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The object of this study is the process of
automated analysis of the electrocardiograph-
ic signal (ECS) during long-term monitoring
in real time, carried out by mobile wireless
systems.

The study considers the problem related to
the insufficient accuracy of automated diag-
nostics during long-term monitoring of the
electrocardiogram (ECG) under conditions of
limited computing resources and the presence
of noise.

A modified Pan-Tompkins algorithm for
determining the boundaries of the QRS system
has been developed. Based on this algorithm,
the PCard software module for the hard-
ware and software system was implemented,
enabling high-quality automated diagnostics
both under the standard mode and during
long-term ECG monitoring in 12 leads in real
time. The PCard software module allows for
ECG registration, digital filtering, measure-
ment and calculation of electrocardiographic
parameters, automatic determination of diag-
nostic criteria and diagnostic conclusions, for-
mation of a general diagnostic conclusion of
ECG, as well as medical processing of ECG.

The high quality of the diagnostic analysis
was confirmed by the obtained accuracy rates
of the algorithm for determining normal com-
plexes - 99.99%, for determining ventricular
complexes - 99.90%, for determining various
pathologies — 98.43%. The ECG processing time
was about 4.7 seconds for a 40-minute record.
The proposed method for determining the
boundaries of QRS complexes is based on the
finite difference method, which distinguishes
it from common methodologies using spectral
analysis, wavelet transforms, or Fourier trans-
forms. This methodology simplifies determin-
ing the parameters of the basic ECG elements
and significantly reduces the amount of calcu-
lations, which generally increases the process-
ing time and reduces the required volume of
system resources
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1. Introduction

Cardiovascular diseases (CVDs) are the leading cause of
death in the world [1], so the development of effective technolo-
gies that enable the detection of early stages of cardiac diseases
is one of the most important tasks of modern medicine.

Automated analysis of electrocardiological signals always
requires a special software algorithm for morphological
analysis of ECG. Currently, market offers a wide variety
of software for mobile devices with automated analysis of
biomedical information, including ECG. In this case, ECG
analysis is carried out without the participation of a doctor, so
it is the algorithm that determines the quality of diagnostics
of the automated system.
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The purpose of such algorithms is to determine the posi-
tion of the QRS complex since this complex is an indicator of
pathological conditions of the cardiovascular system [2]. The
QRS complex is an ECG fragment that reflects the process of
depolarization of the ventricles of the heart, that is, the elec-
trical activity accompanying their contraction. It consists of
three successive waves (Q, R, and S); its shape and duration
make it possible to identify various rhythm and conduction
disorders. Detecting and defining the QRS complex bound-
aries is the first stage of automatic selection of all diagnostic
features of ECG.

There are many studies aimed at finding a satisfactory
universal solution for detecting QRS complexes [3]. A sig-
nificant part of the work is limited to rhythm analysis only,




which does not require detailed processing of electrocardio-
graphic signal (ECS) [4, 5]. However, for some studies (Holter
monitoring systems, ECG analysis with the issuance of a full
conclusion, etc.), more in-depth ECS processing is necessary.
The use of autonomous wireless long-term monitoring devic-
es operating in real time imposes additional requirements on
the quality, recognition accuracy, and speed of the algorithms
used. For example, a recognition percentage value of 0.1 is
high enough for ECG registration under a standard mode,
but for long-term monitoring it is already low since it corre-
sponds to one hundred missed QRS complexes.

The efficiency of QRS detection methods is still insuffi-
cient when applied to wearable devices because of compli-
cated noise interferences present in the signals. This noise
can be caused by several factors, including body movement,
poor electrode contact, power frequency interference in the
environment, etc. [6].

In addition, many algorithms for mobile devices are de-
signed to record ECG from a small number of leads (usually
from 3 leads), which casts doubt on the reliability of the di-
agnostic conclusion, especially during long-term monitoring,
since significant anomalies can be missed. Therefore, re-
search aimed at developing algorithms designed for wireless
12-channel long-term monitoring devices operating in real
time is relevant.

2. Literature review and problem statement

In recent years, the scientific literature has reported
many approaches to the automatic detection of the QRS com-
plex in ECG signals. Work [7] considers algorithms based on
machine learning technologies (Deep Learning, DL), which
allow recognition based on raw data. The main advantage of
such models is their ability to automatically extract features.
However, high efficiency of DL algorithms is achieved only
with a large volume of high-quality training data [8]. If there
is a shortage of them, such models are subject to overfitting
and demonstrate low resistance to noisy signals, which limits
their use in mobile and wearable devices.

In [9], methods based on wavelet transforms and morpho-
logical operations are described. In this class of algorithms,
high accuracy of QRS complex detection is ensured by ana-
lyzing the time-frequency characteristics of the signal. How-
ever, these methods require significant computing resources,
have a complex mathematical apparatus and, in some cases,
involve a time delay [10], which renders them unsuitable for
implementation in real-time systems, especially on the wear-
able device platform.

In contrast, the Pan-Tompkins algorithm [11] and its
modifications [12] are simpler and faster processing methods
based on basic mathematical operations (differentiation, in-
tegration, threshold filters). Despite their relative simplicity,
they provide fairly high accuracy on clean signals. However,
under noisy conditions (e.g., when the patient moves or when
using compact electrodes), their efficiency is significantly
reduced. For example, the original implementation of the
Pan-Tompkins algorithm records an error of about 0.68% [13],
which corresponds to hundreds of missed complexes. Even
modified versions show limited results; for example, in [14],
the data error during the study was 0.169%. In [15], the pro-
posed algorithm is developed based on the Pan-Tompkins and
Eldendy algorithm, it has a data error of 0.04% when tested on
the QTDB database and 0.31% when tested on the MIT-BIH

database. The MIT-BIH database includes noisy ECGs, so the
accuracy of the proposed method is significantly reduced in
the presence of noise, which makes it ineffective for wearable
long-term monitoring devices.

The issue of the algorithm’s efficiency and speed is partic-
ularly relevant in the context of long-term monitoring using
autonomous wearable devices. Works [16, 17] emphasize the
importance of low power consumption and minimal pro-
cessing time for such applications. One of the features of the
cited studies on the topic under consideration is that there
are practically no publications that would describe the use
of the developed algorithm in a specific software application
for automated diagnostics. The authors mainly devote their
works to a detailed description of the developed algorithm but
do not indicate its practical implementation, especially with
regard to the analysis of ECG in 12 standard leads. That also
does not make it possible to verify the full effectiveness of the
proposed methods.

Summarizing the review, we can highlight the following
shortcomings of existing approaches to recognizing QRS
complexes. Known methods based on machine learning
require large volumes of high-quality labeled data and are
characterized by low resistance to noise. Algorithms using
wavelet transforms and morphological operations are compu-
tationally expensive and are not suitable for implementation
in devices with limited resources, while classical algorithms
such as Pan-Tompkins and its modifications lose accuracy
in noisy or unstable signals typical for mobile or wearable
ECG systems. In addition, most published studies are limited
to a theoretical description of the algorithms, without their
practical integration into real diagnostic software solutions,
especially in the context of multi-channel ECG monitoring.

Thus, the task of developing an algorithm for recogniz-
ing QRS complexes that would provide an error of no more
than 0.1% under high-noise conditions and would not require
significant computational resources remains unsolved. An
additional problem is the lack of comprehensive solutions
that include not only a description of the algorithm but also
its practical implementation in long-term ECG monitoring
systems. Addressing these issues is especially important for
wearable medical devices, which have performance and pow-
er limitations and require sufficient speed to analyze 12-lead
ECG in real time.

3. The aim and objectives of the study

The aim of our study is to modify the Pan-Tompkins al-
gorithm for determining the boundaries of the QRS complex
in the long-term monitoring and automatic ECG analysis sys-
tem in such a way as to ensure high-quality diagnostics under
the long-term and standard recording modes of bioelectrical
potentials of the heart in 12 leads. This would improve the ac-
curacy and efficiency of cardiovascular disease diagnostics,
minimize the influence of the human factor in interpreting
the results, and expand the capabilities of using long-term
monitoring systems in outpatient and remote settings.

To achieve this aim, the following objectives were accom-
plished:

- to improve the key stages of the original Pan-Tompkins
algorithm, which limit the quality of diagnostics and lead to
an increase in processing time;

- to implement software for a hardware-software system
with the integration of the developed algorithm and verify



it experimentally on real ECG recordings in 12 leads during
long-term and standard monitoring to assess the accuracy
and speed of processing.

4. The study materials and methods

The object of our study is the process of automated analy-
sis of the electrocardiographic signal during long-term mon-
itoring in real time, carried out by mobile wireless systems.

The hypothesis of the study suggests that the use of a
highly accurate and faster algorithm for recognizing QRS
complexes will make it possible to design a software module
for a mobile complex that provides high-quality automat-
ed ECG analysis during long-term monitoring in real time.

When developing the QRS complex recognition algo-
rithm in this study, the Pan-Tompkins algorithm was used
as a basis, which is one of the most well-known and widely
used methods for determining QRS complexes. It includes
the stages of filtering, numerical differentiation, squaring
the derivative, integration, and then threshold detection.
Despite its simplicity and relatively high efficiency on
clean ECG signals, the algorithm has a number of signif-
icant limitations. These include reduced accuracy under
high noise conditions (patient movements, electrode inter-
ference), fixed filter parameters, non-adaptive
width of the integration windows, and the lack
of support for synchronous analysis of several
leads. These shortcomings make it less suitable
for use in modern mobile and wearable long-

The setup includes an SKX-2000 electrocardiogram gen-
erator, which is capable of generating ECG signals without
pathology, with pathology, and signals combined with in-
terference. A variety of input signals makes it possible to
configure the algorithms of hardware and software filters,
test the operation of the ECG diagnostics software module. A
Hantek 1008 multichannel oscilloscope and a Beelink mini-
computer were used to display biomedical transmitted and
received signals. The horizontal panel of the setup contains
hardware elements of the wireless biomedical information
transmission system (Fig. 2). These include: AD8232 biomed-
ical amplifiers, Wi-Fi transmitter. and Wi-Fi receiver boards.

The 12C interface, DAC (12-bit) of the auxiliary boards
of the Arduino DUE modules [18] are used to display on the
monitor screen and preliminarily analyze the output digital
signals of the ESP32-S2 modules. The Joulescope JS220 pre-
cision meter was used to measure the energy consumption by
the ECG information transmission unit. The monitor screen
shows information about the energy consumption of the
autonomous Wi-Fi transmission subsystem of ECG signals:
consumption current — 49.43 mA, supply voltage - 3.3 V,
power consumption - 163.78 mW.

Fig. 2 shows the structural diagram of the hardware and
software of the mobile electrocardiocomplex, which is part of
the specialized bench.
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came the basis for developing a new algorithm
for determining the boundaries of the QRS com-
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a specialized bench (Fig.1) was designed and
manufactured as part of the experiments, in-
cluding a mobile hardware and software cardio
complex, measuring tools, and auxiliary com-
ponents. The bench is designed to configure
and demonstrate the operation of an automated complex
for wireless transmission and analysis of ECG signals.
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Fig. 2. Cardiocomplex for transmission and analysis of

electrocardiographic signals

The following designations are used in Fig. 2:
- AD8232B amplifier lead shaper (LS);

- power supply unit on
Li-ion 18650 batteries;

- ESP32-S3- Wi-Fi
transmitter module on
ESP32-S3 board;

- ESP32-S2- Wi-Fi re-
ceiver module on ESP32-S2
board;

- PC - personal com-
puter.

The following software
is installed on the personal
computer, which is part of
the test bench, to ensure
interaction with the hard-
ware and signal analysis:

- Arduino IDE - for
loading firmware onto

Hantek PC
oscilloscope

Fig. 1. Specialized ECG bench

ESP32 and Arduino DUE
modules;



- Hantek software - for visualizing analog signals from
an oscilloscope;

- Joulescope software - for monitoring the energy con-
sumption of the wireless data transmission module;

- PCard software module - our own development, provid-
ing automated processing, analysis, and diagnostics of ECG
in 12 standard leads.

ECG signals are acquired from the patient (from the
SKX-2000C+ generator) and then sent to LS unit, which in-
cludes 12 biomedical amplifiers. From the LS unit output, the
amplified ECG signals are sent to the Wi-Fi transmitter mod-
ule, digitized, filtered, and transmitted as data packets [19].
The Wi-Fi receiver module receives data and transmits them
to the PC, where the ECG is analyzed and a diagnostic con-
clusion is formed.

In this study, the Russian Society of Holter Monitoring and
Non-Invasive Electrophysiology (ROSHMNE) databases were
used to test the algorithm and the PCard software module as a
whole. The check was performed on the ROSHMNE 2006 long-
term ECG test database and the ROSHMNE 2018 “ECG in
12 standard leads” test database. The test databases are freely
available [20]. The ROSHMNE software package contains an
ECG test database and a program for assessing the correct-
ness of computer diagnostics. The test database is intended
for use by manufacturers of electrocardiographs with the
option of computer ECG analysis.

5. Results of studying the system for wireless
transmission and automated analysis of
electrocardiograms

5.1.Improvement of the Pan-Tompkins algorithm
for identifying the QRS complex in real-time systems

Automated ECG processing, in the case of remote mon-
itoring using wireless communication, can consist of the
following stages:

1. Digitizing the ECG of several leads in a given time in-
terval with the required signal discreteness.

2. Compression of the received data and transmission of
information via wireless communication.

3. Receiving via wireless communication and restoring
data on a PC.

4. Digital filtering and signal normalization.

5. Determining the boundaries of characteristic ECG ele-
ments (QRS complexes, P and T waves, etc.).

6. Calculating RR intervals.

7. Determining extrasystoles and other “ectopic” com-
plexes.

8. Analysis of the ECG heart rhythm.

9. Determining the magnitude of the decrease and in-
crease in ST segments.

10. Displaying the monitored parameters on the screen.

11. Making a decision on the “criticality” of the ECG.

Along with the importance of the completeness and accu-
racy of the results obtained at each stage, the most “sensitive”
to the reliability of the final result is the determination of the
boundaries of characteristic ECG elements, in particular,
the boundaries of the QRS complexes. The algorithm for
determining the boundaries of the QRS complex consists of
several separate tasks. First, signals are filtered, derivatives
are calculated for synchronous ECG leads and summed up.
After that, the results are integrated. Next, successive inter-
vals are set within which the ECG is processed. At the next

stage, the boundaries of the QRS complexes are preliminarily
determined, then adjusted based on threshold values. The
final stage is the final determination of the boundaries of the
QRS complexes.

In the general case, after performing points 1-4, further
actions are performed for a series of discrete functions f1(x),
fo()... fu(x), specified in n nodes (n=2%3+), multiples of d and
equidistant from each other with a step of h. Here u is the
number of ECG leads taken synchronously.

In the Pan-Tompkins algorithm, low-pass and high-pass
filters (LPF) are used at the first step of ECG processing.
In the proposed algorithm, to eliminate myographic noise,
network interference, isoline trend, etc., LPF and HPF were
used at the stage of digital ECG filtering using wavelet
transforms (point 4). The use of modern filtering methods
ensures sufficient speed and makes it possible to improve
the quality of ECG with minimal distortion, which is
critical for its processing. In the Pan-Tompkins algorithm,
ECG filtering is carried out in order to isolate characteristic
ECG elements, and the filters used led to significant signal
distortions.

There are several methods of numerical differentiation;
in our algorithm, it is proposed to use the finite difference
method, due to its simplicity and reasonable speed. Ac-
cording to [21], the central difference derivative over five
points (d = 5) takes the form

f,(x):f(x—2h)—8f(x—hl;—:f(x+h)—f(x+2h), ®

where f’(x) is the derivative at point x,

h is a single sample (signal sampling step).

In the Pan-Tompkins algorithm, the derivative is squared
in order to enhance the ECG. For more efficient detection
of QRS complex boundaries, the ECG is measured synchro-
nously across several leads. In the proposed algorithm, the
derivative values for synchronous leads are summed up by
absolute value and averaged, which increases the speed of
the algorithm and the accuracy of detection of QRS complex
boundaries, since further actions are performed for groups of
synchronous leads, and not separately for each lead. Consid-
ering that x = kh, where k is the number of the current node,
the following expression can be written:

W(k/d):%i

i=1

ﬁ((k+2)h)|,

k=0,d,2d,...n—d, @)

where ﬂ((k+2)h)— the derivative at the k + 2 node of the
i-th lead,

u is the number of synchronous leads,

W(k /d) is the value of the averaged derivatives for the
k-node.

As a result of calculations using formulas (1) and (2),
an array W is obtained with a dimensionality of p=n/d
elements. In this case, the results of ECS processing are
“compressed” by a factor of d, which increases the speed of
the algorithm.

At the next step (integration), a moving average filter is
used; window width w is selected empirically but is usually
equal to the normal duration of the QRS complex (0.08-0.1 s),
In the Pan-Tompkins algorithm, the window width is 0.15 s,
which has a negative effect on its speed. To increase the speed



of the algorithm, a recursive moving average filter is used in
the form

Sb=SH+i(W(b)—W(b—w)),b=w+1,w+2..., ©)
w

where Sj is the arithmetic mean of the values of array W in
the interval from b - w to b,

Sp-1 is the arithmetic mean of the values of array Win the
interval fromb-w-1tob - 1.

The current values of Sy are stored in array S taking into
account the delay w / 2.

Fig. 3 shows the ECS plot and the results of its processing.

Fig. 3. Results of calculating Wand S

The initial data for this algorithm were n values of the
digitalized ECS with a step of h = 0.001 s, taken synchronous-
ly from 3 leads.

Next, at successive intervals of duration [, their local
maxima My, My, ... and time values are found and saved in a
two-dimensional array M, with a dimensionality of z=n /1.

Atthe nextstep, adjacent values of the elements of array M,
the time interval between which is less than t, are deleted.
This interval is calculated based on the maximum significant
heart rate (HR), above which individual ECG elements are
practically not determined. In this case, HRp,x =240 bpm,
then t = 60 / 240 = 0.25 s. In the Pan-Tompkins algorithm,
t = 0.20 s, which corresponds to the maximum HR.

The algorithm for correcting the values of array M con-
sists of the following steps:

1. The first element of array M is selected, and its index is
assigned to the variable e;.

2. The index of the next element is assigned to the vari-
able e;=e; + 1.

3. If the index of element e, is outside array M, proceed
to step 7.

4. If the difference between the time values of elements e,
and e; is greater than t, proceed to step 6.

5. If the maximum value corresponding to e; is greater
than the maximum value of element e,, the maximum value
of element e, is reset to zero (the value is deleted), and the in-
dex of e, is increased by one, then return to step 3, otherwise
the maximum value of element is reset to zero.

6. Assign e; = e, and proceed to step 2.

7. A set of maximum values in array M is formed, spaced
from each other by an interval of at least ¢.

The next step is to determine the values of the R-wave
coordinates. For this purpose, further processing of ECS is
carried out in successive sections of duration ¢4, usually equal
to four seconds. The duration of the t, interval determines

the minimum acceptable HR for this algorithm. Considering
that there must be at least three QRS complexes (two RR
intervals) in an interval of 4 seconds, the following equality
is valid: HRin = 60 * 2 / 4 = 30 bpm. Further, the algorithm
uses variable v - the coefficient of variability of QRS complex-
es, determined empirically (for this algorithm, v = 5). In the
Pan-Tompkins algorithm, this coefficient has a similar value.

The algorithm for determining the coordinates of the “char-
acteristic” peaks of the ECS consists of the following steps:

1. A section for ECS analysis is selected.

2. The maximum value of My, in the M array is found
over an interval of duration t,.

3. All maxima that satisfy the con-
o s dition Mj > v*Mp., are selected over
the specified interval.

4. If the number of selected values
is greater than or equal to three, pro-
ceed to step 7, otherwise these may be
extrasystoles or artifacts, which are
excluded at the next step.

5. A new maximum value of My,
is determined in the M array, exclud-
ing the values selected at the previ-
ous step.

6. All maxima that satisfy the con-
dition M; > v*My.x are selected over
the specified interval, while previously
excluded maxima are included in the
selection.

7. The obtained values of the R-wave coordinates are se-
quentially saved in the R array.

8. Actions of steps 1-7 are performed for all consecutive
sections of ECS.

9. As a result of the algorithm, an R array of ECS peak
coordinates is created.

At the last stage, the boundaries of the QRS complex are
found. In this variant, the boundaries of the QRS complex are
determined using methods other than those in the Pan-Tomp-
kins algorithm; however, the proposed method ensures more
reliable determination of the boundaries of the QRS complex
and is implemented using the following algorithm:

1. The coordinate value of the first “characteristic” peak
of the pacemaker is selected from the R array and this value
is assigned to variable R,,.

2. Then, the maximum boundaries of the QRS complex
are set, an indentation is made to the left and to the right
of R,, by the z interval corresponding to half the maximum
width of the QRS complex (in this case, z = 0.12 s).

3. To limit the search for the boundaries of the QRS com-
plex to the left and to the right, a certain minimum (threshold)
value of the averaged derivatives s; and s,is used.

4. The threshold value to the left of the current peak of
ECS is determined. The minimum value in the R,,~z interval
of array W is found and then the found value is doubled. The
obtained result is taken as the threshold value to the left of s;.

5. To the left of R,,;, an indent of 1 / 2 the width of the nor-
mal QRS complex (0.04 s) is created and then, moving to the
left within the R,,-z interval, it is determined in the W array
less than the threshold. Then, moving to the left within the
R~z interval, the value of the averaged derivative is deter-
mined, which meets the condition: the value in the W array
of the next element that exceeds the current one. The value of
the coordinate of the current element of the W array is taken
as the boundary of the QRS complex on the left.



6. Similar actions (steps 4, 5) are performed to find the
boundary of the QRS complex on the right.

7. Steps 1-6 are repeated for all elements of array R.

As a result of the actions performed in steps 1-7, a set of
values for the left and right boundaries of the QRS complexes
is determined, and the values of array R can be used to deter-
mine the RR intervals.

Intermediate results in determining the boundaries of
the QRS complex can be used to determine the boundaries
of the P, T waves and the ST segment. The results of deter-
mining the boundaries of the QRS complexes and RR inter-
vals using this algorithm are shown in Fig. 4.

- displaying the recorded electrocardiographic leads on a
computer monitor in real time;
- generating and managing internal ECG archive records
and working with external archive databases;
- measuring and calculating generally accepted electro-
cardiographic parameters;
— automatic diagnostic conclusion;
- manual medical processing of ECG;
- obtaining a printed protocol of the patient examination.
The interface diagram and main functions of the devel-
oped program are shown in Fig. 5.
The program menu includes tabs
necessary for conducting a diagnostic

¥ s ¥ 5 ¥ 52 k study of the cardiovascular system.

' J‘L ] In order to view existing ECG records

I ‘ﬂ i i i i — obtained using the PCard program, one
can use the card index.

i
B

Fig. 4. Results of determining the boundaries of QRS complexes on an

electrocardiogram

The input data for this algorithm were n values of the
digitized ECS with a step h = 0.001 s, taken synchronously
from 3 leads.

5.2.Implementation of the PCard software module
with the integration of a modified algorithm for auto-
mated electrocardiogram analysis

Based on the presented algorithm, the PCard software
module (program) was developed. The program code was
written in C++ using the Qt Greator environment. The pur-
pose of the program is to record and automatically process
ECG in 12 standard leads.

Program capabilities:

- registration and recording of ECS under a normal mode
and during long-term monitoring;

- printing of selected ECS sections;

- implementing ECS filtering;

The “ECG Archive” section con-
tains various types of archived data.
The first type of data is an archive
of ECGs that were recorded using the
presented cardiocomplex and the PCard
software. The second type of data is an
archive of ECGs obtained using other
devices. And the third type is an ar-
chive of scanned ECGs. Fig. 6 shows
ECG monitoring of a patient with sinus
tachycardia.

ECG recording can be performed under the normal mode
and under the long-term monitoring mode. To eliminate isoelec-
tric line drift, myographic noise, network interference, and
suppress high-frequency artifacts, the PCard program filters
signals using a wavelet transform. The filter type is selected in
the initial settings when configuring the program, but during
the analysis, if necessary, one can select another filter. For this
purpose, the main menu includes the “Signal Filtering” section.
The window for working with filters is shown in Fig. 7. Here,
the filtering parameters are selected: filter type, number of iter-
ations, numerical values for compression and amplitude. Also
in this window, one can see the filtering results for each lead.

After taking the ECG, both automatic and medical anal-
ysis can be performed. The results of automatic analysis can
be represented as a diagnostic report in Fig. 8, a, and as a
table of the results from determining the diagnostic criteria
in Fig. 8, b.

Menu
New Patient ECG archive Monitorin Lead Scanned Signal
patient records (samples) g layout ECG filtering
Data Data Select ECG Monitoring Electrode Import ECG Software
entry entry from archive window positioning in EDF format filtering
5 e < . . Print
Wi-Fi Recording Save Analysis Conclusion Table ECG
( Signal \ ( Manual QRS ) [~ Using N\ ( Numerical
reception boundary developed measurement
from receiver \_ detection U algorithm % results )

Fig. 5. User interface diagram of the program
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Fig. 6. Monitoring the electrocardiogram of a patient with sinus tachycardia
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Fig. 7. Setting the electrocardiog

The medical analysis is performed manually using the
tools offered in the PCard program. ECG analysis can be per-
formed under three modes. The “Boundaries” mode (Fig. 9)
makes it possible to manually measure the duration of in-
dividual ECG sections using italics. The measured values
are displayed in the corner of the window. The lower part
shows the values obtained during automatic analysis. This
procedure can be performed for each lead separately, or for
all leads at once, using the “Synchronized leads” function.

The “Isoline” mode is used to change the position of
the isoline. Detailed measurement of the amplitude and

OBHOBMTE

raphic signal filtering parameters

duration of all ECG elements can be performed under
the “Measurements” mode. More than 300 diagnostic
criteria and diagnostic conclusions were used in our
program.

According to GOST 30324.2.47-2012, in order to be able
to use the developed PCard program for diagnostic purpos-
es, the algorithm on which it operates must have certain
quantitative indicators that determine its performance
and quality. Such indicators include sensitivity (S.,), spec-
ificity (Pp,), false alarm rate (FPR) and positive predictive
value (Pp,), accuracy (A), algorithm error (E).
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Fig. 8. Results of automatic analysis: @ — conclusion protocol; b — table obtained during automatic analysis
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Fig. 9. Medical analysis of the electrocardiogram when selecting the “Borders” mode

Below are the formulae for calculating the listed indica-
tors [22, 23]

S, =[TR/(TP+FN)]~100%, @)
where TP is the number of true positive detections (correctly
detected complexes);

FN is the number of false negatives (missed complexes);

P, =[TP/ (TN+FP)]-100%, 5)

where TN is the number of true false detections (the number
of complexes in the database);

FP is the number of false detections (complexes deployed
in vain):

FPR:[FP /(FP+TP)]-100%, (6)
P, =[TP/(TP+FP)]-100%, )
A=[TP/(TP+FN+FP)]100%, ®)
E =[(FN+FP)/ TN]-loo%. )

The PCard program was tested on the ROHMINE test
bases for ECG. The testing involves comparing the obtained



results of diagnostic conclusions of the developed PCard
program with the reference files of conclusions from the
ROHMINE base.

Table 1 gives the final indicators of the program testing
under the long-term monitoring mode on the ROHMINE
2006 test base, where two categories were evaluated: the time

Of the total 149,718 normal complexes, the tested program
identified 149,711. There were 10 missed complexes and 3 false
positives. The evaluation parameters were as follows: sensitiv-
ity — 99.99%, specificity — 99.99%, false positive rate — 0.002%,
positive predictive value — 99.99%, accuracy — 99.99%. The error
was 0.009%.

of occurrence of all cardiac complexes and the selection of
ventricular complexes.

Of the total 6,252 ventricular complexes, the program
identified 6,246. There were 3 missed complexes and 3 false
positives. The evaluation parameters were as fol-
lows: sensitivity — 99.80%, specificity — 99.80%, false
positive rate — 0.001%, positive predictive value -

Table 1
Final indicators for all ECG groups under a long-term monitoring mode

99.90%, accuracy — 99.71%. The error was 0.096%.
Corlfg’lex TN | TP |FN|FP|Sens, %|Ppn, %|FPR, %| Ppv,% | A |E, % The resulting algorithm processes 40-minute
records in 4.7 seconds, and a 24-hour record in
Normal |1 1071149711 10 | 3 | 99.99 | 99.99 | 0.002 | 99.99 |99.99]0.009| 2DOUL3 MinULeES.
complex The standard ECG database of ROHMINE 2018
) was used to test the PCard program under a stan-
Vigglgifr 6252 | 6246 | 3 | 3| 99.95 | 99.81 [0.0004 | 99.95 [99.90[0.096| dard mode. The test results are given in Table 2.
Serious violations are noted in the Cito column.
Table 2
Final test results under a standard mode
Code Conclusion | Cito | Doctors | Program | Missed | Falselyset | Sen, % | Ppn, % | Ppv, %
Rhythm
1 Sinus rhythm - 1500 1496 3 0 99.80 100 100
2 Tachycardia - 130 130 1 1 99.24 99.30 99,24
3 Bradycardia - 221 218 3 0 98.64 100 100
4 Fibrillation, atrial flutter + 113 115 0 2 100 99.93 98,29
5 Atrial rhythm - 13 12 1 0 92.30 100 100
6 AV rhythm, episode of AV rhythm + 7 0 0 100 100 100
7 HT, episode of HT or rhythm + 9 9 0 0 100 100 100
8 VT, episode of HT or rhythm + 5 5 0 0 100 100 100
Extrasystole
9 Supraventricular extrasystole - 94 95 1 98.96 99.87 97,93
10 Ventricular extrasystole, parasystole - 73 72 1 98.63 100 100
Pauses in AV conduction
11 1st degree AV block - 57 55 4 2 93.22 99.83 96,49
12 Short PQ syndrome - 35 37 0 2 100 99.87 94,87
13 2nd degree AV block + 15 15 0 0 100 100 100
14 Pause due to SA block or residual sinus node + 9 11 1 3 91.67 99.81 78,57
15 Blocked supraventricular extrasystole - 6 7 0 1 100 99.90 87,50
16 Pause longer than 2 sec against the background " 9 9 0 0 100 100 100
of AF or AT
20 3rd degree AV block + 4 4 0 0 100 100 100
Ventricular conduction
17 VPV, incl. transient - 29 28 2 1 93.33 99.87 96,55
18 Complete BPN, incl. transient - 45 46 0 1 100 99.90 | 97,87
19 Complete BLN, incl. transient + 46 46 0 0 100 100 100
20 Complete BPVLN - 17 17 0 0 100 100 100
QT
21 QT prolongation - 49 51 1 3 98.07 99.80 94,44
22 QT shortening - 34 34 2 2 94.44 99.82 94,44
Coronary artery disease (CAD), Left Ventricular Hypertrophy (LVH)
23 ACS with ST elevation or depression + 16 15 1 0 93.75 100 100
24 MI with Q and non-Q, any stage + 135 135 1 1 99.26 99.93 99,26
25 LVH - 158 160 0 2 100 99.87 98,76
Total for the database
For all violations (except syn.rhythm) - 1329 1333 19 23 98.60 99.91 | 98.30
For violations Cito - 368 371 3 6 95.37 99.97 98.40
Accuracy by base: 98.43%




According to the data in Table 2, 1496 of the total sinus
rhythms were detected, 3 of them were missed, the sensi-
tivity was 99.80%, specificity was 100%, and the positive
predictive value was 100%. For all disorders (except sinus
rhythm), 1333 of 1329 disorders were detected, 19 of which
were missed, and 23 disorders were detected incorrectly.
The sensitivity in this case was 98.60%, specificity was
99.91%, and the positive predictive value was 98.30%. For
serious disorders (Cito), 371 of 368 disorders were detect-
ed, 3 of which were missed, and 6 disorders were detect-
ed incorrectly. The sensitivity in this case was 95.37%,
specificity was 99.97%, and the positive predictive value
was 98.40%. The accuracy of the algorithm for the entire
database was 98.43%. A comparative analysis of the results
is illustrated in Table 3. For the developed modified algo-
rithm based on the Pan-Tompkins method, the indicators
were calculated as the arithmetic mean value according to
the data in Table 1.

Table 3
Comparative analysis of algorithms

Method Sens, % Ppv, %
Developed algorithm 99.97 99.97
1st derivative method [24] 98.08 99.18
Hilbert transform [25] 99.88 99.73
Dynamic Bayesian network [26] 99.72 99.76
Differential threshold method [27] 99.69 99.63

Our results indicate the high accuracy of the proposed
algorithm, which, in terms of the key metrics Sens and
PPV, outperforms most of the known solutions reported
in [24-27].

6. Discussion of results related to the automated
diagnostics of electrocardiograms in real time based
on the modified Pan-Tompkins algorithm

The proposed modified Pan-Tompkins algorithm for
determining the boundaries of the QRS complex in the
long-term monitoring system has made it possible to
achieve high performance and quality indicators, ensur-
ing the accuracy of the algorithm for determining normal
complexes of 99.99%, for determining ventricular complex-
es - 99.90% (Table 1). When recording an ECG under the
standard mode, the accuracy was 98.43%. Another equally
important result of the presented modified algorithm is
an increase in performance. During the research, it was
found that approximately 4.7 seconds were spent on pro-
cessing one record lasting 40 minutes, i.e., a 1-second seg-
ment of the signal is processed in approximately 1.97 ms.

The accuracy and speed of the algorithm were in-
creased by modifying the Pan-Tompkins algorithm. Thus,
at the first stage of signal processing, digital filtering
based on wavelet transforms was used, which minimized
the impact of interference of various natures. To increase
the speed and accuracy of the algorithm, other mathe-
matical operations, in contrast to the original algorithm,
were used at the stage of calculating derivatives, and they
were applied to all leads synchronously. At the integration
stage, a recursive moving average filter was implemented,
while the window width (w = 0.08 s) was selected empir-

ically. Visual results obtained at the stage of calculating
derivatives and moving average (Fig. 3) demonstrate high
sensitivity of the algorithm to QRS complexes. Also, at
the final stage of the algorithm, methods for determining
the boundaries of QRS complexes and RR intervals were
used that differ from the original. They make it possible to
analyze the rhythm and examine its disturbances, as well
as determine the rise and fall of the ST segment, which
are the main goals of ECG monitoring. The consistency
of boundary detection for all leads (Fig. 4) confirms the
correctness of the algorithm for multichannel signal pro-
cessing and its suitability for use in 12-channel systems.

In [28], a modified Pan-Tompkins algorithm was
proposed for real-time QRS detection on mobile plat-
forms (AMRT). It turned out to be more correct than the
original algorithm. To test the algorithms, the author
used the PhysioBank ATM and Harvard Dataverse da-
tabases for the following ECS categories: high (Al) and
low signal quality (A2), normal sinus rhythms (B1), ar-
rhythmias (B2), a subset of the arrhythmia data set (C),
and signals obtained using telemedicine (D). The fol-
lowing accuracy was obtained for the Pan-Tompkins
algorithm: A1 - 99.26%; A2 - 74.09%; Bl - 94.85%,
B2 - 96.09, C - 64.26 and D - 68.91. For the AMRT algo-
rithm: A1 - 99.62%; A2 - 78.54%; B1 — 94.96%, B2 — 96.66,
C -92.81, and D - 76.29.

Analyzing our results, it can be noted that the accuracy
of the proposed algorithm is higher than the original, but
there is a fairly large difference between the categories.
Thus, it can be concluded that the stability of solutions to
changes in influencing factors is not at a high level. The
results can be compared with the results of the algorithm
developed in the paper for categories B1, B2, and C, using
the data in Table 2. The accuracy across the entire data-
base was 98.43%, which exceeds the accuracy of the AMRT
algorithm.

It should be noted that when using the original
Pan-Tompkins algorithm, the calculation time for a 1-sec-
ond signal segment is approximately 20 ms. Therefore, a
40-minute recording will take approximately 48 seconds.
For the differential threshold method [27], the calculation
time for a 1-second signal segment is approximately 10 ms,
and for a 40-minute recording — 24 seconds. The algorithm
reported in our study is 10 times faster than the Pan-Tomp-
kins algorithm and 5 times faster than the method based
on the dynamic Bayesian network [26].

At the same time, the differential threshold meth-
od [27] requires approximately 2 seconds to record a
40-minute recording, which is 2.4 times less than the pro-
cessing time of the proposed algorithm. However, if one
looks at the indicators in Table 3, the differential threshold
method is inferior in signal processing quality. Here, it
is important to maintain a reasonable balance between
processing quality and time spent, giving preference to
quality, since this subsequently affects the accuracy of the
diagnostic conclusion.

The described PCard program, developed on the basis
of the proposed algorithm, makes it possible to record
and automatically process ECG in 12 standard leads, both
during long-term monitoring and under the standard
mode. The program implements the entire cycle of auto-
mated ECG analysis, from registration to the formation
of a diagnostic report (Fig.5). A special feature of the



program is the ability to use it for mobile wireless systems
that involve long-term monitoring in real time. As a rule, the
functionality of such programs is limited by the number of an-
alyzed leads, the lack of the ability to conduct a medical anal-
ysis to confirm the results [6, 29], an abbreviated diagnostic
report (only for arrhythmias or ischemic disorders). Also, not
all programs include a user-friendly interface and such a large
set of diagnostic criteria (300 criteria) as in the PCard software.

It should be noted that despite the high accuracy of the
automatic analysis and the ability to obtain a diagnostic
report (Fig. 8), our program should serve as an auxiliary
tool for accelerating and increasing the accuracy of ECG
interpretation. The software does not replace professional
medical judgment, so the final conclusion must be given
by a qualified physician, for which purpose the “Borders”
mode is provided (Fig. 9).

This study has the following limitations: maximum
heart rate (HR) is 240 beats per minute; minimum HR is
30 beats per minute. The sampling frequency of samples
is no more than 1000 Hz, the data are processed as 12-bit
ECS values (resolution), which basically corresponds to a
large-scale ECG. Diagnostics is limited in the case of only
individual leads, i.e., when one or two leads are used.

Disadvantages include the fact that in the case of noisy
ECG signals (interference, surges, floating isoline, etc.),
the stability of the algorithm is significantly reduced. Giv-
en this, corrective actions are required.

Future research to build on our study may involve
application of the results to design a prototype of a mobile
device aimed at long-term monitoring with the possibility
of wireless Wi-Fi transmission of ECG in real time. From a
practical point of view, the implementation of the proposed
modified Pan-Tompkins algorithm as part of the PCard
module in the C+4 language allows for further adaptation
to various operating systems and hardware platforms of
mobile diagnostic devices. However, successful implemen-
tation of the algorithm in medical devices will be possible
only with a comprehensive approach, including both
technical modification to meet the needs of patients and
medical personnel, and integration with modern standards
of mobile medical diagnostics.

7. Conclusions

1. The result of our study is the improved key stages
of the original Pan-Tompkins algorithm that previously
limited diagnostic quality and increased data processing
time. The modifications affected the stages of digital fil-
tering, numerical differentiation, integration, and adap-
tive threshold analysis. Taking into account synchronous
signals from several leads and compression of calculations
made it possible to increase the accuracy of determining
the coordinates of R waves and QRS complex boundaries
while maintaining high computational efficiency. The re-
sults of the Pan-Tompkins algorithm improvement made it
possible to ensure reliable extraction of key ECG elements
even under conditions of noise and limited resources,

which confirms its applicability in mobile and wearable
diagnostic devices. Its speed and accuracy will allow its
application in online analysis of cardiological data. In
addition, it does not require large hardware and system
resources, which makes it convenient for use in mobile
devices with autonomous power supply.

2. The implemented PCard software integrates the
developed modified algorithm for determining the bound-
aries of the QRS complex and is intended for use in a hard-
ware-software system for long-term and standard ECG
monitoring in 12 leads. Testing of the PCard program,
which operates on the basis of the developed algorithm,
was carried out under the Holter monitoring mode and
under a standard mode. The test results showed a fairly
high accuracy for various types of pathologies. For Holter
monitoring, the accuracy in determining normal complex-
es was 99.99%, and in determining ventricular complexes —
99.90%. The resulting algorithm processes records lasting
40 minutes in 4.7 seconds, and a record lasting 24 hours
in 3 minutes. The accuracy of the algorithm under a
standard mode for the entire database of pathological dis-
orders was 98.43%. The PCard program makes it possible
to automatically receive up to 300 diagnostic criteria and
diagnostic conclusions that can be adjusted by a doctor be-
fore printing. The software also allows for digital filtering
of ECS, eliminating interference, and thus increasing the
accuracy of diagnostics. In addition, the program provides
the ability to work with archived records made on other
devices. Also, one of the advantages of the software is the
ability to simultaneously conduct long-term monitoring
and online analysis of ECG, which will make it possible to
identify pathological disorders in real time.
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