounts with similar texts. The use of DBSCAN or
other algorithms helps identify propaganda centers. The pro-
posed solution implements a module that combines TF-IDF
statistical features with Granite contextual embeddings. This
hybrid approach to vectorization makes it possible to take into
account both the surface frequency characteristics of the text
and its semantic aspects, which significantly improves the effi-
ciency of classification. The functionality of the class includes



the entire process of processing text data: from loading and
cleaning the corpus to vectorization, training the logistic
regression model, visualization of the feature space and gen-
eration of a classification report. The model parameters are
selected taking into account the possible imbalance of classes,
which ensures the stability of the quality of predictions.
The mechanism for analyzing the importance of TF-IDF
features provides additional transparency of the results. The
assessment of the model’s effectiveness by the main metrics
showed satisfactory results: accuracy - 0.82, F1.3 — about 0.8,
ROC-AUC - 0.86. The differences found in the lexical patterns
for the "fake” and "true” classes confirm the model’s ability to
distinguish the content characteristics of texts. The proposed
approach can become the basis for the design of scalable sys-
tems for monitoring the information space or adaptation to
other text classification tasks.

3. Based on our analysis of the results of identifying sources
and networks of disinformation distribution in cyberspace,
a method has been devised to identify ways of disinformation
distribution in cyberspace by identifying stylistically similar
content. Authors have unique language patterns that can be
identified. Frequency analysis of words and symbols makes
it possible to find unique features of authors. TF-IDF and
clustering help combine texts of the same author into groups.
If accounts have the same style, they may belong to the same
source. N-gram analysis detects template phrases of bots. POS
tags help find a repeating sentence structure. The length of bot
texts is often the same. Temporal analysis makes it possible to
detect timer bots. Graph analysis shows connections between
bots and template content. The graph makes it possible to
detect networks of accounts that use similar texts. N-gram
analysis detects common phrases between bots and people.
Stylometry helps find authors with similar styles. Graph anal-
ysis of betweenness reveals the most influential sources of
fakes. If accounts have the same style, similar phrases, and re-
lated texts, they can work together. If accounts post at the same
time, this can be a coordinated attack. Graph analysis makes
it possible to determine the connections between authors
through the style and time of posts. Posting frequency analysis
detects bots (even time intervals). The combination of sty-
lometry and time analysis indicates the real authors of fakes.

4. Experiments were carried out on the constructed data-
set using machine learning algorithms. The results of ex-
perimental testing of the proposed methods for identifying
sources and ways of disinformation dissemination based on
the developed software modules were analyzed. The system
is designed to automatically detect the probability of disinfor-
mation in texts, messages, and ways of dissemination. It is of
great importance for the modern information space, in partic-
ular under the conditions of a large volume of unreliable or
manipulative information on the Internet. The system helps
users to quickly and effectively determine the level of trust in

texts distributed from various sources. This is especially rele-
vant for journalists, researchers, media analysts, and ordinary
users of social networks. The ability to automate text analysis
based on comparison with a database of trusted and unreli-
able sources makes this tool useful for everyone who seeks
to obtain reliable information. The system combines modern
NLP technologies, machine learning algorithms, and effective
search, which makes it possible to quickly analyze texts in the
Ukrainian language. The use of the devised methods makes
it possible to correctly work with texts in several languages,
which expands the scope of their application.
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