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This study investigates heat exchange processes for 
thermally sensitive media with local near-surface and 
internal heating. As a result of the thermal load, sig-
nificant temperature gradients arise. To establish tem-
perature regimes for effective operation of electronic 
devices, linear and nonlinear mathematical models 
for determining the temperature field have been con-
structed, which could allow further analysis of tem-
perature regimes. 

Based on the stated linear and nonlinear bound-
ary value problems of thermal conductivity, their ana-
lytical and numerical solutions have been derived. 
Using these solutions, numerical calculations of the 
temperature distribution in spatial coordinates for 
given geometric and thermophysical parameters have 
been performed. Reliability of the results has been 
confirmed by experimental findings and the deter-
mined numerical values of temperature distribution 
in the medium. 

For an effective description of local heating, the 
theory of generalized functions was used. A technique 
for linearizing nonlinear mathematical models has 
been introduced. As a result, linear second-order dif-
ferential equations with partial derivatives and a sin-
gular right-hand side have been derived.

The numerical results reflect the temperature dis-
tribution in the medium in spatial coordinates for the 
given geometric and thermophysical parameters. The 
number of divisions of the interval (0; x*) was chosen 
to be 9, which made it possible to derive numerical 
values of temperature with an accuracy of 10–6. The 
obtained numerical values of temperature for silicon 
under a linear temperature dependence of the ther-
mal conductivity coefficient differ from the results 
obtained for its constant value by 2%
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1. Introduction

Construction of heat transfer mathematical models for 
state-of-the-art electronic devices is an important area of re-
search that has attracted significant attention from both the 
scientific community and industry.

The temperature field in microelectronic devices is a crit-
ical factor that determines their efficiency and reliability. An 
increase in temperature can reduce performance, increase 
power consumption, and shorten the device’s service life. 
Heat generation is related to the passage of electric current 
through components, which leads to their heating and the 
formation of a temperature field.

With the increasing complexity and miniaturization of 
electronic devices, effective heat dissipation is essential to 
enable optimal performance and reliability. The relative in-
fluence of temperature is the highest (55%) compared to hu-
midity (19%), vibration (20%), and dust (6%). Various studies 

have focused on investigating new materials, structures, and 
models to increase thermal conductivity and improve heat 
control in electronic systems.

Experimental methods for determining the temperature 
field, such as thermal impedance microscopy, infrared mi
croscopy, or thermometry, make it possible to obtain data 
on the temperature distribution in devices. However, each of 
these methods has its limitations and is used under specific 
conditions. Computer simulations based on mathematical 
models of thermal processes make it possible to predict tem-
perature regimes of device operation and define optimal 
design parameters.

Important factors affecting the temperature regime are the 
location of components and their density on board. Uneven 
heat dissipation, in particular for elements in the center of the 
board, can lead to local overheating. Various technologies are 
used to ensure effective cooling: heat dissipation materials, 
fans, thermal pipes, thermal pastes, etc. In addition, the use 
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of temperature sensors make it possible to control heating and 
timely reduce the risks of overheating.

The relevance of studying the temperature field is increas-
ing due to the significant thermal loads on modern devices. 
The existence of significant temperature gradients in local sec-
tors of the medium can cause overheating, leading to damage 
to components or device failure. Therefore, construction of 
mathematical models of heat transfer is an important task for 
predicting thermal regimes and enabling stable operation of 
electronic devices without the need for expensive experiments.

2. Literature review and problem statement

It is shown in [1] that the improvement of thermal inter-
face materials is an important direction for improving heat 
dissipation and increasing the performance of electronic de-
vices. However, the issues regarding the effectiveness of such 
materials under difficult heating conditions arising from local 
heating by heat sources remain unresolved.

In [2], the importance of optimizing thermal processes in 
porous materials is emphasized; however, the method used 
does not make it possible to take into account local thermal 
disturbances, which are critically important as a result of 
heating of electronic devices. This creates limitations in the 
application of such models for actual devices.

A mathematical model of heat transfer in porous materials 
with temperature-dependent thermophysical parameters is 
reported in [3], which is relevant for structures of complex 
architecture, in particular digital electronic devices. However, 
the model does not take into account local thermal disturbanc-
es characteristic of such devices, which limits its accuracy.

Analytical solutions [4] describe the distribution of tem-
perature, displacements, and stresses in simply supported 
laminated plates under thermomechanical loading, taking 
into account the temperature dependence of materials. How-
ever, they do not reflect local temperature loads, which limits 
their application to real operating conditions.

A thermal conductivity model for electronic devices is 
reported in [5]. However, the influence of near-surface tem-
perature disturbances in the environment and the thermal 
sensitivity of structural materials on thermal resistance has 
not been investigated, which limits its application.

Studies on nanofluid-based microchannel radiators and 
thermoelectric generators emphasize the importance of mod-
eling and optimizing the temperature control system. This is 
necessary for effective heat dissipation in electronic devices. 
Works [6, 7] reflect effective approaches to modeling thermal 
processes in such devices; however, due to the linearization 
of nonlinear heat conduction problems through the thermal 
sensitivity of their structural materials, there is a need for sig-
nificant computational resources to ensure accuracy.

In work [8], experimental studies on the behavior of the 
temperature field in nanomaterials were thoroughly per-
formed. However, significant errors in numerical temperature 
values were obtained based on measurements.

The reconstruction of the temperature field is important 
for thermal regulation of electronic equipment. In [9], a deep 
learning method is proposed, which combines UNet and mul-
tilayer perceptron (MLP) to transform the problem of tempera-
ture field reconstruction into a regression problem. UNet is  
responsible for the reproduction of the general temperature 
field, while MLP makes it possible to predict zones with large 
temperature gradients. The results of numerical experiments 

are obtained with an error value that is less than 1°K, but the 
use of this method requires a large amount of data for training, 
which complicates its application under actual conditions. 

In [10], the thermomechanical loads of columns under 
longitudinal thermal heating with different boundary con-
ditions were investigated. The temperature distribution was 
determined by the differential quadrature method (DQM); the 
deflection analysis was performed based on the Euler-Bernoul-
li theory. The results were confirmed by FEM and literature 
data. The main drawback is the simplification of the model, 
which does not take into account significant temperature gra-
dients arising from critical thermal loads.

In [11], the results of studies are reported, which empha-
size the importance of thermal interface materials for improv-
ing heat dissipation in electronic devices. It is shown that such 
materials play a significant role in facilitating heat transfer 
between device components, which contributes to increasing 
their performance. However, the tasks associated with the 
need to design materials with improved characteristics that 
could ensure the effective operation of devices under difficult 
conditions of local heating remain unfulfilled. The reason is 
the complexity of experimental verifications and the high cost 
of designing such materials.

In study [12], the concept of double Cattaneo-Christov dif-
fusion in entropy-optimized nanofluids with a variable thermal 
conductivity coefficient is considered. It is shown that the use 
of such models make it possible to take into account multiple 
diffusion mechanisms; however, the consideration of complex 
thermal properties of liquids and their influence on heat trans-
fer remains insufficient. This is due to the difficulties of model-
ing the behavior of magnetized liquids under actual conditions.

The authors of [13] built an analytical model for regen-
erative cooling systems using elastic caloric rubber. The im-
portance of using such systems to optimize heat transfer is 
indicated, but the model is limited in terms of analyzing ther-
mal processes for environments with local both external and 
internal heating. This is due to the limitations of the modeling 
technologies used, which do not make it possible to take into 
account transient heating regimes.

An option to overcome these difficulties is to construct 
complex mathematical models of thermal conductivity, which 
take into account the heterogeneity of media, the locality of 
thermal heating, and the variability of thermal properties of 
materials. This approach was partially applied in [12, 13], but 
it is not possible to take into account important aspects of com-
plex thermal processes associated with the thermal sensitivity 
of structural materials.

In [14], dynamic compact thermal models for predicting 
the case temperature of portable devices, such as smartphones 
and laptops, using the convolution method are reported. The 
models make it possible to quickly determine the case tem-
perature taking into account the response of each heat source, 
which contributes to the optimization of thermal design and 
the choice of a temperature control strategy at the early stages 
of development. However, their application is limited to two 
types of devices and is not covered by a wide range of portable 
equipment.

A solution is given in [15] for the steady state reaction of 
thick cylinders subjected to pressure and external heat flux on 
the inner surface. However, the influence of the temperature 
gradient on the deformation of the medium is not taken into 
account, which significantly worsens the accuracy of the model.

A nonlinear mathematical model for determining the tem-
perature field in a thermosensitive layered plate with foreign 
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inclusions has been built in [16]. The use of this model does not 
make it possible to analyze temperature regimes in a flat ther-
mosensitive medium with local internal and external heating.

In [17], a nonlinear model for determining the tempera-
ture field in a thermosensitive layer with a through-going 
foreign inclusion was constructed. A linearizing function was 
introduced, which allowed the nonlinear axisymmetric bound-
ary value problem to be reduced to a quasi-linear problem. 
The layer is heated by a heat flux concentrated in a circle at 
the edge of the medium. The model does not provide for local 
temperature disturbances.

A linear mathematical model for determining the tem-
perature field in a segmentally homogeneous layer with 
a  thermally active inclusion was built in [18]. The model does 
not provide for the analysis of temperature regimes for the 
case of a thermosensitive medium and local internal heating 
as the heat sources are uniformly concentrated in the volume 
of the cylindrical inclusion.

In [19], a linear mathematical model was constructed 
for the analysis of temperature regimes in elements of elec-
tronic devices of a segmentally homogeneous structure with 
through-going foreign elements. The model does not provide 
for the temperature dependence of the thermophysical pa-
rameters of structural materials and external local heating.

Our review of the literature reveals a problem related to 
the lack of theoretically justified approaches for linearization 
of heat conduction problems in thermally sensitive media. 
Current mathematical models do not sufficiently reflect heat 
transfer between structural elements of electronic devices, 
taking into account local thermal heating, which limits their 
effectiveness for multifunctional structures. The main reasons 
are the complexity of describing thermal processes in such 
media, as well as the high cost of experiments and the diffi-
culty of creating conditions for proper validation of models.

All this indicates the feasibility of conducting research on 
the construction of linear and nonlinear mathematical models 
of heat transfer for isotropic flat media with thermally active 
heating zones. Such models could be used to predict the ther-
mal modes of operation of modern electronic devices, which 
would contribute to increasing their efficiency and reliability.

3. The aim and objectives of the study

The purpose of our study is to build linear and nonlinear 
mathematical models for determining temperature fields in 
isotropic flat media with thermally active heating zones. As 
a result, it will be possible to increase their accuracy of deter-
mination and more effectively analyze temperature regimes, 
which will further affect the effectiveness of design methods 
for modern electronic devices.

To achieve this goal, it is necessary to solve the following 
problems:

– to construct a linear mathematical model of heat trans-
fer in an isotropic flat media with local near-surface heating;

– to build a nonlinear mathematical model of heat trans-
fer in an isotropic thermosensitive (thermophysical parame-
ters of the material depend on temperature) flat media with 
local near-surface heating;

– to construct a linear mathematical model of heat trans-
fer in an isotropic flat media with local internal heating;

– to build a nonlinear mathematical model of heat trans-
fer in an isotropic thermosensitive flat media with local inter-
nal heating.

4. The study materials and methods

The object of our study is the process of heat transfer in iso-
tropic flat media with local near-surface and internal heating.

Research hypothesis: if the temperature fields in a flat 
medium are caused by local near-surface and internal thermal 
heating, then they could be described by analytical-numerical 
solutions to linear and nonlinear boundary value problems of 
heat conduction. Differential equations with partial deriva-
tives of the second order of these problems contain right-hand 
sides with the Dirac delta function, which make it possible to 
describe the local concentration of heating.

It is assumed in the process of the study that the flat 
medium is isotropic, that is, the values of thermophysical 
parameters are constant in spatial directions. The constructed 
linear and nonlinear mathematical models of heat transfer 
are simplified since the change in the temperature field, and 
the analysis of temperature regimes are determined only by 
spatial coordinates.

Experimental temperature measurements were performed 
using the SKF TKTL 21 infrared thermometer. A cube-shaped 
plate with a volume of 0.008 m3 was taken for the experiment. 
The thermometer was set to an emissivity value for silicon  
of ɛ ≈ 0.8–0.9. Before measurement, the sample was placed in 
the working environment for 10–15 s to achieve a sensor tem-
perature value equal to the ambient temperature. After that, 
the sample was bound to a Cartesian rectangular coordinate 
system. Specific measurement points were determined along 
the ordinate axis on the sample surface. The measurement was 
performed with a device placed at a distance of 30 cm and at an 
angle of 90° to the sample surface. Temperature measurements 
were performed under a "Scan" mode at the indicated points.

To build linear and nonlinear mathematical models of 
heat transfer in an isotropic flat medium with thermally ac-
tive heating zones, the theory of generalized functions was 
used. This approach made it possible to effectively describe 
local near-surface and internal heating. This led to the solu-
tion of boundary value problems of heat conduction, which 
contain partial differential equations with discontinuous and 
singular right-hand sides. To solve nonlinear boundary value 
problems of heat transfer due to the thermal sensitivity of 
the medium material, a linearization method is given. This 
method involves initially using the Kirchhoff transforma-
tion (11), which made it possible to linearize nonlinear dif-
ferential equations (3), (6), as well as partially boundary con-
ditions (4), and derive linear differential equations (13), (24),  
as well as quasi-linear boundary condition (15). For the final 
linearization (15), a segment-constant approximation of tem-
perature (16) as a function of the spatial coordinate x on the 
boundary surface of the plate x = l is introduced.

An isotropic plate with a thickness of 2δ with thermally 
insulated front surfaces |z| = δ, referred to the Cartesian 
rectangular coordinate system (Oxyz), is considered. In the 
near-surface region Ω0 = {(x,y,z):|x| ≤ H,l,|z| ≤ δ} of the plate, 
uniformly distributed internal heat sources with specific 
power q0 = const are concentrated. On the boundary surface 
of the layer L+ = {(x,l,z):|x| < ∞, |z| ≤ δ}, convective heat ex-
change with the environment with a constant temperature 
tc = const occurs according to Newton’s law. On its other 
surface L– = {(x, –l, z):|x| < ∞, |z| ≤ δ} boundary conditions of 
the second kind are given (Fig. 1).

In the above structure, the temperature distribution t(x, y) 
in spatial coordinates x and y is determined by solving the 
heat conduction equation
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where λ is the thermal conductivity coefficient of the 
plate; α is the heat transfer coefficient from the surface L+; 
θ(x, y) = t(x, y) – tc; Δ is the Laplace operator in the Cartesian 
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A thermosensitive plate is considered (Fig. 1) that is 
isotropic with respect to thermophysical parameters (thermo-
physical parameters depend on temperature).

L–
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2δ

y

2l

0 x
H

z

Fig. 1. Isotropic plate under the influence 	
of near-surface heating

In the given structure, the temperature distribution t(x, y) 
in the spatial coordinates x and y is determined by solving the 
nonlinear heat conduction equation
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where λ(t) is the thermal conductivity coefficient of the ther-
mally sensitive plate.

An isotropic plate with a thickness of 2δ with respect to 
thermophysical parameters is considered, referred to the Car-
tesian rectangular coordinate system (Oxyz). The front surfaces 
of this plate are thermally insulated |z| = δ. In the volume of  
a thin rectangular parallelepiped Ω0 = {(x, y, z):|x| ≤ H, 0, |z| ≤ δ} 
of the isotropic plate, uniformly distributed internal heat 
sources with specific power q0 are concentrated. On the 
boundary surface of the layer L+ = {(x, l, z): |x| < ∞, |z| ≤ δ}, 
convective heat exchange with the environment with a con-
stant temperature tc occurs according to Newton’s law. On its 
other surface L– = {(x, –l, z): |x| < ∞, |z| ≤ δ}, boundary condi-
tions of the second kind are given (Fig. 2).
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H

z

Fig. 2. Isotropic plate under the influence 	
of internal heating 

In the above structure, the temperature distribution t(x, y) 
in spatial coordinates x and y is determined by solving the 
heat conduction equation
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under boundary conditions (2).
A thermally sensitive plate is considered, isotropic with 

respect to thermophysical parameters (Fig. 2).
In the given structure, it is necessary to determine the 

temperature distribution t(x, y) in the spatial coordinates x 
and y, which is obtained by solving the nonlinear heat con-
duction equation

div t gradt x y q S H x y� �� � � ��� �� � � �� � � ��, ,0 	 (6)

under boundary conditions (4).

5. Results of investigating mathematical models  
of heat transfer in isotropic flat media  

with local heating

5. 1. Linear mathematical model of heat transfer in 
an isotropic plate with near-surface heating

The integral Fourier transform along the x coordinate 
was applied to equation (1) and boundary conditions (2);  
a second-order inhomogeneous ordinary differential equa-
tion with constant coefficients and a singular right-hand side 
was obtained

d
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where � y� � is the transformant of function θ(x, y);
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The boundary conditions (8) were used, and, on this basis, 

the constants of integration were found and a partial solution 
to problem (7), (8) was derived
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where P(ξ) = λξsh2ξl – αch2ξl.
The inverse integral Fourier transform is applied to re-

lation (9) and, as a result, the solution to problem (1), (2) is 
obtained in the following form
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As a result, the desired temperature field in the plate, 
caused by surface heating, is expressed by formula (10), from 
which the temperature value at any point is obtained.

According to formula (10), numerical calculations of 
the temperature distribution θ(x; 0) (Fig. 3, a) and θ(0.05; y) 
(Fig. 3, b) in the spatial coordinates x, y in the plate for  
a constant value of the thermal conductivity coefficient for 
silicon (λ = 67.9 W/(m·degree) at a temperature t = 27°C) were 
performed. The following input data values were selected: 
q0 = 200 W/m3; l = 0.1 m; H = 0.05 m; α = 17.64 W/(m2 · degree). 
Numerical calculations were performed with an accuracy of 10–6.

The behavior of the curves demonstrates that the tem-
perature as a function of spatial coordinates is smooth and 
monotonic and reaches maximum values in the region where 
near-surface heat sources are concentrated.

5. 2. Nonlinear mathematical model of heat transfer 
in an isotropic thermosensitive plate with near-surface 
heating

The Kirchhoff transformation is considered
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Here, λ0 is the reference coefficient of thermal conductiv-
ity of the plate material.

Expression (11) is differentiated with respect to variables x 
and y and, as a result, the following relation is obtained:
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taking into account which the original equation (3) and bound-
ary conditions (4) are transformed to the following form:
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Fig. 3. Temperature dependence θ(x, y) in an isotropic plate with near-surface heating: a – on the spatial 	

coordinate x for y = 0; b – on the spatial coordinate y for x = 0.05
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As a result of the transformations, linear differential equa-
tions with partial derivatives of the second order with respect 
to function θ(x, y) with a discontinuous and singular right-
hand side (13) and boundary conditions (14) and a quasilinear 
boundary condition (15) were obtained.

The temperature t(x, l) was approximated as a function 
of the spatial coordinate x by a segment-constant function in 
the form

t x l t t t S x xj j j
j

m
, ,� � � � �� � �� �� �

�

�

�1 1
1

1
	  (16)

where xj ∈ (0; x*); x1 ≤ x2 ≤ … ≤ xm – 1; t j mj ( , )=1  – unknown 
approximate values of temperature t(x, l); m – number of 
partitions of interval 0; x*); x* – value of abscissa for which 
temperature reaches value tc (it is found from corresponding 
linear problem).

The integral Fourier transform in coordinate x is applied 
to equation (13) and boundary conditions (14), (15), taking 
into account relation (16). As a result, we obtain an ordinary 
differential equation of the second order with constant coeffi-
cients and singular right-hand side
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and linear boundary conditions
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�1 2 , d  is the transformant of 

function θ(x, y);
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The general solution to equation (17) is obtained in the form
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and using boundary conditions (18), the integration con-
stants c1, c2 are determined and, as a result, there is a solution 
to problem (17), (18)
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The inverse integral Fourier transform is applied to rela-
tion (19) and the expression for the linearizing function θ(x, y) 
is defined in the following form:
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As a result of substituting the expression of the tem-
perature dependence of the thermal conductivity coefficient 
of the medium material into relations (11), (20), as well as 
certain mathematical transformations, a system of nonlinear 
algebraic equations is built for determining the unknown ap-
proximate values t j mj ( , )=1  of temperature t(x, l).

The desired temperature field t(x, y) for the given structure 
is determined using the obtained nonlinear algebraic equa-
tion taking into account the temperature dependence of the 
thermal conductivity coefficient of structural materials of the 
plate in relations (11), (20), and by performing certain mathe-
matical transformations.

The dependence of the thermal conductivity coefficient 
on the temperature of the structural material of the plate is 
given in the form

� �� �� �0 1 kt ,	 (21)

where k is the temperature coefficient of thermal conductivity 
of the plate material.

Using relations (11), (21), the following expression for 
determining temperature t(x, y) is obtained

t x y
k

k x y, , .� � � � � � �� �1 1 1 2 � 	 (22)

In the temperature range [0°C; 1127°C], the temperature 
dependence of the thermal conductivity coefficient of silicon 
was obtained by interpolation in the form

� t t� � �
�

�
�

�
�

�

�
�67 9 1 0 0005 1.

deg
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m
	 (23)

which is a special case of relation (21).
According to formula (22), numerical calculations of the 

temperature distribution θ(x; 0) (Table 1) and θ(0,05; y) (Table 2)  
were performed in spatial coordinates x, y in the plate for  
a linearly varying thermal conductivity coefficient (relation (23)).

Table 1
Temperature change depending on the spatial 	

coordinate x (for y = 0)

х, m –0.1 –0.07 –0.04 0 0.04 0.07 0.1

θ, °С 0.29122 0.29932 0.30564 0.30906 0.30564 0.29932 0.29122

Table 2
Temperature change depending on the spatial 	

coordinate y (for x = 0.05)

y, m –0.1 –0.05 –0.02 0 0.0125 0.038 0.1

θ, °С 0.2922 0.2954 0.2998 0.3039 0.3072 0.3150 0.4370
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The following input data values were selected: q0 = 200 W/m3;  
l = 0.1 m; H = 0.05 m; α = 17.64 W/(m2·deg). Numerical calcu-
lations were performed with an accuracy of 10-6 for the number 
of partitions of the interval (0; x*) m = 9.

5. 3. Linear mathematical model of heat transfer in 
an isotropic plate with internal heating

The integral Fourier transform along the x coordinate is 
applied to equation (5) and boundary conditions (2). As a re-
sult, a non-homogeneous ordinary differential equation of the 
second order with constant coefficients and a singular right-
hand side is obtained

d
dy

q H y
2

2
2 02�

� �
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��� � � � �sin ,	 (24)

under boundary conditions (8).
The general solution to equation (24) is defined as
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The boundary conditions (8) were used and, on this basis, 
the integration constants c1, c2 were found; a partial solution 
to problem (8) to (24) was obtained.
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where P1(ξ) = αshξl – λξch2ξl.
The inverse integral Fourier transform is applied to rela-

tion (25) and, as a result, the solution to problem (2) to (5) is 
obtained in the following form
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As a result, the desired temperature field in the plate, 
caused by internal local heating, is expressed by formula (26), 
from which the temperature value at any point is obtained.

According to formula (26), numerical calculations of the tem-
perature distribution θ(0.05; y) (Fig. 4) along the spatial coordi-
nate y in the plate were performed for a constant value of the ther-
mal conductivity coefficient for silicon (λ = 67.9 W/(m · degree)  
at a temperature t = 27°C). The following input data val-
ues were selected: q0 = 200 W/m3; l = 0.1 m; H = 0.05 m;  
α = 17.64 W/(m2 · degree). Numerical calculations were per-
formed with an accuracy of 10–6.

0.3250

Va
lu

e 
θ

0.3425

0.3075

0.2900

0.2725

0.2550

Coordinate y
-0.1 -0.075 -0.05 -0.025 0.0 0.025 0.05 0.075 0.1

Fig. 4. Dependence of temperature θ(x, y) on spatial 
coordinate y for x = 0.05 in an isotropic plate 	

with internal heating

The behavior of the curve demonstrates that the tempera-
ture as a function of the spatial coordinate is smooth and 
monotonic and reaches maximum values in the region where 
internal heat sources are concentrated.

5. 4. Nonlinear mathematical model of heat transfer 
in an isotropic plate with internal heating

A thermosensitive plate is considered, isotropic with re-
spect to thermophysical parameters (Fig. 2).

As a result of using relations (11), (12), equation (6) is 
transformed to the following form

��
�

�� � �� � � ��
q S H x y0
0

.	 (27)

The integral Fourier transform along the x coordinate is 
applied to this equation and a second-order ordinary differen-
tial equation with constant coefficients and a singular right-
hand side is obtained

d
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0
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whose general solution will be as follows
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Using boundary conditions (18) makes it possible to de-
termine the integration constants c1, c2 and, as a consequence, 
the solution to problem (18) to (28)
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The inverse integral Fourier transform is applied to rela-
tion (29) and the expression for the linearizing function θ(x, y) 
is defined in the following form:

�
�� �

� �

� �

�
x y

q H x

D y l
yS y

,

sin cos

,� � �

�

�
� � �

� � �
�

�
�
�

�

�
�
�
�

1 1

2

0 2

0

ch
sh

�� � � � �

�

�






�






�









	






�

�
� � �

�

D y D x, ,

.d
0

	 (30) 

As a result of substituting the expression of the tempera-
ture dependence of the thermal conductivity coefficient of 
the medium material into the relations (11), (22) and certain 
mathematical transformations, a system of nonlinear alge-
braic equations is obtained for determining the unknown 
approximate values of temperature t(x, l).

The desired temperature field t(x, y) for the given structure 
is determined using the obtained nonlinear algebraic equa-
tion taking into account the temperature dependence of the 
thermal conductivity coefficient of the structural materials 
of the plate in relations (11), (22) and by performing certain 
mathematical transformations.

According to formula (22), taking into account relation (23),  
numerical calculations of the temperature distribution θ(0.05; y) 
(Table 3) along the spatial coordinate y in the plate for a linearly 
varying thermal conductivity coefficient were performed. The 
following input data values were selected: q0 = 200 W/m3; 
l = 0.1 m; H = 0.05 m; α = 17.64 W/(m2 · degree). Numerical 
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calculations were performed with an accuracy of 10–6 for the 
number of partitions of the interval (0; x*) m = 9.

Table 3

Temperature change depending on the spatial 	
coordinate y (for x = 0.05)

y, m –0.1 –0.07 –0.04 0 0.04 0.07 0.1

θ, °С 0.2619 0.3026 0.3331 0.3505 0.3331 0.3026 0.2619

The results obtained for the selected medium material (sili-
con) with a linear temperature dependence of the thermal con-
ductivity coefficient differ from the results obtained for a constant 
thermal conductivity coefficient by 2% (Tables 1–3, Fig. 3, 4). 
Their insignificant difference is explained by the fact that the 
value of the temperature coefficient of thermal conductivity 
for silicon, as shown by relation (23), is small.

The experimental values of temperature at points with 
coordinates (0.05; y; 0) are given in Table 4.

Table 4

Experimental temperature values at points 	
with coordinates (0.05; y; 0)

y, m –0.1000 –0.0500 0.0125 0.0380 0.1000

θ, °С 0.3312 0.2468 0.2568 0.3532 0.2968

The obtained numerical calculations of temperature differ 
from the experimental values by 15% (Fig. 3, b; Table 4).

6. Results of the construction of mathematical models 
of heat transfer in flat media with local heating: 

discussion 

The boundary value problems of heat conduction have 
been stated in accordance with the physical process considered 
in the above media. As a result, the differential equations of 
heat conduction and boundary conditions containing discon-
tinuous and singular functions in the right-hand sides describe 
the heat transfer process. The form of curves in Fig. 3, 4, which 
are constructed on the basis of the determined numerical 
values of temperature as a function of spatial coordinates, 
obtained using analytical-numerical solutions of the boundary 
value problems (10), (26), indicates the correctness of our re-
sults. This is confirmed by the smoothness of the temperature 
function in spatial coordinates and the fulfillment of the spec-
ified boundary conditions at the edges of the plate.

In our studies, the theory of generalized functions was 
used, which made it possible to effectively describe local 
near-surface and internal heating, as a result of which the 
obtained partial differential equations contain discontinuous 
and singular right-hand sides. For linearization of nonlinear 
boundary value problems (3), (4), and (4) to (6), a lineariza-
tion method is presented, which made it possible to analyt-
ically obtain analytical-numerical solutions (20), (30). The 
temperature distribution is determined by relations (10), (22), 
(26), and is displayed in Fig. 3, 4; in Tables 1–3.

It should be noted that the above-analyzed works did not 
consider an approach for linearizing boundary value prob-
lems of thermal conductivity for thermosensitive media in 
an analytical-numerical way. Unlike [3], in which a porous 
medium was considered, and [4], a layered medium, the 
boundary value problems were not linearized in an analytical 

way. As a result of using numerical methods for linearization, 
significant errors accumulated. In our studies, the use of the 
Kirchhoff transformation made it possible to linearize the 
differential equations of thermal conductivity and partially 
the boundary condition (4). In this regard, for its complete 
linearization, an approximation of the temperature by the 
spatial coordinate by a segment-constant function (16) at 
the edge of the plate was introduced. This approach leads 
to obtaining a minimum error in the results, which was not 
achieved in [9] and [10] due to the use of experimental and 
numerical methods, respectively. The use of generalized func-
tions makes it possible to effectively describe thermally active 
heating zones. This leads to the solution of partial differential 
equations of heat conduction with discontinuous and singular 
right-hand sides.

Since the architecture of modern electronic devices locally 
concentrates individual thermally active nodes, in particular 
surface and internal uniformly distributed ones, there is  
a need to construct mathematical models of heat transfer be-
tween their individual elements. These models can be linear 
or nonlinear for isotropic flat media. The given mathematical 
models of heat transfer are simplified, but they make it pos-
sible to construct more complex mathematical models for flat 
composite media on their basis.

Based on the obtained analytical-numerical solutions to 
both linear and nonlinear boundary value problems of heat 
transfer, it is proposed to develop computational algorithms 
and software tools for their numerical implementation. This 
will make it possible to conduct research into a number of 
materials used in the design of digital electronic devices 
regarding the influence of their thermal sensitivity on the 
temperature distribution.

It is proposed to take into account the thermal sensitivity 
of structural materials for the analysis of thermal regimes 
in electronic devices, which significantly complicates the 
process of solving the corresponding linear and nonlinear 
boundary value problems of heat conduction. However, the 
sought solutions to these problems describe the behavior of 
temperature as a function of spatial coordinates somewhat 
more adequately to the real physical process.

This study was performed for a stationary process of heat 
conduction, as a result of which the models built are limited 
as they make it possible to determine the temperature change 
only by spatial coordinates. Heat transfer problems contain 
only boundary conditions of the first, second, and third kind 
at the boundary surfaces of the media, which is a drawback, 
although this does not reduce the generality of the research.

In the future, research may involve the construction of 
mathematical models of heat transfer for inhomogeneous 
flat media with foreign thermally active elements, for the 
unsteady process of heat conduction and for more complex 
boundary conditions, in particular for thermal radiation.

7. Conclusions 

1. A linear mathematical model of heat transfer between 
individual elements of structural units of electronic devices 
with local near-surface heating has been constructed. An an-
alytical-numerical solution to the boundary value problem in 
the form of an improper integral (the upper limit of the inte-
gral contains infinity) has been obtained. After certain math-
ematical transformations, it was reduced to an integral with 
finite limits. As a result of using the 3/8 Newton method of 
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numerical integration to determine the temperature distribu-
tion in spatial coordinates in the environment, an accuracy of 
results of 10–6 has been achieved. Such accuracy is difficult to 
achieve using numerical methods for solving the initial bound-
ary value problem or experimental measurements. Due to the 
local concentration of thermal heating (a sufficiently small 
heating area, almost point-like, described by the Dirac delta 
function), it is impossible to build a mathematical model for 
determining the temperature field using numerical methods.

2. A nonlinear mathematical model of heat transfer be-
tween individual thermally sensitive elements of structur-
al assemblies of electronic devices with local near-surface 
heating has been constructed. A method for linearizing  
a nonlinear boundary value problem has been introduced 
and, on this basis, an analytical-numerical solution has 
been obtained for the linear temperature dependence of the 
thermal conductivity coefficient of the structure material.  
A numerical experiment was performed, as a result of which 
the behavior of temperature as a function of spatial coor-
dinates was displayed. The results obtained for the selected 
material with a linear temperature dependence of the thermal 
conductivity coefficient differ from the results obtained for its 
constant value by 2%.

3. A linear mathematical model of heat transfer between 
individual elements of structural units of electronic devices 
with locally concentrated internal heating has been built. An 
analytical-numerical solution to the boundary value problem 
was obtained and, on this basis, using numerical integration 
of the improper integral, numerical values of temperature for 
selected values of thermophysical and geometric parameters 
with an accuracy of 10–6 have been given.

4. A nonlinear mathematical model of heat transfer be-
tween individual heat-sensitive elements of structural units of 
electronic devices with locally concentrated internal heating 
has been constructed. A method of linearization of the non-
linear boundary value problem has been introduced, and, on 

this basis, an analytical-numerical solution was obtained for 
the linear temperature dependence of the thermal conductiv-
ity coefficient of the structure material. This solution made 
it possible to form a system of nonlinear algebraic equations 
under an automated mode to determine unknown values of 
the temperature at the edge of the medium, the coefficients 
of which contain improper integrals. The coefficients were 
determined by numerical integration, and the solution to the 
system was obtained by Newton’s method with an accuracy 
of 10–6, after which the numerical values of the temperature 
were determined.
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