Наведено математичний опис зміни питомої швидкості біологічного окиснення метану газоподібних викидів з каналізаційних мереж в біореакторі з шаром, що омивається

Ключові слова: математичний опис, питома швидкість, каналізаційні мережі, біореактор, окиснення

Приведено математическое описание изменения удельной скорости биологического окисления метана газообразных выбросов из канализационных сетей в биореакторе с омываемым слоем

Ключевые слова: математическое описание, удельная скорость, канализационные сети, биореактор, окисление

A mathematical description of the change of the specific rate of biological oxidation of methane gaseous emissions from sewerage networks in the bioreactor with a layer of watered is shown

Keywords: mathematical description, specific rate, sewerage networks, bio-reactor, oxidation

Статья посвящена примеру применения математической модели (модели Байотрит) к описанию изменения удельной скорости биологического окисления метана иммобилизованным на лавсановых ершах метилотрофным микробиоценозом в биореакторе с омываемым слоем.

В основе математического описания лежат экспериментальные данные по биологическому окислению метана, а также данные математической модели, которая описывает изменение концентрации метана в процессе его биологического окисления в биореакторе с омываемым слоем [1].

В уравнение модели Байотрит, описывающее динамику удельной скорости биохимического превращения субстрата, ввели дополнительные мультипликативные коэффициенты, учитывающие влияние на кинетику окисления метана концентрации О₂ в газовоздушной среде и массообмена кислорода. Значения соответствующих констант вычислили по экспериментальным данным, приведенным в [2]. Ингибирующее влияние перечисленных факторов на процесс представили в виде, рекомендуемом для описания действия ингибиторов на кинетику биохимических процессов, которое описывается колоколообразной зависимостью [3, 4].

$$\rho_{\rm M} = \frac{\rho_{\rm maxM} S_{\rm M}(t) X_{\rm M}(t) b}{S_{\rm M}(t) + K_{\rm SM}} k_2 k_3, \qquad (1)$$

УЛК 628

МАТЕМАТИЧЕСКОЕ ОПИСАНИЕ ИЗМЕНЕНИЯ УДЕЛЬНОЙ СКОРОСТИ БИОЛОГИЧЕСКОГО ОКИСЛЕНИЯ МЕТАНА

В.А.Юрченко

Доктор технических наук, профессор Кафедра экологии

Харьковский национальный автодорожный университет ул. Петровского, 25, г. Харьков, 61002

А.Ю.Бахарева

Кандидат технических наук, старший преподаватель Кафедра охраны труда и окружающей среды Национальный технический университет «Харьковский политехнический ин-ститут» ул. Фрунзе, 21, г. Харьков, 61002

где $\rho_{\scriptscriptstyle M}$ - удельная скорость окисления метана, мг/г×ч;

 $ho_{\max \, M}$ - максимальная удельная скорость окисления метана, мг/г×ч;

 $S_{\rm M}(t)$ - концентрация метана, г/дм³;

 $X_{M}(t)$ - концентрация биомассы, г/дм³;

b – коэффициент пропорциональности, const, $\mbox{gm}^3/\mbox{r};$

 K_{SM} - константа Михаэлиса, г/дм 3 для метанокисляющего биоценоза;

 ${\bf k}_2$ - коэффициент ингибирования процесса концентрацией кислорода.

$$k_2 = \frac{1}{1 + \frac{K_{SO}}{O_{2M}} + \frac{O_{2M}}{K_{O_{2M}}}}$$
 (2)

 ${
m K}_{
m SO}$ — константа полунасыщения ${
m O}_2$ газовоздушной среды, 13% (г/дм³);

 ${\rm K_{O_2M}}$ – константа ингибирования окисления метана кислородом, 23%, (г/дм³);

 ${\rm O_{2m}}$ - концентрация ${\rm O_2}$ в газовоздушной среде, (г/дм³);

 ${\bf k_3}$ - коэффициент ингибирования процесса массообменом кислорода

$$k_{3} = \frac{1}{1 + \frac{M_{n}}{M} + \frac{M}{M_{i}}},$$
 (3)

где Мп – значение массообмена, при котором накопление биомассы равно ½ оптимальной, 330 мг/м³;

М − устанавливаемый массообмен, мг/м³;

M_i – массообмен, при котором накопление биомассы подавлено в 2 раза, 990 мг/м³.

Определение константы Михаэлиса выполняли методом линеаризации Уокера-Шмидта [5].

Тангенс угла наклона прямой, построенной в координатах вспомогательных переменных

$$\frac{P}{\ln \frac{S_{0M}}{S_{0M}} - P} \text{ (ось абсцисс)} \quad \frac{t}{\ln \frac{S_{0M}}{S_{0M}}} \text{ и (ось ординат),}$$
 равен $\frac{1}{V_{\text{maxM}}}$. Отрезок, отсекаемый на оси ординат,

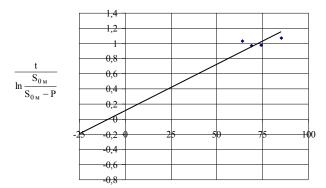
равен $\frac{K_{\text{sM}}}{V_{\text{maxM}}}$. P- продукт, который получается в ре-

зультате окисления CH_4 - CO_2 + H_2O . Концентрация продуктов окисления метана составляет около 70% от его потребления. 30% потребленного метана идет на биосинтетические процессы.

Рассчитываем концентрацию продукта на основании экспериментальных значений концентрации СН4 в процессе обработки (табл. 1).

Таблица 1 Прогнозный расчет концентрации продукта метаболизма метана, при окислении иммобилизованным биоценозом

Потребленный метан, г/дм ³	Концентрация продукта, г/дм ³
0,066	0,046
0,09	0,063
0,101	0,071
0,11	0,077


Расчетные значения вспомогательных координат представлены в табл. 2, а прямая, построенная во вспо-

представлены в табл. 2, а прямая, построенная во вспомогательных координатах, на рис. 1.
Как видно из данных рис.
$$1$$
, $tg\alpha = \frac{1}{V_{maxM}} = \frac{0.11}{12} = 0,009$

Отсюда V_{maxm} =111 (мг/дм 3 хч). Отрезок, отсекаемый построенной прямой на оси ординат, $K_{\text{sm}}/V_{\text{maxm}}$ =0,11; отсюда K_{sm} =111×0,11=12 (мг/дм³).

Таблица 2 Вспомогательные координаты для определения V_{maxm} и

$\frac{t}{\ln \frac{S_{0M}}{S_{0M} - P}} $ (V)	$\frac{P}{\ln \frac{S_{0M}}{S_{0M} - P}} (X)$
1,07	85
0,98	74
0,97	69
1,03	64

$$\frac{P}{\ln \frac{S_{0\,\scriptscriptstyle M}}{S_{0\,\scriptscriptstyle M}-P}}$$

Рис. 1. Построение прямой в вспомогательных координатах для определения V_{maxm} и K_{Sm} окисления мета-

Из экспериментальных данных

$$\rho_{\text{maxM}} = \frac{V_{\text{maxM}}}{X_{0\text{M}}} = \frac{116}{0.6} = 192 \quad \text{(MG/TXY)} (0.19 \text{ G/TXY}).$$

 $\mu_{\text{maxm}} = Y_{\text{maxm}} \times \rho_{\text{maxm}}$. Отсюда $\mu_{\text{maxm}} = 0.192 \times 0.7 = 0.13$ (ч⁻¹) $(3,1 \text{ cyt}^{-1}).$

Значение b, необходимое для произведения расчетов по формуле 1, вычисляли по экспериментальным данным:

$$b = \frac{\rho_{M} \left(S_{M}(t) + K_{SM} \right)}{\rho_{MN} S_{M}(t) + X_{M}(t)}$$

При t_0 =0 b=1,82; при t_1 =0,58 ч b=1,55; при t_2 =0,83 b=1,36; при $t_3=1,0$ b=0,73; $\bar{b}=1,37$.

Для расчета экспериментальных значений удельной скорости окисления метана необходимо установить концентрацию биомассы в динамике процесса. По уравнению (4), предлагаемому [2], концентрация метанокисляющей биомассы в динамике процесса равна:

при µ_м=const

$$X_{M}(t)=X_{0 M}e^{\mu M t}$$
 (4)

при $\mu_{M} = a_{3}(t)$

$$X_{M}(t) = X_{0M} \left(S_{yM} - \frac{1}{Y_{M}} \right) e^{a_{3}X_{0M} \left(S_{yM} + \frac{1}{Y_{M}} \right)^{t}} \times \left[\frac{1}{Y_{M}} e^{a_{3}X_{0M} \left(S_{yM} + \frac{1}{Y_{M}} \right)^{t}} + S_{yM} \right]^{-1}$$
(5)

Расчетные значения концентрации метанокисляющей биомассы приведены в табл. 3.

Таблица 3
Расчетные значения концентрации биомассы в процессе
окисления метана

Продолжитель-	Концентрация биомассы, г/дм ³	
ность обработ- ки, ч	по уравнению 4	по уравнению 5
0	0,6	0,60
0,58	0,64	0,630
0,83	0,65	0,634
1,0	0,67	0,647
1 25	0.69	0.650

В эксперименте концентрацию биомассы измеряли только в начале эксперимента и в конце эксперимента. Прирост не превысил 20 мг, т.е. находился в пределах ошибки измерений. Такой прирост ила согласуется с показателями, используемыми для расчета прироста активного ила в системах с иммобилизованной биомассой (биофильтрах) [6]: 0,4 г сухой биомассы/г БПК_п, при отсутствии взвешенных веществ.

Значения удельной скорости окисления метана метанотрофной биомассой рассчитанные по моделям уравнений 4 и 5, в сравнении с экспериментальными данными представлены на рис. 2 и 3.

Как видно, модель (1) адекватно описывает удельную скорость окисления метана в процессе его биологического окисления. Максимальное отклонение математической модели от экспериментальных данных составляет 29,6%, а среднее – 18% (рис. 2 с учетом использования формулы 4). Максимальное отклонение математической модели от экспериментальных данных в случае использования формулы 5 составляет 29%, а среднее – 16% (рис. 3).

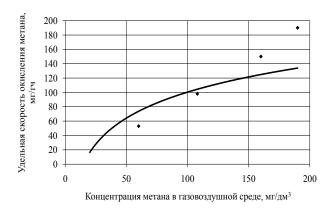


Рис. 2. Зависимость удельной скорости окисления метана от концентрации метана в газовоздушной среде (точки — экспериментальные значения, кривая — модель уравнения 4)

Кинетические константы и коэффициенты биологического окисления СН₄, установленные экспериментально, рассчитанные по экспериментальным данным других авторов и приведенные в научно-технической литературе, представлены в табл. 4.

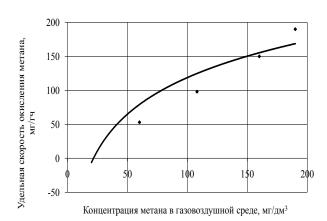


Рис. 3. Зависимость удельной скорости окисления метана от концентрации метана в газовоздушной среде (модель уравнения 5)

Таблица 4
Стехиометрические, кинетические, физиологические константы и коэффициенты биологического окисления метана

Показатели	Размерность	Значение
Y _M	г/г	0,76
K _{s m}	мг/дм 3	12, экспериментальные данные
$\mu_{\text{max M}}$	сут-1	3,1,экспериментальные данные
р _{тах м}	мг/г×ч	192, экспериментальные данные
k _T		0,03
k_3		1
k_2		1

Литература

- Бахарева А.Ю. Экологически безопасные методы очистки газообразных промышленных выбросов от формальдегида и метана: Дис... канд. техн. наук: 21.06.01 / Бахаа рева Анна Юрьевна. – Х., 2009. – 210 с.
- 2. Мякенький В.И. Микробиологическое окисление метана угольных шахт / Мякенький В.И., Курдиш И.К. К : Наук. думка, 1991. 148 с.
- Вавилин В.А. Моделирование деструкции органического вещества сообществом микроорганизмов / Вавилин В.А., Васильев В.Б., Рытов С.В. М.: Наука, 1993. 202 с.
- Варфоломеев С.Д. Биотехнология: кинетические основы микробиологических процессов / Варфоломеев С.Д., Калюжный С.В. Учебное пособие. М.: Высш. школа, 1990. 296 с.
- 5. Кузнецов С.И. Методы изучения водных микроорганизмов / Кузнецов С.И., Дубинина Г.А. М.: Наука, 1989 286 с
- 6. Яковлев В.П. Биохимические процессы в очистке сточных вод / Яковлев В.П., Карюхина Т.А. М.: СтроА йиздат, 1980. 200 с.