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This study focuses on the reconstruction of missing GPS 
trajectory data. The principal issue relates to restoring geo-
spatial coordinates in the absence of large volumes of labeled 
data and under conditions where conventional spatial-tem-
poral models demonstrate limited generalization capabilities. 

This paper proposes a large language model-based 
approach to address the reconstruction task without requiring 
prior training on specialized datasets. To reduce dependence 
on domain-specific features, the focus was on optimizing data 
preprocessing and constructing effective prompts. Three coor-
dinate representations have been explored: original degree-
based values (using the VPAIR dataset), the Earth-Centered, 
Earth-Fixed (ECEF) system, and ECEF coordinates shifted rel-
ative to the starting point of the trajectory. 

Experimental results show that using centered ECEF coor-
dinates reduces the mean absolute error (MAE) by 51–59% 
for both latitude and longitude compared to other represen-
tations. Conversion to the ECEF system also demonstrates 
selective advantages in latitude reconstruction. To mitigate 
the instability of autoregressive prediction, a multi-itera-
tion reconstruction strategy with result aggregation has been 
implemented. The open-source model LLaMA 3.2 achieved the 
highest accuracy (MAE: 36.57 for latitude and 52.14 for lon-
gitude), outperforming both other open models and the com-
mercial GPT-4o. 

The proposed approach can be considered a via-
ble post-processing tool, particularly in missions involving 
unmanned aerial vehicles or other mobile platforms where 
part of the GPS data has been lost during acquisition
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1. Introduction

Autonomous mobile systems, in particular unmanned ae-
rial vehicles (UAVs), rely heavily on Global Positioning Sys-
tem (GPS) data to provide accurate positioning, navigation, 
etc. GPS data provides three-dimensional geospatial coordi-
nates (latitude, longitude, altitude) and time information, which 
is critical for the correct operation of autonomous control algo-
rithms in real time. However, due to technical or environmental 
limitations, continuous access to GPS is not always possible. 
Studies [1, 2] show that situations of GPS signal loss or degrada-
tion are common in urban environments, dense forests, tunnels, 
and under the influence of radio frequency interference. Loss or 
degradation of the signal creates significant operational risks.

Localization errors. In environments without access 
to GPS, UAVs often rely on inertial measurement sys-
tems (IMUs) to estimate position using inertial navigation. 
However, IMUs are prone to accumulating errors (such as 
accelerometer drift and gyro noise), which leads to exponen-
tially increasing positioning errors over time.

Collision risks. In the absence of accurate geolocation 
data, obstacle avoidance systems may incorrectly match 
sensor data (e.g., LiDAR, cameras) to real coordinates, which 
increases the likelihood of collisions.

Mission failure. Applications in agriculture, search and 
rescue, or cargo delivery require high positioning accuracy. 
GPS signal interruptions prevent correct tracking of way-
points, making such tasks unreliable.

Existing approaches to GPS data recovery are typically 
based on the use of machine learning models, such as re-
current neural networks or statistical methods [3–5], which 
require special training on large, highly specialized GPS data 
sets. However, such methods have a number of significant 
limitations: requirements for a high-quality training dataset, 
risks of overtraining, and difficulties in transferring models 
to new geographical or contextual conditions.

In this context, a new class of models, large language 
models, such as GPT [6, 7], Llama [8–10], Gemma [11], and 
others, open up new perspectives. These neural networks, 
trained on large-scale corpora of sequential text data, have an 
architecture that supports generalization, memorization of 
long-term dependences, and processing of structured inputs. 
The ability of LLMs to zero-shot generalization [12], that is, 
solving problems without prior training on a specific exam-
ple, makes them an attractive tool for the task of recovering 
missing values in time series, in particular GPS sequences. 

Although LLMs were not specifically trained on geo-
spatial data, their ability to reproduce patterns and logical 
dependences between sequence elements suggests their ef-
fectiveness in trajectory reconstruction tasks. In study [13], 
the importance of pre-processing, the choice of data repre-
sentation system, as well as the construction of an effective 
text prompt that ensures the interpretability and correctness 
of the answer, is particularly emphasized.

Therefore, studies on zero-shot reconstruction of GPS 
data using large language models are relevant, especially in 
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Despite significant progress, key challenges remain in 
GPS imputation:

1) dependence on large datasets;
2) limitations in the domain adaptability of spatiotempo-

ral models;
3) non-generalizability to atypical omission patterns.
A likely option to overcome these difficulties is to use 

large language models under a zero-shot mode, which do not 
require retraining and are able to understand the semantics 
of spatial-temporal sequences through text prompts. All this 
gives grounds to argue that the study of zero-shot imputation 
of GPS data by large language models is a reasonable and 
promising area for the further development of spatial-tempo-
ral data restoration technologies.

3. The aim and objectives of the study

The aim of our study is to devise an approach to recov-
ering lost GPS data using large language models without ad-
ditional training. This will make it possible to implement an 
effective GPS data post-processing module for imputation of 
missing fragments in traffic monitoring systems, increasing 
the accuracy and consistency of trajectories without the need 
for additional training of profile models.

To achieve this aim, the following objectives were accom-
plished:

– to choose the optimal format for representing GPS co-
ordinates;

– to determine the optimal version of the instruction;
– to perform a comparative assessment of the quality of 

recovery for different language models.

4. The study materials and methods

4. 1. The object and hypothesis of the study
The object of our study is the restoration of a sequence of 

GPS coordinates from a real open dataset VPAIR, which con-
tains vehicle trajectories. The principal hypothesis of the study 
assumes that the use of large language models with an optimal 
data format, well-formulated instructions, and a retry mecha-
nism allows for the correct reconstruction of missed fragments 
of GPS sequences without additional training.

The following assumptions were adopted:
– the influence of atmospheric or satellite failures on the 

initial GPS data is not taken into account;
– the selected LLM model is able to interpret digital se-

quences in context, regardless of geographical reference;
– no additional training or tuning of the LLM is per-

formed.

4. 2. Large Language Models
Current large language models have revolutionized nat-

ural language processing through the use of a revolutionary 
architecture known as a transformer. The transformative po-
tential of a transformer lies in its innovative structure, which 
replaces sequential processing with a mechanism capable 
of simultaneously covering all parts of the input sequence. 
This is implemented using the attention mechanism, a key 
innovation that allows models to dynamically evaluate the 
relevance of different tokens, capture complex long-range 
relationships, and build rich contextual representations. It 
is this mechanism that underlies the effectiveness of trans-

the context of data post-processing for autonomous systems. 
These results could be applied in real-world scenarios where 
it is necessary to restore lost coordinates, in particular for 
UAVs or other mobile platforms that face problems of GPS 
signal loss due to technical or environmental limitations.

2. Literature review and problem statement

In [14], a real-time fuzzy motion control is proposed that 
instantly smooths out external GPS signal perturbations, 
providing robust navigation in the presence of obstacles. In 
contrast, in [15], a visual-inertial scheme is described that 
combines camera and inertial sensor data for navigation 
in the absence of GPS communication. These approaches 
demonstrate effectiveness in real-world scenarios but rely on 
complex hardware setups and hybrid sensor systems, which 
reduces their versatility.

In [16], splines are considered as a means to account for 
smooth signal changes, but the authors emphasize that the 
choice of spline order and node size can lead to overfitting. 
In [17], the authors caution that its effectiveness depends 
on the correct specification of models for each variable, as 
well as on the size and distribution of missing data in the 
multidimensional space. In [18], kriging is reported as a geo-
statistical method that optimally takes into account spatial 
correlation. However, the authors note that the effectiveness 
of kriging is based on strict assumptions about the station-
arity and isotropy of the process, as well as on the quality of 
the variogram estimate, which can be resource-intensive in 
the case of complex spatiotemporal irregularities. Paper [18] 
also indicates that kriging under conditions of sparse data 
or the presence of anomalies may give inaccurate forecasts 
without the use of variogram correction methods. Thus, the 
listed methods show high computational efficiency and the 
ability to restore missing values, provided that the signal is 
smooth and stationary. However, their linear assumptions 
often do not correspond to the complex nonlinear dynamics 
of modern GPS trajectories, worsening the accuracy during 
sharp changes in speed or direction of movement.

In [19], the KNN method is considered easy to implement, 
but its efficiency decreases in the case of uneven distribution of 
gaps, since it does not take into account the temporal or spatial 
structure of the data. In [20], RNN approaches demonstrate a 
better ability to account for temporal dependence in multidi-
mensional series. However, the authors emphasize that such 
models are sensitive to sequence length and may experience 
difficulties with gradient decay or gradient explosion. The 
approach in [21] is proposed as a means of simultaneously pro-
cessing spatiotemporal correlation but tuning the architecture 
of the method requires significant computational resources and 
careful validation on different data sets. In addition, the model 
can overtrain on small samples and perform poorly with atyp-
ical gap patterns. The efficiency of the above methods depends 
on the availability of large, labeled data sets, optimization of hy-
perparameters, and the ability of the model to generalize results 
on data with gap patterns different from the training ones.

Hybrid models that combine spatiotemporal kriging 
techniques with deep neural networks or graph neural net-
works [22, 23] demonstrate higher imputation accuracy by 
integrating local spatial information with global temporal 
trends. However, their effectiveness depends on the avail-
ability of auxiliary data and high computational resources for 
fine-tuning parameters.
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former-based models, making them indispensable for a wide 
range of applications.

The attention mechanism, proposed in [24] and sub-
sequently improved in [25], has become the foundation of 
modern natural language processing. It addresses a critical 
limitation of previous models, such as recurrent neural 
networks (RNNs), by allowing dynamic focus on individual 
parts of the input sequence. Unlike RNNs, which process 
data sequentially and often struggle with long-range relation-
ships, the attention mechanism makes it possible to directly 
capture relationships between distant elements regardless of 
their positional distance. The mechanism computes a con-
text-sensitive representation of the input sequence, assigning 
importance weights to its elements. Given a query vector Q, 
which represents the current focus of the model, and a set of 
key-value pairs (K, V), the mechanism computes a compati-
bility coefficient between the query and each key. These co-
efficients are normalized using a softmax function, as shown 
in equation (1), to obtain weights that determine how much 
each value contributes to the final output

( ),  ,     softmax ,
T

K

QKA Q K V V
d

 
 =
  

			   (1)

where dK is the dimensionally of the key vector. The scaling 
factor is used to prevent excessive growth of scalar products, 
which can lead to instability of gradients during training. 
To improve the model’s ability to capture various types of 
dependences in the data, researchers proposed a multi-head 
attention mechanism. Instead of computing a single set of 
attention weights, this mechanism uses multiple attention 
“heads”, each of which has its own training linear transfor-
mations for the query, key, and value vectors. The outputs 
of all heads are concatenated and projected back into the 
original feature space, which allows the model to focus on 
different aspects of the input data simultaneously. Building 
on these improvements, the authors of [25] proposed a trans-
former architecture that has become a real paradigm shift 
in sequence modeling. Unlike conventional models based 
on recurrent or convolutional layers, transformers are fully 
based on the attention mechanism, which allows them to 
process entire sequences in parallel. This parallel process-
ing significantly increases computational efficiency, mak-
ing transformers particularly suitable for training on large 
amounts of data using modern hardware. The transformer 
architecture consists of two main components: an encoder 
and a decoder. The encoder processes the input sequence and 
generates a set of contextualized representations, while the 
decoder generates the output sequence, guided by both the 
encoder outputs and its own prior predictions. Each encoder 
and decoder layer contains two key substructures: a multi-
head attention mechanism and a position-wise feed-forward 
network. Multi-head attention allows the model to capture 
complex dependences in the input data, while the fully con-
nected network applies a nonlinear transformation to each 
position separately, further refining the representation.

Large language models are a revolutionary advancement 
in natural language processing, fundamentally changing the 
capabilities and applications of artificial intelligence. LLMs 
are built on a transformer architecture that uses deep neural 
networks with billions or trillions of parameters. This archi-
tectural innovation allows the model to dynamically assess 
the importance of different tokens in a sequence, capturing 

complex patterns and long-range dependences in text data. 
The effectiveness of LLMs is based on a pre-training para-
digm, where models are trained on huge and diverse corpora 
spanning hundreds of terabytes of text. This allows LLMs 
to develop complex representations of language structure, 
semantics, and even implicit knowledge about the world. By 
training on such large data sets, these models gain the ability 
to generalize to a wide range of linguistic tasks, from text 
generation and summarization to question answering and 
machine translation. Pre-training is usually accompanied 
by additional tuning or prompt-based adaptation, where 
the model is tuned to specific tasks, allowing for further 
improvements in its performance and versatility. One of the 
most significant achievements of LLMs is their ability to 
perform few-shot or zero-shot training, where the model can 
generalize to new tasks with minimal or no specific training 
data for those tasks. This ability is largely due to the scale of 
the models and the amount of pre-training that gives them 
a form of meta-learning. For example, models like GPT-3 [6] 
have demonstrated an impressive ability to generate coherent 
and contextually relevant text, even for tasks for which they 
were not explicitly trained.

4. 2. 1. Llama
Llama has been selected as the base model among open 

language models due to its technical characteristics and 
architectural innovations. The Meta AI family of large lan-
guage models developed by Meta is a significant contribution 
to the field of natural language processing. Since its incep-
tion, Llama has gone through several stages of evolution, 
each of which has brought improvements in architecture, 
training methods, and performance. 

Llama v1 [8] laid the foundation for the Llama family by in-
troducing a robust transformer-based architecture. The model 
had a standard transformer-decoder with multi-head self-at-
tention and pre-normalization, which allowed it to effectively 
capture contextual relationships between words. Llama v1 was 
trained on a diverse corpus of text data, including books, web 
pages, and academic papers, using a holistic language model. 
This approach allowed the model to predict the next token in 
a sequence, thereby learning the statistical structure of lan-
guage. The efficient use of computational resources made the 
model a major advance in the field of large language models.

Building on Llama v1, Llama v2 [9] introduced sever-
al key improvements that improved both efficiency and 
performance. Architecturally, Llama v2 incorporated the 
Grouped Query Attention (GQA) technique, which reduced 
the computational complexity and memory requirements 
of the self-attention mechanism. This innovation allowed 
the model to work more efficiently with longer sequences 
and larger data sets. The training dataset for Llama v2 was 
expanded and carefully selected, including synthetic data 
and instructional tuning datasets to improve performance 
for specific tasks. Additionally, Llama v2 introduced in-
structional tuning and human feedback-based reinforcement 
learning (RLHF), which allowed the model to more accurate-
ly respond to human preferences and increased its utility in 
real-world applications. Llama v2 also expanded the context 
window, allowing the model to process and generate longer 
sequences of text. This improvement was particularly useful 
for tasks that required consistency across large texts, such as 
document summarization or long-form text generation.

Llama v3 [10] is the latest advancement in the Llama 
series, focusing on scalability, efficiency, and multimodal 



9

Information and controlling system

capabilities. Although the architectural changes between 
Llama v2 and Llama v3 are relatively minor, the latest version 
introduces a larger context window and improved rotational 
embedding (RoPE) parameters, which allow for better han-
dling of long sequences. The biggest improvements in Llama 
v3 relate to the training data and learning methods. The mod-
el was pretrained on a dataset exceeding 15 trillion tokens, 
seven times larger than Llama v2, and includes four times 
more code. In addition, over 5% of the training data consists 
of high-quality content in non-English languages, covering 
over 30 languages, significantly enhancing its multilingual 
capabilities. Meta has implemented advanced data filters for 
Llama v3, including heuristic filters, NSFW filters, semantic 
deduplication, and text classifiers trained with Llama 2 to 
ensure data quality. Llama v3 also benefits from improved 
post-training tuning techniques that reduce false positives, 
improve consistency with user intent, and diversify model 
responses. One notable feature of Llama v3 is the consistent 
logarithmic performance improvement, even after training 
on significantly larger data sets than expected. This trend 
challenges conventional scaling laws, such as optimal com-
putational scaling using the Chinchilla model, as the model 
continues to improve beyond a typical performance plateau. 
To ensure reliable and unbiased evaluation, Meta has intro-
duced a new human scorer set consisting of 1,800 cues across 
12 critical use cases, including advice-giving, brainstorming, 
and creative writing. The training methodology includes im-
provements in parametric efficiency techniques, such as op-
timized attention mechanisms, which reduce computational 
costs while maintaining performance. The data selection 
process for training prioritizes high-quality multilingual 
content that provides strong cross-linguistic capabilities. This 
careful data selection, combined with improved pre-training 
objectives, allows Llama v3 to achieve performance compara-
ble to much larger models while maintaining a more efficient 
number of parameters.

4. 2. 2. GPT-4o
The selection of GPT-4 [7] as the reference model for 

closed models reflects its position at the forefront of language 
modeling capabilities. The model demonstrates exception-
al performance across a wide range of natural language 
processing tasks, achieving best-in-class results without 
task-specific architectural changes or refinements to logical 
reasoning. The GPT-4 architecture builds on previous ver-
sions, with sophisticated improvements to the attention and 
parameter scaling mechanisms. The model exhibits impres-
sive stability in multitasking scenarios, demonstrating robust 
generalization capabilities across a variety of application 
domains. Its token processing system allows it to handle 
complex inputs with increased accuracy, supporting com-
plex language understanding tasks with high reliability. The 
model’s documented performance on standard benchmarks 
demonstrates significant gains in natural language under-
standing and generation. These metrics include performance 
on tasks requiring deep contextual understanding, abstract 
reasoning, and complex instruction execution. The stability 
of these results across different levels of task complexity and 
application domains establishes GPT-4 as a representative 
benchmark for modern closed language models.

4. 2. 3. Gemma
The open-source Gemma family of language models [11], 

developed by Google DeepMind, represents a significant 

breakthrough in building lightweight yet high-performance 
large-scale language models. Designed to strike a balance 
between efficiency and accuracy, the first version of Gemma 
introduced models with 2 billion and 7 billion parameters 
trained on data of up to 6 trillion tokens with a context length 
of 8,192 tokens. These models, available in basic and instruc-
tion-tuned versions, have been optimized for deployment on 
a wide range of hardware platforms, including consumer 
devices, without the need for significant amounts of quanti-
zation. Building on this version, Gemma 2 introduced several 
architectural improvements, as well as expanded model sizes: 
2 billion, 9 billion, and 27 billion parameters. One of the 
most significant improvements in Gemma 2 is the integra-
tion of Grouped Query Attention (GQA) technology, which 
optimizes the self-attention mechanism, reducing memory 
and computational costs, while maintaining high quality of 
the output data. The model uses 16 shared key-value heads 
of size 128, as well as 32 query heads and output projections 
of the same size, which results in a more efficient attention 
mechanism. In addition, Gemma 2 includes an additional 
layer of root mean square normalization (RMSNorm), which 
improves the stability of training and overall reliability of the 
model. The increase in the number of parameters and the 
improved architecture of Gemma 2 have contributed to sig-
nificant improvements in language modeling tasks, includ-
ing question answering, summarization, and common sense 
reasoning. While the original Gemma models established a 
solid foundation for compact high-performance LLMs, the 
implementation of GQA and improved normalization meth-
ods in Gemma 2 has significantly improved the scalability 
and reasoning capabilities.

4. 3. Missing data recovery with Large Language 
Models

Missing value recovery was implemented using several 
large language models under a zero-shot mode, including both 
open-source and closed-source models (LLaMA 3.2, Gemma 
with 2B and 7B parameters, and GPT-4o). For comparison, a 
basic mean-filling recovery technique was also implemented. 
Input sequences were shaped using a fixed-length window of 
100 data points, and a rolling window strategy of length 50 was 
used to generate overlapping segments. This approach pro-
vided sufficient contextual information for the models during 
prediction. An important component of the methodology was 
hint engineering. Different hint formulations were systemati-
cally evaluated to determine their impact on the ability of LLM 
to accurately predict missing GPS values. The performance 
was quantified using the following metrics: mean absolute 
error (MAE), mean square error (MSE), and root mean square 
error (RMSE). These metrics allowed for a comparison be-
tween the LLM result and the baseline method, which helped 
reveal the relative advantages and limitations of the proposed 
imputation technique. The imputation algorithm is designed 
so that the number of predicted values exactly matches the 
number of missing values in the data sequence. The algorithm 
starts with the initialization of the prompt. First, a predefined 
prompt template is called, which instructs the LLM to perform 
the imputation. After that, a segment of GPS data that contains 
both observed data points and missing values is selected and 
inserted into the prompt template. The next step is to count the 
number of missing values in the sequence, which determines 
the target number for the LLM imputation process.

Once the prompt is filled with the appropriate data se-
quence, it is fed to the LLM for prediction. The model is ex-



Eastern-European Journal of Enterprise Technologies ISSN-L 1729-3774; E-ISSN 1729-4061	 4/9 ( 136 ) 2025

10

plicitly instructed to return exactly the number of values that 
are missing. After receiving the output, the algorithm checks 
whether the number of values returned matches the expected 
number. If the numbers match, the imputed values are direct-
ly inserted into the sequence. However, if a mismatch occurs, 
the algorithm enters the retry phase. The retry mechanism 
uses a secondary prompt that provides additional context, 
including the previously failed sequence as an example, and 
repeats the requirement for the accuracy of the number of 
missing data. This retry process is performed up to N times or 
until the LLM output exactly matches the required number. 
If the mismatch persists after N retries, a final adjustment is 
made. At this point, if the absolute difference between the 
expected and predicted numbers is within a predefined range 
M, the algorithm completes the imputation, taking the min-
imum of the two values. If the difference exceeds this range, 
the retry process is repeated for N more attempts.

The process can be described in pseudocode as follows:

Algorithm ImputeMissingValues(sequence, promptTem-
plate, retryPrompt, N, M)

    missingCount ← countMissing(sequence)
    prompt ← fillTemplate(promptTemplate, sequence)
    predicted ← LLM(prompt)
    predictedMissingCount ← countMissing(predicted)
    
    retries ← 0
    // Initial attempt and iterative retries
    while predictedMissingCount ≠ missingCount and 

retries < N do
        prompt ← fillTemplate(retryPrompt, sequence, pre-

dicted)
        predicted ← LLM(prompt)
        predictedMissingCount ← countMissing(predicted)
        retries ← retries + 1
    end while

    // Final check if count still does not match
    if predictedMissingCount ≠ missingCount then
        if |missingCount - predictedMissingCount| ≤ M then
            // Adjust prediction to use the minimum valid count
            predicted ← adjustPrediction(predicted, missing-

Count)
        else
            // Additional retries if the adjustment condition 

is not met
            for i from 1 to N do
                prompt ← fillTemplate(retryPrompt, sequence, 

predicted)
                predicted ← LLM(prompt)
                predictedMissingCount ← countMissing(pre-

dicted)
                if predictedMissingCount = missingCount then
                    break
                end if
            end for
        end if
    end if

    return predicted

Analysis of the completion results revealed that discrep-
ancies in sequence length can arise for two main reasons: 
model hallucinations or tokenizer-related problems. In the 

first case, which was observed mainly in models with less 
than 7 billion parameters, the phenomenon of model halluci-
nations led to the output of sequences that were significantly 
longer than expected. In the second case, the discrepancies 
arose due to the inherent differences between the number 
of tokens and the actual sequence length; a large language 
model could generate a different number of tokens than the 
expected sequence length, leading to minor variations in the 
final result. Choosing a minimum length between the ex-
pected and generated sequence turned out to be an effective 
compromise that increases the consistency of the recovery 
process and maintains high accuracy.

4. 4. Dataset description
Our study began by selecting the VPAIR dataset [26] as 

the primary source of GPS information. In order to com-
prehensively assess the impact of the data representation 
technique on the efficiency of imputation procedures, three 
dataset variants were generated:

1) original GPS coordinates [27];
2) GPS coordinates transformed into the Earth-Centered, 

Earth-Fixed (ECEF) coordinate system to ensure spatial 
consistency;

3) shifted coordinates in the ECEF system to standardize 
the range of input data.

To simulate real-world scenarios with incomplete data, 
gaps were systematically introduced into the generated data-
sets. Sequences with different levels of missing data and se-
quence lengths were generated, which allowed for a thorough 
assessment of the robustness of the models to different levels 
of data degradation.

This study uses the VPAIR dataset, an innovative dataset 
specifically designed to address Visual Place Recognition 
(VPR) and Visual Localization (VL) tasks in large-scale open 
environments. The VPAIR dataset fills a significant gap in 
existing studies that have mostly focused on ground-based 
or low-altitude aerial platforms. It contains images acquired 
from a light aircraft at an altitude of 300–400 meters over a 
107 km route that passes through urban, agricultural, and 
forested landscapes (Fig. 1). The images are accompanied by 
high-quality reference renders, dense depth maps, and ac-
curate six-degree-of-freedom (6-DoF) poses computed from 
GNSS/INS data. Fig. 2 shows the spatial coordinates versus 
time, for each variable separately.

 
  Fig. 1. Airplane flight path in the VPair dataset
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The authors of the dataset show that conventional VPR/VL  
methods, such as NetVLAD and D2-Net, have limited per-
formance due to in-plane rotations. These rotations are 
typical of high-altitude images. In contrast, rotation-resistant 
descriptors provide higher recognition quality. The main 
advantages of VPAIR are its scale, environmental diversity, 
and integration of publicly available geospatial data to create 
reference renders, which contributes to the reproducibility of 
studies. High reliability of the data is additionally ensured 
by careful sensor calibration using Kalibr and hardware syn-
chronization. Among the limitations, it should be noted that 
the data were collected during a single day, which makes it 
impossible to take into account seasonal and lighting chang-
es, as well as possible discrepancies between the rendering 
of reference images (with model accuracy up to 0.5 m) and 
real-world conditions. Furthermore, the simplification of the 
reference poses to fixed orientations with the camera point-
ing vertically downwards may limit the application of the 
dataset to dynamic aerial platform tasks.

Although experiments have shown the computational 
inefficiency of local feature-based approaches, the practical 
deployment of such systems remains an open question. The 
VPAIR publication provides a strong benchmark for further 
development of air navigation technologies under conditions 
of limited GNSS availability, which is especially relevant 
in the context of emerging applications such as Urban Air 
Mobility.

Our study used GPS data to solve the problem of filling in 
missing values in spatial localization tasks. The GPS struc-
ture of the dataset provides absolute positional references and 
integrates with the North, East, Down (NED) convention, 
which allows for a full-fledged estimation of positions. These 
positional data are critical for the development and validation 
of methods for interpolating missing location information, 
especially given the significant coverage of trajectories in the 
dataset. The structured nature of GPS data creates an ideal 

basis for devising reliable methods for estimating missing 
values, providing the ability to evaluate the effectiveness of 
interpolation approaches at different spatial scales.

The integration of high-precision GPS data creates a 
reliable basis for the development of algorithms aimed 
at ensuring continuous spatial tracking, which is criti-
cal for navigation and mapping applications in conditions 
of positional continuity disruption. The scalability of the 
dataset and the applied technical synchronization mech-
anisms ensure its suitability for the development of re-
liable localization systems in aeronautical scenarios.

4. 5. Dataset preprocessing
For the missing value imputation task, a portion of the 

VPAIR dataset containing a sequence of GPS flight path coordi-
nates was used, pre-processing it in several ways for the exper-
iments. The original data were represented in a geodetic coor-
dinate system in the LLA format (latitude, longitude, altitude), 
with reference to the WGS 84 (World Geodetic System 1984) el-
lipsoid, which is the global standard for GPS and GNSS applica-
tions. Latitude (ϕ) defines the angular position north or south of 
the Earth’s equator in the range from −90° (South Pole) to +90° 
(North Pole). Longitude (λ) defines the angular position east or 
west of the prime meridian (Greenwich, United Kingdom) in 
the range from −180° to +180°. Height (h) represents the height 
above the WGS84 ellipsoid, a mathematically defined surface 
that approximates the shape of the Earth with a semi-major axis 
length of 6,378,137 meters and an oblateness factor of 1/298.257.

To ensure reliable imputation, three separate datasets 
were generated based on the original LLA coordinates. LLA 
dataset. The original geodetic coordinates were retained 
for basic analysis. ECEF dataset. The LLA coordinates 
were transformed into the Cartesian Earth-Centered, Earth-
Fixed (ECEF) (X, Y, Z) system using the WGS84 ellipsoid pa-
rameters. The transformation is performed using formula (2), 
the radius of the principal vertical of curvature

 

 
  

 
 

 
  a                                                                                                                  b

 

 
  c

Fig. 2. Change in spatial coordinates over time: a – longitude; b – latitude; c – altitude
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    ,

1    sin

aN
e φ

=
−

				    (2)

where a = 6,378,137 (semi-major axis), e2=2f – f 2 (eccentrici-
ty squared), and f = 1/298.257 (flattening).

Then the new ECEF coordinates are calculated from 
formulas (3) to (5):

( )    cos cos ,X N h φ λ= + 				    (3)

( )    cos sin ,Y N H φ λ= + 				    (4)

( )2    1     sin .Z e N h φ = − +  				   (5)

The transformations (3) to (5) simplify spatial computa-
tions by representing positions in a three-dimensional global 
coordinate system with the X, Y, and Z axes centered at the 
Earth’s core. An example of spatial coordinates with generat-
ed missing values is shown in Fig. 3.

Shifted ECEF dataset. Shifting the ECEF coordinates to 
a relative coordinate system by moving the origin to the spa-
tial minimum of the trajectory. For each ECEF component 
X, Y, Z, the minimum value over the entire dataset is first 
computed:

{ }( )min  min ,iX X= 				    (6)

{ }( )min  min ,iY Y= 				    (7)

{ }( )min  min ,iZ Z= 				    (8)

where Xi, Yi, Zi are the ECEF coordinates of the i-th data 
point. Using the result of calculations (6) to (8), the shifted 
coordinates are calculated from formulas (9) to (11):

min      ,i iX X X−′= 					    (9)

m n
'

i  ,    ii YY Y= − 				    (10)

min      .i iZ Z Z−′= 					     (11)

The transformation according to formulas (9) to (11) 
ensures that all coordinates are non-negative and relative 
to point 0, which effectively linearizes positional shifts and 
reduces numerical instability in algorithms sensitive to large 
absolute values.

Also, for each data set, aggregated sequences are created 
by combining N consecutive records and calculating their 
average. For a component of the coordinate xi (for example, 
latitude, longitude, or altitude), the aggregated average for the 
kth group is determined using formula (12) as

( )1 1

,1 k N
i

i kN

x x
N

+ −

=

= ∑ 				    (12)

where k ∈ {0, 1, …, ⌊M/N⌋ − 1} and M is the total number 
of data points. The computed aggregation using a sliding 
window smooths out high-frequency noise and reduces 
random GPS errors while preserving the trajectory struc-
ture.

The resulting datasets – LLA, ECEF, and shifted ECEF – 
provide complementary representations of the flight path, 
allowing for a systematic evaluation of imputation methods 
in different coordinate systems with different scales.

4. 6. Generation of missing values
Missing values are introduced into the GPS sequence by 

replacing adjacent data blocks with NaN values, which sim-
ulates situations such as sensor failures or signal loss. The 
mathematical model of this process is as follows.

Parameters: number of data points in the sequence – N, 
L – length of the lost data block. Number of lost data blocks – 
m, calculated from formula (13)

 total missing values  .m
L

= 			   (13)

Constraints:
1. No intersection of blocks. For any two blocks starting 

with indices si and sj , condition (14) must be satisfied so that

,  .i js s L i j− ≥ ∀ ≠ 				    (14)

2. Generation limits. For each block, condition (15) must 
be satisfied, the block must fit within the sequence

{ },  1, ...,  .ks L N k m+ ≤ ∀ ∈ 			   (15)
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c

Fig. 3. Spatial coordinates after generating missing values: 
a – longitude; b – latitude; c – altitude
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Procedure:
1. Checking the feasibility of generation: If the required 

space for m blocks satisfies condition (16)

               1,m L N L× > − + 			    	 (16)

the process is impossible because there is not enough space 
for non-overlapping blocks.

2. Determining the start indices of the sequences: for 
each block  k ∈ {1, …, m}. Randomly choose sk uniformly 
from {0, 1, …, N – L}, such that sk is at least L units away 
from all previous start indices.

3. Generating missing values: for each block k, values from 
the [sk, sk+L] interval are replaced by NaN, using formula (17)

: .
k k Ls sx NaN

+
← 				    (17)

Mathematical guarantees:
1. Total number of lost data: m × L.
2. Non-intersection of blocks is ensured by interval con-

straints.
3. Determinism is achieved by pseudo-random filling for 

the reproduced sample.
Example.
For N = 1000, L = 20. Number of lost sequences: 

1000/20 = 50. Initial indices s1, s2, …, s50 are generated 
such that |si – sj| ≥ 20 ∀ i ≠ j.

Using the aforementioned approach to generating lost 
data and grouping (12), the generator settings were formed 
and given in Table 1.

Fig. 2 shows the change in coordinates over time, while 
Fig. 3 demonstrates a variant of the set with lost data, where 
N = 500, L = 50.

Table 1

Lost data generation settings values

Number of missing 
values N

Sequence length of 
missing values L

Number of elements 
in the group

120 10 20
250 20 10
500 25 0
500 30 0
500 50 0
700 10 0
700 30 0
700 70 0

4. 7. Metrics
For the comparative analysis of filling in missing GPS val-

ues, typical metrics for assessing the accuracy and reliability 
of forecasting in time series were used. The selected met-
rics (18) to (20) provide a comprehensive analysis of various 
aspects of forecasting performance

( )
1

    2
  .

n i i

i

y x
MSE

n=

−
= ∑ 	

	  (18)

The mean squared error (MSE) emphasizes larger devia-
tions by squaring the errors before averaging, making it partic-
ularly sensitive to outliers and large discrepancies in forecasts

( )
1

    2
  .

n i i

i

y x
RMSE

n=

−
= ∑ 		   (19)

The root mean square error (RMSE) converts MSE to the 
original coordinate units, which facilitates intuitive interpre-
tation while maintaining sensitivity to larger errors. RMSE 
provides a balanced estimate of the accuracy of the inter-
polation, taking into account both systematic and random 
components of the prediction error

1

1    .
n

i ii
MAE y x

n =
= −∑ 		   (20)

The mean absolute error (MAE) is the average of the error 
magnitudes in the predictions, providing easy interpretabil-
ity in the original coordinate units. MAE linearly scales all 
deviations, allowing for an assessment of the absolute accu-
racy of the interpolation.

5. Results of zero-shot GPS data reconstruction with 
large language models

5. 1. Choosing the optimal GPS coordinate repre-
sentation format

To assess the impact of data representation on the accuracy 
of GPS data reconstruction, a comparative analysis was conduct-
ed using three variants of the VPAIR dataset: the original de-
gree-based format (VPair), a version converted to Earth-centered 
coordinates (ECEF) (VPair ECEF), and a shifted variant (VPair 
Shifted). The process involved shifting coordinate values to zero 
to reduce the instability associated with accuracy, which is a 
critical adjustment given the sensitivity of degree-based GPS 
data to small decimal errors. For the baseline comparison, miss-
ing values were imputed using the simple mean method, which 
served as a benchmark for assessing the improvements achieved 
by the large language models. Experiments were conducted on 
three leading large language models – Llama 3.2, Gemma, and 
GPT-4o – to ensure model-independent validity, with the results 
aggregated and averaged across all models. Fig. 4 illustrates 
the percentage improvement in reconstruction accuracy for 
altitude, latitude, and longitude relative to the baseline model.

Tables 2–4 compare three LLMs in latitude, longitude, 
and altitude under three preprocessing regimes.

Table 2

Average performance of tested models on the VPair set

Model
Latitude Longitude Altitude

mae mse rmse mae mse rmse mae 
(103)

Mse 
(105)

Rmse 
(104)

gemma:7b 7.55 0.111 30.6 11.5 0.274 52.2 7.1 2.16 4.06
gpt-4o 17.8 0.246 49.5 35.3 0.786 88.4 45.4 18.9 13.6

llama3.2 16.2 0.102 220 12.3 2.96 99.6 34.5 109 23.9

Table 3

Average performance of tested models: on the Vpair ECEF set 

Model
Latitude Longitude Altitude

mae Mse 
(105) rmse mae Mse 

(105) rmse mae Mse 
(105) rmse

gemma:7b 58.8 7.94 282 153 26.6 516 79.8 6.20 249

gpt-4o 147.0 17.2 415 192 29.7 545 11.1 12.2 350

llama3.2 61.5 34.9 425 60.7 16.0 368 100.0 77.4 717

The shifted dataset (VPair Shifted) demonstrated consis-
tent superiority in two out of three geospatial dimensions. Giv-
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en these results, further research is focused on this variation 
of the dataset. This solution fits the broader goals of untrained 
LLM applications, where minimizing preprocessing complexi-
ty while maximizing robustness to errors is a top priority.

Table 4

Average performance of those tested on the VPair Shifted set 

Model
Latitude Longitude Altitude

mae Mse 
(104) rmse mae Mse 

(104) rmse mae Mse 
(104) rmse

gemma:7b 96.0 13.1 358 114.0 20.2 447 79.2 8.68 292
gpt-4o 124.0 15.2 389 183.0 27.8 525 90.3 8.31 280

llama3.2 41.0 12.1 264 57 11.5 320 54.3 3.18 312

5. 2. Determining the optimal instruction variant
Effective prompt design is critical for LLMs that will be used 

without training, especially in accuracy-sensitive tasks such as 
geospatial data reconstruction, where ambiguous instructions 
can exacerbate error propagation. The investigated prompts 
were clearly structured around the task of reconstructing se-
quences containing NaN values, with the requirement: replace 
only a specified number of missing values (nan_amount).

As shown in Table 5, each prompt candidate included 
these constraints but differed in the details. For example, 
Prompt 1 – generated via ChatGPT – included an explicit I/O 
example (“[4915856.190, nan, 4915908.055]” → “[4915856.190, 
4915882.090, 4915908.055]”) to enforce both nan substitution 
and sequence length.

Prompt 4, which was hand-crafted, was reduced to 
concise rules, retaining the example, while Prompts 
2–3 omitted or simplified the instructions. Importantly, all 
prompts emphasized the need to restore predictions to the 
nan_amount condition, which provided strict control over 
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Fig. 4. Spatial coordinates after generating missing values: 
a – latitude; b – longitude; c – altitude

Table 5

Examples of prompt candidates

Prompt Context

Prompt 1

You are a system designed to accurately predict and replace 
missing values (‘nan’) in GPS sequences in the Earth-centered, 
Earth-fixed coordinate system. Replace ‘nan’ values only with 

accurate predictions based on patterns in the provided se-
quence. The output must contain exactly {nan_amount} values. 
Any deviation from this length is unacceptable. Respond only 
with the corrected sequence in square brackets, with values 

separated by commas. For example, if the input is [4915856.190, 
nan, 4915908.055], the output should be [4915856.190, 

4915882.090, 4915908.055]. Do not include explanations, 
comments, or any extra text only the corrected sequence in the 
specified format. Here is the input data: {content}. The output 
must contain exactly {nan_amount} values. Recalculate and 

regenerate predictions until this requirement is met

Prompt 2

You are a system designed to predict and replace missing 
values (‘nan’) in GPS sequences in Earth-centered, Earth-fixed 

coordinate system. Follow these strict rules:1. Replace ‘nan’ 
values ONLY with accurate predictions based on the given 

sequence. 2. The output MUST have exactly N values, where 
N is specified. Any deviation from this length is incorrect. 3. 
Respond ONLY with the corrected values in square brackets, 
separated by commas. 4. DO NOT include explanations, extra 
text, or code in your response only the corrected values. Here 
is the input data:\n{content}The output MUST contain exactly 
{nan_amount} corrected values. Re-calculate and regenerate 

until the response has {nan_amount} values

Prompt 3

You are a system designed to predict and replace missing 
values (‘nan’) in GPS sequences in Earth-centered, Earth-
fixed coordinate system. Follow these strict rules: Replace 
‘nan’ values ONLY with accurate predictions based on the 
given sequence. Respond ONLY with the corrected values 

in square brackets, separated by commas. Example of input: 
[4915856.190, nan, 4915908.055] Example of prediction: 

[4915856.190, 4915882.09, 4915908.055]. DO NOT include 
explanations, extra text, or code in your response only the 

corrected values. Here is the input data:{content} The output 
MUST contain exactly {nan_amount} corrected values. 

Re-calculate and regenerate until the response has {nan_
amount} values

Prompt 4

1. You are a system designed to predict and replace missing 
values (‘nan’) in GPS sequences in Earth-centered, Earth-fixed 

coordinate system. Follow these strict rules:. Replace ‘nan’ 
values ONLY with accurate predictions based on the given 
sequence. The output MUST have exactly N values, where 

N is specified. Any deviation from this length is incorrect. 3. 
Respond ONLY with the corrected values in square brack-
ets, separated by commas. Example of input: [4915856.190, 

nan, 4915908.055] Example of prediction: [4915856.190, 
4915882.09, 4915908.055]. DO NOT include explanations, 

extra text, or code in your response only the corrected values. 
Here is the input data:\n{content}. The output MUST contain 

exactly {nan_amount} corrected values. Re-calculate and 
regenerate until the response has {nan_amount} values
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preserving the integrity of the dataset. In case of a mismatch 
between predicted and missing values, re-prompts were used.

Table 6 collates the performance by latitude, longitude, 
and altitude using various performance metrics.

Based on the results of this set of experiments, Prompt 4 
was selected for further development of an approach to recov-
ering lost GPS data.

5. 3. Comparative assessment of the quality of re-
covery for different language models

The evaluation system included strict measures to 
account for two main sources of stochasticity: variability 
in the generation of sequences of missing values and the 
inherent diversity of predictions in autoregressive mod-
els. To reduce the influence of the first factor – random 

patterns of missing values that affect the 
complexity of the task – the results were 
aggregated across several independent 
runs for each model, with the average val-
ues of performance metrics (e.g., MAE) 
to ensure reliability. The boxplots (Fig. 5) 
visualize the distribution of MAE values 
for latitude, longitude, and altitude, high-
lighting central tendencies (mean, medi-
an) and ranges of variability.

 

 
  a 

 
  b 

 
  c 

Fig. 5. Model results in terms of geodetic variables: a – latitude; b – longitude; c – height

Table 6

Prompt candidate productivity

Prompt
Latitude Longitude Altitude

mae mse (104) rmse mae mse (104) rmse mae mse (104) rmse
Prompt 1 33.9 4.9 203 87.0 18.2 422 57.6 7.15 264
Prompt 2 39.2 51.2 401 72.2 15.3 386 50.8 6.44 253
Prompt 3 50.1 5.48 228 52.1 9.95 304 22.9 2.10 134
Prompt 4 27.9 4.29 205 33.8 5.63 237 43.2 3.29 180
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A key factor in the application of autoregressive LLMs is 
the inherent variability of the predictions due to stochastic 
generation. For quantitative measurement, the stability of the 
models was assessed by performing 5–7 parallel inference iter-
ations for each sample and measuring the variance of the out-
put across latitude, longitude, and altitude. Fig. 6 demonstrates 
the trade-off between mean efficiency (MAE) and variance.

Although variability is a potential problem, it was re-
duced by averaging the results. Aggregation across parallel 
runs helps detect hallucinations and reduce the impact of 
outliers. Combining with intact context further increases the 
robustness of the results.

6. Discussion of results based on zero-shot imputation 
of GPS data using LLM

Our experimental results (Fig. 4) clearly show the advan-
tage of moving away from the use of a degree representation 
of the data. Thus, for the VPair Shifted set, an improvement 
of 58.0% was achieved for the reconstruction of the height, 
which significantly exceeded the indicators of the original 
VPair (46.2%) and VPair ECEF (33.5%). Similarly, for the 
longitude, VPair Shifted achieved an improvement of 59.1%, 
which exceeded the indicators of VPair (42.7%) and VPair 
ECEF (46.3%). The reconstruction of the latitude showed a 
different pattern: VPair ECEF achieved the highest improve-
ment (55.0%), slightly exceeding VPair Shifted (51.0%), while 
the original VPair demonstrated 44.7%. These results high-
light the relationship between the preprocessing of the data 
set and the geometric properties of the coordinates.

Analysis of our experimental results (Table 4) reveals 
that the optimal formulation of the instruction signifi-
cantly affects the accuracy of the reconstruction. Prompt 4 
achieved better accuracy in recovering latitude (MAE: 27.9, 
MSE: 4.29E+04), which is explained by the balance of 
clear rules and illustrative format. In contrast, the rigid 
structure of Prompt 1 led to an increased MSE for longitude 
(18.2E+04), indicating that excessive constraints inhibit 
adaptability. It is noted that Prompt 3 achieved good re-

sults for altitude (MAE: 22.9), probably due to its conciseness 
and inclusion of a guided example but showed a deterioration 
in the results for latitude (MAE: 50.1), indicating sensitivity to 
specific coordinates. The striking differences in performance 
demonstrate that precise engineering of prompts – in partic-
ular, explicit formulation of NaN handling and precise value 
counter – directly affects the reliability of reconstruction. These 

results indicate the advantage of using prompts that com-
bine task specificity (e.g., nan replacement rules) with 
flexibility, allowing LLM to combine accuracy with con-
textual recovery of missing data. The results also confirm 
that explicit specification of the number of missing values 
and formatting in prompts is not only useful but also nec-
essary for reliable reconstruction without prior training in 
GPS applications. 

Unlike [20], in which recurrent neural networks are 
trained on labeled time series with gaps, the zero-shot 
LLM approach does not require any training. The pro-
posed method uses only the prompt formulation to di-
rectly generate missing values in GPS trajectories. This is 
made possible by the ability of LLM to interpret a digital 
sequence in which the context of neighboring coordinates 
is encoded by tokens, and to model nonlinear spatiotem-
poral dependences without a specific architecture.

Compared to [21], convolutional-recurrent autoen-
coders spend significant resources on hyperparameter 
tuning. In addition, they require large, labeled sets for 
simultaneous extraction of spatial and temporal features. 
The proposed approach performs zero-shot imputation. 
In this case, prompt serves as an “instruction” for restor-
ing coordinates. This is possible because LLMs trained 

on huge corpora already have internal mechanisms for pre-
dicting numeric tokens taking into account the context. 

In contrast to [12], in which LLMs were used only for 
zero-shot prediction of time series, our approach specifically 
optimizes prompt for GPS data imputation. This approach 
makes it possible to fill spatiotemporal gaps in trajectories, 
rather than just predicting the next values. This is possible 
because we form prompt as a description of the spatiotempo-
ral context, which allows LLMs to understand neighboring 
points and generate the most likely value of the gap.

While [27] uses the simple mean method as a basic strat-
egy and obtains averaged “plateaus” over long gaps, the pro-
posed method reconstructs the trajectory using the context 
of neighboring GPS coordinates. Thus, the Llama 3.2 mod-
el for longitude (Fig. 5) demonstrated the best performance, 
achieving the lowest median MAE value (median 52.14 units;  
IQR: 35.29–72.17), outperforming the mean method (me-
dian: 70.18 units; IQR: 58.2–107.24) and GPT-4o (medi-
an: 182.65 units; IQR: 165.42–199.09). Gemma performed 
slightly better (median: 117.17 units) and had a narrower 
range (IQR: 105.18–124.12). The mean method was most sensi-
tive to sequence complexity. In terms of width, Llama 3.2 per-
formed best with the lowest median MAE (36.57 units; IQR: 
30.82–49.95), followed by the baseline method (median: 
49.3 units; IQR: 47.21–99.17), and Gemma lagged significantly 
behind (median: 95 units; IQR: 73.52–120.31). The GPT-4o mod-
el performed worst (median: 117.41 units; IQR: 114.21–130.21). 
A different trend was found for altitude: The baseline method 
showed (median: 44.2 units; IQR: 39.57–75.96), Llama 3.2 – 
(median: 49.17 units; IQR: 34.76–57.61), Gemma – (median: 
85.02 units; IQR: 60.55–88.6) and GPT-4o – (median: 90.2 units; 
IQR: 75.48–106.08). Analysis highlights the different perfor-
mance profiles between the models, due to their robustness to 

 

 
  

Fig. 6. Comparing model performance with its stability
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stochastic variables. Llama 3.2 was the most robust overall, 
achieving high results for longitude and latitude, although it 
was inferior to the baseline method for altitude. The baseline 
method, while competitive for altitude, showed increased 
sensitivity to the complexity of missing values for longitude 
and latitude, suggesting limited adaptability. Gemma demon-
strated moderate stability for longitude but had significant 
difficulty for latitude and altitude. GPT-4o showed univer-
sally poor results, suggesting problems with generalizing 
geospatial patterns.

Based on our analysis of the variance of predic-
tions (Fig. 6), the GPT-4o model showed the most stable 
reconstructions. This is explained by its deterministic cach-
ing of results, which eliminates stochastic randomness. 
However, this was accompanied by increased MAE values, 
suggesting that strict adherence to cached responses limits 
adaptive predictions. In contrast, the Gemma and Llama 
3.2 models showed a gradual increase in variability. Gemma 
showed moderate variance but inconsistent results, reflecting 
the sensitivity of its stochastic intermediate layers to changes 
in input data. Llama 3.2 demonstrated the highest variance, 
especially in longitude, probably due to its flexible token 
sampling strategy. It was noted that this variability correlated 
with its high median MAE in latitude, indicating a trade-off: 
exploring a wider solution space increases both the potential 
for prediction and the instability.

The limitation of the proposed approach is the need to 
call a large language model for each gap or window of several 
points. Although LLM inference is faster than full training, 
processing large GPS datasets in real time requires signifi-
cant computational resources. Therefore, such an approach 
is advisable to consider mainly as a post-processing stage, 
and not as a direct component of the real-time pipeline in 
constrained environments.

The disadvantage of the proposed approach is the sen-
sitivity of LLM to the length of the input sequence. In the 
case of long gaps (>30 points), LLM sometimes focuses on 
the general trend of the local context, ignoring small vari-
ations, which leads to averaged trajectories. This reduces 
the accuracy of the recovery and demonstrates the need 
for a differentiated approach to processing different gap 
lengths.

Further research may aim at devising an adaptive ap-
proach to prompt window generation. Automatic determi-
nation of the number of contextual GPS points depending on 
the sequence length. In addition, it is advisable to experiment 
with prompt engineering for short and long gaps separately to 
maximize the reconstruction accuracy in each case. Expand-
ing the application domain of zero-shot LLM to other types 
of spatiotemporal data. For example, vehicle trajectories or 
meteorological phenomena dynamics. In combination with 
the integration of multimodal inputs, it could contribute 
to increasing the robustness of imputation under complex 
conditions.

7. Conclusion

1. Three strategies for representing coordinates have 
been implemented. Further analysis revealed that the most 
effective strategy is the ECEF Shifted strategy, where the 
coordinates are shifted using a shift to the starting point. 
This approach reduces the error by 51–59% for latitude and 
longitude, which demonstrates its effectiveness in restoring 
GPS data.

2. The optimal option for the initial instruction (prompt) 
was selected for the zero-shot method of reconstructing 
missing GPS data using large language models. A re-query 
mechanism was also implemented, which makes it possible 
to reduce the probability of inaccurate predictions in the 
event that the number of restored coordinates does not meet 
expectations. The re-query mechanism provides reliability in 
data restoration, which is important for complex scenarios 
where the accuracy of coordinates is critical.

3. A comparative assessment of the accuracy of different 
language models has shown that Llama 3.2 provides the best 
results for GPS data reconstruction, outperforming GPT-4o 
and Gemma. For latitude, Llama 3.2 achieved MAE = 36.57, 
and for longitude, MAE = 52.14, which are 2.3 times better 
results compared to GPT-4o. This can be explained by the 
better spatial thinking of the model, which is provided by 
specialized query tuning. Such results allow us to conclude 
that open models are superior in geospatial analytics tasks, 
where flexibility and adaptability are critical.
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