| =,

This study investigates heat exchange processes for
thermally sensitive media with local near-surface and
internal heating. As a result of the thermal load, sig-
nificant temperature gradients arise. To establish tem-
perature regimes for effective operation of electronic
devices, linear and nonlinear mathematical models
for determining the temperature field have been con-
structed, which could allow further analysis of tem-
perature regimes.

Based on the stated linear and nonlinear bound-
ary value problems of thermal conductivity, their ana-
Iytical and numerical solutions have been derived.
Using these solutions, numerical calculations of the
temperature distribution in spatial coordinates for
given geometric and thermophysical parameters have
been performed. Reliability of the results has been
confirmed by experimental findings and the deter-
mined numerical values of temperature distribution
in the medium.

For an effective description of local heating, the
theory of generalized functions was used. A technique
for linearizing nonlinear mathematical models has
been introduced. As a result, linear second-order dif-
ferential equations with partial derivatives and a sin-
gular right-hand side have been derived.

The numerical results reflect the temperature dis-
tribution in the medium in spatial coordinates for the
given geometric and thermophysical parameters. The
number of divisions of the interval (0; x*) was chosen
to be 9, which made it possible to derive numerical
values of temperature with an accuracy of 10°°. The
obtained numerical values of temperature for silicon
under a linear temperature dependence of the ther-
mal conductivity coefficient differ from the results
obtained for its constant value by 2%
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1. Introduction

Construction of heat transfer mathematical models for
state-of-the-art electronic devices is an important area of re-
search that has attracted significant attention from both the
scientific community and industry.

The temperature field in microelectronic devices is a crit-
ical factor that determines their efficiency and reliability. An
increase in temperature can reduce performance, increase
power consumption, and shorten the device’s service life.
Heat generation is related to the passage of electric current
through components, which leads to their heating and the
formation of a temperature field.

With the increasing complexity and miniaturization of
electronic devices, effective heat dissipation is essential to
enable optimal performance and reliability. The relative in-
fluence of temperature is the highest (55%) compared to hu-
midity (19%), vibration (20%), and dust (6%). Various studies
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have focused on investigating new materials, structures, and
models to increase thermal conductivity and improve heat
control in electronic systems.

Experimental methods for determining the temperature
field, such as thermal impedance microscopy, infrared mi-
croscopy, or thermometry, make it possible to obtain data
on the temperature distribution in devices. However, each of
these methods has its limitations and is used under specific
conditions. Computer simulations based on mathematical
models of thermal processes make it possible to predict tem-
perature regimes of device operation and define optimal
design parameters.

Important factors affecting the temperature regime are the
location of components and their density on board. Uneven
heat dissipation, in particular for elements in the center of the
board, can lead to local overheating. Various technologies are
used to ensure effective cooling: heat dissipation materials,
fans, thermal pipes, thermal pastes, etc. In addition, the use




of temperature sensors make it possible to control heating and
timely reduce the risks of overheating.

The relevance of studying the temperature field is increas-
ing due to the significant thermal loads on modern devices.
The existence of significant temperature gradients in local sec-
tors of the medium can cause overheating, leading to damage
to components or device failure. Therefore, construction of
mathematical models of heat transfer is an important task for
predicting thermal regimes and enabling stable operation of
electronic devices without the need for expensive experiments.

2. Literature review and problem statement

It is shown in [1] that the improvement of thermal inter-
face materials is an important direction for improving heat
dissipation and increasing the performance of electronic de-
vices. However, the issues regarding the effectiveness of such
materials under difficult heating conditions arising from local
heating by heat sources remain unresolved.

In [2], the importance of optimizing thermal processes in
porous materials is emphasized; however, the method used
does not make it possible to take into account local thermal
disturbances, which are critically important as a result of
heating of electronic devices. This creates limitations in the
application of such models for actual devices.

A mathematical model of heat transfer in porous materials
with temperature-dependent thermophysical parameters is
reported in [3], which is relevant for structures of complex
architecture, in particular digital electronic devices. However,
the model does not take into account local thermal disturbanc-
es characteristic of such devices, which limits its accuracy.

Analytical solutions [4] describe the distribution of tem-
perature, displacements, and stresses in simply supported
laminated plates under thermomechanical loading, taking
into account the temperature dependence of materials. How-
ever, they do not reflect local temperature loads, which limits
their application to real operating conditions.

A thermal conductivity model for electronic devices is
reported in [5]. However, the influence of near-surface tem-
perature disturbances in the environment and the thermal
sensitivity of structural materials on thermal resistance has
not been investigated, which limits its application.

Studies on nanofluid-based microchannel radiators and
thermoelectric generators emphasize the importance of mod-
eling and optimizing the temperature control system. This is
necessary for effective heat dissipation in electronic devices.
Works [6, 7] reflect effective approaches to modeling thermal
processes in such devices; however, due to the linearization
of nonlinear heat conduction problems through the thermal
sensitivity of their structural materials, there is a need for sig-
nificant computational resources to ensure accuracy.

In work [8], experimental studies on the behavior of the
temperature field in nanomaterials were thoroughly per-
formed. However, significant errors in numerical temperature
values were obtained based on measurements.

The reconstruction of the temperature field is important
for thermal regulation of electronic equipment. In [9], a deep
learning method is proposed, which combines UNet and mul-
tilayer perceptron (MLP) to transform the problem of tempera-
ture field reconstruction into a regression problem. UNet is
responsible for the reproduction of the general temperature
field, while MLP makes it possible to predict zones with large
temperature gradients. The results of numerical experiments

are obtained with an error value that is less than 1°K, but the
use of this method requires a large amount of data for training,
which complicates its application under actual conditions.

In [10], the thermomechanical loads of columns under
longitudinal thermal heating with different boundary con-
ditions were investigated. The temperature distribution was
determined by the differential quadrature method (DQM); the
deflection analysis was performed based on the Euler-Bernoul-
1i theory. The results were confirmed by FEM and literature
data. The main drawback is the simplification of the model,
which does not take into account significant temperature gra-
dients arising from critical thermal loads.

In [11], the results of studies are reported, which empha-
size the importance of thermal interface materials for improv-
ing heat dissipation in electronic devices. It is shown that such
materials play a significant role in facilitating heat transfer
between device components, which contributes to increasing
their performance. However, the tasks associated with the
need to design materials with improved characteristics that
could ensure the effective operation of devices under difficult
conditions of local heating remain unfulfilled. The reason is
the complexity of experimental verifications and the high cost
of designing such materials.

In study [12], the concept of double Cattaneo-Christov dif-
fusion in entropy-optimized nanofluids with a variable thermal
conductivity coefficient is considered. It is shown that the use
of such models make it possible to take into account multiple
diffusion mechanisms; however, the consideration of complex
thermal properties of liquids and their influence on heat trans-
fer remains insufficient. This is due to the difficulties of model-
ing the behavior of magnetized liquids under actual conditions.

The authors of [13] built an analytical model for regen-
erative cooling systems using elastic caloric rubber. The im-
portance of using such systems to optimize heat transfer is
indicated, but the model is limited in terms of analyzing ther-
mal processes for environments with local both external and
internal heating. This is due to the limitations of the modeling
technologies used, which do not make it possible to take into
account transient heating regimes.

An option to overcome these difficulties is to construct
complex mathematical models of thermal conductivity, which
take into account the heterogeneity of media, the locality of
thermal heating, and the variability of thermal properties of
materials. This approach was partially applied in [12, 13], but
it is not possible to take into account important aspects of com-
plex thermal processes associated with the thermal sensitivity
of structural materials.

In [14], dynamic compact thermal models for predicting
the case temperature of portable devices, such as smartphones
and laptops, using the convolution method are reported. The
models make it possible to quickly determine the case tem-
perature taking into account the response of each heat source,
which contributes to the optimization of thermal design and
the choice of a temperature control strategy at the early stages
of development. However, their application is limited to two
types of devices and is not covered by a wide range of portable
equipment.

A solution is given in [15] for the steady state reaction of
thick cylinders subjected to pressure and external heat flux on
the inner surface. However, the influence of the temperature
gradient on the deformation of the medium is not taken into
account, which significantly worsens the accuracy of the model.

A nonlinear mathematical model for determining the tem-
perature field in a thermosensitive layered plate with foreign



inclusions has been built in [16]. The use of this model does not
make it possible to analyze temperature regimes in a flat ther-
mosensitive medium with local internal and external heating.

In [17], a nonlinear model for determining the tempera-
ture field in a thermosensitive layer with a through-going
foreign inclusion was constructed. A linearizing function was
introduced, which allowed the nonlinear axisymmetric bound-
ary value problem to be reduced to a quasi-linear problem.
The layer is heated by a heat flux concentrated in a circle at
the edge of the medium. The model does not provide for local
temperature disturbances.

A linear mathematical model for determining the tem-
perature field in a segmentally homogeneous layer with
a thermally active inclusion was built in [18]. The model does
not provide for the analysis of temperature regimes for the
case of a thermosensitive medium and local internal heating
as the heat sources are uniformly concentrated in the volume
of the cylindrical inclusion.

In [19], a linear mathematical model was constructed
for the analysis of temperature regimes in elements of elec-
tronic devices of a segmentally homogeneous structure with
through-going foreign elements. The model does not provide
for the temperature dependence of the thermophysical pa-
rameters of structural materials and external local heating.

Our review of the literature reveals a problem related to
the lack of theoretically justified approaches for linearization
of heat conduction problems in thermally sensitive media.
Current mathematical models do not sufficiently reflect heat
transfer between structural elements of electronic devices,
taking into account local thermal heating, which limits their
effectiveness for multifunctional structures. The main reasons
are the complexity of describing thermal processes in such
media, as well as the high cost of experiments and the diffi-
culty of creating conditions for proper validation of models.

All this indicates the feasibility of conducting research on
the construction of linear and nonlinear mathematical models
of heat transfer for isotropic flat media with thermally active
heating zones. Such models could be used to predict the ther-
mal modes of operation of modern electronic devices, which
would contribute to increasing their efficiency and reliability.

3. The aim and objectives of the study

The purpose of our study is to build linear and nonlinear
mathematical models for determining temperature fields in
isotropic flat media with thermally active heating zones. As
a result, it will be possible to increase their accuracy of deter-
mination and more effectively analyze temperature regimes,
which will further affect the effectiveness of design methods
for modern electronic devices.

To achieve this goal, it is necessary to solve the following
problems:

- to construct a linear mathematical model of heat trans-
fer in an isotropic flat media with local near-surface heating;

- to build a nonlinear mathematical model of heat trans-
fer in an isotropic thermosensitive (thermophysical parame-
ters of the material depend on temperature) flat media with
local near-surface heating;

- to construct a linear mathematical model of heat trans-
fer in an isotropic flat media with local internal heating;

- to build a nonlinear mathematical model of heat trans-
fer in an isotropic thermosensitive flat media with local inter-
nal heating.

4. The study materials and methods

The object of our study is the process of heat transfer in iso-
tropic flat media with local near-surface and internal heating.

Research hypothesis: if the temperature fields in a flat
medium are caused by local near-surface and internal thermal
heating, then they could be described by analytical-numerical
solutions to linear and nonlinear boundary value problems of
heat conduction. Differential equations with partial deriva-
tives of the second order of these problems contain right-hand
sides with the Dirac delta function, which make it possible to
describe the local concentration of heating.

It is assumed in the process of the study that the flat
medium is isotropic, that is, the values of thermophysical
parameters are constant in spatial directions. The constructed
linear and nonlinear mathematical models of heat transfer
are simplified since the change in the temperature field, and
the analysis of temperature regimes are determined only by
spatial coordinates.

Experimental temperature measurements were performed
using the SKF TKTL 21 infrared thermometer. A cube-shaped
plate with a volume of 0.008 m3 was taken for the experiment.
The thermometer was set to an emissivity value for silicon
of £~0.8-0.9. Before measurement, the sample was placed in
the working environment for 10-15 s to achieve a sensor tem-
perature value equal to the ambient temperature. After that,
the sample was bound to a Cartesian rectangular coordinate
system. Specific measurement points were determined along
the ordinate axis on the sample surface. The measurement was
performed with a device placed at a distance of 30 cm and at an
angle of 90° to the sample surface. Temperature measurements
were performed under a "Scan” mode at the indicated points.

To build linear and nonlinear mathematical models of
heat transfer in an isotropic flat medium with thermally ac-
tive heating zones, the theory of generalized functions was
used. This approach made it possible to effectively describe
local near-surface and internal heating. This led to the solu-
tion of boundary value problems of heat conduction, which
contain partial differential equations with discontinuous and
singular right-hand sides. To solve nonlinear boundary value
problems of heat transfer due to the thermal sensitivity of
the medium material, a linearization method is given. This
method involves initially using the Kirchhoff transforma-
tion (11), which made it possible to linearize nonlinear dif-
ferential equations (3), (6), as well as partially boundary con-
ditions (4), and derive linear differential equations (13), (24),
as well as quasi-linear boundary condition (15). For the final
linearization (15), a segment-constant approximation of tem-
perature (16) as a function of the spatial coordinate x on the
boundary surface of the plate x = [ is introduced.

An isotropic plate with a thickness of 20 with thermally
insulated front surfaces |z| =0, referred to the Cartesian
rectangular coordinate system (Oxyz), is considered. In the
near-surface region Q= {(x,,2):|x| < H,L|z| <} of the plate,
uniformly distributed internal heat sources with specific
power qq = const are concentrated. On the boundary surface
of the layer L, ={(xLz):|x| < oo, |z] < J}, convective heat ex-
change with the environment with a constant temperature
t.=const occurs according to Newton’s law. On its other
surface L_ = {(x, -1, 2):|x| < o, |z| < 6} boundary conditions of
the second kind are given (Fig. 1).

In the above structure, the temperature distribution #(x, y)
in spatial coordinates x and y is determined by solving the
heat conduction equation
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where A is the thermal conductivity coefficient of the
plate; « is the heat transfer coefficient from the surface L,;
O(x, y) = t(x, y) — ts; A is the Laplace operator in the Cartesian
rectangular coordinate system; S _({) is the asymmetric unit
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A thermosensitive plate is considered (Fig.1) that is
isotropic with respect to thermophysical parameters (thermo-
physical parameters depend on temperature).
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Fig. 1. Isotropic plate under the influence
of near-surface heating

In the given structure, the temperature distribution #(x, y)

in the spatial coordinates x and y is determined by solving the
nonlinear heat conduction equation
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where A(t) is the thermal conductivity coefficient of the ther-
mally sensitive plate.

An isotropic plate with a thickness of 20 with respect to
thermophysical parameters is considered, referred to the Car-
tesian rectangular coordinate system (Oxyz). The front surfaces
of this plate are thermally insulated |z| = J. In the volume of
a thin rectangular parallelepiped €y = {(x, y, 2):|x| < H, 0, |z] < 5}
of the isotropic plate, uniformly distributed internal heat
sources with specific power g, are concentrated. On the
boundary surface of the layer L, ={(x, I, 2): x| <o, |z] <5},
convective heat exchange with the environment with a con-
stant temperature t. occurs according to Newton’s law. On its
other surface L_={(x, -, 2): |x| < =, |z] < &}, boundary condi-
tions of the second kind are given (Fig. 2).

Fig. 2. Isotropic plate under the influence
of internal heating

In the above structure, the temperature distribution #(x, y)
in spatial coordinates x and y is determined by solving the
heat conduction equation
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under boundary conditions (2).

A thermally sensitive plate is considered, isotropic with
respect to thermophysical parameters (Fig. 2).

In the given structure, it is necessary to determine the
temperature distribution #(x, y) in the spatial coordinates x
and y, which is obtained by solving the nonlinear heat con-
duction equation

div[/l(t)gradt(x,y)] =—q,S_ (H —|x|)5 (y) (6)

under boundary conditions (4).

5. Results of investigating mathematical models
of heat transfer in isotropic flat media
with local heating

5.1. Linear mathematical model of heat transfer in
an isotropic plate with near-surface heating

The integral Fourier transform along the x coordinate
was applied to equation (1) and boundary conditions (2);
a second-order inhomogeneous ordinary differential equa-
tion with constant coefficients and a singular right-hand side
was obtained
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& is the parameter of the integral Fourier transform, i2 = -1.
The general solution to equation (7) is defined as
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Here c; and ¢, are the constants of integration.

The boundary conditions (8) were used, and, on this basis,
the constants of integration were found and a partial solution
to problem (7), (8) was derived
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where P(&) = A&sh2&] — ach2£l.

The inverse integral Fourier transform is applied to re-
lation (9) and, as a result, the solution to problem (1), (2) is
obtained in the following form
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As a result, the desired temperature field in the plate,
caused by surface heating, is expressed by formula (10), from
which the temperature value at any point is obtained.
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According to formula (10), numerical calculations of
the temperature distribution O(x;0) (Fig.3,a) and 6(0.05;y)
(Fig. 3,b) in the spatial coordinates x, y in the plate for
a constant value of the thermal conductivity coefficient for
silicon (4 = 67.9 W/(m-degree) at a temperature t = 27°C) were
performed. The following input data values were selected:
Qo =200 W/m3;1=0.1 m; H=0.05m; o = 17.64 W/(m? - degree).
Numerical calculations were performed with an accuracy of 1075.

The behavior of the curves demonstrates that the tem-
perature as a function of spatial coordinates is smooth and
monotonic and reaches maximum values in the region where
near-surface heat sources are concentrated.

5. 2. Nonlinear mathematical model of heat transfer
in an isotropic thermosensitive plate with near-surface
heating

The Kirchhoff transformation is considered

1 1(x,y)

9(xy)=75 |

o A(¢)dg.
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Here, A° is the reference coefficient of thermal conductiv-
ity of the plate material.

Expression (11) is differentiated with respect to variables x
and y and, as a result, the following relation is obtained:
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taking into account which the original equation (3) and bound-
ary conditions (4) are transformed to the following form:
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Fig. 3. Temperature dependence (x, y) in an isotropic plate with near-surface heating: @ — on the spatial
coordinate x for y = 0; b — on the spatial coordinate y for x=0.05



As a result of the transformations, linear differential equa-
tions with partial derivatives of the second order with respect
to function O(x, y) with a discontinuous and singular right-
hand side (13) and boundary conditions (14) and a quasilinear
boundary condition (15) were obtained.

The temperature t(x, ) was approximated as a function
of the spatial coordinate x by a segment-constant function in
the form

-1

(£ 1) 8- (x-x;))

3

t(x,l):t1+
J

(16)
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where x; € (0; x*); X <X <. <X tj(jzl,m) - unknown
approximate values of temperature t(x, [); m - number of
partitions of interval 0; x*); x* — value of abscissa for which
temperature reaches value ¢, (it is found from corresponding
linear problem).

The integral Fourier transform in coordinate x is applied
to equation (13) and boundary conditions (14), (15), taking
into account relation (16). As a result, we obtain an ordinary
differential equation of the second order with constant coeffi-
cients and singular right-hand side
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The general solution to equation (17) is obtained in the form
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and using boundary conditions (18), the integration con-
stants ¢, ¢, are determined and, as a result, there is a solution
to problem (17), (18)
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The inverse integral Fourier transform is applied to rela-
tion (19) and the expression for the linearizing function 6(x, y)
is defined in the following form:
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As a result of substituting the expression of the tem-
perature dependence of the thermal conductivity coefficient
of the medium material into relations (11), (20), as well as
certain mathematical transformations, a system of nonlinear
algebraic equations is built for determining the unknown ap-
proximate values ¢;(j=1,m) of temperature (x, I).

The desired temperature field #(x, y) for the given structure
is determined using the obtained nonlinear algebraic equa-
tion taking into account the temperature dependence of the
thermal conductivity coefficient of structural materials of the
plate in relations (11), (20), and by performing certain mathe-
matical transformations.

The dependence of the thermal conductivity coefficient
on the temperature of the structural material of the plate is
given in the form

A=2°(1-kt), (21)
where k is the temperature coefficient of thermal conductivity
of the plate material.

Using relations (11), (21), the following expression for
determining temperature #(x, y) is obtained

t(x,y):%(1—,/1—2k8(x,y)).

In the temperature range [0°C; 1127°C], the temperature
dependence of the thermal conductivity coefficient of silicon
was obtained by interpolation in the form

w 1 —O.OOOSLt s
deg-m deg

which is a special case of relation (21).

According to formula (22), numerical calculations of the
temperature distribution &(x; 0) (Table 1) and 6(0,05; y) (Table 2)
were performed in spatial coordinates x, y in the plate for
a linearly varying thermal conductivity coefficient (relation (23)).

(22)

A(t)=67.9 (23)

Table 1
Temperature change depending on the spatial
coordinate x (for y=0)
x,m | -0.1 -0.07 | -0.04 0 0.04 0.07 0.1

0, °C[0.291220.29932|0.30564 | 0.30906 | 0.30564 [ 0.29932|0.29122

Table 2
Temperature change depending on the spatial
coordinate y (for x=0.05)
y,m | -0.1 -0.05 | -0.02 0 0.0125 | 0.038 0.1
6,°C | 0.2922 | 0.2954 | 0.2998 | 0.3039 | 0.3072 | 0.3150 | 0.4370




The following input data values were selected: go = 200 W/m3;
[=0.1 m; H=0.05 m; a = 17.64 W/(m?-deg). Numerical calcu-
lations were performed with an accuracy of 10°° for the number
of partitions of the interval (0; x*) m =9.

5.3. Linear mathematical model of heat transfer in
an isotropic plate with internal heating

The integral Fourier transform along the x coordinate is
applied to equation (5) and boundary conditions (2). As a re-
sult, a non-homogeneous ordinary differential equation of the
second order with constant coefficients and a singular right-
hand side is obtained

d2§ 27 \/qu .
——&%0=—,|———sinH&S (y),
dyz 5 T lg é (y)

under boundary conditions (8).
The general solution to equation (24) is defined as

(24)
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The boundary conditions (8) were used and, on this basis,
the integration constants c;, ¢, were found; a partial solution
to problem (8) to (24) was obtained.

- 2ch l
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where P1(&) = ashél — A&ch2£l.

The inverse integral Fourier transform is applied to rela-
tion (25) and, as a result, the solution to problem (2) to (5) is
obtained in the following form

" ché(y+1)
Q(X’Y)Z—Zﬂ'fcosfxsinHé‘ WPI((:)JF dé. (26)
R +sh&yS(y)

As a result, the desired temperature field in the plate,
caused by internal local heating, is expressed by formula (26),
from which the temperature value at any point is obtained.

According to formula (26), numerical calculations of the tem-
perature distribution 6(0.05;y) (Fig. 4) along the spatial coordi-
natey in the plate were performed for a constant value of the ther-
mal conductivity coefficient for silicon (1 =67.9 W/(m - degree)
at a temperature t=27°C). The following input data val-
ues were selected: qo-200 W/m3; [=0.1 m; H=0.05 m;
o =17.64 W/(m? - degree). Numerical calculations were per-
formed with an accuracy of 107°.
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Fig. 4. Dependence of temperature 6(x, y) on spatial
coordinate y for x=0.05 in an isotropic plate
with internal heating

The behavior of the curve demonstrates that the tempera-
ture as a function of the spatial coordinate is smooth and
monotonic and reaches maximum values in the region where
internal heat sources are concentrated.

5. 4. Nonlinear mathematical model of heat transfer
in an isotropic plate with internal heating

A thermosensitive plate is considered, isotropic with re-
spect to thermophysical parameters (Fig. 2).

As a result of using relations (11), (12), equation (6) is
transformed to the following form

__%
A3 __}TO& (H—|x|)5(y).

The integral Fourier transform along the x coordinate is
applied to this equation and a second-order ordinary differen-
tial equation with constant coefficients and a singular right-
hand side is obtained

d>9 - /2 Qo .

——&°9=—,|———sinH&5(y),

dyz 5 T /'LO:g' g (y)
whose general solution will be as follows

§(y) =ces? e —\/3 7

Using boundary conditions (18) makes it possible to de-
termine the integration constants ¢;, ¢, and, as a consequence,
the solution to problem (18) to (28)

27

(28)

ggz sin HEshé (y)S(y).

2qysinHE [D(g‘,y)chﬁl—]+

~sh&ysS(y)
+aD(&,y)D(&)

(29)

= _ 1
0 e

The inverse integral Fourier transform is applied to rela-
tion (29) and the expression for the linearizing function 0(x, y)
is defined in the following form:

2qosin HE cosEx x

1 %1 |D(&y)chél-
I(x,y)=— {shéys(y) }+ dé&.

= (30)
ﬂlo 0 é:l
+aD(§,y)D(§,x)

As a result of substituting the expression of the tempera-
ture dependence of the thermal conductivity coefficient of
the medium material into the relations (11), (22) and certain
mathematical transformations, a system of nonlinear alge-
braic equations is obtained for determining the unknown
approximate values of temperature #(x, ).

The desired temperature field #(x, y) for the given structure
is determined using the obtained nonlinear algebraic equa-
tion taking into account the temperature dependence of the
thermal conductivity coefficient of the structural materials
of the plate in relations (11), (22) and by performing certain
mathematical transformations.

According to formula (22), taking into account relation (23),
numerical calculations of the temperature distribution 8(0.05; y)
(Table 3) along the spatial coordinate y in the plate for a linearly
varying thermal conductivity coefficient were performed. The
following input data values were selected: qo =200 W/m3;
I[=01m; H=0.05m; o=17.64 W/(m? - degree). Numerical



calculations were performed with an accuracy of 107 for the
number of partitions of the interval (0; x*) m = 9.

Table 3
Temperature change depending on the spatial
coordinate y (for x=0.05)
y, m -0.1 -0.07 | -0.04 0 0.04 0.07 0.1
4,°C | 0.2619 | 0.3026 | 0.3331 | 0.3505 | 0.3331 | 0.3026 | 0.2619

The results obtained for the selected medium material (sili-
con) with a linear temperature dependence of the thermal con-
ductivity coefficient differ from the results obtained for a constant
thermal conductivity coefficient by 2% (Tables 1-3, Fig. 3, 4).
Their insignificant difference is explained by the fact that the
value of the temperature coefficient of thermal conductivity
for silicon, as shown by relation (23), is small.

The experimental values of temperature at points with
coordinates (0.05; y; 0) are given in Table 4.

Table 4
Experimental temperature values at points
with coordinates (0.05; y; 0)
y,m -0.1000 | -0.0500 0.0125 0.0380 0.1000
a,°C 0.3312 0.2468 0.2568 0.3532 0.2968

The obtained numerical calculations of temperature differ
from the experimental values by 15% (Fig. 3, b; Table 4).

6. Results of the construction of mathematical models
of heat transfer in flat media with local heating:
discussion

The boundary value problems of heat conduction have
been stated in accordance with the physical process considered
in the above media. As a result, the differential equations of
heat conduction and boundary conditions containing discon-
tinuous and singular functions in the right-hand sides describe
the heat transfer process. The form of curves in Fig. 3, 4, which
are constructed on the basis of the determined numerical
values of temperature as a function of spatial coordinates,
obtained using analytical-numerical solutions of the boundary
value problems (10), (26), indicates the correctness of our re-
sults. This is confirmed by the smoothness of the temperature
function in spatial coordinates and the fulfillment of the spec-
ified boundary conditions at the edges of the plate.

In our studies, the theory of generalized functions was
used, which made it possible to effectively describe local
near-surface and internal heating, as a result of which the
obtained partial differential equations contain discontinuous
and singular right-hand sides. For linearization of nonlinear
boundary value problems (3), (4), and (4) to (6), a lineariza-
tion method is presented, which made it possible to analyt-
ically obtain analytical-numerical solutions (20), (30). The
temperature distribution is determined by relations (10), (22),
(26), and is displayed in Fig. 3, 4; in Tables 1-3.

It should be noted that the above-analyzed works did not
consider an approach for linearizing boundary value prob-
lems of thermal conductivity for thermosensitive media in
an analytical-numerical way. Unlike [3], in which a porous
medium was considered, and [4], a layered medium, the
boundary value problems were not linearized in an analytical

way. As a result of using numerical methods for linearization,
significant errors accumulated. In our studies, the use of the
Kirchhoff transformation made it possible to linearize the
differential equations of thermal conductivity and partially
the boundary condition (4). In this regard, for its complete
linearization, an approximation of the temperature by the
spatial coordinate by a segment-constant function (16) at
the edge of the plate was introduced. This approach leads
to obtaining a minimum error in the results, which was not
achieved in [9] and [10] due to the use of experimental and
numerical methods, respectively. The use of generalized func-
tions makes it possible to effectively describe thermally active
heating zones. This leads to the solution of partial differential
equations of heat conduction with discontinuous and singular
right-hand sides.

Since the architecture of modern electronic devices locally
concentrates individual thermally active nodes, in particular
surface and internal uniformly distributed ones, there is
a need to construct mathematical models of heat transfer be-
tween their individual elements. These models can be linear
or nonlinear for isotropic flat media. The given mathematical
models of heat transfer are simplified, but they make it pos-
sible to construct more complex mathematical models for flat
composite media on their basis.

Based on the obtained analytical-numerical solutions to
both linear and nonlinear boundary value problems of heat
transfer, it is proposed to develop computational algorithms
and software tools for their numerical implementation. This
will make it possible to conduct research into a number of
materials used in the design of digital electronic devices
regarding the influence of their thermal sensitivity on the
temperature distribution.

It is proposed to take into account the thermal sensitivity
of structural materials for the analysis of thermal regimes
in electronic devices, which significantly complicates the
process of solving the corresponding linear and nonlinear
boundary value problems of heat conduction. However, the
sought solutions to these problems describe the behavior of
temperature as a function of spatial coordinates somewhat
more adequately to the real physical process.

This study was performed for a stationary process of heat
conduction, as a result of which the models built are limited
as they make it possible to determine the temperature change
only by spatial coordinates. Heat transfer problems contain
only boundary conditions of the first, second, and third kind
at the boundary surfaces of the media, which is a drawback,
although this does not reduce the generality of the research.

In the future, research may involve the construction of
mathematical models of heat transfer for inhomogeneous
flat media with foreign thermally active elements, for the
unsteady process of heat conduction and for more complex
boundary conditions, in particular for thermal radiation.

7. Conclusions

1. A linear mathematical model of heat transfer between
individual elements of structural units of electronic devices
with local near-surface heating has been constructed. An an-
alytical-numerical solution to the boundary value problem in
the form of an improper integral (the upper limit of the inte-
gral contains infinity) has been obtained. After certain math-
ematical transformations, it was reduced to an integral with
finite limits. As a result of using the 3/8 Newton method of



numerical integration to determine the temperature distribu-
tion in spatial coordinates in the environment, an accuracy of
results of 107 has been achieved. Such accuracy is difficult to
achieve using numerical methods for solving the initial bound-
ary value problem or experimental measurements. Due to the
local concentration of thermal heating (a sufficiently small
heating area, almost point-like, described by the Dirac delta
function), it is impossible to build a mathematical model for
determining the temperature field using numerical methods.

2. A nonlinear mathematical model of heat transfer be-
tween individual thermally sensitive elements of structur-
al assemblies of electronic devices with local near-surface
heating has been constructed. A method for linearizing
a nonlinear boundary value problem has been introduced
and, on this basis, an analytical-numerical solution has
been obtained for the linear temperature dependence of the
thermal conductivity coefficient of the structure material.
A numerical experiment was performed, as a result of which
the behavior of temperature as a function of spatial coor-
dinates was displayed. The results obtained for the selected
material with a linear temperature dependence of the thermal
conductivity coefficient differ from the results obtained for its
constant value by 2%.

3. A linear mathematical model of heat transfer between
individual elements of structural units of electronic devices
with locally concentrated internal heating has been built. An
analytical-numerical solution to the boundary value problem
was obtained and, on this basis, using numerical integration
of the improper integral, numerical values of temperature for
selected values of thermophysical and geometric parameters
with an accuracy of 107 have been given.

4. A nonlinear mathematical model of heat transfer be-
tween individual heat-sensitive elements of structural units of
electronic devices with locally concentrated internal heating
has been constructed. A method of linearization of the non-
linear boundary value problem has been introduced, and, on

this basis, an analytical-numerical solution was obtained for
the linear temperature dependence of the thermal conductiv-
ity coefficient of the structure material. This solution made
it possible to form a system of nonlinear algebraic equations
under an automated mode to determine unknown values of
the temperature at the edge of the medium, the coefficients
of which contain improper integrals. The coefficients were
determined by numerical integration, and the solution to the
system was obtained by Newton’s method with an accuracy
of 1075, after which the numerical values of the temperature
were determined.
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