O o

The object of this study is the process
and analysis of intelligent recognition
and classification of spatiotemporal pat-
terns in large arrays of streaming data.
The problem to be solved is the absence
of a deep learning framework that can
guarantee adaptability to rapidly chang-
ing concepts, efficient computation for
continuous data streams, and the trans-
parency of the prediction process when
working with heterogeneous and dynam-
ically changing sources of big data used
to support decision making.

The developed programing frame-
work applies convolutional neural net-
work- long short - term memory networks
with an attention-gating mechanism
that enables detection of spatiotemporal
dependencies and exhibits model inter-
pretation of decisions. Extensive evalu-
ation of the implemented system using
multivariate flow-based data demon-
strated the performance capabilities of
the system with a classification accuracy
of 0.98, F1 score of 0.97, area under the
receiver operating characteristic curve
of 0.99 and Harmonic Score of 0.90. The
interpretation of the results is summa-
rized by the interaction of multilevel fea-
ture extraction followed by an optimi-
zation process through Kullback-Leibler
divergence that ensures reliable online
drift detection and automatic models
re-training. Additional contributions
of the systematic use of the framework
included interpretable decisions using
Shapley Additive explanations and gra-
dient-weighted class activation mapping
visualizations. It has a strong evidence
of sustained reliable model perfor-
mance in non-stationarity data condi-
tions and streaming data. The outcome
of this study embodies significant prac-
tical implications toward the creation
of real-time decision-support systems in
domains. Finally, the structured frame-
work can also be utilized for future inves-
tigations into the development of highly
scalable, explainable, and trust-worthy
artificial intelligence architectures
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tical divergence, incremental retraining
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1. Introduction

The explosion of data generated by the ongoing digital
revolution and the fourth industrial revolution is unprece-
dented, which has become a primary catalyst for scientific
and technological advancement. According to the IDC, the
global datasphere will surpass 175 zettabytes by 2025, with
more than 30 percent of this volume generated by IoT devic-
es, cloud computing systems, and real-time data generated by
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industrial sensors [1]. This massive amount of data, as well as
the inherent heterogeneity velocity, highlights the necessity
of intelligent systems that can extract valuable insights quick-
ly as well as provide support for automated decision making
within strict time and resource constraints.

An essential component of intelligent systems is patterns
recognition, which enables these systems to discern relation-
ships, detect errors, and reveal hidden constructs within a
large noisy dataset. The ability to use this technology is not




limited to any specific industry including, but not limited to,
health care, industrial automation, cyber security, financial
services, and smart transportation. However, with the ev-
er-growing size and complexity of data, traditional methods
of pattern recognition cannot keep up with the changing
environment. Thus, when constructing models for pattern
recognition, using traditional approaches (versus modern/deep
learning) is usually acceptable for small amounts of curated
datasets; however, when it comes to more extensive or dy-
namic datasets, traditional methods become ineffective due
to scalability, adaptability, and non-stationarity.

Recent advancements in deep learning techniques have
fueled major advancements in the area of pattern recogni-
tion. Specifically, the ability for the deep learning model to
learn multiple hierarchical levels of abstraction on the input
data is one of the primary strengths of deep learning methods
used today when applied to pattern recognition problems. For
example, convolutional and recurrent neural networks have
demonstrated excellent performance in numerous types of
data including but not limited to visual data, sequential data,
multimodal data, and even graph or streaming data. The ad-
vent of transformer networks has opened the door for using
deep learning systems for relational and long-range temporal
task markets. These systems have seen tremendous success
in areas such as recommendation systems, natural language
processing, and anomaly detection.

Although deep learning techniques are rapidly evolving,
many challenges still exist when using deep learning meth-
ods to analyze large amounts of real-time data. High com-
putational requirements, poor model interpretability, and
long latency periods are obstacles that limit the effectiveness
of many of today’s intelligent solutions. As such, further re-
search is needed to build adaptive, explainable deep learning
models that are successful under dynamic conditions. Work-
ing toward these solution types remains an exciting area
for solid ongoing research in the area of intelligent pattern
recognition.

2. Literature review and problem statement

The paper [2] presents the results of research on in-
depth study of the deep learning methods for big data, image
processing, and signal analytics. It is shown that the level
of complexity of data and data velocity, did not allow for a
structure to be pre-defined or structured. But there were
unresolved issues related to the models, that did not contrib-
ute much towards resolving the scalability problems faced
in distributive environments. The reason for this may be
an attributable towards computationally heavy processing
and data streams following different formats, thus limiting
real-time usability. All this suggests that it is advisable to
conduct a study on exploring adaptable or hybrid structures.
All of which indicates a need for the scope of adaptability to
provide recognition tasks with uncertainty.

The paper [3] presents the results of research on the appli-
cations of adapted deep learning delivered in streamed pro-
cesses. It is shown that online tuning and active management
of resource enabled better performance in situational change.
However, these models did not have established longer-term
robustness with respect to concept drift. But there were un-
resolved issues related to a lack predictive for drift detection,
and long-standing retraining paradigm. A way to overcome
these difficulties can be a possibility to embed statistical

detection and incremental learning of schemas. All this sug-
gests that it is advisable to conduct a study on limited spans
of variances for adaptive mechanisms that learn.

The paper [4] presents the results of research on the
applicable methods of learning with depth in minimal data
contexts. It is shown that transfer learning and augmentation
with the limited training examples were impact factors loss
of training. But there were unresolved issues related to qual-
ity concerns. Because, there was not an inherent extraction
mechanism for explainability, such as limitations of speed.
A way to overcome these difficulties can be lightweight pro-
cesses. All this suggests that it is advisable to conduct a study
on more transparency and explainability.

The paper [5] presents the results of research on canters
mainly on lightweight optimization and more simplified
processes for explainability. It is shown that compact archi-
tectures could address computational costs, although speed
recovery projects both some observation. But there were
unresolved issues related to speed consumption. Because it
tended to increase. A way to overcome these difficulties can
be a realignment back to multi-layered and structured meth-
ods of interpretation. All this suggests that it is advisable to
conduct a study on interpretable deep learning models and
other new approaches to address the different types of vari-
ances, that are present in dynamic data.

The paper [6] presents the results of research on similar
hybrid convolutional neural network-long short-term memo-
ry approach. It is shown that the models were able to extract
multi-dimensional features through the integration of the
spatial and temporal dimensions. But there were unresolved
issues related to the long-term accuracy of a hybrid model.
Because static processes of training, did not account for con-
cept drift. A way to overcome these difficulties can be view
on handling drift. It would require a strategy that involves
dynamically updating the training process by continuously
addressing the real-time accuracy of learning and updates.
All this suggests that it is advisable to conduct a study on why
adaptive hybrid models remain important.

The paper [7] presents the results of research on training
protocols intended for environments in a non-stationary
state. It is shown that a window approach to the updating of
training could proactively mitigate any performance losses
in training with the occurrence of drift. But there were un-
resolved issues related to cost from a retraining standpoint
and it is likely that more accuracy is yielded by being overly
sensitive to the most recent data. The reason for this may be
a lack of selective rules used for weak updates and validation
restrictions. All this suggests that it is advisable to conduct
a study on event-driven retraining adaptation. Because an
event-driven retraining adaptation in the drift-impact met-
rics could assist with stability.

The paper [8] presents the results of research on optimiza-
tion algorithms into deep learning workflows. It is shown that a
hybrid optimization is able to decrease convergence time while
increasing accuracy. But there were unresolved issues related
to the model. The reason for this may be a lack of robustness
and generalization. It also because of highly stochastic envi-
ronments that did not account for the impact of insufficient
self-adaptation. A way to overcome these difficulties can be im-
plementing meta-heuristic approaches as alternatives. All this
suggests that it is advisable to conduct a study on methods are
specifically designed to handle non-stationary environments.

The paper [9] presents the results of research on attention
mechanisms and fusion methods. It is shown that attention



mechanisms increase the stability of model output by focusing
the learning on more salient features. But there were unre-
solved issues related to the trade-offs associated with attention
and fusion are related to computational latent and resource
usage. A way to overcome these difficulties can be attempting
to utilize or lightweight attention structures. All this suggests
that it is advisable to conduct a study on interpretable systems
that get their learning mechanisms from attention parameters.

The paper [10] presents the results of research on explain-
able AI applied to financial big data systems. It is shown that
there are some needs to develop trust and facilitate a more
informed approach to problem-solving. The study outlined
that there are various existing approaches to creating more
interpretable systems for decision-making. But there were un-
resolved issues related to a high computational cost associated
with many of these approaches. That is why many systems
utilize trade-offs by compromising the quality of accuracy to
achieve lower costs. A way to overcome these difficulties can
be utilizing lightweight models may address some of these
trade-offs, even though scalability issues remain to be ad-
dressed. All this suggests that it is advisable to conduct a study
on the data demands of real-world applications, that achieve a
low overhead economically as compared to accuracy.

These studies verify that deep learning has developed
into the chief technology for intelligent pattern recognition,
but the pragmatic implementation of deep learning within
the context of big data is still hampered by three challenges:

1) lack of adaptability to streaming and drifting data;

2) insufficient incorporation of explainable AI principles
to support transparent decision-making;

3) real-time computational inefficiency.

It is challenging, both scientifically and pragmatically,
to continue the work of investigating the field of developing
deep learning frameworks to safeguard scalability, robust-
ness, and interpretability for intelligent pattern recognition
in data-centered systems operating at large scale.

3. The aim and objectives of the study

The aim of the study is to create an explainable deep-learn-
ing framework for the identification of complex, nonlinear,
and dynamical patterns in large scale data streams while
maintaining interpretability and computational efficiency.

To achieve this aim, the following objectives were accom-
plished:

- to generate a unified hybrid architecture for convolu-
tional (spatial) a recurrent (temporal) learning with attention;

- to implement drifts-aware adaptation that is based on
entropy and Kullback-Leibler divergence, for online detection
of distributional shifts and partial retraining;

-to provide explainable AI tools (Shapley additive ex-
planations, gradient-weighted class activation mapping) for
transparent decision making and feature attribution;

- to implement an organized modular-end-to-end workflow
for data acquisition, preprocessing, training, and evaluation on
a continuous basis across diverse, multi-dimensional domains.

4. Materials and methods

4.1. The object and hypothesis of the study
The object of this study is the process and analysis of in-
telligent recognition and classification of spatiotemporal pat-

terns in large arrays of streaming data. This process involves
the continuous collection of data from rapidly changing pat-
tern structures generated by modern information technology
systems using various methods, requiring decision-making
based on the changing distribution of patterns over time. It
is necessary to provide a means for improving the stability,
adaptability, and transparency of intelligent recognition and
classification of patterns in real-time environments.

The main hypothesis of the study is that integrating the
learning of both spatial and temporal feature information
together with an adaptively drift-aware mechanism and ex-
plainable artificial intelligence will improve the robustness
and interpretability of pattern recognition models applied to
dynamic and heterogeneous, massive scale, Big Data stream
applications.

In conducting this study, certain assumptions were made
regarding the ability to acquire representative historical and
streaming data; that concept drift occurs over time as op-
posed to an instantaneous event; that sufficient amounts of
labeled data segments had access to enable the incremental
updating of models; sufficient computational resources are
available to allow for training models on a real-time basis and
providing inference.

Simplifications adopted in the study are the use of ag-
gregate flow-based features for our data versus using raw
packet-level data, and predefined thresholds for drift detection
and the application of a fixed metric for evaluating model
performance. These assumptions provided computational fea-
sibility for performing experiments on this topic and allow for
reproducibility of results of this study while not restricting the
generalizability of the methodology developed for this study.

4. 2. The dataset and preprocessing

This research leveraged flow-based multivariate dataset
having spatiotemporal and statistical features of large-scale
activities of networks and systems. Each record is deter-
mined by its temporal window and consists of the aggre-
gated communication statistics, entropy-based metrics, and
protocol level indicators. Missing values were replaced with
feature-wise means while identified outliers were clipped at
the 95 percentile in order to minimize extreme deviations.
Categorical variables were transformed with one-hot en-
coding. Numerical features were standardized with z-score
normalization by retaining the value as the value minus the
mean divided by the standard deviation calculated on the
training split.

Temporal partitioning of the dataset generated three
separate parts for training (70%), validation (15%); and test-
ing (15%) which was not vulnerable to temporal leakage. In
addressing class imbalances, it is possible to use SMOTE to
provide synthetic minority classes that can better generalize
the classifier.

4. 3. Feature description

Descriptions, semantics, and categories of the features
can be found in Table 1.

Table 1 contains the feature set used to train and evaluate
the model proposed in this study. Each feature is represented
with roughly the same level of granularity and can contribute
unique statistical or semantic information to help fully cap-
ture network behavior for effective model training (Table 1).
The feature summaries were also used as definitions for the
model inputs and model performance during the evaluation
process.



Table 1

The features in the dataset interpreted the semantics and meaning with the features

Feature

No Feature name Description / semantic meaning Feature type
Avg packet Displays the average size of packets in a flow, which aids understanding of how heavy or .
1 . . .o Numerical
Size light segments of the transmission traffic [11]
2 Flow time Indicates how long a flow is assertive, or in other words, the amount of time the data Numerical
stream can be thought of as active, and reflects how packed the activity is or density [12]
3 Packet rate Counts the packets sent for every s.econd time ul’ll.t,.WhIC.h is useful for identifying Numerical
communication burst or activity spikes
4 Byte rate Represents how many bytes pass through the system per second. It expresses a dimension Numerical

of the overall intensity of data or flow load weight [13]

Measures to what extent packet sizes vary within one window, or producing somewhat
5 Flow variation | of a volume measurement as opposed to number measurement. A high variance would Numerical
indicate variable or erratic network behavior [14]

Entropy Displays how patternless the byte values are in the traffic. In essence, the higher the

6 signature entropy, the more chaotic or diversified the traffic data stream [15] Numerical
7 Temporal Measures how similar the traffic pattern is in neighboring time windows. This metric is Numerical
correlation helpful when looking for similarities in behavior or distributed traffic stream [16]
Anomaly A nun.leri.cal meast.lrement which tells how f.ar away fr.om no.rmalhacti.vity the current .
8 behavior is. Value is calculated based on rolling statistics which highlight anomalous Numerical

score .
behavior

Protocol Presents the network protocol in an encoded form (for example, TCP is mapped to 0

9 and UDP is mapped to 1) which allows protocol functionality in ML models for encoded Categorical
encoded .

protocol into data [17]

. Is an encoded variable reflecting whether the activity was produced from internal or
Connection . . . .. . - .
10 external traffic is. This flag allows separations of local activity from incoming traffic and Categorical

type helps with the previous feature [18]
1 Timestamp Will provide a normalized position of the sample in regard to the sliding window. This is Numerical
index useful if the focus is on the temporal order of the observation
Is the actual class which is used during training connected to behavior whether or not
12 Label target : . . Target
normal when diagnosing anomaly is [19]
4. 4. Model training and validation process data and ingestion processes, pre-processing, training models,
The entire process of training and validation is illustrated  and validating the model predictions using metrics suitable for
in Fig. 1. classification machine learning problems.
Selection of data for 4.5. Hybrid CNN-LSTM
Measured data Input Data training and testing framework
SF (t-1) process The use of hybrid CNN
SF (-2) . and LSTM models is to com-
Statistical :E (t-4) Testing Training bine by jointly addressing
(t-6) dataset . .
Analyses SF (7) 30% o b'oth the 'spatlal.charac.terls—
T 1 tics associated with the input
Define training networks data (via the convolutional
{ and parameters module) and temporal char-
. T | I acteristics that exist between
/ Vel s il / ANN RNN RNN sequential data points (via the
LSTM recurrent module).
a fiaiile- Convolutional = models
LISB{—M GRU LST™M SR]\II)Ne consist of multiple layers with
| [ small kernel sizes. They in-

clude rectified linear units

Output Data ) .
SF (1) Run networks for nonlinearity as well as
max-pooling for dimensionali-

ty reduction while still retain-

Fig. 1. The execution of the training and validation procedures ing a meaningful representa-

tion of the features learned.

The raw data were transformed to temporal sequence data,  After extraction, feature maps are flattened and then passed
split into random training and testing sets, and transformed to  on to the next stage for modeling temporal relationships.

train different architectures (artificial neural network, recur- Temporal relationships are modeled in an LSTM using

rent neural network, long short-term memory, gated recurrent  long short-term memory (LSTM) units which have three

unit). All models were trained under similar conditions to en-  components: an input gate, that accepts inputs, a forget gate,

sure valid comparisons (Fig. 1). The process had an automated  that determines what is forgotten, and an output gate through




which outputs are produced. The use of this three-gate struc-
ture allows the LSTM to be able to learn both short-term and

long-term dependencies on sequential data.

Finally, the outputs of the LSTM are modified by an
attention mechanism. The attention mechanism assigns
varying degrees of importance or relevance to the temporal
features in the prediction process. The attention-modified
feature representation is passed through fully-connected
layers with dropout applied to help mitigate the risks of over-
fitting. The last layer produces the probability estimates for
classification.

4. 6. Adaptive learning and drift detection

The model continuously observes the prediction distribu-
tion and retrains the model only when drift is detected, Fig. 2.

Fig. 2 shows that the model distribution changes contin-
uously and the discrepancy between the model and the pre-
vious prediction distribution is detected. This means that the
model is retrained only when a threshold is exceeded.
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PyTorch Lightning to adapt the models to other models and
different configurations.

5. Research results of the study on the application of
deep learning methods for Intelligent recognition of
complex patterns in Big data

5.1. Generate and performance assessment of the
hybrid CNN-LSTM architecture

The research resulted in the development of a novel uni-
fied hybrid architecture for intelligent recognition of complex
spatio-temporal patterns within large scale streaming data.
This hybrid architecture combines spatial feature extraction,
temporal sequencing and attention-based representation all in
one unified adaptive learning architecture as shown in Fig. 3.

As a result, the hybrid architecture supports end-to-end
workflows built upon the integration of data ingestion, pre-
processing, scalable storage and model-based inference using
a single modular framework. As a re-
sult, this framework can continuously.
This enables the hybrid architecture
to process continuously and cohesively
heterogeneous data streams from mul-
tiple sources and allows for flexible in-

S

-

Similarity measure

|
'

Test statistics

tegration of many different components
of learning, adaptation and evaluation.

The details of the hybrid
CNN-LSTM-Attention architecture are
shown in Fig. 4.

As it shown in Fig. 4, the convolu-
tional portion and internal structure of
the hybrid architecture is responsible
for extracting the local spatial and sta-

Fail to reject

Significance test Hypothesis testing

Reject

[ Concept drift detected J

Fig. 2. Concept of drift detection and process

The training procedure uses entropy-based learning
rate planning and monitoring. Uncertainty characterized
by entropy is solely based on one bias in the model output
prediction distribution. Higher entropy indicates an uncer-
tain prediction and lower entropy indicates a more reliable,
stable model prediction. Furthermore, the update rate is
real-time adjusted enhancing stability while lowering the
nominal learning rate. This is behaviorally based by a variety
of observed patterns in the environment (Fig. 2). Drift will be
implemented on evolving data, in changing distributions, in
the model through implementation of the Kullback-Leibler
algorithm. If the Kullback-Leibler threshold defined values
are exceeded, parameters will be partially retrained in the
model by a final subset of data.

4. 7. Experimental environment

The experiments were conducted on a high-performance
workstation with an NVIDIA RTX-3080 graphics card (10 GB
of video memory), Intel Core i9 processor, and 64 GB of RAM.
Python 3.10 and TensorFlow 2.0, LiquidK, and scikit-learn
were used for implementation. The entire training and
evaluation process was completed in Jupyter Notebook and

tistical characteristics of the features
provided as input to the model. The re-
current portion of the architecture is re-
sponsible for modelling any dependen-
cies and interactions over time amongst
the successive temporal sequence data
inputs. As a result, an attention mech-
anism is applied to focus more heavily
on temporally relevant features that are most influential in
terms of making the final prediction.

To assess the performance of the hybrid architecture, a
series of experimentations using several baseline machine
learning models were performed. The baseline models used
for the experimentations were: random forests, support
vector machines, extreme gradient boosting (XGBoost),
convolutional neural networks (CNNs), long short-term
memory networks (LSTMs). Each of these models were
trained and evaluated on the same dataset under con-
trolled experimental conditions.

In order to assess the hybrid convolutional neural net-
work - long short-term memory model, experiments were
performed using the base algorithms: random forest, sup-
port vector machine, extreme gradient boosting (XGBoost),
and convolutional neural network, long short-term mem-
ory networks were all programmed to train and test on
the same dataset outlined. The parameters performed
evaluated under the independent measures of accuracy,
the F1 measure, area under the ROC curve - receiver oper-
ating characteristic, and H-score are displayed in Fig. 6 for
every model under test. It is observed that convolutional



neural network - long short-term memory outperformed
both convolutional neural network, long short-term mem-
ory, support vector machine, random forest and extreme
gradient boosting (XGBoost) consistently.

As illustrated in Fig. 5, the feature correlation heat map
illustrates the linear dependence based on the values of nu-
meric features tended to be relatively low.
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The correlation analysis of the features revealed
that most of the non-diagonal Pearson correlation coef-
ficients were not more than 0.6 as it shown in Fig.5.
It indicates, that the features displayed low correla-
tion or redundancy with one another which is an ide-
al feature complementarity for using features in deep
learning (Fig. 5).
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Feature Correlation Heatmap Showing Low Linear Dependency On numerical data, the
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In Fig. 6, it is also provided a comparison of the perfor-
mance of different models evaluated under accuracy, f-score,
area under the curve area under the ROC curve and the
H-metric. The validation of the hybrid convolutional neural
network - long short-term memory framework showed an
overall better accomplishment relative classical machine
learning and one-layer neuronal approaches.

pendent runs: the standard

deviation of the curve was

found to be approximately 0.004, indicating the reproduc-

ibility and robustness of the new hybrid model’s predictions.

Fig. 7 discusses the receiver operating characteristics

for all models evaluated in this study and shows the true/

false detection rates to allow for comparison of model per-
formance.
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Receiver Operating Characteristic Curves for Baseline and Hybrid Models
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Fig. 7. Receiver operating characteristic curves for baseline and hybrid model

Fig. 7 shows the receiver operating characteristic
curves for all the models considered, and they also show
a significant difference between true and false positives.
Unlike any other model, the convolutional neural net-
work - long short-term memory curve is located close to
the upper left corner of the receiver operating character-
istic plane, it is right in its center. This indicates that the
classification quality is impeccable. A quantitative com-
parison of the performance of all the methods described
here is given in Table 2.

Table 2

Comparison of performance metrics for each method

Model Accuracy | F1-Score | AUC | H-Score
Random forest 0.91 0.89 0.92 0.73
LSTM 0.96 0.94 0.97 0.85
XGBoost 0.93 091 0.94 0.76
CNN 0.95 0.93 0.96 0.83
CNN-LSTM (hybrid) 0.98 0.97 0.99 0.90

Table 2 indicates that the convolutional neural net-
work - long short-term memory hybrid surpasses the
model across all major metrics. This is evidence of a
strong advancement across all features, as well as its ac-
curacy and high level of flexibility. The hybrid and flexi-
bility that arise from training, namely the convolutional
extraction of features and repeated modeling of indexed
time, balanced the model class performance and high
levels of precision, accuracy, recall, and interpretability
of the models very well.

5.2. Drift-aware adaptation using entropy and KL
divergence

The next aspect of high model reliability, in a situation
of changing data streams is attribution of monitoring online
concept drift detection. The drift detection approach uses
Kullback-Leibler divergence to focus on the change between
probability distributions, to track the difference between
model generated probability distributions between consec-
utive observations. It describes change in what is being
learned about the distribution, or chance of observed variable
in a new data input. The drift concept monitoring process
using this approach is demonstrated in Fig. 8.

Fig. 8 shows the Kullback-Leibler divergence trajectory
during the time of training. Kullback-Leibler divergence pro-
duced a low value, and therefore model predictions returned
stable data. However, when the inputs changed from the learned
patterns, Kullback-Leibler divergence sharply increased. When
Kullback-Leibler divergence crosses a defined threshold, the
system begins to partially retrain automatically. Inputting the
last training data segment back into the training buffer as the
training buffer resets and updates the learned patterns.

Detection happens through the ongoing calculation of
Kullback-Leibler divergence current and historical output dis-
tributions. Retraining is the process of incremental fine-tun-
ing of parameters using the newest labeled data. Overall, this
architecture enables establishing a drift-awareness compo-
nent. It seamlessly integrates into the deep learning approach
and also provides real-time and decision-making capabilities
in areas such as network security, transportation analytics
and smart industrial contexts. Even if this application of in-
formation theory may sound esoteric, it is quite common to
find ways to abstract computation and methods to compare
data to condition processing into models.
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Fig. 8. Online Kullback-Leibler divergence monitoring and retraining triggers

5. 3. Explainability of the mod-
el using SHAP and Grad-CAM

In order to tackle both the problems
of overfitting in the model, there was
developed explainable artificial intelli-
gence methods focused on our hybrid

convolutional neural network — long 0
short-term memory model. Our im-
proved methods use gradient-weighted 1
class activation mapping and additive
Shapley annotations. 2
Specifically, Gradient-weighted
class activation mapping traces the 3
weights of inverse activations that dis-
tinguish specific clusters. It is during § 4
the exhibiting local spatiotemporal re- 5
gions in a given event that significant- @
ly contribute to the final predictions g 3
for that class. An example of this is 2
presented in Fig. 9. 6
Fig. 9 presents the gradient-weight-
ed class activation mapping heatmap. 7
It shows the contribution of tempo-
ral-spatial features to classification out- 8
put. The red areas in Fig. 9 represent
time steps and feature channels with 9
the strongest activation. These are the
parts of the feature set that contribute 0 1

the most to the classification output.
This visualization confirms that the
convolutional neural network layers
capture spatial and statistics patterns
well. The long short-term memory and attention modules
capture long-term dependencies that matter for the temporal
prediction (Fig. 9). To extend this visual interpretation, let’s
use Shapley additive explanations analysis to estimate both
global and local feature importance across the dataset. The
Shapley Additive explanations summary plot (Fig. 10) shows
that Entropy_Signature, Packet_Rate, and Temporal_Correla-
tion are the most important features of anomalous behaviors.

Gradient-weighted Class Activation Mapping Heatmap

These results correspond with existing knowledge of high-en-
tropy irregularities and bursty network activity, shown in the
analysis of global feature importance, also shown in Fig. 10.
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Fig. 9. Gradient-weighted class activation mapping heatmap

Fig. 10 presents the global feature importance ranking.
Let’s now quantify, the top five features contribute about
76% of the explainability score. This indicates that the model
makes a decision based on a small number of relevant tempo-
ral-statistical attributes. Gradient-weighted class activation
mapping and Shapley additive explanations give evidence
of different phenomena related to explainability: gradi-
ent-weighted class activation mapping describe single predic-



tor classification output and Shapley additive explanations
describes global behaviors in the system and explainability of
global statistics. Together the two tools contribute toward a
transparent model and broader alignment of the framework
with obligations of explainable, accountable and responsible
AI (Fig. 10). The explainability approach supports the poten-
tial use of this framework and high-stake AI solutions.

Global Feature Importance Ranking

Fig. 11 shows the variation of the loss at different stag-
es of training with different learning rates. A high learn-
ing rate can lead to variation of the loss, which can cause
divergence. Conversely, if the learning rate is too low,
learning proceeds very slowly with early decay. However,
as shown in Fig. 11, when using an entropy-driven sched-
uler, there is virtually no variation, and training eventual-
ly approaches a certain
stability in the loss.

Entropy_Signature

Packet Rate

The adaptive update
mechanism determines
the next learning rate
by adjusting the cur-
rent learning rate based
on the behavior of the
residual entropy of the
model. If the magnitude
of the variation in the
residual entropy of the
model is very small, the
scheduler will slightly
increase the learning
rate to further accelerate
learning. As the learn-
ing rate decreases, the
learning rate decreases
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Fig. 10. Global feature importance ranking

5.4. Convergence behavior and end-to-end work-
flow stability

In measuring the convergence and stability of learning
rate, a subset of functions was problem observed for three
different rate learning parameters of high, low, and entropy
learning rates. Fig. 11 illustrates the convergence curves and
learning levels of learning rate at different learning levels.

Training Loss Comparison for Different Learning Rates

accordingly, in response
to increasing chaos or
noise in the environ-
ment, trying to achieve
stability. Comparison of
the results for the con-
trol and experimental conditions is shown in Fig. 11. Our
scheduler analysis showed that the adaptive scheduler was
on average 18% more efficient than the static baseline rate, a
clear demonstration of the effectiveness of the strategy.
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6. Discussion of results, and
evaluation of performance
for use high-performance

machine learning algorithms
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ness of actual framework for spa-
tiotemporal patterns by different
dynamic datasets. The improve-

Training Loss
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ments demonstrated in Fig. 6, 7,
Table 2, reflect the way that the
proposed architecture integrates

three different levels of informa-
tion into one adaptable architec-
ture in Fig. 3,4. Because of its
ability to model complicated rela-
tionships between various compo-
nents, the proposed architecture is

able to represent the relationships
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Fig. 11. Training loss movement

between their spatial and tempo-
ral dependencies more accurately
than previous, unrelated architec-



tures. Unlike previous models that are loosely coupled, the
architecture proposed here operates as an integrated learning
system; thus, leading to improvements in accuracy and gen-
eralization across differing data conditions.

Through comparison using quantitative analysis on the
performance of the new architecture versus other classical
and stand-alone deep learning models for each of the evalu-
ation metrics listed, it can be seen that the proposed model
consistently outperformed both types of models. The fact
that the features were highly uncorrelated as shown in Fig. 5
supports the conclusion about feature complementarity. The
ROC plots and metric comparisons presented in Fig. 6 and
Fig. 7 validate the results’ stability in terms of discrimination
capability when tested under dynamic conditions. This study
differs from earlier works [6] where performance improve-
ments were limited to static data or weakly variable datasets.
The results reported in this work indicate that the proposed
framework can provide reliable predictions for fast, variable,
and temporally dependent data streams.

The following group of results demonstrates the efficacy
of drift-aware adaptation in environments with non-station-
arity. The results from this set of experiments in Fig. 8 illus-
trate, that the use of Kullback-Leibler divergence provides a
means of being able to detect shifts in the underlying data dis-
tributions promptly and initiates a partial retraining process
on the model so that it can return to optimal performance.
The results of this research show the ability to build a system
that effectively adapts to changes in the data distribution over
time. In contrast, other approaches to managing drift are ei-
ther via a predetermined schedule or by performing periodic
regression [7], whereas the proposed approach to drift-aware
Adaptation selectively adapts the model at only those times
when statistically identifiable shifts occur, thereby providing
for greater computational efficiency and reduced use of com-
puting resources for the adaptation of the model.

Results from the explainability analysis investigated how
the model makes decisions internally and showed how those
results can be applied practically. From the Grad-CAM and
SHAP analyses, as it successfully demonstrated in Fig.9
and Fig. 10, it is found that a small number of temporal and
statistical features are the major drivers of prediction and
that therefore proposed model was able to learn meaning-
ful, explainable patterns. Previous research has treated ex-
plainability as an after the fact diagnostic tool, whereas our
framework has successfully integrated interpretability as a
core component of the evaluation pipeline, providing greater
confidence and transparency in decision-making in dynamic
high stakes environments.

The proposed framework has numerous benefits. There
are, however, also some limitations when implementing
the proposed framework practically. The proposed model
assumes that concepts drift moderately and that there are
times when labelled data can be obtained for incremental
retraining - this is likely not going to be the case in all envi-
ronments and instances of deploying the framework outside
of an enterprise setting. In addition, global explainability
approaches like SHAP introduce additional computational
overhead and the addition of partial retraining could lead to
a situation where latency has temporarily increased for the
system. By including the use of lightweight explainability
approximations, reducing the number of features to be han-
dled and using transfer learning to use previously training
representations while adapting to environmental changes, it
will be possible to minimize the impact of these limitations.

Future research will focus on expanding upon the cur-
rent framework by integrating transformers with respect to
attention mechanisms as a means of obtaining longer-lasting
temporal dependencies, and that in addition, integrating
federated learning. Future research also intends to focus
on compressing the model, quantifying the model, and en-
ergy-efficient retraining to allow the model to be placed on
edge and IoT devices. By implementing these future research
directions, it will greatly improve the scalability, adaptability,
and robustness of the proposed framework while continuing
to provide explainability in a highly dynamic big data envi-
ronment.

7. Conclusion

1. By conducting this study, developing a single unified
architecture combining CNN, LSTM, and attention into a
single architecture that can intelligently create recognition
systems for complex spatio-temporal patterns and has been
experimentally proven to function in this role with large
scale streaming data. This architecture differs significantly
from past approaches since it tightly integrates convolutional,
recurrent, and attention-based learning techniques into a sin-
gle adaptable framework that provides for the simultaneous
modeling of both spatial statistical dependencies and tem-
poral sequential dependencies. The hybrid model provides
greater feature representation under dynamic and hetero-
geneous conditions than has been previously achieved with
approaches that treat spatial and temporal information sepa-
rately or use loosely coupled hybrid models. The architecture
also addresses the insufficient representational capacity in
non-stationary big data. The results of quantitative evalua-
tion demonstrate that the hybrid model has greater predictive
capability than both traditional machine learning and stand-
alone deep learning models. The hybrid model achieved 0.98
for accuracy, 0.97 for F1-score, and 0.99 for AUC.

2. This study identified drift-aware adaptation with en-
tropy and KLD metrics, as an efficient mechanism for sus-
taining model performance when faced with changing data
distributions. Selective retraining that occurs only when
significant distributional shifts are observed enables even
small amounts of computation to recover useful predictive
accuracy, rather than relying on statistics from the previous
distribution. By reducing the need for computational re-
sources, this feature identifies the possibility to mitigate the
concepts in drift. Overall, our experiments demonstrated that
DAA trained an increase in training efficiency by up to 18%
beyond what fixed learning rate baselines were able to pro-
vide, while maintaining models that exhibit stable behavior
in a nonstationary environment.

3. Use of explainable AIs (XAI) techniques such as:
gradient-weighted class activation mapping, Shapley ad-
ditive explanations, etc. provides transparency and inter-
pretable insight into the hybrid model’s decision-making
process. Explainability results indicate the temporal-sta-
tistical feature subset within Entropy_Signature, Pack-
et_Rate, and Temporal_Correlations play a dominating
role in making predictions. The distinction of our hybrid
model lies in that it uses Explainability as part of the eval-
uative pipeline versus as a POST HOC analysis as shown
in prior studies. Thus, our framework allows for all parties
to have increased trust and accountability in all aspects
of the evaluation process. The results validate the hybrid



model’s ability to make accurate high-quality predictions
driven by patterns of meaning versus those simply formed
based on false-positive correlation.

4. The demonstrated results validate an organized mod-
ular end-to-end workflow as an effective solution for con-
tinuous data collection, preprocessing, training, adaptation,
and evaluation in dynamic big data environments, as well as
how the convergence analysis demonstrates an accelerated
convergence due to entropy driven learning rate adjustment,
which allows for more reliable operation under evolving
conditions than traditional static optimization techniques
and offers several practical advantages over current solutions
that provide isolated components and focus strictly on the
component level instead of the system level. The ability of
the proposed framework to provide stability, scalability and
repeatability implies its ability to support real-time intelligent
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