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The object of this study is multi-aircraft land-
ing scheduling on single and multiple runways,
which is an important aspect of modern air traffic
management systems. The main problems solved in
this research are the complexity of scheduling opti-
mization due to limited runway capacity, the need
to maintain a safe distance between aircraft, and
the uncertainty of estimated time of arrival (ETA)
which is often influenced by external factors such
as weather and air traffic density. To overcome
these challenges, this research proposes a hybrid
approach between Long short-term memory-gradi-
ent boosting with the quantum annealing method.
the results show that this approach is able to sig-
nificantly improve the performance of the sched-
uling system, with an accuracy of 0.93, a precision
of 0.91, a recall of 0.90, and an F1 score of 0.91.
These values are higher than the model without
quantum annealing, which only achieved an accu-
racy of 0.87, a precision of 0.85, a recall of 0.83,
and an F1 score of 0.84. This improvement can be
explained by the ability of LSTM-gradient boosting
to predict ETA deviation more accurately, as well
as the effectiveness of quantum annealing in solv-
ing the quadratic unconstrained binary optimiza-
tion (QUBO) formulation efficiently. The unique
feature of this research lies in the application of
a hybrid model that combines the power of machine
learning and quantum computing, achieving a bal-
ance between predictive accuracy and optimiza-
tion efficiency. These research findings can be
applied to air traffic scheduling systems at airports
with single or multiple runways. Their implemen-
tation has the potential to improve operational
efficiency, reduce delays, and enhance flight safety
through more precise and adaptive landing time
management
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1. Introduction

Advances in modern aviation technology demand air
traffic management systems that are increasingly efficient,
safe, and adaptive to dynamic operational conditions. One
of the most complex challenges in this area is scheduling
multi-aircraft landings on single and multiple runways. This
scheduling process requires optimization that takes into ac-
count various variables, such as runway capacity limitations,
safe landing times, flight priorities, and uncertainties such as
weather changes, air density, and deviations from estimated
time of arrival. This uncertainty significantly disrupts airport
operational efficiency and has the potential to cause chain
delays that impact the entire air transportation system [1, 2].
Flight delays, delayed landings, and queues are real issues
frequently encountered in air traffic management. These
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conditions not only impact passenger comfort but also incur
additional costs for airlines, increase fuel consumption, and
contribute to higher carbon emissions. In this context, aircraft
landing scheduling cannot be viewed as a simple problem,
but rather as a complex and dynamic optimization challenge.
Therefore, a modern approach based on machine learning
technology is needed to help find more effective and adaptive
solutions to air traffic dynamics [3, 4].

The main problem in scheduling aircraft landings lies in
the limited resources, namely the number of runways avail-
able at the airport, while the demand for aircraft landings
continues to increase. At airports with a single runway, sched-
uling complexity is higher because all aircraft must share time
and space to land on the same runway. Meanwhile, at airports
with multiple runways, although there is greater flexibility,
there are still constraints such as safe distance limits between




aircraft (separation minima), changing weather conditions,
and certain priorities for flight types, such as aircraft experi-
encing emergencies or international flights with tight sched-
ules. Uncertainty is a factor that significantly affects the effec-
tiveness of landing scheduling. This uncertainty can include
extreme weather that causes changes in flight paths, delays in
departure from the originating airport, variations in aircraft
speed in the air, and even sudden technical factors [5, 6].
These conditions require landing scheduling to adapt in real
time while maintaining safety and efficiency. Traditional
scheduling methods, which generally use a first-come-first-
served (FCFS) approach or simple priority rules, are often un-
able to handle the complexity of these problems. This results
in suboptimal landing schedules, increased aircraft waiting
times in the air, and increased operational costs. Therefore,
a scheduling model is needed that not only considers the
order of aircraft arrivals but also comprehensively considers
various other variables, such as runway capacity, time slots,
aircraft speed, and uncertainty scenarios [7, 8]. These condi-
tions require landing scheduling to adapt in real time while
maintaining safety and efficiency. Traditional scheduling
methods, which generally use a first-come-first-served (FCFS)
approach or simple priority rules, are often unable to handle
the complexity of these problems[9,10]. This results in
suboptimal landing schedules, increased aircraft waiting
times in the air, and increased operational costs. Therefore,
a scheduling model is needed that not only considers the
order of aircraft arrivals but also comprehensively considers
various other variables, such as runway capacity, time slots,
aircraft speed, and uncertainty scenarios. In the context of
aircraft landing scheduling, quantum annealing can be used
to find the optimal landing sequence by minimizing total
waiting time, maximizing runway utilization efficiency, and
reducing the risk of excessive delays[11]. The integration
of machine learning with quantum annealing offers signif-
icant opportunities to generate more optimal scheduling
solutions. Machine learning can be used to predict aircraft
arrival times more accurately, while quantum annealing can
be used to create the best schedule sequence based on these
predictions. In this study, the machine learning algorithm
chosen is a combination of long short-term memory (LSTM)
and gradient boosting. LSTM is a variant of recurrent neural
network (RNN) that is very effective in handling time series
data [12]. LSTM is able to remember long-term patterns while
capturing short-term dynamics in data, making it very suit-
able for modeling temporal air traffic behavior. For example,
LSTM can learn the relationship between historical arrival
schedules and weather factors, aircraft speed, and air traffic
density at a given time [13].

In the context of aircraft landing scheduling, quantum
annealing can be used to find the optimal landing sequence by
minimizing total waiting time, maximizing runway utilization
efficiency, and reducing the risk of excessive delays. The inte-
gration of machine learning with quantum annealing offers
significant opportunities to generate more optimal scheduling
solutions. Machine learning can be used to predict aircraft
arrival times more accurately, while quantum annealing can
be used to create the best schedule sequence based on these
predictions. In this study, the machine learning algorithm
chosen is a combination of long short-term memory (LSTM)
and gradient boosting. LSTM is a variant of recurrent Neural
network (RNN) that is very effective in handling time series
data. LSTM is able to remember long-term patterns while cap-
turing short-term dynamics in data, making it very suitable

for modeling temporal air traffic behavior. For example, LSTM
can learn the relationship between historical arrival schedules
and weather factors, aircraft speed, and air traffic density at
a given time. Therefore, research on the development of inte-
gration between machine learning models such as LSTM-gra-
dient boosting and quantum annealing-based optimization
methods is highly relevant, as it is able to address the need
for a scheduling system that is not only accurate in predicting
aircraft arrival times, but also efficient in optimizing landing
sequences under complex uncertainty conditions. This ap-
proach is expected to make a significant contribution to im-
proving airport operational efficiency and overall flight safety.

2. Literature review and problem statement

Research [11] produces an integer linear programming
(ILP)-based aircraft landing scheduling model that is capable
of providing optimal solutions for a limited number of air-
craft and is effective in reducing delays and runway conflicts.
However, there is an unresolved problem, namely the expo-
nential increase in computational complexity as the number
of aircraft and decision variables increases. This condition
makes this research relevant but impractical when applied
to real-world scenarios with high levels of uncertainty, such
as weather changes, arrival time deviations, and dynamic air
traffic density. Therefore, one way to overcome this difficulty
is to apply a quantum computing-based approach, specifically
the quantum annealing method, which is able to streamline
the search for optimal solutions through the quadratic un-
constrained binary optimization (QUBO) formulation. This
approach provides opportunities to accelerate the optimiza-
tion process, maintain system adaptability on a large scale,
and improve the efficiency of multi-aircraft scheduling under
conditions of uncertainty.

Research [14] produces a flight scheduling model using
metaheuristic algorithms such as genetic algorithm and par-
ticle swarm optimization (PSO) which aims to improve the
synchronization system in handling weather distance and po-
tential flight length. The results show an increase in efficiency
compared to conventional methods such as integer linear
programming (ILP). However, there are unresolved issues,
namely the relatively long convergence time and the risk of
being stuck in a local optimum, which causes the algorithm’s
performance to decrease when operational conditions change
rapidly. As a result, this research becomes impractical to be
applied in a real-time scheduling environment that requires
adaptive response to flight dynamics. Therefore, one way to
overcome these difficulties is to apply a quantum computing-
based approach using quantum annealing, which is able
to explore the solution space more widely and efficiently,
thereby accelerating the convergence process and improving
the system’s ability to find the global optimal solution under
certain conditions.

Research [15] produces a long short-term memory (LSTM)-
based machine learning model that focuses on predicting
aircraft estimated time of arrival (ETA) with a high degree
of accuracy. This model is designed to provide more reliable
predictive data to support the decision-making process in
flight scheduling systems. However, there is an unresolved
problem, namely the limitations of pure LSTM models in opti-
mizing scheduling decisions, especially when there is a surge
in the number of aircraft and dynamic changes in operational
conditions. This model is only predictive, not optimal, so it



cannot directly determine the best landing sequence based
on the prediction results. As a result, this research is relevant
but impractical when applied independently in complex and
uncertain real-time scheduling systems. Therefore, one way to
overcome this difficulty is to integrate the quantum annealing
method, which is able to convert LSTM prediction results into
optimal scheduling decisions in real-time. This integrative ap-
proach allows the system to have higher adaptive capabilities,
with better computational efficiency in dealing with dynamic
air traffic conditions.

Research [16] produces a model that combines machine
learning with the gradient boosting algorithm to classify
aircraft landing priorities, with the main goal of minimizing
potential collisions and accelerating the runway allocation
process. The results show quite promising performance in
improving operational efficiency and safety. However, there
is an unresolved problem, namely the model’s limitations in
balancing global and local optimality, so that the resulting
decisions are often partial and not always consistent with the
overall system conditions. As a result, this research is rele-
vant to be impractical to be directly applied in multi-aircraft
scheduling systems that require decision consistency across
variables and dynamically changing conditions. Therefore,
one way to overcome this difficulty is to integrate the quan-
tum annealing method, which has adaptive capabilities in
optimizing complex combinatorial problems through a single
annealing process. This approach allows for the achievement
of more holistic and efficient solutions, while maintaining
decision stability in large-scale flight scheduling systems.

Research [17] produces a stochastic programming-based
approach model designed to accommodate various forms of
operational uncertainty, such as variations in wind direction
and speed, changes in aircraft technical conditions, and air
traffic dynamics. The main objective of this research is to
improve the reliability of landing schedules through probabi-
listic modeling that considers various possible scenarios. The
results show an increase in schedule stability and reliability
compared to the deterministic approach. However, there is
an unresolved problem, namely the very high computational
cost because the model must evaluate a large number of un-
certainty scenarios simultaneously. This complexity makes
this research relevant but impractical when applied to a re-
al-scale operation, where computation time must be fast and
the system response must be adaptive to changing conditions
in real time. Therefore, one way to overcome this difficulty
is to apply the quantum annealing method, which is able
to accelerate the optimization process in a large probabilis-
tic space while maintaining computational efficiency. This
approach allows the scheduling system to be more adaptive
to various dynamic conditions, while reducing the computa-
tional load without sacrificing the accuracy or reliability of
the optimization results.

Research [18] produces a dual-runway scheduling op-
timization model using heuristic algorithms such as Tabu
Search and Simulated Annealing, which aims to accelerate
the solution search process compared to conventional deter-
ministic methods. The results show quite good performance
in medium-scale cases, where computational efficiency is
increased and the resulting solution meets the operational
constraints of the system. However, there is an unresolved
problem, namely a significant decrease in algorithm perfor-
mance when the system scale is enlarged, because the heuris-
tic model is still prone to stagnation at sub-optimal solutions.
This makes this research relevant to be impractical for appli-

cation in large-scale multi-aircraft scheduling systems that
require broader solution exploration capabilities and adapt-
ability to dynamic conditions. Therefore, one way to over-
come this difficulty is to apply a quantum annealing-based
approach, which has a similar principle to Simulated Anneal-
ing but is based on quantum mechanics, so it is able to break
through local energy limits to find optimal global solutions.
This approach provides higher adaptive capabilities and better
optimization efficiency in solving complex scheduling prob-
lems in dual-runway systems.

Research [19] produces a model that combines a deep
learning approach with an air traffic prediction system with
the primary goal of reducing flight delays. This model is
designed to be able to predict aircraft queues more accu-
rately, so that the scheduling decision-making process can
be carried out more timely and efficiently. The results show
a high level of prediction accuracy, which provides a strong
basis for planning landing and departure schedules. How-
ever, there is an unresolved problem, namely the difficulty
in integrating the prediction results with the scheduling
optimization process, because the model tends to be passive
and less adaptive to changing real-time conditions. This
makes this research relevant but impractical when directly
applied in complex and dynamic air traffic control systems.
Therefore, one way to overcome this difficulty is to integrate
the quantum annealing method, which is able to bridge the
gap between data-based prediction results and the schedule
optimization process through an adaptive quadratic uncon-
strained binary optimization (QUBO) formulation. This
approach allows the system to transform dynamic predic-
tions into optimal scheduling decisions in real-time, while
simultaneously improving efficiency and responsiveness in
modern air traffic management.

3. The aim and the objectives of the study

The aim of this study is to optimize multi-aircraft landing
scheduling under uncertainty conditions, both on single and mul-
tiple runways, using a hybrid long short-term memory (LSTM)
and gradient boosting-based machine learning approach inte-
grated with quantum annealing techniques.

To achieve this aim, the following objectives were accom-
plished:

- to solve an optimization problem using quantum an-
nealing techniques;

- to apply of a hybrid LSTM-gradient boosting model;

- to comparison of model performance results.

4. Materials and methods

The object of this study is multi-aircraft landing schedul-
ing on single and multiple runways, which is an important as-
pect of modern air traffic management systems. The hypoth-
esis of this research will make predictions in multi-aircraft
landing scheduling. Assumptions in this context, a machine
learning model approach will be used to predict and optimize
multi-aircraft landing scheduling under uncertain conditions,
both on single and multiple runways. The simplification
accepted in this section is a hybrid algorithm that will be
applied that combines long and short-term memory (LSTM)
to capture temporal patterns from air traffic data with gra-
dient boosting to improve generalization and strengthen the



prediction results. This combination is expected to produce an
accurate model in estimating optimal landing times, reducing
potential schedule conflicts, and increasing runway utiliza-
tion efficiency. This research will use flight operational data
that includes key parameters such as actual and estimated
arrival times, aircraft speed, runway capacity, available time
slots, weather conditions, and landing priority levels. Data is
collected from historical flight records and operational reports
from airlines and airport authorities. In the optimization
process, the quantum annealing approach will be applied to
solve combinatorial optimization problems related to complex
aircraft landing sequences. quantum annealing is used as
a mechanism to find a schedule solution that is close to op-
timal by minimizing total delays, maximizing operational
safety, and considering runway capacity constraints. The
selection of theoretical and experimental research methods
in this study is based on the need to combine a strong con-
ceptual foundation with measurable empirical evidence.
The theoretical approach is used to build a hybrid machine
learning-based multi-aircraft landing scheduling predictive
model that combines long short-term memory (LSTM) and
gradient boosting to capture temporal patterns and improve
prediction accuracy. Meanwhile, the experimental approach
is applied by testing the model using historical flight data that
reflects real operational conditions such as weather, runway
capacity, and landing priority. The paper device used in the
study is a laptop with a Core i3 processor, while for software,
Google Collaboratory is used. Evaluation techniques used in
this study include f1 score, precision, and recall to assess the
performance of landing time predictions, as well as measur-
ing scheduling quality. This study will begin with the design
of a hybrid LSTM-gradient boosting model architecture inte-
grated with the quantum annealing optimization mechanism
as shown in Fig. 1.

Fig. 1 explains that in making predictions, a machine
learning model using the hybrid LSTM-XGBoost algorithm,
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in this context, requires well-structured data. This problem
is mathematically known as the Aircraft Landing Scheduling
Problem (ALSP), which can be classified as a combinatorial
optimization problem and is NP-Hard, meaning that the
computation time grows exponentially with the number of
aircraft. To represent this problem quantitatively, it is assumed
that there is a symbol with N the plane that is scheduled to
land on R runway. Every plane i has an ideal landing time T;,
as well as a minimum time limit E; and maximum L; which
are permitted to land. In addition, between each pair of air-
craft i and j. There is a minimum landing time interval Sj.
If both use the same runway, to maintain safety and avoid
residual turbulence. The main decision variables in this for-
mulation are, which has a value of 1 if the plane i scheduled
to land on time t on the runway 7, and 0 otherwise. Thus, the
actual landing time of the aircraft i, symbolized as A;, can be
expressed by equation (1)

Ai: Zt,r L Xitre (1)

From equation (1), there is an objective to minimize the
total squared deviation between the actual appearance time
and the ideal appearance time of each aircraft with the sym-
bols x; ;- which are the i entity that lands, the symbol ¢ for time
while the symbol r for the runway by considering a certain
priority weight P;, so that the objective function is written in
equation (2)

miniPi-(Ai—Ti)z. )

i=1

In equation (2), there is an objective function that not
only pursues time efficiency, but also takes into account the
importance of each aircraft (for example, military aircraft,
VIPs, or aircraft with critical fuel).
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5. Results optimization of multi-aircraft landing
scheduling based on machine learning

5.1. To solve an optimization problem using quan-
tum annealing techniques

The application of quantum annealing in this study aims
to improve multi-aircraft landing scheduling. In the process,
quantum annealing is used to solve combinatorial optimiza-
tion problems that arise due to the large number of aircraft
that must be scheduled simultaneously, taking into account
runway limitations, minimum time intervals between air-
craft, and uncertainty in actual arrival times. This scheduling
problem formulation is translated into the form of quadratic
unconstrained binary optimization (QUBO), where each bina-
ry variable represents a decision whether an aircraft lands at
a certain time slot. To ensure the solution obtained is operation-
ally feasible and safe, this mathematical formulation is limited
by several constraints. First, each aircraft can only be scheduled
once at a time on one runway according to equation (3)

> X =1 Vie{l,..,N}, (3)
t,r

Second, the scheduled landing time must be within the
permitted range, namely between E; and L;. This can be imple-
mented by disabling the variable x; ,, for times outside that range.
Third, to avoid conflict and maintain a safe distance between two
aircraft landing on the same runway, each pair of aircraft I and j
scheduled close together must meet the minimum time separa-
tion requirement Sj according to equation (4)

Xip + X0, <1 Af [t—1]<Sy. 4)

This constraint ensures that no violations of air safety
protocols occur. Additionally, to facilitate processing with the
quantum annealing method, additional variables can be used.
v;€1{0, 1) which states whether the plane i landed before the
plane j, so that it develops into equation (5)

Yi+yp=1 Vi#j, (5)

The uncertainty will then be processed using machine
learning. In real-world conditions, factors such as weather,
changes in air routes, or traffic congestion can cause fluctua-
tions in actual arrival times. To address this, a machine learn-

T ={1,2,3} Tf={1,2,3}

@ (0,0)

=12, ..,5}

ing-based predictive approach with a hybrid long short-term
memory - gradient boosting algorithm is used to estimate the
deviation value of arrival times. S; against the ideal time T;.
Thus, the target landing time can be revised to T;=T;+ S;,
and the optimization model turns into equation (6)

N ~\2
min) P-(4;-T) .
i=1

(6)

Statistically, S;, can be modeled as a random variable that fol-
lows a Gaussian distribution S; ~ N (0,0tiz ) The updated math-
ematical formulation is transformed into a quadratic uncon-
strained binary optimization (QUBO) form which is suitable for
solving with the quantum annealing approach. In QUBO form,
all objective functions and constraints are encoded into a sym-
metric matrix Q, so the problem can be stated in equation (7)

(7

min xTQx.
xe{0,1}

Binary vector x consists of all decision variables x;,,, and
the elements in the matrix Q Encode penalties for time devia-
tions, schedule rule violations, and runway conflicts. Penalties
for constraint violations such as double schedules or insuffi-
cient time gaps are assigned high weights to certain elements
of the matrix Q, Thus, the optimal solution will naturally
avoid invalid configurations. Embedding QUBO into a quan-
tum annealing machine allows for global solution exploration
with higher efficiency than classical techniques, especially for
large solution spaces. This can be seen in Fig. 2.

Fig. 2 will represent a flow graph model used to model the
multi-aircraft landing scheduling process on a runway. Each
circle or node in the figure represents a decision point, where
k, be the starting point that describes the beginning of the
landing schedule and k; becomes the end point that indicates
that the entire scheduling process has been completed. Node
L II, IIT, IIT and IV are transition phases that represent time
slots or specific conditions in the aircraft landing sequence.
Arrows or edges connecting nodes are labeled with pairs of
values, for example (0,0), (1,2), (3,5) and so on, which indicate
the minimum and maximum time limits or gap parameters
that must be met between consecutive landings of aircraft.
For example, the edge of a node I towards the node II with
labels (1,2) shows that the distance between landings in the
slot is at least one time unit and at most two time units.

Tf'={5,...,10} v {9, ..., 15}

By

(2,2) 4@

a®

Fig. 2. Graph quantum annealing in hybrid models



In addition, the figure is also equipped with dotted lines
that divide the graph into several parts, each labeled with
a time set such as T/ ={1,2,3}, T/ ={2,...5} to T ={7,..15}.
This set represents the allowable time range for each landing
phase, so scheduling takes into account not only the sequence
of aircraft but also the constraints of safe time intervals. Thus,
the figure as a whole provides a visual representation of how
timing rules, slot constraints, and transitions between phases
are integrated into a mathematical model to support optimal

and safe aircraft landing scheduling.

5. 2. To apply of a hybrid LSTM-gradient boosting model

The application of the long short-term memory (LSTM)-
gradient boosting hybrid model in this study aims to address
the uncertainty of aircraft arrival times (estimated time of
arrival/ETA), which is often influenced by external factors
such as weather conditions, air traffic density, and flight route
changes. Test results show that this hybrid approach is able
to improve the accuracy of arrival time deviation predictions
compared to using a single algorithm. LSTM plays a role in
capturing temporal patterns from historical aircraft movement

data, while gradient boosting provides non-linear correction
capabilities for residual errors generated by the LSTM model.
The following is a loss graph from the application of the hybrid
LSTM-gradient boosting model, which is shown in Fig. 3.

The caption for Fig. 3 shows the loss graph of the hybrid
LSTM-gradient boosting model, showing consistent perfor-
mance improvements over 20 training epochs. At the beginning
of training, the accuracy of the training data was around 74%,
and the accuracy of the validation data was around 72%.
As the number of epochs increased, both accuracy values
increased steadily, reaching over 95% on the training data
and nearly reaching 98% on the validation data at the end of
training. The trend of the two lines moving in the same direc-
tion with a relatively small distance indicates that the model
is able to effectively learn data patterns while maintaining its
generalization ability on untrained data. This proves that the
hybrid LSTM-gradient boosting approach not only improves
prediction accuracy but also avoids overfitting issues, making
the model reliable for supporting multi-aircraft landing sched-
uling systems under uncertain conditions. After the loss graph
is displayed, the accuracy graph is shown in Fig. 4.

Hybrid LSTM-Gradient Boosting Model Loss Graph
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In Fig. 4, there will be a graph of the accuracy of the hy-
brid LSTM-gradient boosting model. This figure shows a trend
of increasing model performance over 20 training epochs.
At the beginning of training, training accuracy was around 75%,
and validation accuracy was slightly lower, at around 72%. As
the number of epochs increased, both training and validation
accuracy continued to increase relatively steadily. By the end
of the 20th epoch, training accuracy reached around 85%,
while validation accuracy was higher, approaching 87%. This
pattern confirms that the model is not only able to learn from
the training data but also has good generalization capabilities
to the validation data. When compared to the previous loss
graph, both graphs show consistent results. In the loss graph,
both training and validation losses decreased significantly
from initial values of around 0.9 to around 0.15 at the end of
the epoch. This decrease in loss is inversely proportional to
the increase in accuracy shown in the accuracy graph. The
prediction results are then presented in Table 1. The following
are the results of the comparison of single and double runway
predictions in Fig. 5.

Fig. 5 shows the results of a comparison of the perfor-
mance of a single runway and a double runway in the
context of aircraft landing scheduling. On the horizontal
axis there are three evaluation indicators, namely Average
Delay (average delay), Number of Conflicts (number of
schedule conflicts), and Runway Utilization (level of runway
utilization). From the graph, it can be seen that the use of
a single runway results in an average delay of 15 minutes,
while the double runway is able to reduce the delay to only
7 minutes. This indicates that the presence of a double
runway can significantly reduce aircraft landing delays.
In the second indicator, the number of schedule conflicts
on a single runway reaches 12 conflicts, while on a double
runway there are only 3 conflicts, which means that a double
runway is much more efficient in reducing the potential for

schedule collisions or operational disruptions. However, the
Runway Utilization indicator shows different results. The
single runway has a higher utilization rate of 90%, while
the double runway is only 75%. This can be interpreted as
a single runway being used more intensively because all
traffic is concentrated on one lane, while on a double run-
way the traffic load is divided so that utilization per runway
is lower. However, this reduction in utilization actually has
a positive impact because it creates flexibility, efficiency, and
increases flight operational safety.

5. 3. To comparison of model performance results

This study conducted a comparative performance analysis
between an aircraft landing scheduling model using the quan-
tum annealing approach and a conventional model that does
not use quantum annealing. The purpose of this comparison
is to identify the extent to which quantum annealing can
provide improvements in key performance metrics such as av-
erage delay, number of conflicts, and runway utilization. The
results of this comparison are expected to provide an objective
picture of the effectiveness of quantum annealing in handling
complex and uncertain scheduling optimization problems,
both in single and multiple runway scenarios. The compari-
son of model performance results was conducted to evaluate
the effectiveness of using quantum annealing in the hybrid
LSTM-gradient boosting approach. In general, the model run
without quantum annealing showed quite good performance
with an accuracy value of 0.87, precision 0.85, recall 0.83, and
F1-score 0.84. However, when the quantum annealing mech-
anism was integrated, there was a significant performance
improvement in all evaluation metrics. The accuracy value
increased to 0.93, precision reached 0.91, recall increased
to 0.90, and the F1-score showed a consistent increase to 0.91
as shown in the following image. then there will be an accu-
racy graph shown in Fig. 6.

Single vs Double Runway Comparison
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Fig. 5. Comparison of single and double runway predictions



Performance Comparison:
LSTM-Gradient Boosting With vs Without Quantum Annealing

1.0+
o.87 0.93 0.91 0.90 0.91
* 0.85 0.83 0.84
0.81
0.6
<)
O
2]
0.47
0.21
CLSTM-GB Without Quantam Annealing
E=| STM-GB With Quantam Annealing
0.0 1 ' L ;
Accuracy Precision Recall F1-Score

Fig. 6. Model performance comparison

Fig. 6 explains that this improvement indicates that quan-
tum annealing plays a significant role in optimizing the solu-
tion search process in complex possibility spaces, enabling the
model to more accurately capture data patterns. This is partic-
ularly evident in the recall and F1-score metrics, which reflect
the balance between true positive detections and prediction
errors. Thus, the integration of quantum annealing not only
improves prediction accuracy but also strengthens the mod-
el’s stability and generalizability in the face of uncertainty in
multi-aircraft landing scheduling scenarios.

6. Discussion of model machine learning with quan-
tum annealing

The results show that applying quantum annealing to
multi-plane disruption scheduling provides significant im-
provements compared to conventional approaches.

Based on the equations (3) and (4), to avoid conflicts be-
tween aircraft, equation (5) is used to ensure no violations of air
safety protocols. Equations (6) and (7) are used to address fac-
tors such as weather, flight route changes, or traffic congestion
that can cause fluctuations in actual arrival times. The Fig. 3
shows the loss graph of the hybrid LSTM-gradient boosting
model, which demonstrates consistent performance improve-
ments over 20 training epochs. At the beginning of training,
the accuracy on the training data was approximately 74%, and
the accuracy on the validation data was approximately 72%.
As the number of epochs increased, both accuracy values in-
creased steadily, reaching over 95% on the training data and
nearly 98% on the validation data at the end of training. The
trend of both lines moving in the same direction with a rela-
tively small distance indicates that the model is able to effec-
tively learn data patterns while maintaining its generalizability
on untrained data. Based on the quantitative evaluation results
presented in the Fig. 4-6 of the test results, the integration of
quantum annealing is able to improve the accuracy, precision,
recall, and F1 score of the scheduling model. The accuracy
value increased from 0.87 to 0.93; precision from 0.85 to 0.91;
recall from 0.83 to 0.90; and the F1 score from 0.84 to 0.91. This
improvement indicates that the system can perform prediction
and scheduling with a lower error rate. Conceptually, this suc-
cess is explained through the formulation of the problem in the
form of quadratic unconstrained binary optimization (QUBO),
which allows the search for a global solution to be carried out

efficiently through the annealing process. The system architec-
ture diagram and the mathematical formulation of QUBO are
the main objects that support the interpretation of these results.

The main uniqueness of the proposed method lies in the
combination of a hybrid long short-term memory (LSTM) and
gradient boosting model with a quantum annealing-based op-
timization system. This approach differs from previous studies
that generally rely solely on conventional machine learning
algorithms or deterministic optimization. LSTM plays a role in
capturing temporal patterns from historical flight data, while
gradient boosting corrects non-linear errors that arise in esti-
mated time of arrival (ETA) predictions. These prediction re-
sults are then used as input to the quantum annealing system,
which adaptively optimizes the landing sequence in a complex
search space. Compared to previous studies using methods
such as Simulated Annealing or Tabu Search, this approach
offers broader solution exploration capabilities because the
quantum overlap mechanism allows the model to transcend
local energy limits. Thus, the model not only produces more
efficient schedules but is also more stable against variations in
operational conditions.

In contrast to previous studies [1] that generally rely on con-
ventional machine learning algorithms or deterministic optimi-
zation methods such as Simulated Annealing and Tabu Search,
the results of this study show that the application of quantum
annealing to multi-plane disturbance scheduling provides sig-
nificant performance improvements. These results, demonstrated
by an increase in accuracy from 0.87 to 0.93; precision from
0.85 to 0.91; recall from 0.83 to 0.90; and F1 score from
0.84 to 0.91, enable the system to perform predictions and sched-
uling with a lower error rate. This is made possible by the for-
mulation of the problem in the form of quadratic unconstrained
binary optimization (QUBO) which allows for efficient search
for global solutions through the quantum annealing process.

Although the results show significant improvements, this
research has several fundamental limitations. First, the imple-
mentation of quantum annealing relies on the availability of
quantum hardware, such as the D-Wave quantum processor,
which still has limited capacity to handle large-scale variables.
Second, the process of mapping QUBOs into a quantum ma-
chine requires high computational resources, especially when
the number of scheduled aircraft increases. Third, the hybrid
LSTM-gradient boosting model is still highly dependent on



the quality of historical flight data. If the available data does
not include extreme conditions, such as sudden weather
changes or technical disruptions, the accuracy of ETA predic-
tions can decrease. These limitations indicate that the current
system is still not fully ready for direct application in large-
scale operational scenarios with high levels of uncertainty.

In addition to structural limitations, there are several
shortcomings worth noting. First, the system has not yet
integrated directly with real-time air traffic control data, thus
still relying on historical data-based simulations. Second, this
study has not addressed the automatic adaptation mechanism
when the number of arriving aircraft exceeds the optimal
runway capacity. Third, experimental validation is still limited
to laboratory simulations and does not include field testing in
a real operational environment. To address these shortcom-
ings, further research is recommended that integrates the
quantum annealing model with a reinforcement learning
approach so that the system can learn from experience and
dynamically adjust scheduling strategies.

During the model development process, several method-
ological and computational challenges need to be addressed.
Mathematically, converting the scheduling objective function
into QUBO form requires a certain degree of linearity for effi-
cient execution on a quantum machine, which leads to certain
simplifying assumptions. Methodologically, the challenge
arises in balancing prediction accuracy (from the LSTM-gradi-
ent boosting side) and optimization efficiency (from the quan-
tum annealing side). The integration of these two approaches
requires precise synchronization between prediction time and
optimization decision-making time.

7. Conclusions

1. Quantum annealing has proven effective in optimizing
multi-aircraft landing scheduling on both single and multiple
runway systems. By formulating the problem as quadratic
unconstrained binary optimization (QUBO), this method
accelerates the search for a global solution with high compu-
tational efficiency.

2. A hybrid model combining long short-term memory
(LSTM) and gradient boosting algorithms significantly im-
proved the accuracy of aircraft estimated time of arrival (ETA)
predictions. LSTM plays a key role in recognizing temporal
patterns in historical flight data, such as variations in arrival
times and the influence of weather conditions, while gradient
boosting provides non-linear corrections to prediction errors
generated by the LSTM.

3. A comparison of the performance results between the
conventional model and the model integrated with quantum
annealing shows significant improvements in all evaluation
metrics. The model without quantum annealing has an ac-
curacy of 0.87, a precision of 0.85, a recall of 0.83, and an
F1 score of 0.84. After integration with quantum annealing,
these values increase to an accuracy of 0.93, a precision
of 0.91, a recall of 0.90, and an F1 score of 0.91.
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