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The object of this study is multi-aircraft land-
ing scheduling on single and multiple runways, 
which is an important aspect of modern air traffic 
management systems. The main problems solved in 
this research are the complexity of scheduling opti-
mization due to limited runway capacity, the need 
to maintain a safe distance between aircraft, and 
the uncertainty of estimated time of arrival (ETA) 
which is often influenced by external factors such 
as weather and air traffic density. To overcome 
these challenges, this research proposes a hybrid 
approach between Long short-term memory-gradi-
ent boosting with the quantum annealing method. 
the results show that this approach is able to sig-
nificantly improve the performance of the sched-
uling system, with an accuracy of 0.93, a precision  
of 0.91, a recall of 0.90, and an F1 score of 0.91. 
These values are higher than the model without 
quantum annealing, which only achieved an accu-
racy of 0.87, a precision of 0.85, a recall of 0.83, 
and an F1 score of 0.84. This improvement can be 
explained by the ability of LSTM-gradient boosting 
to predict ETA deviation more accurately, as well 
as the effectiveness of quantum annealing in solv-
ing the quadratic unconstrained binary optimiza-
tion (QUBO) formulation efficiently. The unique 
feature of this research lies in the application of  
a hybrid model that combines the power of machine 
learning and quantum computing, achieving a bal-
ance between predictive accuracy and optimiza-
tion efficiency. These research findings can be 
applied to air traffic scheduling systems at airports 
with single or multiple runways. Their implemen-
tation has the potential to improve operational 
efficiency, reduce delays, and enhance flight safety 
through more precise and adaptive landing time 
management
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1. Introduction

Advances in modern aviation technology demand air 
traffic management systems that are increasingly efficient, 
safe, and adaptive to dynamic operational conditions. One 
of the most complex challenges in this area is scheduling 
multi-aircraft landings on single and multiple runways. This 
scheduling process requires optimization that takes into ac-
count various variables, such as runway capacity limitations, 
safe landing times, flight priorities, and uncertainties such as 
weather changes, air density, and deviations from estimated 
time of arrival. This uncertainty significantly disrupts airport 
operational efficiency and has the potential to cause chain 
delays that impact the entire air transportation system [1, 2]. 
Flight delays, delayed landings, and queues are real issues 
frequently encountered in air traffic management. These 
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conditions not only impact passenger comfort but also incur 
additional costs for airlines, increase fuel consumption, and 
contribute to higher carbon emissions. In this context, aircraft 
landing scheduling cannot be viewed as a simple problem, 
but rather as a complex and dynamic optimization challenge. 
Therefore, a modern approach based on machine learning 
technology is needed to help find more effective and adaptive 
solutions to air traffic dynamics [3, 4].

The main problem in scheduling aircraft landings lies in 
the limited resources, namely the number of runways avail-
able at the airport, while the demand for aircraft landings 
continues to increase. At airports with a single runway, sched-
uling complexity is higher because all aircraft must share time 
and space to land on the same runway. Meanwhile, at airports 
with multiple runways, although there is greater flexibility, 
there are still constraints such as safe distance limits between 
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aircraft (separation minima), changing weather conditions, 
and certain priorities for flight types, such as aircraft experi-
encing emergencies or international flights with tight sched-
ules. Uncertainty is a factor that significantly affects the effec-
tiveness of landing scheduling. This uncertainty can include 
extreme weather that causes changes in flight paths, delays in 
departure from the originating airport, variations in aircraft 
speed in the air, and even sudden technical factors [5, 6]. 
These conditions require landing scheduling to adapt in real 
time while maintaining safety and efficiency. Traditional 
scheduling methods, which generally use a first-come-first-
served (FCFS) approach or simple priority rules, are often un-
able to handle the complexity of these problems. This results 
in suboptimal landing schedules, increased aircraft waiting 
times in the air, and increased operational costs. Therefore, 
a scheduling model is needed that not only considers the 
order of aircraft arrivals but also comprehensively considers 
various other variables, such as runway capacity, time slots, 
aircraft speed, and uncertainty scenarios [7, 8]. These condi-
tions require landing scheduling to adapt in real time while 
maintaining safety and efficiency. Traditional scheduling 
methods, which generally use a first-come-first-served (FCFS) 
approach or simple priority rules, are often unable to handle  
the complexity of these problems [9, 10]. This results in 
suboptimal landing schedules, increased aircraft waiting 
times in the air, and increased operational costs. Therefore, 
a scheduling model is needed that not only considers the 
order of aircraft arrivals but also comprehensively considers 
various other variables, such as runway capacity, time slots, 
aircraft speed, and uncertainty scenarios. In the context of 
aircraft landing scheduling, quantum annealing can be used 
to find the optimal landing sequence by minimizing total 
waiting time, maximizing runway utilization efficiency, and 
reducing the risk of excessive delays [11]. The integration 
of machine learning with quantum annealing offers signif-
icant opportunities to generate more optimal scheduling 
solutions. Machine learning can be used to predict aircraft 
arrival times more accurately, while quantum annealing can 
be used to create the best schedule sequence based on these 
predictions. In this study, the machine learning algorithm 
chosen is a combination of long short-term memory (LSTM) 
and gradient boosting. LSTM is a variant of recurrent neural 
network (RNN) that is very effective in handling time series 
data [12]. LSTM is able to remember long-term patterns while 
capturing short-term dynamics in data, making it very suit-
able for modeling temporal air traffic behavior. For example, 
LSTM can learn the relationship between historical arrival 
schedules and weather factors, aircraft speed, and air traffic 
density at a given time [13].

In the context of aircraft landing scheduling, quantum 
annealing can be used to find the optimal landing sequence by 
minimizing total waiting time, maximizing runway utilization 
efficiency, and reducing the risk of excessive delays. The inte-
gration of machine learning with quantum annealing offers 
significant opportunities to generate more optimal scheduling 
solutions. Machine learning can be used to predict aircraft 
arrival times more accurately, while quantum annealing can 
be used to create the best schedule sequence based on these 
predictions. In this study, the machine learning algorithm 
chosen is a combination of long short-term memory (LSTM) 
and gradient boosting. LSTM is a variant of recurrent Neural 
network (RNN) that is very effective in handling time series 
data. LSTM is able to remember long-term patterns while cap-
turing short-term dynamics in data, making it very suitable 

for modeling temporal air traffic behavior. For example, LSTM 
can learn the relationship between historical arrival schedules 
and weather factors, aircraft speed, and air traffic density at  
a given time. Therefore, research on the development of inte-
gration between machine learning models such as LSTM-gra-
dient boosting and quantum annealing-based optimization 
methods is highly relevant, as it is able to address the need 
for a scheduling system that is not only accurate in predicting 
aircraft arrival times, but also efficient in optimizing landing 
sequences under complex uncertainty conditions. This ap-
proach is expected to make a significant contribution to im-
proving airport operational efficiency and overall flight safety.

2. Literature review and problem statement

Research [11] produces an integer linear programming 
(ILP)-based aircraft landing scheduling model that is capable 
of providing optimal solutions for a limited number of air-
craft and is effective in reducing delays and runway conflicts. 
However, there is an unresolved problem, namely the expo-
nential increase in computational complexity as the number 
of aircraft and decision variables increases. This condition 
makes this research relevant but impractical when applied 
to real-world scenarios with high levels of uncertainty, such 
as weather changes, arrival time deviations, and dynamic air 
traffic density. Therefore, one way to overcome this difficulty 
is to apply a quantum computing-based approach, specifically 
the quantum annealing method, which is able to streamline 
the search for optimal solutions through the quadratic un-
constrained binary optimization (QUBO) formulation. This 
approach provides opportunities to accelerate the optimiza-
tion process, maintain system adaptability on a large scale, 
and improve the efficiency of multi-aircraft scheduling under 
conditions of uncertainty.

Research [14] produces a flight scheduling model using 
metaheuristic algorithms such as genetic algorithm and par-
ticle swarm optimization (PSO) which aims to improve the 
synchronization system in handling weather distance and po-
tential flight length. The results show an increase in efficiency 
compared to conventional methods such as integer linear 
programming (ILP). However, there are unresolved issues, 
namely the relatively long convergence time and the risk of 
being stuck in a local optimum, which causes the algorithm’s 
performance to decrease when operational conditions change 
rapidly. As a result, this research becomes impractical to be 
applied in a real-time scheduling environment that requires 
adaptive response to flight dynamics. Therefore, one way to 
overcome these difficulties is to apply a quantum computing- 
based approach using quantum annealing, which is able 
to explore the solution space more widely and efficiently, 
thereby accelerating the convergence process and improving 
the system’s ability to find the global optimal solution under 
certain conditions.

Research [15] produces a long short-term memory (LSTM)- 
based machine learning model that focuses on predicting 
aircraft estimated time of arrival (ETA) with a high degree 
of accuracy. This model is designed to provide more reliable 
predictive data to support the decision-making process in 
flight scheduling systems. However, there is an unresolved 
problem, namely the limitations of pure LSTM models in opti-
mizing scheduling decisions, especially when there is a surge 
in the number of aircraft and dynamic changes in operational 
conditions. This model is only predictive, not optimal, so it 
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cannot directly determine the best landing sequence based 
on the prediction results. As a result, this research is relevant 
but impractical when applied independently in complex and 
uncertain real-time scheduling systems. Therefore, one way to 
overcome this difficulty is to integrate the quantum annealing 
method, which is able to convert LSTM prediction results into 
optimal scheduling decisions in real-time. This integrative ap-
proach allows the system to have higher adaptive capabilities, 
with better computational efficiency in dealing with dynamic 
air traffic conditions.

Research [16] produces a model that combines machine 
learning with the gradient boosting algorithm to classify 
aircraft landing priorities, with the main goal of minimizing 
potential collisions and accelerating the runway allocation 
process. The results show quite promising performance in 
improving operational efficiency and safety. However, there 
is an unresolved problem, namely the model’s limitations in 
balancing global and local optimality, so that the resulting 
decisions are often partial and not always consistent with the 
overall system conditions. As a result, this research is rele-
vant to be impractical to be directly applied in multi-aircraft 
scheduling systems that require decision consistency across 
variables and dynamically changing conditions. Therefore, 
one way to overcome this difficulty is to integrate the quan-
tum annealing method, which has adaptive capabilities in 
optimizing complex combinatorial problems through a single 
annealing process. This approach allows for the achievement 
of more holistic and efficient solutions, while maintaining 
decision stability in large-scale flight scheduling systems.

Research [17] produces a stochastic programming-based 
approach model designed to accommodate various forms of 
operational uncertainty, such as variations in wind direction 
and speed, changes in aircraft technical conditions, and air 
traffic dynamics. The main objective of this research is to 
improve the reliability of landing schedules through probabi-
listic modeling that considers various possible scenarios. The 
results show an increase in schedule stability and reliability 
compared to the deterministic approach. However, there is 
an unresolved problem, namely the very high computational 
cost because the model must evaluate a large number of un-
certainty scenarios simultaneously. This complexity makes 
this research relevant but impractical when applied to a re-
al-scale operation, where computation time must be fast and 
the system response must be adaptive to changing conditions 
in real time. Therefore, one way to overcome this difficulty 
is to apply the quantum annealing method, which is able 
to accelerate the optimization process in a large probabilis-
tic space while maintaining computational efficiency. This 
approach allows the scheduling system to be more adaptive 
to various dynamic conditions, while reducing the computa-
tional load without sacrificing the accuracy or reliability of 
the optimization results.

Research [18] produces a dual-runway scheduling op-
timization model using heuristic algorithms such as Tabu 
Search and Simulated Annealing, which aims to accelerate 
the solution search process compared to conventional deter-
ministic methods. The results show quite good performance 
in medium-scale cases, where computational efficiency is 
increased and the resulting solution meets the operational 
constraints of the system. However, there is an unresolved 
problem, namely a significant decrease in algorithm perfor-
mance when the system scale is enlarged, because the heuris-
tic model is still prone to stagnation at sub-optimal solutions. 
This makes this research relevant to be impractical for appli-

cation in large-scale multi-aircraft scheduling systems that 
require broader solution exploration capabilities and adapt
ability to dynamic conditions. Therefore, one way to over-
come this difficulty is to apply a quantum annealing-based 
approach, which has a similar principle to Simulated Anneal-
ing but is based on quantum mechanics, so it is able to break 
through local energy limits to find optimal global solutions. 
This approach provides higher adaptive capabilities and better 
optimization efficiency in solving complex scheduling prob-
lems in dual-runway systems.

Research [19] produces a model that combines a deep 
learning approach with an air traffic prediction system with 
the primary goal of reducing flight delays. This model is 
designed to be able to predict aircraft queues more accu-
rately, so that the scheduling decision-making process can 
be carried out more timely and efficiently. The results show 
a high level of prediction accuracy, which provides a strong 
basis for planning landing and departure schedules. How-
ever, there is an unresolved problem, namely the difficulty 
in integrating the prediction results with the scheduling 
optimization process, because the model tends to be passive 
and less adaptive to changing real-time conditions. This 
makes this research relevant but impractical when directly 
applied in complex and dynamic air traffic control systems. 
Therefore, one way to overcome this difficulty is to integrate 
the quantum annealing method, which is able to bridge the 
gap between data-based prediction results and the schedule 
optimization process through an adaptive quadratic uncon-
strained binary optimization (QUBO) formulation. This 
approach allows the system to transform dynamic predic-
tions into optimal scheduling decisions in real-time, while 
simultaneously improving efficiency and responsiveness in 
modern air traffic management.

3. The aim and the objectives of the study

The aim of this study is to optimize multi-aircraft landing 
scheduling under uncertainty conditions, both on single and mul-
tiple runways, using a hybrid long short-term memory (LSTM) 
and gradient boosting-based machine learning approach inte-
grated with quantum annealing techniques.

To achieve this aim, the following objectives were accom-
plished:

– to solve an optimization problem using quantum an-
nealing techniques; 

– to apply of a hybrid LSTM-gradient boosting model;
– to comparison of model performance results.

4. Materials and methods

The object of this study is multi-aircraft landing schedul-
ing on single and multiple runways, which is an important as-
pect of modern air traffic management systems. The hypoth-
esis of this research will make predictions in multi-aircraft 
landing scheduling. Assumptions in this context, a machine 
learning model approach will be used to predict and optimize 
multi-aircraft landing scheduling under uncertain conditions, 
both on single and multiple runways. The simplification 
accepted in this section is a hybrid algorithm that will be 
applied that combines long and short-term memory (LSTM) 
to capture temporal patterns from air traffic data with gra-
dient boosting to improve generalization and strengthen the  
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prediction results. This combination is expected to produce an 
accurate model in estimating optimal landing times, reducing 
potential schedule conflicts, and increasing runway utiliza-
tion efficiency. This research will use flight operational data 
that includes key parameters such as actual and estimated 
arrival times, aircraft speed, runway capacity, available time 
slots, weather conditions, and landing priority levels. Data is 
collected from historical flight records and operational reports 
from airlines and airport authorities. In the optimization 
process, the quantum annealing approach will be applied to 
solve combinatorial optimization problems related to complex 
aircraft landing sequences. quantum annealing is used as  
a mechanism to find a schedule solution that is close to op-
timal by minimizing total delays, maximizing operational 
safety, and considering runway capacity constraints. The 
selection of theoretical and experimental research methods 
in this study is based on the need to combine a strong con-
ceptual foundation with measurable empirical evidence. 
The theoretical approach is used to build a hybrid machine 
learning-based multi-aircraft landing scheduling predictive 
model that combines long short-term memory (LSTM) and 
gradient boosting to capture temporal patterns and improve 
prediction accuracy. Meanwhile, the experimental approach 
is applied by testing the model using historical flight data that 
reflects real operational conditions such as weather, runway 
capacity, and landing priority. The paper device used in the 
study is a laptop with a Core i3 processor, while for software, 
Google Collaboratory is used. Evaluation techniques used in 
this study include f1 score, precision, and recall to assess the 
performance of landing time predictions, as well as measur-
ing scheduling quality. This study will begin with the design 
of a hybrid LSTM-gradient boosting model architecture inte-
grated with the quantum annealing optimization mechanism 
as shown in Fig. 1. 

Fig. 1 explains that in making predictions, a machine 
learning model using the hybrid LSTM-XGBoost algorithm, 

in this context, requires well-structured data. This problem 
is mathematically known as the Aircraft Landing Scheduling 
Problem (ALSP), which can be classified as a combinatorial 
optimization problem and is NP-Hard, meaning that the 
computation time grows exponentially with the number of 
aircraft. To represent this problem quantitatively, it is assumed 
that there is a symbol with N the plane that is scheduled to 
land on R runway. Every plane i has an ideal landing time Ti, 
as well as a minimum time limit Ei and maximum Li which 
are permitted to land. In addition, between each pair of air-
craft i and j. There is a minimum landing time interval Sij. 
If both use the same runway, to maintain safety and avoid 
residual turbulence. The main decision variables in this for-
mulation are, which has a value of 1 if the plane i scheduled 
to land on time t on the runway r, and 0 otherwise. Thus, the 
actual landing time of the aircraft i, symbolized as Ai, can be 
expressed by equation (1)

A t xi t r i t r� � �, , , .	 (1)

From equation (1), there is an objective to minimize the 
total squared deviation between the actual appearance time 
and the ideal appearance time of each aircraft with the sym-
bols xi,t,r which are the i entity that lands, the symbol t for time 
while the symbol r for the runway by considering a certain 
priority weight Pi, so that the objective function is written in 
equation (2)

min .P A Ti i i
i

N
� �� �

�
� 2

1
	 (2)

In equation (2), there is an objective function that not 
only pursues time efficiency, but also takes into account the 
importance of each aircraft (for example, military aircraft, 
VIPs, or aircraft with critical fuel).
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5. Results optimization of multi-aircraft landing 
scheduling based on machine learning

5. 1. To solve an optimization problem using quan-
tum annealing techniques

The application of quantum annealing in this study aims 
to improve multi-aircraft landing scheduling. In the process, 
quantum annealing is used to solve combinatorial optimiza-
tion problems that arise due to the large number of aircraft 
that must be scheduled simultaneously, taking into account 
runway limitations, minimum time intervals between air-
craft, and uncertainty in actual arrival times. This scheduling 
problem formulation is translated into the form of quadratic 
unconstrained binary optimization (QUBO), where each bina-
ry variable represents a decision whether an aircraft lands at  
a certain time slot. To ensure the solution obtained is operation-
ally feasible and safe, this mathematical formulation is limited 
by several constraints. First, each aircraft can only be scheduled 
once at a time on one runway according to equation (3)

x i Ni t r
t r

, ,
,

,..., ,� � � �� �1 1 	 (3)

Second, the scheduled landing time must be within the 
permitted range, namely between Ei and Li. This can be imple-
mented by disabling the variable xi,t,y for times outside that range. 
Third, to avoid conflict and maintain a safe distance between two 
aircraft landing on the same runway, each pair of aircraft I and j 
scheduled close together must meet the minimum time separa-
tion requirement Sij according to equation (4)

x x t t Si t r j t r ij, , , , � .� � � � �� 1 if 	 (4)

This constraint ensures that no violations of air safety 
protocols occur. Additionally, to facilitate processing with the 
quantum annealing method, additional variables can be used. 
yij ∈ {0, 1) which states whether the plane i landed before the 
plane j, so that it develops into equation (5)

y y i jij ji� � � �1 ,	 (5)

The uncertainty will then be processed using machine 
learning. In real-world conditions, factors such as weather, 
changes in air routes, or traffic congestion can cause fluctua-
tions in actual arrival times. To address this, a machine learn-

ing-based predictive approach with a hybrid long short-term 
memory – gradient boosting algorithm is used to estimate the 
deviation value of arrival times. Si against the ideal time Ti . 
Thus, the target landing time can be revised to Ti = Ti + Si, 
and the optimization model turns into equation (6)

min P A Ti i i
i

N
� �� �

�
� 

2

1
.	 (6)

Statistically, Si, can be modeled as a random variable that fol-
lows a Gaussian distribution S Ni i~ , .0 2�� �  The updated math-
ematical formulation is transformed into a quadratic uncon-
strained binary optimization (QUBO) form which is suitable for 
solving with the quantum annealing approach. In QUBO form, 
all objective functions and constraints are encoded into a sym-
metric matrix Q, so the problem can be stated in equation (7)

min .
{ , }x

T
n
x Qx

∈ 0 1
	 (7)

Binary vector x consists of all decision variables xi,t,r, and 
the elements in the matrix Q Encode penalties for time devia-
tions, schedule rule violations, and runway conflicts. Penalties 
for constraint violations such as double schedules or insuffi-
cient time gaps are assigned high weights to certain elements 
of the matrix Q, Thus, the optimal solution will naturally 
avoid invalid configurations. Embedding QUBO into a quan-
tum annealing machine allows for global solution exploration 
with higher efficiency than classical techniques, especially for 
large solution spaces. This can be seen in Fig. 2. 

Fig. 2 will represent a flow graph model used to model the 
multi-aircraft landing scheduling process on a runway. Each 
circle or node in the figure represents a decision point, where 
k1 be the starting point that describes the beginning of the 
landing schedule and k3 becomes the end point that indicates 
that the entire scheduling process has been completed. Node 
I, II, III, III and IV are transition phases that represent time 
slots or specific conditions in the aircraft landing sequence. 
Arrows or edges connecting nodes are labeled with pairs of 
values, for example (0,0), (1,2), (3,5) and so on, which indicate 
the minimum and maximum time limits or gap parameters 
that must be met between consecutive landings of aircraft.  
For example, the edge of a node I towards the node II with 
labels (1,2) shows that the distance between landings in the 
slot is at least one time unit and at most two time units. 

 
Fig. 2. Graph quantum annealing in hybrid models
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In addition, the figure is also equipped with dotted lines 
that divide the graph into several parts, each labeled with  
a time set such as TfI �� �1 2 3, , , TfII �� �2 5,....  to Tfk3 7 15�� �,... . 
This set represents the allowable time range for each landing 
phase, so scheduling takes into account not only the sequence 
of aircraft but also the constraints of safe time intervals. Thus, 
the figure as a whole provides a visual representation of how 
timing rules, slot constraints, and transitions between phases 
are integrated into a mathematical model to support optimal 
and safe aircraft landing scheduling.

5. 2. To apply of a hybrid LSTM-gradient boosting model
The application of the long short-term memory (LSTM)- 

gradient boosting hybrid model in this study aims to address 
the uncertainty of aircraft arrival times (estimated time of 
arrival/ETA), which is often influenced by external factors 
such as weather conditions, air traffic density, and flight route 
changes. Test results show that this hybrid approach is able 
to improve the accuracy of arrival time deviation predictions 
compared to using a single algorithm. LSTM plays a role in 
capturing temporal patterns from historical aircraft movement 

data, while gradient boosting provides non-linear correction 
capabilities for residual errors generated by the LSTM model. 
The following is a loss graph from the application of the hybrid 
LSTM-gradient boosting model, which is shown in Fig. 3.

The caption for Fig. 3 shows the loss graph of the hybrid 
LSTM-gradient boosting model, showing consistent perfor-
mance improvements over 20 training epochs. At the beginning 
of training, the accuracy of the training data was around 74%,  
and the accuracy of the validation data was around 72%. 
As the number of epochs increased, both accuracy values 
increased steadily, reaching over 95% on the training data 
and nearly reaching 98% on the validation data at the end of 
training. The trend of the two lines moving in the same direc-
tion with a relatively small distance indicates that the model 
is able to effectively learn data patterns while maintaining its 
generalization ability on untrained data. This proves that the 
hybrid LSTM-gradient boosting approach not only improves 
prediction accuracy but also avoids overfitting issues, making 
the model reliable for supporting multi-aircraft landing sched-
uling systems under uncertain conditions. After the loss graph 
is displayed, the accuracy graph is shown in Fig. 4.

 
Fig. 3. Hybrid loss model graph

 
Fig. 4. Hybrid model accuracy graph



Eastern-European Journal of Enterprise Technologies ISSN-L 1729-3774; E-ISSN 1729-4061	 5/3 ( 137 ) 2025

32

In Fig. 4, there will be a graph of the accuracy of the hy-
brid LSTM-gradient boosting model. This figure shows a trend 
of increasing model performance over 20 training epochs.  
At the beginning of training, training accuracy was around 75%,  
and validation accuracy was slightly lower, at around 72%. As 
the number of epochs increased, both training and validation 
accuracy continued to increase relatively steadily. By the end 
of the 20th epoch, training accuracy reached around 85%, 
while validation accuracy was higher, approaching 87%. This 
pattern confirms that the model is not only able to learn from 
the training data but also has good generalization capabilities 
to the validation data. When compared to the previous loss 
graph, both graphs show consistent results. In the loss graph, 
both training and validation losses decreased significantly 
from initial values of around 0.9 to around 0.15 at the end of 
the epoch. This decrease in loss is inversely proportional to 
the increase in accuracy shown in the accuracy graph. The 
prediction results are then presented in Table 1. The following 
are the results of the comparison of single and double runway 
predictions in Fig. 5.

Fig. 5 shows the results of a comparison of the perfor-
mance of a single runway and a double runway in the 
context of aircraft landing scheduling. On the horizontal 
axis there are three evaluation indicators, namely Average 
Delay  (average delay), Number of Conflicts (number of 
schedule conflicts), and Runway Utilization (level of runway 
utilization). From the graph, it can be seen that the use of 
a single runway results in an average delay of 15 minutes, 
while the double runway is able to reduce the delay to only 
7 minutes. This indicates that the presence of a double 
runway can significantly reduce aircraft landing delays.  
In the second indicator, the number of schedule conflicts 
on a single runway reaches 12 conflicts, while on a double 
runway there are only 3 conflicts, which means that a double 
runway is much more efficient in reducing the potential for 

schedule collisions or operational disruptions. However, the 
Runway Utilization indicator shows different results. The 
single runway has a higher utilization rate of 90%, while 
the double runway is only 75%. This can be interpreted as  
a single runway being used more intensively because all 
traffic is concentrated on one lane, while on a double run-
way the traffic load is divided so that utilization per runway 
is lower. However, this reduction in utilization actually has  
a positive impact because it creates flexibility, efficiency, and 
increases flight operational safety.

5. 3. To comparison of model performance results
This study conducted a comparative performance analysis 

between an aircraft landing scheduling model using the quan-
tum annealing approach and a conventional model that does 
not use quantum annealing. The purpose of this comparison 
is to identify the extent to which quantum annealing can 
provide improvements in key performance metrics such as av-
erage delay, number of conflicts, and runway utilization. The 
results of this comparison are expected to provide an objective 
picture of the effectiveness of quantum annealing in handling 
complex and uncertain scheduling optimization problems, 
both in single and multiple runway scenarios. The compari-
son of model performance results was conducted to evaluate 
the effectiveness of using quantum annealing in the hybrid 
LSTM-gradient boosting approach. In general, the model run 
without quantum annealing showed quite good performance 
with an accuracy value of 0.87, precision 0.85, recall 0.83, and 
F1-score 0.84. However, when the quantum annealing mech-
anism was integrated, there was a significant performance 
improvement in all evaluation metrics. The accuracy value 
increased to 0.93, precision reached 0.91, recall increased  
to 0.90, and the F1-score showed a consistent increase to 0.91 
as shown in the following image. then there will be an accu-
racy graph shown in Fig. 6.

 
Fig. 5. Comparison of single and double runway predictions
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Fig. 6 explains that this improvement indicates that quan-
tum annealing plays a significant role in optimizing the solu-
tion search process in complex possibility spaces, enabling the 
model to more accurately capture data patterns. This is partic-
ularly evident in the recall and F1-score metrics, which reflect 
the balance between true positive detections and prediction 
errors. Thus, the integration of quantum annealing not only 
improves prediction accuracy but also strengthens the mod-
el’s stability and generalizability in the face of uncertainty in 
multi-aircraft landing scheduling scenarios.

6. Discussion of model machine learning with quan-
tum annealing

The results show that applying quantum annealing to 
multi-plane disruption scheduling provides significant im-
provements compared to conventional approaches.

Based on the equations (3) and (4), to avoid conflicts be-
tween aircraft, equation (5) is used to ensure no violations of air 
safety protocols. Equations (6) and (7) are used to address fac-
tors such as weather, flight route changes, or traffic congestion 
that can cause fluctuations in actual arrival times. The Fig. 3 
shows the loss graph of the hybrid LSTM-gradient boosting 
model, which demonstrates consistent performance improve-
ments over 20 training epochs. At the beginning of training, 
the accuracy on the training data was approximately 74%, and 
the accuracy on the validation data was approximately 72%.  
As the number of epochs increased, both accuracy values in-
creased steadily, reaching over 95% on the training data and 
nearly 98% on the validation data at the end of training. The 
trend of both lines moving in the same direction with a rela
tively small distance indicates that the model is able to effec-
tively learn data patterns while maintaining its generalizability 
on untrained data. Based on the quantitative evaluation results 
presented in the Fig. 4–6 of the test results, the integration of 
quantum annealing is able to improve the accuracy, precision, 
recall, and F1 score of the scheduling model. The accuracy 
value increased from 0.87 to 0.93; precision from 0.85 to 0.91; 
recall from 0.83 to 0.90; and the F1 score from 0.84 to 0.91. This 
improvement indicates that the system can perform prediction 
and scheduling with a lower error rate. Conceptually, this suc-
cess is explained through the formulation of the problem in the 
form of quadratic unconstrained binary optimization (QUBO), 
which allows the search for a global solution to be carried out 

efficiently through the annealing process. The system architec-
ture diagram and the mathematical formulation of QUBO are 
the main objects that support the interpretation of these results.

The main uniqueness of the proposed method lies in the 
combination of a hybrid long short-term memory (LSTM) and 
gradient boosting model with a quantum annealing-based op-
timization system. This approach differs from previous studies 
that generally rely solely on conventional machine learning 
algorithms or deterministic optimization. LSTM plays a role in 
capturing temporal patterns from historical flight data, while 
gradient boosting corrects non-linear errors that arise in esti-
mated time of arrival (ETA) predictions. These prediction re-
sults are then used as input to the quantum annealing system, 
which adaptively optimizes the landing sequence in a complex 
search space. Compared to previous studies using methods 
such as Simulated Annealing or Tabu Search, this approach 
offers broader solution exploration capabilities because the 
quantum overlap mechanism allows the model to transcend 
local energy limits. Thus, the model not only produces more 
efficient schedules but is also more stable against variations in 
operational conditions.

In contrast to previous studies [1] that generally rely on con-
ventional machine learning algorithms or deterministic optimi-
zation methods such as Simulated Annealing and Tabu Search, 
the results of this study show that the application of quantum 
annealing to multi-plane disturbance scheduling provides sig-
nificant performance improvements. These results, demonstrated 
by an increase in accuracy from 0.87 to 0.93; precision from  
0.85 to 0.91; recall from 0.83 to 0.90; and F1 score from  
0.84 to 0.91, enable the system to perform predictions and sched-
uling with a lower error rate. This is made possible by the for-
mulation of the problem in the form of quadratic unconstrained 
binary optimization (QUBO) which allows for efficient search 
for global solutions through the quantum annealing process.

Although the results show significant improvements, this 
research has several fundamental limitations. First, the imple-
mentation of quantum annealing relies on the availability of 
quantum hardware, such as the D-Wave quantum processor, 
which still has limited capacity to handle large-scale variables. 
Second, the process of mapping QUBOs into a quantum ma-
chine requires high computational resources, especially when 
the number of scheduled aircraft increases. Third, the hybrid 
LSTM-gradient boosting model is still highly dependent on 

 
Fig. 6. Model performance comparison
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the quality of historical flight data. If the available data does 
not include extreme conditions, such as sudden weather 
changes or technical disruptions, the accuracy of ETA predic-
tions can decrease. These limitations indicate that the current 
system is still not fully ready for direct application in large-
scale operational scenarios with high levels of uncertainty.

In addition to structural limitations, there are several 
shortcomings worth noting. First, the system has not yet 
integrated directly with real-time air traffic control data, thus 
still relying on historical data-based simulations. Second, this 
study has not addressed the automatic adaptation mechanism 
when the number of arriving aircraft exceeds the optimal 
runway capacity. Third, experimental validation is still limited 
to laboratory simulations and does not include field testing in  
a real operational environment. To address these shortcom-
ings, further research is recommended that integrates the 
quantum annealing model with a reinforcement learning 
approach so that the system can learn from experience and 
dynamically adjust scheduling strategies.

During the model development process, several method-
ological and computational challenges need to be addressed. 
Mathematically, converting the scheduling objective function 
into QUBO form requires a certain degree of linearity for effi-
cient execution on a quantum machine, which leads to certain 
simplifying assumptions. Methodologically, the challenge 
arises in balancing prediction accuracy (from the LSTM-gradi-
ent boosting side) and optimization efficiency (from the quan-
tum annealing side). The integration of these two approaches 
requires precise synchronization between prediction time and 
optimization decision-making time.

7. Conclusions

1. Quantum annealing has proven effective in optimizing 
multi-aircraft landing scheduling on both single and multiple 
runway systems. By formulating the problem as quadratic 
unconstrained binary optimization (QUBO), this method 
accelerates the search for a global solution with high compu-
tational efficiency.

2. A hybrid model combining long short-term memory 
(LSTM) and gradient boosting algorithms significantly im-
proved the accuracy of aircraft estimated time of arrival (ETA) 
predictions. LSTM plays a key role in recognizing temporal 
patterns in historical flight data, such as variations in arrival 
times and the influence of weather conditions, while gradient 
boosting provides non-linear corrections to prediction errors 
generated by the LSTM.

3. A comparison of the performance results between the 
conventional model and the model integrated with quantum 
annealing shows significant improvements in all evaluation 
metrics. The model without quantum annealing has an ac-
curacy of 0.87, a precision of 0.85, a recall of 0.83, and an  
F1 score of 0.84. After integration with quantum annealing, 
these values increase to an accuracy of 0.93, a precision  
of 0.91, a recall of 0.90, and an F1 score of 0.91.
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