u| =,

This study focuses on the reconstruction of missing GPS
trajectory data. The principal issue relates to restoring geo-
spatial coordinates in the absence of large volumes of labeled
data and under conditions where conventional spatial-tem-
poral models demonstrate limited generalization capabilities.

This paper proposes a large language model-based
approach to address the reconstruction task without requiring
prior training on specialized datasets. To reduce dependence
on domain-specific features, the focus was on optimizing data
preprocessing and constructing effective prompts. Three coor-
dinate representations have been explored: original degree-
based values (using the VPAIR dataset), the Earth-Centered,
Earth-Fixed (ECEF) system, and ECEF coordinates shifted rel-
ative to the starting point of the trajectory.

Experimental results show that using centered ECEF coor-
dinates reduces the mean absolute error (MAE) by 51-59%
for both latitude and longitude compared to other represen-
tations. Conversion to the ECEF system also demonstrates
selective advantages in latitude reconstruction. To mitigate
the instability of autoregressive prediction, a multi-itera-
tion reconstruction strategy with result aggregation has been
implemented. The open-source model LLaMA 3.2 achieved the
highest accuracy (MAE: 36.57 for latitude and 52.14 for lon-
gitude), outperforming both other open models and the com-
mercial GPT-4o.

The proposed approach can be considered a via-
ble post-processing tool, particularly in missions involving
unmanned aerial vehicles or other mobile platforms where
part of the GPS data has been lost during acquisition
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1. Introduction

Autonomous mobile systems, in particular unmanned ae-
rial vehicles (UAVs), rely heavily on Global Positioning Sys-
tem (GPS) data to provide accurate positioning, navigation,
etc. GPS data provides three-dimensional geospatial coordi-
nates (latitude, longitude, altitude) and time information, which
is critical for the correct operation of autonomous control algo-
rithms in real time. However, due to technical or environmental
limitations, continuous access to GPS is not always possible.
Studies [1, 2] show that situations of GPS signal loss or degrada-
tion are common in urban environments, dense forests, tunnels,
and under the influence of radio frequency interference. Loss or
degradation of the signal creates significant operational risks.

Localization errors. In environments without access
to GPS, UAVs often rely on inertial measurement sys-
tems (IMUs) to estimate position using inertial navigation.
However, IMUs are prone to accumulating errors (such as
accelerometer drift and gyro noise), which leads to exponen-
tially increasing positioning errors over time.

Collision risks. In the absence of accurate geolocation
data, obstacle avoidance systems may incorrectly match
sensor data (e.g., LIDAR, cameras) to real coordinates, which
increases the likelihood of collisions.

Mission failure. Applications in agriculture, search and
rescue, or cargo delivery require high positioning accuracy.
GPS signal interruptions prevent correct tracking of way-
points, making such tasks unreliable.
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Existing approaches to GPS data recovery are typically
based on the use of machine learning models, such as re-
current neural networks or statistical methods [3-5], which
require special training on large, highly specialized GPS data
sets. However, such methods have a number of significant
limitations: requirements for a high-quality training dataset,
risks of overtraining, and difficulties in transferring models
to new geographical or contextual conditions.

In this context, a new class of models, large language
models, such as GPT [6, 7], Llama [8-10], Gemma [11], and
others, open up new perspectives. These neural networks,
trained on large-scale corpora of sequential text data, have an
architecture that supports generalization, memorization of
long-term dependences, and processing of structured inputs.
The ability of LLMs to zero-shot generalization [12], that is,
solving problems without prior training on a specific exam-
ple, makes them an attractive tool for the task of recovering
missing values in time series, in particular GPS sequences.

Although LLMs were not specifically trained on geo-
spatial data, their ability to reproduce patterns and logical
dependences between sequence elements suggests their ef-
fectiveness in trajectory reconstruction tasks. In study [13],
the importance of pre-processing, the choice of data repre-
sentation system, as well as the construction of an effective
text prompt that ensures the interpretability and correctness
of the answer, is particularly emphasized.

Therefore, studies on zero-shot reconstruction of GPS
data using large language models are relevant, especially in




the context of data post-processing for autonomous systems.
These results could be applied in real-world scenarios where
it is necessary to restore lost coordinates, in particular for
UAVs or other mobile platforms that face problems of GPS
signal loss due to technical or environmental limitations.

2. Literature review and problem statement

In [14], a real-time fuzzy motion control is proposed that
instantly smooths out external GPS signal perturbations,
providing robust navigation in the presence of obstacles. In
contrast, in [15], a visual-inertial scheme is described that
combines camera and inertial sensor data for navigation
in the absence of GPS communication. These approaches
demonstrate effectiveness in real-world scenarios but rely on
complex hardware setups and hybrid sensor systems, which
reduces their versatility.

In [16], splines are considered as a means to account for
smooth signal changes, but the authors emphasize that the
choice of spline order and node size can lead to overfitting.
In [17], the authors caution that its effectiveness depends
on the correct specification of models for each variable, as
well as on the size and distribution of missing data in the
multidimensional space. In [18], kriging is reported as a geo-
statistical method that optimally takes into account spatial
correlation. However, the authors note that the effectiveness
of kriging is based on strict assumptions about the station-
arity and isotropy of the process, as well as on the quality of
the variogram estimate, which can be resource-intensive in
the case of complex spatiotemporal irregularities. Paper [18]
also indicates that kriging under conditions of sparse data
or the presence of anomalies may give inaccurate forecasts
without the use of variogram correction methods. Thus, the
listed methods show high computational efficiency and the
ability to restore missing values, provided that the signal is
smooth and stationary. However, their linear assumptions
often do not correspond to the complex nonlinear dynamics
of modern GPS trajectories, worsening the accuracy during
sharp changes in speed or direction of movement.

In [19], the KNN method is considered easy to implement,
but its efficiency decreases in the case of uneven distribution of
gaps, since it does not take into account the temporal or spatial
structure of the data. In [20], RNN approaches demonstrate a
better ability to account for temporal dependence in multidi-
mensional series. However, the authors emphasize that such
models are sensitive to sequence length and may experience
difficulties with gradient decay or gradient explosion. The
approach in [21] is proposed as a means of simultaneously pro-
cessing spatiotemporal correlation but tuning the architecture
of the method requires significant computational resources and
careful validation on different data sets. In addition, the model
can overtrain on small samples and perform poorly with atyp-
ical gap patterns. The efficiency of the above methods depends
on the availability of large, labeled data sets, optimization of hy-
perparameters, and the ability of the model to generalize results
on data with gap patterns different from the training ones.

Hybrid models that combine spatiotemporal kriging
techniques with deep neural networks or graph neural net-
works [22, 23] demonstrate higher imputation accuracy by
integrating local spatial information with global temporal
trends. However, their effectiveness depends on the avail-
ability of auxiliary data and high computational resources for
fine-tuning parameters.

Despite significant progress, key challenges remain in
GPS imputation:

1) dependence on large datasets;

2) limitations in the domain adaptability of spatiotempo-
ral models;

3) non-generalizability to atypical omission patterns.

A likely option to overcome these difficulties is to use
large language models under a zero-shot mode, which do not
require retraining and are able to understand the semantics
of spatial-temporal sequences through text prompts. All this
gives grounds to argue that the study of zero-shot imputation
of GPS data by large language models is a reasonable and
promising area for the further development of spatial-tempo-
ral data restoration technologies.

3. The aim and objectives of the study

The aim of our study is to devise an approach to recov-
ering lost GPS data using large language models without ad-
ditional training. This will make it possible to implement an
effective GPS data post-processing module for imputation of
missing fragments in traffic monitoring systems, increasing
the accuracy and consistency of trajectories without the need
for additional training of profile models.

To achieve this aim, the following objectives were accom-
plished:

- to choose the optimal format for representing GPS co-
ordinates;

- to determine the optimal version of the instruction;

- to perform a comparative assessment of the quality of
recovery for different language models.

4. The study materials and methods

4. 1. The object and hypothesis of the study

The object of our study is the restoration of a sequence of
GPS coordinates from a real open dataset VPAIR, which con-
tains vehicle trajectories. The principal hypothesis of the study
assumes that the use of large language models with an optimal
data format, well-formulated instructions, and a retry mecha-
nism allows for the correct reconstruction of missed fragments
of GPS sequences without additional training.

The following assumptions were adopted:

- the influence of atmospheric or satellite failures on the
initial GPS data is not taken into account;

— the selected LLM model is able to interpret digital se-
quences in context, regardless of geographical reference;

-no additional training or tuning of the LLM is per-
formed.

4. 2. Large Language Models

Current large language models have revolutionized nat-
ural language processing through the use of a revolutionary
architecture known as a transformer. The transformative po-
tential of a transformer lies in its innovative structure, which
replaces sequential processing with a mechanism capable
of simultaneously covering all parts of the input sequence.
This is implemented using the attention mechanism, a key
innovation that allows models to dynamically evaluate the
relevance of different tokens, capture complex long-range
relationships, and build rich contextual representations. It
is this mechanism that underlies the effectiveness of trans-



former-based models, making them indispensable for a wide
range of applications.

The attention mechanism, proposed in [24] and sub-
sequently improved in [25], has become the foundation of
modern natural language processing. It addresses a critical
limitation of previous models, such as recurrent neural
networks (RNNs), by allowing dynamic focus on individual
parts of the input sequence. Unlike RNNs, which process
data sequentially and often struggle with long-range relation-
ships, the attention mechanism makes it possible to directly
capture relationships between distant elements regardless of
their positional distance. The mechanism computes a con-
text-sensitive representation of the input sequence, assigning
importance weights to its elements. Given a query vector Q,
which represents the current focus of the model, and a set of
key-value pairs (X, V), the mechanism computes a compati-
bility coefficient between the query and each key. These co-
efficients are normalized using a softmax function, as shown
in equation (1), to obtain weights that determine how much
each value contributes to the final output

A(Q.K,V)= softmax| ~=— [V, €))

where df is the dimensionally of the key vector. The scaling
factor is used to prevent excessive growth of scalar products,
which can lead to instability of gradients during training.
To improve the model’s ability to capture various types of
dependences in the data, researchers proposed a multi-head
attention mechanism. Instead of computing a single set of
attention weights, this mechanism uses multiple attention
“heads”, each of which has its own training linear transfor-
mations for the query, key, and value vectors. The outputs
of all heads are concatenated and projected back into the
original feature space, which allows the model to focus on
different aspects of the input data simultaneously. Building
on these improvements, the authors of [25] proposed a trans-
former architecture that has become a real paradigm shift
in sequence modeling. Unlike conventional models based
on recurrent or convolutional layers, transformers are fully
based on the attention mechanism, which allows them to
process entire sequences in parallel. This parallel process-
ing significantly increases computational efficiency, mak-
ing transformers particularly suitable for training on large
amounts of data using modern hardware. The transformer
architecture consists of two main components: an encoder
and a decoder. The encoder processes the input sequence and
generates a set of contextualized representations, while the
decoder generates the output sequence, guided by both the
encoder outputs and its own prior predictions. Each encoder
and decoder layer contains two key substructures: a multi-
head attention mechanism and a position-wise feed-forward
network. Multi-head attention allows the model to capture
complex dependences in the input data, while the fully con-
nected network applies a nonlinear transformation to each
position separately, further refining the representation.
Large language models are a revolutionary advancement
in natural language processing, fundamentally changing the
capabilities and applications of artificial intelligence. LLMs
are built on a transformer architecture that uses deep neural
networks with billions or trillions of parameters. This archi-
tectural innovation allows the model to dynamically assess
the importance of different tokens in a sequence, capturing

complex patterns and long-range dependences in text data.
The effectiveness of LLMs is based on a pre-training para-
digm, where models are trained on huge and diverse corpora
spanning hundreds of terabytes of text. This allows LLMs
to develop complex representations of language structure,
semantics, and even implicit knowledge about the world. By
training on such large data sets, these models gain the ability
to generalize to a wide range of linguistic tasks, from text
generation and summarization to question answering and
machine translation. Pre-training is usually accompanied
by additional tuning or prompt-based adaptation, where
the model is tuned to specific tasks, allowing for further
improvements in its performance and versatility. One of the
most significant achievements of LLMs is their ability to
perform few-shot or zero-shot training, where the model can
generalize to new tasks with minimal or no specific training
data for those tasks. This ability is largely due to the scale of
the models and the amount of pre-training that gives them
a form of meta-learning. For example, models like GPT-3 [6]
have demonstrated an impressive ability to generate coherent
and contextually relevant text, even for tasks for which they
were not explicitly trained.

4.2.1.Llama

Llama has been selected as the base model among open
language models due to its technical characteristics and
architectural innovations. The Meta AI family of large lan-
guage models developed by Meta is a significant contribution
to the field of natural language processing. Since its incep-
tion, Llama has gone through several stages of evolution,
each of which has brought improvements in architecture,
training methods, and performance.

Llama vl [8] laid the foundation for the Llama family by in-
troducing a robust transformer-based architecture. The model
had a standard transformer-decoder with multi-head self-at-
tention and pre-normalization, which allowed it to effectively
capture contextual relationships between words. Llama v1 was
trained on a diverse corpus of text data, including books, web
pages, and academic papers, using a holistic language model.
This approach allowed the model to predict the next token in
a sequence, thereby learning the statistical structure of lan-
guage. The efficient use of computational resources made the
model a major advance in the field of large language models.

Building on Llama v1, Llama v2 [9] introduced sever-
al key improvements that improved both efficiency and
performance. Architecturally, Llama v2 incorporated the
Grouped Query Attention (GQA) technique, which reduced
the computational complexity and memory requirements
of the self-attention mechanism. This innovation allowed
the model to work more efficiently with longer sequences
and larger data sets. The training dataset for Llama v2 was
expanded and carefully selected, including synthetic data
and instructional tuning datasets to improve performance
for specific tasks. Additionally, Llama v2 introduced in-
structional tuning and human feedback-based reinforcement
learning (RLHF), which allowed the model to more accurate-
ly respond to human preferences and increased its utility in
real-world applications. Llama v2 also expanded the context
window, allowing the model to process and generate longer
sequences of text. This improvement was particularly useful
for tasks that required consistency across large texts, such as
document summarization or long-form text generation.

Llama v3 [10] is the latest advancement in the Llama
series, focusing on scalability, efficiency, and multimodal



capabilities. Although the architectural changes between
Llama v2 and Llama v3 are relatively minor, the latest version
introduces a larger context window and improved rotational
embedding (RoPE) parameters, which allow for better han-
dling of long sequences. The biggest improvements in Llama
v3 relate to the training data and learning methods. The mod-
el was pretrained on a dataset exceeding 15 trillion tokens,
seven times larger than Llama v2, and includes four times
more code. In addition, over 5% of the training data consists
of high-quality content in non-English languages, covering
over 30 languages, significantly enhancing its multilingual
capabilities. Meta has implemented advanced data filters for
Llama v3, including heuristic filters, NSFW filters, semantic
deduplication, and text classifiers trained with Llama 2 to
ensure data quality. Llama v3 also benefits from improved
post-training tuning techniques that reduce false positives,
improve consistency with user intent, and diversify model
responses. One notable feature of Llama v3 is the consistent
logarithmic performance improvement, even after training
on significantly larger data sets than expected. This trend
challenges conventional scaling laws, such as optimal com-
putational scaling using the Chinchilla model, as the model
continues to improve beyond a typical performance plateau.
To ensure reliable and unbiased evaluation, Meta has intro-
duced a new human scorer set consisting of 1,800 cues across
12 critical use cases, including advice-giving, brainstorming,
and creative writing. The training methodology includes im-
provements in parametric efficiency techniques, such as op-
timized attention mechanisms, which reduce computational
costs while maintaining performance. The data selection
process for training prioritizes high-quality multilingual
content that provides strong cross-linguistic capabilities. This
careful data selection, combined with improved pre-training
objectives, allows Llama v3 to achieve performance compara-
ble to much larger models while maintaining a more efficient
number of parameters.

4.2.2. GPT-40

The selection of GPT-4 [7] as the reference model for
closed models reflects its position at the forefront of language
modeling capabilities. The model demonstrates exception-
al performance across a wide range of natural language
processing tasks, achieving best-in-class results without
task-specific architectural changes or refinements to logical
reasoning. The GPT-4 architecture builds on previous ver-
sions, with sophisticated improvements to the attention and
parameter scaling mechanisms. The model exhibits impres-
sive stability in multitasking scenarios, demonstrating robust
generalization capabilities across a variety of application
domains. Its token processing system allows it to handle
complex inputs with increased accuracy, supporting com-
plex language understanding tasks with high reliability. The
model’s documented performance on standard benchmarks
demonstrates significant gains in natural language under-
standing and generation. These metrics include performance
on tasks requiring deep contextual understanding, abstract
reasoning, and complex instruction execution. The stability
of these results across different levels of task complexity and
application domains establishes GPT-4 as a representative
benchmark for modern closed language models.

4.2.3. Gemma
The open-source Gemma family of language models [11],
developed by Google DeepMind, represents a significant

breakthrough in building lightweight yet high-performance
large-scale language models. Designed to strike a balance
between efficiency and accuracy, the first version of Gemma
introduced models with 2 billion and 7 billion parameters
trained on data of up to 6 trillion tokens with a context length
of 8,192 tokens. These models, available in basic and instruc-
tion-tuned versions, have been optimized for deployment on
a wide range of hardware platforms, including consumer
devices, without the need for significant amounts of quanti-
zation. Building on this version, Gemma 2 introduced several
architectural improvements, as well as expanded model sizes:
2 billion, 9 billion, and 27 billion parameters. One of the
most significant improvements in Gemma 2 is the integra-
tion of Grouped Query Attention (GQA) technology, which
optimizes the self-attention mechanism, reducing memory
and computational costs, while maintaining high quality of
the output data. The model uses 16 shared key-value heads
of size 128, as well as 32 query heads and output projections
of the same size, which results in a more efficient attention
mechanism. In addition, Gemma 2 includes an additional
layer of root mean square normalization (RMSNorm), which
improves the stability of training and overall reliability of the
model. The increase in the number of parameters and the
improved architecture of Gemma 2 have contributed to sig-
nificant improvements in language modeling tasks, includ-
ing question answering, summarization, and common sense
reasoning. While the original Gemma models established a
solid foundation for compact high-performance LLMs, the
implementation of GQA and improved normalization meth-
ods in Gemma 2 has significantly improved the scalability
and reasoning capabilities.

4. 3. Missing data recovery with Large Language
Models

Missing value recovery was implemented using several
large language models under a zero-shot mode, including both
open-source and closed-source models (LLaMA 3.2, Gemma
with 2B and 7B parameters, and GPT-40). For comparison, a
basic mean-filling recovery technique was also implemented.
Input sequences were shaped using a fixed-length window of
100 data points, and a rolling window strategy of length 50 was
used to generate overlapping segments. This approach pro-
vided sufficient contextual information for the models during
prediction. An important component of the methodology was
hint engineering. Different hint formulations were systemati-
cally evaluated to determine their impact on the ability of LLM
to accurately predict missing GPS values. The performance
was quantified using the following metrics: mean absolute
error (MAE), mean square error (MSE), and root mean square
error (RMSE). These metrics allowed for a comparison be-
tween the LLM result and the baseline method, which helped
reveal the relative advantages and limitations of the proposed
imputation technique. The imputation algorithm is designed
so that the number of predicted values exactly matches the
number of missing values in the data sequence. The algorithm
starts with the initialization of the prompt. First, a predefined
prompt template is called, which instructs the LLM to perform
the imputation. After that, a segment of GPS data that contains
both observed data points and missing values is selected and
inserted into the prompt template. The next step is to count the
number of missing values in the sequence, which determines
the target number for the LLM imputation process.

Once the prompt is filled with the appropriate data se-
quence, it is fed to the LLM for prediction. The model is ex-



plicitly instructed to return exactly the number of values that
are missing. After receiving the output, the algorithm checks
whether the number of values returned matches the expected
number. If the numbers match, the imputed values are direct-
ly inserted into the sequence. However, if a mismatch occurs,
the algorithm enters the retry phase. The retry mechanism
uses a secondary prompt that provides additional context,
including the previously failed sequence as an example, and
repeats the requirement for the accuracy of the number of
missing data. This retry process is performed up to N times or
until the LLM output exactly matches the required number.
If the mismatch persists after N retries, a final adjustment is
made. At this point, if the absolute difference between the
expected and predicted numbers is within a predefined range
M, the algorithm completes the imputation, taking the min-
imum of the two values. If the difference exceeds this range,
the retry process is repeated for N more attempts.
The process can be described in pseudocode as follows:

Algorithm ImputeMissingValues(sequence, promptTem-
plate, retryPrompt, N, M)
missingCount « countMissing(sequence)
prompt « fillTemplate(promptTemplate, sequence)
predicted « LLM(prompt)
predictedMissingCount < countMissing(predicted)

retries < 0
// Initial attempt and iterative retries
while predictedMissingCount # missingCount and
retries < N do
prompt « fillTemplate(retryPrompt, sequence, pre-
dicted)
predicted «— LLM(prompt)
predictedMissingCount « countMissing(predicted)
retries « retries + 1
end while

// Final check if count still does not match
if predictedMissingCount # missingCount then
if |missingCount - predictedMissingCount| < M then
// Adjust prediction to use the minimum valid count
predicted « adjustPrediction(predicted, missing-
Count)
else
// Additional retries if the adjustment condition
is not met
forifrom 1 to N do
prompt « fillTemplate(retryPrompt, sequence,
predicted)
predicted «— LLM(prompt)
predictedMissingCount « countMissing(pre-
dicted)
if predictedMissingCount = missingCount then
break
end if
end for
end if
end if

return predicted
Analysis of the completion results revealed that discrep-

ancies in sequence length can arise for two main reasons:
model hallucinations or tokenizer-related problems. In the

first case, which was observed mainly in models with less
than 7 billion parameters, the phenomenon of model halluci-
nations led to the output of sequences that were significantly
longer than expected. In the second case, the discrepancies
arose due to the inherent differences between the number
of tokens and the actual sequence length; a large language
model could generate a different number of tokens than the
expected sequence length, leading to minor variations in the
final result. Choosing a minimum length between the ex-
pected and generated sequence turned out to be an effective
compromise that increases the consistency of the recovery
process and maintains high accuracy.

4. 4. Dataset description

Our study began by selecting the VPAIR dataset [26] as
the primary source of GPS information. In order to com-
prehensively assess the impact of the data representation
technique on the efficiency of imputation procedures, three
dataset variants were generated:

1) original GPS coordinates [27];

2) GPS coordinates transformed into the Earth-Centered,
Earth-Fixed (ECEF) coordinate system to ensure spatial
consistency;

3) shifted coordinates in the ECEF system to standardize
the range of input data.

To simulate real-world scenarios with incomplete data,
gaps were systematically introduced into the generated data-
sets. Sequences with different levels of missing data and se-
quence lengths were generated, which allowed for a thorough
assessment of the robustness of the models to different levels
of data degradation.

This study uses the VPAIR dataset, an innovative dataset
specifically designed to address Visual Place Recognition
(VPR) and Visual Localization (VL) tasks in large-scale open
environments. The VPAIR dataset fills a significant gap in
existing studies that have mostly focused on ground-based
or low-altitude aerial platforms. It contains images acquired
from a light aircraft at an altitude of 300-400 meters over a
107 km route that passes through urban, agricultural, and
forested landscapes (Fig. 1). The images are accompanied by
high-quality reference renders, dense depth maps, and ac-
curate six-degree-of-freedom (6-DoF) poses computed from
GNSS/INS data. Fig. 2 shows the spatial coordinates versus
time, for each variable separately.
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Fig. 1. Airplane flight path in the VPair dataset
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The authors of the dataset show that conventional VPR/VL
methods, such as NetVLAD and D2-Net, have limited per-
formance due to in-plane rotations. These rotations are
typical of high-altitude images. In contrast, rotation-resistant
descriptors provide higher recognition quality. The main
advantages of VPAIR are its scale, environmental diversity,
and integration of publicly available geospatial data to create
reference renders, which contributes to the reproducibility of
studies. High reliability of the data is additionally ensured
by careful sensor calibration using Kalibr and hardware syn-
chronization. Among the limitations, it should be noted that
the data were collected during a single day, which makes it
impossible to take into account seasonal and lighting chang-
es, as well as possible discrepancies between the rendering
of reference images (with model accuracy up to 0.5 m) and
real-world conditions. Furthermore, the simplification of the
reference poses to fixed orientations with the camera point-
ing vertically downwards may limit the application of the
dataset to dynamic aerial platform tasks.

Although experiments have shown the computational
inefficiency of local feature-based approaches, the practical
deployment of such systems remains an open question. The
VPAIR publication provides a strong benchmark for further
development of air navigation technologies under conditions
of limited GNSS availability, which is especially relevant
in the context of emerging applications such as Urban Air
Mobility.

Our study used GPS data to solve the problem of filling in
missing values in spatial localization tasks. The GPS struc-
ture of the dataset provides absolute positional references and
integrates with the North, East, Down (NED) convention,
which allows for a full-fledged estimation of positions. These
positional data are critical for the development and validation
of methods for interpolating missing location information,
especially given the significant coverage of trajectories in the
dataset. The structured nature of GPS data creates an ideal

basis for devising reliable methods for estimating missing
values, providing the ability to evaluate the effectiveness of
interpolation approaches at different spatial scales.

The integration of high-precision GPS data creates a
reliable basis for the development of algorithms aimed
at ensuring continuous spatial tracking, which is criti-
cal for navigation and mapping applications in conditions
of positional continuity disruption. The scalability of the
dataset and the applied technical synchronization mech-
anisms ensure its suitability for the development of re-
liable localization systems in aeronautical scenarios.

4. 5. Dataset preprocessing

For the missing value imputation task, a portion of the
VPAIR dataset containing a sequence of GPS flight path coordi-
nates was used, pre-processing it in several ways for the exper-
iments. The original data were represented in a geodetic coor-
dinate system in the LLA format (latitude, longitude, altitude),
with reference to the WGS 84 (World Geodetic System 1984) el-
lipsoid, which is the global standard for GPS and GNSS applica-
tions. Latitude (¢) defines the angular position north or south of
the Earth’s equator in the range from —90° (South Pole) to +90°
(North Pole). Longitude (1) defines the angular position east or
west of the prime meridian (Greenwich, United Kingdom) in
the range from —180° to +180°. Height (h) represents the height
above the WGS84 ellipsoid, a mathematically defined surface
that approximates the shape of the Earth with a semi-major axis
length of 6,378,137 meters and an oblateness factor of 1/298.257.

To ensure reliable imputation, three separate datasets
were generated based on the original LLA coordinates. LLA
dataset. The original geodetic coordinates were retained
for basic analysis. ECEF dataset. The LLA coordinates
were transformed into the Cartesian Earth-Centered, Earth-
Fixed (ECEF) (X, Y, Z) system using the WGS84 ellipsoid pa-
rameters. The transformation is performed using formula (2),
the radius of the principal vertical of curvature
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where a = 6,378,137 (semi-major axis), e>=2f - f? (eccentrici-
ty squared), and f= 1/298.257 (flattening).

Then the new ECEF coordinates are calculated from
formulas (3) to (5):

X=(N+h)cosgcos A, 3
Y=(N+H)cosg¢sin A, @
z=[(1-e2)N+h]sm¢. )

The transformations (3) to (5) simplify spatial computa-
tions by representing positions in a three-dimensional global
coordinate system with the X, Y; and Z axes centered at the
Earth’s core. An example of spatial coordinates with generat-
ed missing values is shown in Fig. 3.

Shifted ECEF dataset. Shifting the ECEF coordinates to
a relative coordinate system by moving the origin to the spa-
tial minimum of the trajectory. For each ECEF component
X, Y, Z, the minimum value over the entire dataset is first
computed:

X, =min({X }), ©
Y,,, =min({Y}), ™
AR min({Zi}), ®

where X;, Y;, Z; are the ECEF coordinates of the i-th data
point. Using the result of calculations (6) to (8), the shifted
coordinates are calculated from formulas (9) to (11):

X[,: Xi _Xmin 2 (9)
Yi‘ =Yi _Ymin’ (10)
Z'=7-7 . (11)

The transformation according to formulas (9) to (11)
ensures that all coordinates are non-negative and relative
to point 0, which effectively linearizes positional shifts and
reduces numerical instability in algorithms sensitive to large
absolute values.

Also, for each data set, aggregated sequences are created
by combining N consecutive records and calculating their
average. For a component of the coordinate x; (for example,
latitude, longitude, or altitude), the aggregated average for the
kth group is determined using formula (12) as

1 (k+1)N-1
=0 Y X, (12)
N 5%

where k € {0, 1, ..., [M/N] — 1} and M is the total number
of data points. The computed aggregation using a sliding
window smooths out high-frequency noise and reduces
random GPS errors while preserving the trajectory struc-
ture.

The resulting datasets - LLA, ECEF, and shifted ECEF -
provide complementary representations of the flight path,
allowing for a systematic evaluation of imputation methods
in different coordinate systems with different scales.
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Fig. 3. Spatial coordinates after generating missing values:
a — longitude; b — latitude; ¢ — altitude

4. 6. Generation of missing values

Missing values are introduced into the GPS sequence by
replacing adjacent data blocks with NaN values, which sim-
ulates situations such as sensor failures or signal loss. The
mathematical model of this process is as follows.

Parameters: number of data points in the sequence — N,
L - length of the lost data block. Number of lost data blocks -
m, calculated from formula (13)

me total missing values (13)
. .

Constraints:
1. No intersection of blocks. For any two blocks starting
with indices s; and s;, condition (14) must be satisfied so that

|s,—s |2 LVi= . 14

2. Generation limits. For each block, condition (15) must
be satisfied, the block must fit within the sequence

s, +L<N,Vke{l,...m}. 15)



Procedure:
1. Checking the feasibility of generation: If the required
space for m blocks satisfies condition (16)

mxL>N-L+1, (16)
the process is impossible because there is not enough space
for non-overlapping blocks.

2. Determining the start indices of the sequences: for
each block k € {1, ..., m}. Randomly choose s; uniformly
from {0, 1, ..., N - L}, such that s is at least L units away
from all previous start indices.

3. Generating missing values: for each block k, values from
the [sy, sk4r] interval are replaced by NaN, using formula (17)

< NaN.

S *SkeL

an

Mathematical guarantees:

1. Total number of lost data: m X L.

2. Non-intersection of blocks is ensured by interval con-
straints.

3. Determinism is achieved by pseudo-random filling for
the reproduced sample.

Example.

For N = 1000, L = 20. Number of lost sequences:
1000/20 = 50. Initial indices sy, s,, ..., S50 are generated
such that [s; - 5| >20 V i # .

Using the aforementioned approach to generating lost
data and grouping (12), the generator settings were formed
and given in Table 1.

Fig. 2 shows the change in coordinates over time, while
Fig. 3 demonstrates a variant of the set with lost data, where
N =500, L =50.

Table 1

Lost data generation settings values

The root mean square error (RMSE) converts MSE to the
original coordinate units, which facilitates intuitive interpre-
tation while maintaining sensitivity to larger errors. RMSE
provides a balanced estimate of the accuracy of the inter-
polation, taking into account both systematic and random
components of the prediction error

1
MAE = ;2 |yl. _le- (20)

n
i=1

The mean absolute error (MAE) is the average of the error
magnitudes in the predictions, providing easy interpretabil-
ity in the original coordinate units. MAE linearly scales all
deviations, allowing for an assessment of the absolute accu-
racy of the interpolation.

5. Results of zero-shot GPS data reconstruction with
large language models

5. 1. Choosing the optimal GPS coordinate repre-
sentation format

To assess the impact of data representation on the accuracy
of GPS data reconstruction, a comparative analysis was conduct-
ed using three variants of the VPAIR dataset: the original de-
gree-based format (VPair), a version converted to Earth-centered
coordinates (ECEF) (VPair ECEF), and a shifted variant (VPair
Shifted). The process involved shifting coordinate values to zero
to reduce the instability associated with accuracy, which is a
critical adjustment given the sensitivity of degree-based GPS
data to small decimal errors. For the baseline comparison, miss-
ing values were imputed using the simple mean method, which
served as a benchmark for assessing the improvements achieved
by the large language models. Experiments were conducted on
three leading large language models - Llama 3.2, Gemma, and
GPT-40 - to ensure model-independent validity, with the results

aggregated and averaged across all models. Fig. 4 illustrates
Number of missing | Sequence length of | Number of elements fg & . & ) . & f
values N missing values L in the group t e percent.age 1mpr0vemfent in rec'onstructlon accuracy for
120 10 20 altitude, latitude, and longitude relative to the baseline model.
250 2 10 Tables 2-4 compare three LLMs in latitude, longitude,
500 s 0 and altitude under three preprocessing regimes.
200 30 0 Table 2
500 50 0 .
Average performance of tested models on the VPair set
700 10 0
700 30 0 Latitude Longitude Altitude
700 0 0 Model mae | mse | rmse | mae| mse |rmse| P3¢ | Mse |[Rmse
(10%)|(10%) | (10%)
4.7. Metrics gemma:7b |7.55(0.111| 30.6 |11.5(0.274| 52.2 | 7.1 | 2.16 | 4.06

For the comparative analysis of filling in missing GPS val-
ues, typical metrics for assessing the accuracy and reliability
of forecasting in time series were used. The selected met-
rics (18) to (20) provide a comprehensive analysis of various
aspects of forecasting performance

n (yi—xl.)Z

MSE=3 *=—

(18)

The mean squared error (MSE) emphasizes larger devia-
tions by squaring the errors before averaging, making it partic-
ularly sensitive to outliers and large discrepancies in forecasts

n (y[—xi)Z

RMSE=(¥, =—

(19)

gpt-40 17.80.246| 49.5 | 35.3|0.786| 88.4 |45.4| 18.9 | 13.6
llama3.2 |16.2(0.102| 220 |12.3| 2.96 | 99.6 | 34.5| 109 | 23.9

Table 3
Average performance of tested models: on the Vpair ECEF set
Latitude Longitude Altitude
Model mae Mse rmse | mae Mse rmse| mae Mse rmse
(10%) (10%) (10°)

gemma:7b | 58.8 | 7.94 | 282 | 153 | 26.6 | 516 | 79.8 | 6.20 | 249
gpt-40 147.0{ 17.2 | 415 (192 | 29.7 | 545 | 11.1 | 12.2 | 350
llama3.2 | 61.5 | 34.9 | 425 [60.7| 16.0 | 368 |100.0| 77.4 | 717

The shifted dataset (VPair Shifted) demonstrated consis-
tent superiority in two out of three geospatial dimensions. Giv-



en these results, further research is focused on this variation
of the dataset. This solution fits the broader goals of untrained
LLM applications, where minimizing preprocessing complexi-
ty while maximizing robustness to errors is a top priority.

VPair ECEF 0.550
VPair 0.447
0.0 0.2 0.4 0.6 0.8 1.0
Improvement in latitude %
a
VPair Shifted 0.591
VPair ECEF 0.463
VPair 0.427
0.0 0.2 0.4 0.6 0.8 1.0
Improvement in longitude %
b
VPair Shifted 0.580
VPair 0.462
VPair ECEF
0.0 0.2 0.4 0.6 0.8 1.0

Improvement in altitude %

c

Fig. 4. Spatial coordinates after generating missing values:
a — latitude; b — longitude; ¢ — altitude

Table 4
Average performance of those tested on the VPair Shifted set
Latitude Longitude Altitude
Model mac Mse rmse | mae Mse rmse | mae Mse rmse
(10% (10% (10%

gemma:7b| 96.0 | 13.1 | 358 [114.0| 20.2 | 447 | 79.2 | 8.68 | 292
gpt-40 |124.0( 15.2 | 389 (183.0| 27.8 | 525 | 90.3 | 8.31 | 280
llama3.2 | 41.0 | 12.1 | 264 | 57 | 11.5 | 320 | 54.3 | 3.18 | 312

5. 2. Determining the optimal instruction variant

Effective prompt design is critical for LLMs that will be used
without training, especially in accuracy-sensitive tasks such as
geospatial data reconstruction, where ambiguous instructions
can exacerbate error propagation. The investigated prompts
were clearly structured around the task of reconstructing se-
quences containing NaN values, with the requirement: replace
only a specified number of missing values (nan_amount).

As shown in Table 5, each prompt candidate included
these constraints but differed in the details. For example,
Prompt 1 - generated via ChatGPT - included an explicit I/O
example (“[4915856.190, nan, 4915908.055]” — “[4915856.190,
4915882.090, 4915908.055]”) to enforce both nan substitution
and sequence length.

Table 5

Examples of prompt candidates

Prompt Context

You are a system designed to accurately predict and replace
missing values (‘nan’) in GPS sequences in the Earth-centered,
Earth-fixed coordinate system. Replace ‘nan’ values only with
accurate predictions based on patterns in the provided se-
quence. The output must contain exactly {nan_amount} values.
Any deviation from this length is unacceptable. Respond only
with the corrected sequence in square brackets, with values
separated by commas. For example, if the input is [4915856.190,
nan, 4915908.055], the output should be [4915856.190,
4915882.090, 4915908.055]. Do not include explanations,
comments, or any extra text only the corrected sequence in the
specified format. Here is the input data: {content}. The output
must contain exactly {nan_amount} values. Recalculate and
regenerate predictions until this requirement is met

Prompt 1

You are a system designed to predict and replace missing
values (‘nan’) in GPS sequences in Earth-centered, Earth-fixed
coordinate system. Follow these strict rules:1. Replace ‘nan’
values ONLY with accurate predictions based on the given
sequence. 2. The output MUST have exactly N values, where
N is specified. Any deviation from this length is incorrect. 3.
Respond ONLY with the corrected values in square brackets,
separated by commas. 4. DO NOT include explanations, extra
text, or code in your response only the corrected values. Here
is the input data:\n{content}The output MUST contain exactly
{nan_amount} corrected values. Re-calculate and regenerate
until the response has {nan_amount} values

Prompt 2

You are a system designed to predict and replace missing
values (‘nan’) in GPS sequences in Earth-centered, Earth-
fixed coordinate system. Follow these strict rules: Replace
‘nan’ values ONLY with accurate predictions based on the
given sequence. Respond ONLY with the corrected values
in square brackets, separated by commas. Example of input:
[4915856.190, nan, 4915908.055] Example of prediction:
[4915856.190, 4915882.09, 4915908.055]. DO NOT include
explanations, extra text, or code in your response only the
corrected values. Here is the input data:{content} The output
MUST contain exactly {nan_amount} corrected values.
Re-calculate and regenerate until the response has {nan_
amount} values

Prompt 3

1. You are a system designed to predict and replace missing
values (‘nan’) in GPS sequences in Earth-centered, Earth-fixed
coordinate system. Follow these strict rules:. Replace ‘nan’
values ONLY with accurate predictions based on the given
sequence. The output MUST have exactly N values, where
N is specified. Any deviation from this length is incorrect. 3.
Respond ONLY with the corrected values in square brack-
ets, separated by commas. Example of input: [4915856.190,
nan, 4915908.055] Example of prediction: [4915856.190,
4915882.09, 4915908.055]. DO NOT include explanations,
extra text, or code in your response only the corrected values.
Here is the input data:\n{content}. The output MUST contain
exactly {nan_amount} corrected values. Re-calculate and

Prompt 4

regenerate until the response has {nan_amount} values

Prompt 4, which was hand-crafted, was reduced to
concise rules, retaining the example, while Prompts
2-3 omitted or simplified the instructions. Importantly, all
prompts emphasized the need to restore predictions to the
nan_amount condition, which provided strict control over



preserving the integrity of the dataset. In case of a mismatch
between predicted and missing values, re-prompts were used.
Table 6 collates the performance by latitude, longitude,
and altitude using various performance metrics.
Based on the results of this set of experiments, Prompt 4
was selected for further development of an approach to recov-
ering lost GPS data.

5.3. Comparative assessment of the quality of re-
covery for different language models

The evaluation system included strict measures to
account for two main sources of stochasticity: variability
in the generation of sequences of missing values and the
inherent diversity of predictions in autoregressive mod-
els. To reduce the influence of the first factor - random
patterns of missing values that affect the

Table 6 .
) o complexity of the task - the results were
Prompt candidate productivity aggregated across several independent
Latitude Longitude Altitude runs for each model, with the average val-
Prompt i
P "mae [mse (10% | rmse | mae | mse (10%) | rmse | mae | mse (10%) | rmse| Y€ of perfOI.‘mE.lI.lce metrics (e.g., MAE)
Prompt1 | 33.9 | 4.9 203 | 870 | 182 | 422 | 576 | 715 | 264 | © enif“e trﬁh‘j?ﬂtlt?g Tthe bo;‘llz/l[?;SE(F ‘%‘ 5)
Prompt2 | 392 | 512 | 401 | 722 | 153 | 386 | 508 | 644 | 253 | L suaize the distribution of MAE vatues
for latitude, longitude, and altitude, high-
Prompt 3 | 50.1 5.48 228 52.1 9.95 304 | 229 2.10 134 . . . .
lighting central tendencies (mean, medi-
Prompt4 | 27.9 4.29 205 33.8 5.63 237 | 43.2 3.29 180 an) and ranges ofvariability.
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Fig. 5. Model results in terms of geodetic variables: a — latitude; b — longitude; ¢ — height



A key factor in the application of autoregressive LLMs is
the inherent variability of the predictions due to stochastic
generation. For quantitative measurement, the stability of the
models was assessed by performing 5-7 parallel inference iter-
ations for each sample and measuring the variance of the out-
put across latitude, longitude, and altitude. Fig. 6 demonstrates
the trade-off between mean efficiency (MAE) and variance.

Model performance / Variance

sults for altitude (MAE: 22.9), probably due to its conciseness
and inclusion of a guided example but showed a deterioration
in the results for latitude (MAE: 50.1), indicating sensitivity to
specific coordinates. The striking differences in performance
demonstrate that precise engineering of prompts - in partic-
ular, explicit formulation of NaN handling and precise value
counter — directly affects the reliability of reconstruction. These

results indicate the advantage of using prompts that com-

bine task specificity (e.g., nan replacement rules) with

flexibility, allowing LLM to combine accuracy with con-

150 | Metr. ¢ textual recovery of missing data. The results also confirm
¢ Latitude that explicit specification of the number of missing values
160 ® Longitude and formatting in prompts is not only useful but also nec-
® Height essary for reliable reconstruction without prior training in
140 Model GPS applications.
@ llama3.2 Unlike [20], in which recurrent neural networks are
m 120 trained on labeled time series with gaps, the zero-shot
< ‘ B gpt-do . .
S LLM approach does not require any training. The pro-
100 Q® ¢ gomma posed method uses only the prompt formulation to di-
= rectly generate missing values in GPS trajectories. This is
80 © made possible by the ability of LLM to interpret a digital
sequence in which the context of neighboring coordinates
60 (@) ® is encoded by tokens, and to model nonlinear spatiotem-
poral dependences without a specific architecture.
40 © Compared to [21], convolutional-recurrent autoen-
0 100 200 300 400 coders spend significant resources on hyperparameter
Variance tuning. In addition, they require large, labeled sets for

Fig. 6. Comparing model performance with its stability

Although variability is a potential problem, it was re-
duced by averaging the results. Aggregation across parallel
runs helps detect hallucinations and reduce the impact of
outliers. Combining with intact context further increases the
robustness of the results.

6. Discussion of results based on zero-shot imputation
of GPS data using LLM

Our experimental results (Fig. 4) clearly show the advan-
tage of moving away from the use of a degree representation
of the data. Thus, for the VPair Shifted set, an improvement
of 58.0% was achieved for the reconstruction of the height,
which significantly exceeded the indicators of the original
VPair (46.2%) and VPair ECEF (33.5%). Similarly, for the
longitude, VPair Shifted achieved an improvement of 59.1%,
which exceeded the indicators of VPair (42.7%) and VPair
ECEF (46.3%). The reconstruction of the latitude showed a
different pattern: VPair ECEF achieved the highest improve-
ment (55.0%), slightly exceeding VPair Shifted (51.0%), while
the original VPair demonstrated 44.7%. These results high-
light the relationship between the preprocessing of the data
set and the geometric properties of the coordinates.

Analysis of our experimental results (Table 4) reveals
that the optimal formulation of the instruction signifi-
cantly affects the accuracy of the reconstruction. Prompt 4
achieved better accuracy in recovering latitude (MAE: 27.9,
MSE: 4.29E+04), which is explained by the balance of
clear rules and illustrative format. In contrast, the rigid
structure of Prompt 1 led to an increased MSE for longitude
(18.2E+04), indicating that excessive constraints inhibit
adaptability. It is noted that Prompt 3 achieved good re-

simultaneous extraction of spatial and temporal features.
The proposed approach performs zero-shot imputation.
In this case, prompt serves as an “instruction” for restor-
ing coordinates. This is possible because LLMs trained
on huge corpora already have internal mechanisms for pre-
dicting numeric tokens taking into account the context.

In contrast to [12], in which LLMs were used only for
zero-shot prediction of time series, our approach specifically
optimizes prompt for GPS data imputation. This approach
makes it possible to fill spatiotemporal gaps in trajectories,
rather than just predicting the next values. This is possible
because we form prompt as a description of the spatiotempo-
ral context, which allows LLMs to understand neighboring
points and generate the most likely value of the gap.

While [27] uses the simple mean method as a basic strat-
egy and obtains averaged “plateaus” over long gaps, the pro-
posed method reconstructs the trajectory using the context
of neighboring GPS coordinates. Thus, the Llama 3.2 mod-
el for longitude (Fig.5) demonstrated the best performance,
achieving the lowest median MAE value (median 52.14 units;
IQR: 35.29-72.17), outperforming the mean method (me-
dian: 70.18 units; IQR: 58.2-107.24) and GPT-40 (medi-
an: 182.65units; IQR: 165.42-199.09). Gemma performed
slightly better (median: 117.17 units) and had a narrower
range (IQR: 105.18-124.12). The mean method was most sensi-
tive to sequence complexity. In terms of width, Llama 3.2 per-
formed best with the lowest median MAE (36.57 units; IQR:
30.82-49.95), followed by the baseline method (median:
49.3 units; IQR: 47.21-99.17), and Gemma lagged significantly
behind (median: 95 units; IQR: 73.52-120.31). The GPT-40 mod-
el performed worst (median: 117.41 units; IQR: 114.21-130.21).
A different trend was found for altitude: The baseline method
showed (median: 44.2 units; IQR: 39.57-75.96), Llama 3.2 -
(median: 49.17 units; IQR: 34.76-57.61), Gemma - (median:
85.02 units; IQR: 60.55-88.6) and GPT-40 - (median: 90.2 units;
IQR: 75.48-106.08). Analysis highlights the different perfor-
mance profiles between the models, due to their robustness to



stochastic variables. Llama 3.2 was the most robust overall,
achieving high results for longitude and latitude, although it
was inferior to the baseline method for altitude. The baseline
method, while competitive for altitude, showed increased
sensitivity to the complexity of missing values for longitude
and latitude, suggesting limited adaptability. Gemma demon-
strated moderate stability for longitude but had significant
difficulty for latitude and altitude. GPT-40 showed univer-
sally poor results, suggesting problems with generalizing
geospatial patterns.

Based on our analysis of the variance of predic-
tions (Fig. 6), the GPT-40 model showed the most stable
reconstructions. This is explained by its deterministic cach-
ing of results, which eliminates stochastic randomness.
However, this was accompanied by increased MAE values,
suggesting that strict adherence to cached responses limits
adaptive predictions. In contrast, the Gemma and Llama
3.2 models showed a gradual increase in variability. Gemma
showed moderate variance but inconsistent results, reflecting
the sensitivity of its stochastic intermediate layers to changes
in input data. Llama 3.2 demonstrated the highest variance,
especially in longitude, probably due to its flexible token
sampling strategy. It was noted that this variability correlated
with its high median MAE in latitude, indicating a trade-off:
exploring a wider solution space increases both the potential
for prediction and the instability.

The limitation of the proposed approach is the need to
call a large language model for each gap or window of several
points. Although LLM inference is faster than full training,
processing large GPS datasets in real time requires signifi-
cant computational resources. Therefore, such an approach
is advisable to consider mainly as a post-processing stage,
and not as a direct component of the real-time pipeline in
constrained environments.

The disadvantage of the proposed approach is the sen-
sitivity of LLM to the length of the input sequence. In the
case of long gaps (>30 points), LLM sometimes focuses on
the general trend of the local context, ignoring small vari-
ations, which leads to averaged trajectories. This reduces
the accuracy of the recovery and demonstrates the need
for a differentiated approach to processing different gap
lengths.

Further research may aim at devising an adaptive ap-
proach to prompt window generation. Automatic determi-
nation of the number of contextual GPS points depending on
the sequence length. In addition, it is advisable to experiment
with prompt engineering for short and long gaps separately to
maximize the reconstruction accuracy in each case. Expand-
ing the application domain of zero-shot LLM to other types
of spatiotemporal data. For example, vehicle trajectories or
meteorological phenomena dynamics. In combination with
the integration of multimodal inputs, it could contribute
to increasing the robustness of imputation under complex
conditions.

7. Conclusion

1. Three strategies for representing coordinates have
been implemented. Further analysis revealed that the most
effective strategy is the ECEF Shifted strategy, where the
coordinates are shifted using a shift to the starting point.
This approach reduces the error by 51-59% for latitude and
longitude, which demonstrates its effectiveness in restoring
GPS data.

2. The optimal option for the initial instruction (prompt)
was selected for the zero-shot method of reconstructing
missing GPS data using large language models. A re-query
mechanism was also implemented, which makes it possible
to reduce the probability of inaccurate predictions in the
event that the number of restored coordinates does not meet
expectations. The re-query mechanism provides reliability in
data restoration, which is important for complex scenarios
where the accuracy of coordinates is critical.

3. A comparative assessment of the accuracy of different
language models has shown that Llama 3.2 provides the best
results for GPS data reconstruction, outperforming GPT-40
and Gemma. For latitude, Llama 3.2 achieved MAE = 36.57,
and for longitude, MAE = 52.14, which are 2.3 times better
results compared to GPT-40. This can be explained by the
better spatial thinking of the model, which is provided by
specialized query tuning. Such results allow us to conclude
that open models are superior in geospatial analytics tasks,
where flexibility and adaptability are critical.
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