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The object of this study is the multi-depot vehi-
cle routing problem (MDVRP), which seeks optimal 
vehicle routes from multiple depots to geographi-
cally dispersed customers. The study addresses the 
problem of low reliability in traditional determin-
istic MDVRP models that fail to perform effectively 
under uncertain and disruptive conditions such as 
traffic congestion, infrastructure failures, demand 
fluctuations, and natural disasters. To overcome 
this limitation, a resilience-based optimization 
model is proposed by formulating the MDVRP with 
probability constraints that capture the likelihood 
of disturbances affecting route feasibility. The model 
integrates stochastic components into the routing 
process to balance cost minimization with ser-
vice reliability under uncertainty. Computational 
experiments on an agro-logistics case involving five 
depots and twenty customers demonstrated that 
the proposed model reduced expected transpor-
tation costs by 36.4% compared with the Genetic 
Algorithm approach (494 vs. 777) and maintained 
service continuity in 100% of feasible scenarios with 
a reliability threshold of α = 0.7. Moreover, approx-
imately 25–30% of potential routes were identified 
as infeasible under disturbance scenarios, validat-
ing the model’s probabilistic filtering mechanism. 
These results confirm that incorporating chance 
constraints and a Tabu search heuristic enhances 
the adaptability and robustness of multi-depot rout-
ing systems. The developed model can be practically 
applied to large-scale logistics systems, humanitar-
ian relief operations, and distribution networks 
operating in regions prone to demand volatility or 
infrastructure disruptions, providing decision-mak-
ers with a reliable tool for sustainable and resilient 
route planning
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1. Introduction

In modern logistics systems, efficient routing of vehicles 
plays a vital role in ensuring the timely and cost-effective deliv-
ery of goods. Among various optimization topics, the multi-de-
pot vehicle routing problem (MDVRP) occupies a central posi-
tion because it reflects realistic distribution structures in which 
multiple depots coordinate to serve dispersed customers. The 
scientific importance of this topic continues to grow as global 
logistics networks become increasingly large, interconnected, 
and sensitive to uncertainty [1, 2].

In practice, many logistics operations, particularly in rural 
and agro-industrial sectors, face frequent disruptions caused by 
natural events such as seasonal rainfall, landslides, or road deg-
radation. These disturbances often make certain routes tempo-
rarily inaccessible, leading to delays, increased costs, and service 
failures. Conventional deterministic MDVRP models, which 
assume stable travel times and known demands, are therefore 
insufficient for representing these real-world dynamics [3, 4].

The scientific community has increasingly recognized 
the need to embed uncertainty and resilience within routing 
models. Topics such as stochastic optimization, probabilistic 
constraints, and resilience analysis have emerged as key direc-
tions in operational research, especially for supply networks 
that must remain functional during disruptions [5, 6]. These 
methodological trends confirm that the MDVRP under uncer-
tainty remains an active and essential research area rather than 
an outdated one.

From a practical perspective, ensuring resilience in vehicle 
routing is crucial for logistics systems supporting agriculture, 
food distribution, and humanitarian aid. Rural supply chains 
depend heavily on dependable delivery routes for fertilizers, 
seeds, and essential goods. In developing regions, where in-
frastructure conditions fluctuate seasonally, the ability to plan 
routes that remain feasible under uncertainty directly affects 
productivity, sustainability, and community welfare [7, 8].

Therefore, research on the development of resilience- 
oriented multi-depot vehicle routing problem models under 
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probabilistic disturbance conditions remains relevant both sci-
entifically and practically.

2. Literature review and problem statement

The vehicle routing problem (VRP) represents a cornerstone 
in transportation and logistics optimization, formulated to min-
imize total travel distance while satisfying routing and capacity 
constraints [9]. Building on this foundation, the multi-depot ve-
hicle routing problem (MDVRP) was introduced to reflect more 
realistic distribution systems in which multiple depots coordi-
nate to serve geographically dispersed customers [10, 11]. The 
inclusion of multiple depots enhances operational flexibility but 
also increases computational complexity, making large-scale 
implementations challenging. Although extensive studies have 
explored heuristic and exact approaches to improve solution 
efficiency, most MDVRP formulations remain deterministic and 
lack mechanisms for addressing uncertainty or disruptions that 
frequently occur in practical logistics operations. 

Comprehensive reviews by [1, 12] emphasized that sto-
chastic and dynamic VRPs are essential for realistic logistics 
planning where customer demand and travel times vary 
unpredictably. They demonstrated that adaptive routing and 
scenario-based heuristics can partially address uncertainty, yet 
integration with multi-depot systems remains difficult because 
of exponential growth in model complexity. These objective 
difficulties make large-scale resilience modeling computation-
ally demanding and often impractical.

The concept of resilience in logistics networks gained prom-
inence following global crises that disrupted supply chains. 
The paper [13] showed that resilience represents a system’s 
ability to maintain performance and service continuity under 
disruptions such as infrastructure failures or natural disasters. 
The papers [14, 15] further demonstrated that incorporating 
resilience and sustainability objectives enhances the robustness 
of logistics systems. Nevertheless, most existing routing models 
lack explicit probabilistic mechanisms for quantifying resil-
ience, primarily due to data scarcity and the methodological 
challenge of modeling uncertainty.

A promising direction is the application of chance-con-
strained and robust optimization frameworks. The paper [16] 
introduced chance constraints in multi-depot vehicle sched-
uling to ensure that service requirements are satisfied with  
a predefined probability, thereby improving reliability, [17] ex-
tended this approach through distributionally robust optimi-
zation, enabling better performance when probability distri-
butions are uncertain or incomplete. Meanwhile, paper [18] 
demonstrated that metaheuristics such as Tabu search can 
effectively solve large-scale routing problems, although they 
did not explicitly address probabilistic disturbances. Combin-
ing heuristic search with chance-constrained programming 
appears to be a viable approach for balancing solution quality 
and computational feasibility.

Recent works by papers [14, 19] explored resilient MDVRP 
models considering regional road closures and stochastic travel 
conditions. Their findings confirmed that pre-emptive rerouting  
and uncertainty modeling enhance service continuity. However,  
these models were primarily deterministic or sustainability- 
oriented and did not evaluate the probabilistic feasibility of 
routes. [20] contributed further by introducing SVRPBench, 
a realistic benchmark for stochastic VRPs with probabilistic 
disruptions, confirming that resilient routing remains a rapidly 
developing scientific topic.

Despite these advances, unresolved issues persist at the 
intersection of multi-depot routing, resilience modeling, and 
probability-based optimization. The reasons are both computa-
tional, stemming from the combinatorial nature of large-scale 
systems, and methodological, due to the absence of integrated 
probabilistic feasibility metrics. A feasible way to overcome 
these difficulties is to develop a hybrid optimization model 
that combines chance-constrained programming with meta-
heuristic search to ensure reliable, cost-efficient routing under 
uncertain and disturbance-prone conditions.

Therefore, it is advisable to conduct research on the de-
velopment of resilience-oriented multi-depot vehicle routing 
problem models under probabilistic disturbance conditions. 

3. The aim and objectives of the study

The aim of this study is to develop a resilience-driven opti-
mization model for the MDVRP under disturbance conditions 
by integrating probability (chance) constraints. This approach 
enables the identification of reliable routing mechanisms that 
minimize expected transportation costs while ensuring service 
continuity in uncertain and disruption-prone environments.

To achieve this aim, the following objectives were accom-
plished:

– to formulate a resilience-enhanced MDVRP model in-
corporating chance constraints for service continuity under 
uncertainty;

– to develop a solution approach based on metaheuristic 
methods (Tabu search and genetic algorithm) adapted to 
chance-constrained conditions;

– to conduct computational experiments on a real-world-in-
spired agro-logistics distribution case and evaluate model per-
formance through resilience metrics and cost efficiency.

4. Materials and methods

4. 1. The object and hypothesis of the study
The object of this study is the multi-depot vehicle routing 

problem (MDVRP) under probabilistic disturbance condi-
tions, in which vehicles are dispatched from multiple depots 
to geographically dispersed customers while accounting for 
uncertain road accessibility and demand variations.

The main hypothesis of the study is that incorporating 
probability (chance) constraints into the MDVRP can enhance 
routing resilience by ensuring that the selected routes remain 
feasible under disturbance scenarios without increasing total 
transportation cost.

The assumptions adopted in this study are as follows:
– the probability of road availability under each distur-

bance scenario is known and can be estimated from historical 
or expert data;

– customer demand and vehicle capacity are deterministic 
within each planning period;

– travel costs are proportional to distance and remain con-
stant within each scenario.

The simplifications adopted in the study include:
– time windows and dynamic (real-time) demand updates 

are not considered;
– vehicle speeds and service times are assumed to be 

uniform;
– inter-depot transfers and vehicle reallocation between 

depots are not allowed.
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4. 2. Problem formulation
The study examines a practical logistics scenario involv-

ing an agricultural cooperative responsible for distributing 
essential agro-supplies, namely seeds and fertilizers, to 
a  network of remote farms. The distribution network con-
sists of five depots strategically located in the region and 
twenty customer nodes representing remote farms dispersed 
across a rural area.

Each depot holds a limited stock of goods and operates 
with a finite fleet of delivery vehicles, each subject to a max-
imum load capacity. The objective is to develop a vehicle 
routing plan that ensures the fulfillment of all customer’s 
demands while minimizing the total transportation cost.

A key challenge addressed in this distribution network 
is the presence of disturbance conditions, particularly those 
caused by seasonal rainfall that renders certain rural roads 
impassable. These disruptions are modeled probabilistically 
using a set of predefined scenarios, each representing a dis-
tinct realization of the road network’s availability. The prob-
ability of occurrence of each scenario is known, reflecting 
historical data or expert assessment.

To ensure the resilience of the routing plan, chance con-
straints are incorporated to restrict the use of transportation 
links (edges) to only those with a high level of reliability. 
Specifically, a road segment may be used in the routing plan 
only if it maintains a minimum cumulative availability across 
all scenarios, i.e., if its expected accessibility meets or exceeds 
a defined threshold (e.g., 70%).

This resilient distribution planning framework is essential 
for agro-logistics operations in rural and weather-sensitive 
regions. By proactively accounting for potential disruptions 
and uncertainty, the model ensures that the delivery process 
remains reliable, sustainable, and cost-effective under real- 
world operating conditions [21, 22].

4. 3. Disturbance scenario design and reliability eval-
uation

To represent uncertainty in route accessibility, three dis-
turbance scenarios were generated to model different levels 
of road unavailability caused by seasonal conditions. Each 
scenario was assigned a probability of occurrence (0.3, 0.5, 
and 0.2, respectively), reflecting practical disruptions such as 
rainfall or minor landslides that temporarily block rural con-
nections between depots and customer nodes.

The probability-based disturbance model was applied to 
assess the availability of each route segment. A reliability in-
dex was computed for each edge as the weighted probability 
of accessibility across all scenarios. Edges with a reliability 
value below the reliability threshold (α = 0.7) were treated as 
infeasible and excluded from the routing plan.

5. Research results of performance evaluation  
of the chance-constrained resilient MDVRP model

5. 1. Formulation of the resilience-enhanced MDVRP 
model

The resilience-enhanced multi-depot vehicle routing prob-
lem (MDVRP) model was formulated by integrating chance 
constraints into the routing structure to ensure that service 
continuity is maintained under uncertain conditions. The 
model explicitly restricts the use of road segments, which cu-
mulative reliability across scenarios falls below the specified 
confidence level (α = 0.7).

Sets and indices:
– I – set of customer nodes;
– D – set of depot nodes;
– N = I ∪ D – set of all node;
– K – set of vehicles;
– Ω – set of disturbance scenarios;
– α – confidence level (chance constraint threshold).
Parameters:
– cijω  – cost or distance from node i to node j under scenario ω;
– di – demand of customer i;
– Q – vehicle capacity;
– pω – probability of scenario ω.
Decision variables:
– xijk� �� �0 1.  – 1 if vehicle k travels from node i to node j 

in scenario ω;
– yik� �� �0 1,  – 1 if customer i is served by vehicle k in sce-

nario ω;
– uiω– sub-tour elimination variable for customer i in sce-

nario ω.
Objective function

Min�
�

�
� �

� � � �
� ���
�

p c x
k Ki N j N

ij ij .	 (1)

Minimize the expected cost over all disturbance scenarios.
Constraints:
1. Customer visit constraints. Each customer must be vis-

ited by exactly one vehicle in each scenario

k K j N
ijkx i I

� �
� � � � � � �� �1�� ,� .� 	 (2)

2. Depot assignment constraints. Vehicles must start and 
end at the same depot

j I
djk

i I
idkx x d D k K

�
� �� � � � � � � �� � �1 1,�� �� ,� .�



� 	 (3)

3. Flow conservation constraints. Ensure vehicle flow con-
sistency

j N
ijk

j N
jikx x i I k K

�
� �� � � � � � ��

�

� ��� , ,� � .	 (4)

4. Vehicle capacity constraints. Respect vehicle capacity

i I
i ikd y Q k K

�
� � � � � �� ��� ,� � .	 (5)

5. Sub-tour elimination constraints (MTZ)

u u Qx Q d i j ki j ijk j
� � � �� � � � � � � �� � �� ,� ,� .	 (6)

6. Chance constraint for service continuity. The solution 
must satisfy service requirements in at least α × 100% of the 
scenarios

�
� � �

�
� � �
�

p ConstraintsSatisfiedin� � � � .	 (7)

This is usually enforced via penalty, scenario pruning, or 
robust reformulation:

INPUT:
– D: set of depots;
– C: set of customer locations;
– Q: vehicle capacity;
– Sd: inventory at each depot;
– qj: demand of each customer;
– dij: distance matrix;
– aijω: road availability in scenario ω;
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– pω: probability of scenario ω;
– α: reliability threshold;
– maxiter: maximum number of iterations;
– tabu_tenure: length of the tabu list.

OUTPUT:
– best vehicle routes that minimize total cost while satis-

fying constraints.

III. BEGIN
1. Compute edge reliability:
For each edge (i, j), calculate:

r_ij = ∑ p_ω * a_ij^ω over all ω.

Set edge (i, j) as reliable if r_ij ≥ α.
2. Generate initial solution:
– assign customers to depots and vehicles using a greedy 

method;
– ensure capacity and reliability constraints are satisfied;
– compute cost of initial solution.
3. Initialize:

current_solution ← initial_solution
best_solution ← current_solution
tabu_list ← empty list

4. For iter = 1 to max_iter do:
a) Generate neighborhood solutions:
– swap customers between vehicle routes;
– only consider moves that do not violate capacity or reli-

ability constraints.
b) Evaluate cost of each neighbor:
– penalize use of unreliable or infeasible edges.

c) Select best neighbor not in tabu_list:
– if it improves best_solution, update best_solution.
d) Update tabu_list with recent move:
– maintain fixed size (tabu_tenure).
e) Set current_solution ← best_neighbor.
5. Return best_solution.
END

The results show that introducing probabilistic disturbances 
significantly reduced the number of feasible routes compared to 
the deterministic baseline. On average, approximately 25–30% of 
routes were unavailable under at least one disturbance scenario. 
Fig. 1 illustrates the resulting routing network, where inaccessi-
ble links were automatically removed due to low reliability. This 
filtering process led to more compact and reliable routes, which 
were later optimized using the Tabu search algorithm.

Overall, the probabilistic disturbance modeling success-
fully captured the uncertainty conditions, ensuring that only 
paths with acceptable reliability were used in subsequent 
optimization.

During computation, the proposed formulation automati-
cally eliminated unreliable connections and generated a feasible 
solution space that satisfied both vehicle capacity and reliability 
thresholds. Compared with the deterministic formulation, the 
resilience-enhanced model produced a smaller but more stable 
feasible region. This adjustment ensured that route selections 
remained valid in at least 70% of disturbance scenarios.

The model was implemented using a mixed-integer pro-
gramming framework combined with probabilistic evaluation 
for each scenario. The optimization process minimized the 
expected total cost while maintaining route feasibility under 
disturbances. Fig. 1 and Table 1 summarize the resulting rout-
ing topology and feasible depot-customer assignments derived 
from the proposed formulation.
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Fig. 1. Vehicle routing path under Tabu search result
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Table 1
Tabu search vehicle routing plan

Vehicle Depot Route

V1 D1 D1 → C10 → C8 → D1

V2 D1 D1 → C7 → C17 → C15 → D1

V3 D2 D2 → C13 → C4 → C2 → D2

V4 D2 D2 → C3 → C5 → C20 → D2

V5 D3 D3 → C14 → C19 → C1 → C11 → D3

These results confirm that the integration of chance con-
straints effectively enforces resilience in the model, enabling 
feasible routing even when disruptions occur in the network.

5. 2. Solution approach performance: Tabu search vs. 
genetic algorithm

To evaluate the computational performance of the proposed 
resilience-enhanced MDVRP model, two metaheuristic algo-
rithms, Tabu search (TS) and genetic algorithm (GA), were ap-
plied under identical problem settings. The evaluation focused 
on total routing cost, computational efficiency, and the ability to 
maintain feasible routes under disturbance scenarios.

Tables 2, 3 presents the comparative results of both meth-
ods. The Tabu search heuristic achieved a total routing cost of 
494, while the Genetic Algorithm produced a higher cost of 777. 
Both methods generated feasible routing plans, but the Tabu 
search converged more quickly and consistently to lower-cost 
solutions. When the chance constraint (α = 0.7) was applied, 
the Tabu search maintained the same routing cost, indicating 
that its baseline solution already favored high-reliability paths.

The detailed vehicle routing plan produced by Tabu search 
is summarized in Table 1, with corresponding route visualiza-

tion shown in Fig. 1. Each vehicle starts and ends at its assigned 
depot, and the resulting paths comply with capacity and reliabil-
ity constraints. In contrast, the Genetic algorithm routing plan 
(Table 4 and Fig. 2) contains several redundant or suboptimal 
paths, resulting in higher total distance and cost.

Table 2
Performance comparation

Method Routing 
cost

Chance constraint 
applied

Tabu search 494 No
Genetic algorithm 777 No

Tabu search (chance-constrained) 494 Yes (α = 0.7)

Table 3
Summary of heuristic performance comparison

Heuristic Total routing cost
Tabu search 494

Genetic algorithm 777

Table 4
Genetic algorithm vehicle routing plan

Vehicle Depot Route
V1 D1 D1 → C6 → D1
V2 D1 D1 → C6 → D1
V3 D2 D2 → C2 → D2
V4 D2 D2 → C13 → C4 → D2
V5 D3 D3 → C19 → D3
V6 D3 D3 → C13 → D3
V7 D4 D4 → C20 → C8 → D4
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Fig. 2. Vehicle routing paths under Genetic algorithm result
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Overall, the Tabu search demonstrated better adaptabil-
ity to probabilistic disturbance conditions, providing more 
cost-efficient and resilient routing plans within the computa-
tional limits tested.

5. 3. Computational case study and model evaluation
The proposed model was tested on a real world inspired 

agro-logistics case study involving the distribution of agricul-
tural supplies such as seeds and fertilizers. The distribution 
network consists of five depots and twenty customer nodes 
representing rural farming areas. Each depot holds an initial 
inventory of 300 units and operates two delivery vehicles with 
a capacity of 100 units each. Customer demand ranges between 
10 and 50 units.

Three disturbance scenarios were defined to represent 
varying levels of road unavailability caused by seasonal rainfall. 
The probability of each scenario was set at 0.3, 0.5, and 0.2, re-
spectively. A chance constraint threshold of α = 0.7 was applied 
to ensure that only roads with at least 70% reliability were used 
for routing.

The computational experiments demonstrated that the 
model effectively maintained service continuity while minimiz-
ing expected transportation costs. The total routing cost achieved 
by the Tabu search under chance-constrained conditions was 494, 
identical to the unconstrained solution, confirming that high-re-
liability paths were naturally selected by the heuristic.

The resulting routing plans are provided in Table 1, Table 5, 
and visualized in Fig. 1, showing that all customers were served 
without violating vehicle capacity or reliability constraints. 
These outputs confirm that the model performs robustly across 
disturbance scenarios and that probabilistic constraints can be 
successfully integrated into multi-depot routing problems.

Table 5
Chance-constrained vehicle routing plan

Vehicle Depot Route
V1 D1 D1 → C10 → C8 → D1
V2 D1 D1 → C7 → C17 → C15 → D1
V3 D2 D2 → C13 → C4 → C2 → D2
V4 D2 D2 → C3 → C5 → C20 → D2
V5 D3 D3 → C14 → C19 → C1 → C11 → D3

The results presented in Table 5 demonstrate that the 
chance-constrained vehicle routing plan ensures full service 
coverage while maintaining high route reliability. Each depot 
successfully served its assigned customers without exceeding 
vehicle capacity, confirming that the probabilistic constraint 
(α = 0.7) effectively filtered out unreliable connections. Com-
pared with the deterministic baseline, the routing network 
remained stable across all disturbance scenarios, indicating 
that the proposed model achieves resilience without incurring 
additional cost. This shows that the integration of chance con-
straints and the Tabu search heuristic enables the system to 
maintain service continuity and operational robustness under 
real-world uncertainty.

6. Discussion on the performance of the chance-
constrained resilient MDVRP model

The results obtained from computational experiments 
(Tables 1–4, Fig. 1, 2) demonstrate that the integration of chance  
constraints significantly improves the reliability of vehicle rout-

ing under probabilistic disturbance conditions. The chance-con-
strained formulation effectively restricts the use of low-reli-
ability routes (α = 0.7), leading to stable and feasible routing 
plans even when road accessibility fluctuates. This outcome is 
explained by the probabilistic feasibility evaluation embedded 
in the model, which filters out unreliable links before optimiza-
tion, as shown in Fig. 1 and Table 2. Consequently, the solution 
space becomes smaller but more resilient, ensuring continuity 
of service with minimal cost increase.

The computational comparison (Table 1) confirms that the 
Tabu search algorithm achieved a lower total routing cost (494) 
compared with the genetic algorithm (777). This difference can 
be attributed to the adaptive neighborhood search and mem-
ory structure of the Tabu search, which help avoid premature 
convergence and maintain feasible solutions under uncer-
tainty. Similar observations have been reported by [18], who 
noted the superior performance of memory-based heuristics 
in dynamic vehicle routing environments. The preservation of 
route reliability without additional cost, as evidenced by the 
chance-constrained results in Table 4, supports the claim that 
probabilistic modeling can enhance efficiency without sacrific-
ing robustness, consistent with findings by [14, 16].

The computational findings provide several practical in-
sights for applying the proposed resilience-enhanced MDVRP 
model in real logistics systems. The chance-constrained 
formulation ensures that routing decisions remain feasible 
even under fluctuating infrastructure conditions, making it 
particularly suitable for rural distribution networks and di-
saster-prone regions.

The results indicate that reliable routing can be achieved 
without additional cost when disturbance probabilities are 
properly integrated into the optimization process. The Tabu 
search algorithm produced stable solutions that satisfied both 
cost efficiency and service reliability targets. This demonstrates 
the method’s potential for integration into existing logistics 
management systems as a decision-support tool for planners 
who must operate under uncertainty.

From an implementation standpoint, the model can be 
adapted to various sectors, such as agro-logistics, humanitar-
ian aid, and public service delivery, where access routes are 
sensitive to seasonal or unexpected disruptions. The approach 
also supports proactive route planning by allowing planners 
to set reliability thresholds (α) according to risk tolerance and 
operational priorities.

These results confirm that the proposed model provides  
a practical and flexible basis for resilient distribution plan-
ning, enabling organizations to improve service continuity 
and operational robustness in uncertain environments.

Compared with existing studies on stochastic or dynamic 
VRPs [1, 12], the distinctive feature of the proposed model lies 
in combining multi-depot coordination with probability-based 
resilience modeling within a single framework. While earlier 
works addressed uncertainty through scenario sampling or 
robust optimization, they rarely incorporated explicit reliability 
thresholds to guide feasible route selection. The present study 
fills this methodological gap by operationalizing resilience 
through a chance-constrained mechanism that links distur-
bance probability to service continuity, as reflected in the con-
sistency of routing outcomes across scenarios (Table 4).

The results presented in Fig. 2 and Table 5 further illustrate 
the behavioral differences between the heuristic approaches. 
Fig. 2, which depicts the routing paths generated by the Genetic 
Algorithm, shows several redundant or short isolated routes, 
indicating a tendency toward local optima and inefficient 
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vehicle utilization. In contrast, Table 5 demonstrates that the 
chance-constrained Tabu search produced a more balanced al-
location of customers among depots and maintained complete 
service coverage under all disturbance scenarios. The routing 
structure in Table 5 is more compact and consistent, con-
firming that the probabilistic filtering mechanism effectively 
removed unreliable connections and guided the algorithm to-
ward resilient solutions. These outcomes explain why the Tabu 
search achieved both lower total routing cost and higher route 
stability compared with the genetic algorithm.

Nevertheless, certain limitations should be acknowledged. 
Overall, the study demonstrates that the integration of prob-
abilistic resilience into multi-depot vehicle routing produces 
computationally efficient and operationally reliable solutions, 
offering a foundation for further methodological and applied 
research in resilient logistics optimization.  The current model 
assumes that disturbance probabilities and vehicle capacities are 
known and stationary over the planning horizon. This restricts 
applicability to systems with relatively stable probabilistic data. 
In addition, the computational experiments used a moderate 
network size (five depots and twenty customers), which, while 
sufficient for proof of concept, limits assessment of scalability to 
large-scale industrial settings. The reproducibility of results also 
depends on accurate estimation of disturbance probabilities, data 
that may not always be available in developing or rural contexts.

In contrast to limitations, some disadvantages of the pres-
ent study arise from methodological simplifications. The model 
does not yet incorporate time windows, dynamic demand 
updates, or real-time route adjustments, which could further 
improve practical realism. These omissions simplify the com-
putation but may underestimate operational variability in real 
logistics systems. Future improvements could include the inte-
gration of dynamic data streams and learning-based prediction 
modules to adjust route reliability parameters adaptively.

In terms of future development, extending the model to 
multi-objective formulations; balancing cost, service reliability, 
and environmental impact, would enhance its practical relevance. 
Mathematical challenges may arise in reformulating the chance 
constraints for dynamic or correlated disturbances, where simple 
independence assumptions no longer hold. Methodologically, 
hybridizing the Tabu search with advanced metaheuristics such 
as adaptive large neighborhood search (ALNS) or reinforce-
ment learning could improve scalability and solution diversity. 
Experimentally, applying the model to large real datasets from 
humanitarian or agro-logistics operations would provide deeper 
validation of its performance and robustness.

7. Conclusion

1. The formalized resilience-enhanced multi-depot vehicle 
routing problem (MDVRP) model with chance constraints 
demonstrated that the probabilistic integration effectively 
reduced the feasible solution space while maintaining route 
validity under uncertainty. By enforcing a minimum reliabil-
ity threshold of α = 0.7, the model successfully filtered out 
low-probability connections, resulting in more compact and 
stable routing structures. This formulation improved overall 
solution robustness compared with deterministic models, en-
suring service continuity even when partial network failures 
occurred, thereby confirming the model’s capacity to represent 
resilient logistics operations under disturbance conditions. 

2. Comparative experiments demonstrated that the Tabu 
search (TS) algorithm achieved a total routing cost of 494, 

which was 36.4% lower than that obtained by the genetic 
algorithm (GA) (777). The Tabu Search also converged more 
rapidly, reaching optimal solutions in fewer iterations while 
maintaining full service coverage under all disturbance sce-
narios. Under the chance-constrained setting (α = 0.7), the  
TS maintained the same routing cost as in the deterministic 
case, indicating that its baseline solution already favored 
high-reliability paths. These numerical results confirm the su-
perior efficiency and robustness of the Tabu search as a practi-
cal heuristic for solving the resilience-enhanced MDVRP under 
probabilistic disturbance conditions. 

3. Application of the model to an agro-logistics distri-
bution network involving five depots and twenty customers 
demonstrated that the proposed approach-maintained service 
reliability without incurring additional cost. The chance-con-
strained Tabu search produced routing costs equivalent to 
those obtained in the deterministic case, while simultaneous-
ly eliminating unreliable paths from the solution space. This 
result indicates that integrating probabilistic modeling into 
multi-depot routing strengthens both operational stability and 
efficiency when the system is exposed to uncertainty.

Conflict of interest

The authors declare that they have no conflict of interest 
in relation to this study, whether financial, personal, author-
ship or otherwise, that could affect the study and its results 
presented in this paper.

Financing

We would like to express our gratitude to the Universitas 
Sumatera Utara for the funding that we got for SKEMA PENI-
LITIAN FUNDAMENTAL – REGULER: No. 68/UN5.4.10.K/
PT.01.03/DPPM/2025

Data availability

Data will be made available on reasonable request.

Use of artificial intelligence

The authors confirm that they did not use artificial intelli-
gence technologies when creating the current work.

Acknowledgments

We would like to express our gratitude to the Universitas 
Sumatera Utara for the funding that we got for SKEMA PENI-
LITIAN FUNDAMENTAL – REGULER: No. 68/UN5.4.10.K/
PT.01.03/DPPM/2025.

CRediT

Herman Mawengkang: conceptualization, funding acqui-
sition, writing – original draft; Intan Syahrini: methodology, 
writing – review & editing; Muhammad Romi Syahputra: 
software, visualization; Sutarman: validation, investigation.



Eastern-European Journal of Enterprise Technologies ISSN-L 1729-3774; E-ISSN 1729-4061	 5/3 ( 137 ) 2025

82

References

1.	 Mardešić, N., Erdelić, T., Carić, T., Đurasević, M. (2023). Review of Stochastic Dynamic Vehicle Routing in the Evolving Urban Logis-
tics Environment. Mathematics, 12 (1), 28. https://doi.org/10.3390/math12010028 

2.	 Tien, N. H., Anh, D. B. H., Thuc, T. D. (2019). lGobal Supply Chain and Logistics Management. Dehli: Academic Publications. 
3.	 Zhu, R., Zhou, X. (2019). Cool Chain Logistics Distribution Routing Optimization for Urban Fresh Agricultural Products Considering 

Rejection of Goods. Proceedings of The First International Symposium on Management and Social Sciences (ISMSS 2019). https://
doi.org/10.2991/ismss-19.2019.18 

4.	 Zhao, L., Yu, Q., Li, M., Wang, Y., Li, G., Sun, S. et al. (2022). A review of the innovative application of phase change materials to cold-
chain logistics for agricultural product storage. Journal of Molecular Liquids, 365, 120088. https://doi.org/10.1016/j.molliq.2022.120088 

5.	 Wang, D., Ip, W. H. (2009). Evaluation and Analysis of Logistic Network Resilience With Application to Aircraft Servicing. IEEE Sys-
tems Journal, 3 (2), 166–173. https://doi.org/10.1109/jsyst.2009.2017395 

6.	 Lam, C. Y. (2016). Resilience of logistics network: analysis and design. 2016 World Congress on Industrial Control Systems Secur
ity (WCICSS), 1–5. https://doi.org/10.1109/wcicss.2016.7882936 

7.	 Mittal, A., Krejci, C., Craven, T. (2018). Logistics Best Practices for Regional Food Systems: A Review. Sustainability, 10 (1), 168. https://
doi.org/10.3390/su10010168 

8.	 Keating, A. (2012). Food Security in Australia: The Logistics of Vulnerability. Food Security in Australia, 21–34. https://doi.org/10.1007/978-
1-4614-4484-8_2 

9.	 Toth, P., Vigo, D. (2002). 1. An Overview of Vehicle Routing Problems. The Vehicle Routing Problem, 1–26. https://doi.org/10.1137/ 
1.9780898718515.ch1 

10.	 Coelho, B., Andrade-Campos, A. (2014). Efficiency achievement in water supply systems – A review. Renewable and Sustainable 
Energy Reviews, 30, 59–84. https://doi.org/10.1016/j.rser.2013.09.010 

11.	 Jayarathna, N., Lanel, J., Juman, Z. A. M. S. (2020). Five years of multi-depot vehicle routing problems. Journal of Sustainable Devel-
opment of Transport and Logistics, 5 (2), 109–123. https://doi.org/10.14254/jsdtl.2020.5-2.10 

12.	 Pillac, V., Gendreau, M., Guéret, C., Medaglia, A. L. (2013). A review of dynamic vehicle routing problems. European Journal of Op-
erational Research, 225 (1), 1–11. https://doi.org/10.1016/j.ejor.2012.08.015 

13.	 Zhou, Y., Wang, J., Yang, H. (2019). Resilience of Transportation Systems: Concepts and Comprehensive Review. IEEE Transactions 
on Intelligent Transportation Systems, 20 (12), 4262–4276. https://doi.org/10.1109/tits.2018.2883766 

14.	 Figueiredo, B., Lopes, R. B., Sousa, A. de. (2025). Location–Routing Problems with Sustainability and Resilience Concerns: A System-
atic Review. Logistics, 9 (3), 81. https://doi.org/10.3390/logistics9030081 

15.	 Vairo, T., Pettinato, M., Reverberi, A. P., Milazzo, M. F., Fabiano, B. (2023). An approach towards the implementation of a reliable 
resilience model based on machine learning. Process Safety and Environmental Protection, 172, 632–641. https://doi.org/10.1016/ 
j.psep.2023.02.058 

16.	 Castro, M. P., Bodur, M., Shalaby, A. (2024). Incorporating Service Reliability in Multi-depot Vehicle Scheduling. arXiv. https://
doi.org/10.48550/arXiv.2407.00836

17.	 Rahimian, H., Mehrotra, S. (2022). Frameworks and Results in Distributionally Robust Optimization. Open Journal of Mathematical 
Optimization, 3, 1–85. https://doi.org/10.5802/ojmo.15 

18.	 Gmira, M., Gendreau, M., Lodi, A., Potvin, J.-Y. (2021). Tabu search for the time-dependent vehicle routing problem with time win-
dows on a road network. European Journal of Operational Research, 288 (1), 129–140. https://doi.org/10.1016/j.ejor.2020.05.041 

19.	 Dong, L., Wang, J., Hu, X. (2025). Optimization of Joint Distribution Routes for Automotive Parts Considering Multi-Manufacturer 
Collaboration. Sustainability, 17 (14), 6615. https://doi.org/10.3390/su17146615 

20.	 Heakl, A., Shaaban, Y. S., Takac, M., Lahlou, S., Iklassov, Z. (2025). SVRPBench: A Realistic Benchmark for Stochastic Vehicle Routing 
Problem. arXiv. https://doi.org/10.48550/arXiv.2505.21887

21.	 Rahmaniani, R., Ghaderi, A. (2015). An algorithm with different exploration mechanisms: Experimental results to capacitated facility 
location/network design problem. Expert Systems with Applications, 42 (7), 3790–3800. https://doi.org/10.1016/j.eswa.2014.12.051 

22.	 Zhang, Y., Qi, M., Lin, W.-H., Miao, L. (2015). A metaheuristic approach to the reliable location routing problem under disruptions. 
Transportation Research Part E: Logistics and Transportation Review, 83, 90–110. https://doi.org/10.1016/j.tre.2015.09.001 


