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The object of this research is the NP-hard combinatorial 
optimization problem in the allocation of limited resources 
for the maintenance of smallholder coffee plantations. In this 
study, a hybrid method of outer Approximation (OA) and 
reduced gradient (RG), enhanced by multi-row time-ag­
gregated cover cuts (MTACC) is proposed to address the 
computational time efficiency problem in mixed-integer 
nonlinear programming (MINLP)-based combinatorial 
optimization problems. The testing was conducted using 
plantation land data from the Rahmat Kinara Coffee 
Farmers Association, which includes 538 land blocks with 
a total area of 825.5 hectares. Based on the numerical 
results obtained, it shows a reduction in the number of 
iterations by up to 38.83% and an increase in the speed 
of convergence time by up to 12.84%. The nw feature in 
MTACC specifically controls the length of the time win­
dow to form multi-row covering slices that are suitable 
for the characteristics of the constraints, which affects the 
master and RG subproblems in overcoming the compu­
tational load. The evaluation results for testing parame­
ters nw = 7 and nw = 14 show an increased contribution to 
convergence time of up to 10.1% by reducing the average 
master MILP time by 6.16%. Evaluation of the area under 
curve (AUC) metric confirms that MTACC is more stable in 
controlling optimality gaps across global iterations based 
on AUC (abs) assessment, which decreased by 21.6%; AUC 
per iteration decreased by 19.9%, and normalized AUC also 
decreased by 18.6%. 

The results obtained can be effectively applied in small 
to large-scale coffee plantations, especially in decision sup­
port systems on low-power computing devices for produc­
tion sustainability
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1. Introduction

Coffee is a high-value agricultural product with a strong 
global market and significant annual growth potential [1]. 
In Indonesia, coffee ranks among the largest plantation 
commodities and is vital to the rural economy [2], with 96% 
of plantations owned by smallholders [3]. However, mainte-
nance remains traditional, shaped by natural conditions such 
as steep terrain and local socio-cultural factors, particularly 
reliance on manual labor [4]. These factors drive up opera-
tional expenses, often causing farmer losses and threatening 
sustainability. Therefore, a strategic and adaptive approach 
to plantation maintenance is essential as a decision-support 
system for managers to ensure sustainability.

The mixed-integer nonlinear programming (MINLP) model 
can be modified for use as an optimization model in intricate 
agricultural operations [5]. In this context, ‘discrete decisions’ 
refer to selecting from a finite set of alternatives, such as 
choosing specific times for planting or harvesting. "Nonlin-
earity of constraint functions" means that the relationships 

between variables aren’t always proportional. For instance, 
changing the amount of water used for irrigation might not 
directly change the amount of crops produced. "Interactions 
between indicators" means that multiple factors, like water, 
energy, and food supplies, influence each other within the 
supply chain [6]. Nonlinear constraints often arise in agri-
cultural or plantation operations. Examples include the rela-
tionship between harvest time, irrigation, and crop quality [7] 
or the interaction between water, energy, and food in supply 
chain design [8]. For coffee plants, ‘optimal time window 
rules’ refer to timeframes when maintenance tasks yield the 
best results, and ‘proportional spacing’ ensures that plants are 
distributed at intervals that maximize growth and yield. These 
factors form ‘optimal time window inequalities,’ meaning cer-
tain time and spacing requirements must be met for proper 
maintenance [9]. This makes them a nonlinear factor.

Unfortunately, the NP-hard nature of mixed-integer non-
linear programming (MINLP) meaning that it is a problem that 
is computationally very difficult to solve derives from mixed-in-
teger linear programming (MILP), which is also NP-hard.  
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Because of this, MINLP leads to a vast and non-convex (not 
bowl-shaped) solution space, which is difficult to explore 
thoroughly within a reasonable computational time [10]. 
Non-convexity makes it more challenging to utilize mathe-
matical relaxations (approximations) and hinders the straight-
forward certification of global optimality. Therefore, explora-
tion-exploitation strategies (methods for balancing the search 
for new solutions versus reusing known beneficial solutions) 
need to be carefully adjusted [11]. This makes it impossible for 
plantation managers to operate the MINLP optimization mod-
el on low-power computing devices. As a result, developing 
methods to efficiently and lightly explore the MINLP solution 
space becomes crucial. This makes this research relevant for 
improving computational performance to generate optimal 
plantation maintenance schedules.

Applying effective decomposition techniques to solve 
MINLP models with complex structures improves computa-
tional performance and maintains solution quality [12]. Outer 
Approximation (OA) guarantees convergence to a global solu-
tion within reasonable computing time by dividing complex 
models into a mixed-integer linear programming (MILP) 
master problem and continuous nonlinear or nonlinear pro-
gramming (NLP) subproblems [13]. Reduced gradient (RG), 
based on the generalized reduced gradient, generates feasible 
primal solutions and multiplier estimates, making it suitable 
for use as an NLP subproblem solver within a decomposition 
framework, particularly OA [14]. OA and RG hybridization 
provides a framework that balances the exploration and ex-
ploitation of the solution space, offering a strong alternative 
to address structural and computational challenges in realistic 
non-convex MINLPs. However, this hybrid has been little ex-
plored, meaning that it requires further study [15].

On the other hand, cutting planes help accelerate the 
process of finding optimal solutions [16]. Research on cut-
ting strategies in OA continues to develop based on specific 
needs [17]. This paper confirms the critical role of cutting 
planes in improving the efficiency of exploring the MINLP 
solution space. This research contributes a theoretical under-
standing of the influence of hybrid OA-RG with time-aggre-
gation-based cutting strategies for daily capacity constraints 
and proportional spacing on MINLP performance. Practically, 
this research produces a planned maintenance schedule that 
adheres to agronomic rules. It serves as a decision-making tool 
for plantation managers to allocate labor to maintenance tasks 
in a specific order, aiming to reduce operational expenses.

In modern conditions, smallholder coffee plantations face 
simultaneous pressure to remain economically viable, comply 
with agronomic requirements, and operate under tightening 
resource constraints. Managers are expected to plan labor-in-
tensive maintenance activities over extended horizons while 
dealing with heterogeneous topography and limited budgets, 
yet they often rely on low-power computing devices or basic 
information systems. At the same time, advances in MINLP 
modeling and decomposition have not yet fully translated 
into tools that can be used routinely in such operational 
settings because the underlying NP-hard problems typically 
demand substantial computational effort and specialized 
solvers. These gaps make it necessary to conduct scientific re-
search that designs algorithmic frameworks explicitly tailored 
to the structure of plantation maintenance problems so that 
complex time-window and capacity constraints can be han-
dled efficiently within realistic computational limits.

The results of these studies can directly support practice 
by providing a scheduling framework that is both imple-

mentable and interpretable for plantation managers. By inte-
grating the hybrid OA-RG approach with multi-row time-ag-
gregated cover cuts, the proposed method is able to generate 
maintenance schedules that respect daily capacity limits, 
proportional spacing rules, and optimal time windows, while 
reducing the computational burden compared with classical 
MINLP approaches. Such an improvement creates concrete 
opportunities to embed the model into decision support 
systems running on low-specification devices, allowing man
agers to allocate labors, sequence maintenance tasks across 
land blocks, and assess cost scenarios in a more systematic 
manner. Beyond coffee, the methodological insights obtained 
here can be adapted to other resource-constrained agricul
tural systems that require long-term, rule-based maintenance 
planning, reinforcing the role of optimization as a practical 
tool for sustainable production.

Therefore, research on developing a lightweight and accu-
rate optimization model for scheduling maintenance in coffee 
plantations is relevant. This model must handle daily capacity 
constraints and proportional spacing in optimal time window 
inequalities. Such research is essential for developing costly 
computational solutions and helps ensure the sustainability 
of production in traditional agriculture.

2. Literature review and problem statement

Several studies on OA hybridization in MINLP cases have 
aimed to make the global search more focused and achieve 
faster convergence. Research [18] uses logic-based OA hy-
bridization. This method replaces the algebraic reformulation 
of MINLP with the direct solution of logic and (non)convex 
subproblems. This process generates feasible cuts and incum-
bents, improves exploitation of disjunctive structure, leads to 
earlier infeasibility detection, and prunes the global search 
space to relevant regions. However, the per-iteration cost for 
subproblems increases. This expense is because it involves 
solving more complex structured logic or computation and 
depends on specialized solvers.

The hybrid OA variant with parallelism and decom-
position distributes the master/subproblem work or slice 
generation across multiple threads. This mitigates scalability 
bottlenecks by dividing the computational load. The approach 
enhances the ability to handle larger instances through paral-
lel processing. This process speeds up the OA cycle without 
altering the global structure of the solution. However, this 
approach is mitigative, not eliminative, of the scale issue. 
Careful load balancing and orchestration are still needed [19].

Strengthening the formulation through cutting planes 
serves as another important accelerator in the solution process. 
Research [20] demonstrates this by utilizing multiple-genera-
tion cuts and partial surrogate cuts to improve the quality of 
information at each subproblem call. These strategies impact 
the global solution space. The master receives more informative 
cuts, which leads to improved integer candidates and lower 
bounds, accelerated convergence, and often reduced runtime. 
However, using many diverse cuts increases the master’s com-
plexity and lifts the computational burden with each iteration.

The disjunctive cutting tradition develops valid inequal-
ities that approach the convex hull of the feasible set. This 
improves the quality of relaxation bounds and the effective-
ness of cutting procedures [21]. In 0–1 integer programs, 
perspective cuts provide significant strengthening for on/off 
variables. This structure often appears in scheduling decisions  
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for time slots [22]. In convex MINLP, the extended cutting 
plane (ECP) systematically aggregates inequalities and re-
mains compatible with MILP-based OA solvers [23]. Inter-
section cuts and split cuts for structured convex sets also 
enrich the set of inequalities. These cuts improve branching 
policies and increase relaxation accuracy [24]. Despite this 
diversity, the cutting literature has not explicitly examined 
the construction of multi-row, time-aggregated inequality 
that combines daily capacity and agronomic spacing rules 
for plantation maintenance scheduling. This leaves room for 
contribution.

This research views the existing OA hybrid architecture 
as still lacking operational criteria at the subproblem level 
to determine when and on which candidate’s RG should 
be called so that the resulting cuts remain consistent with 
global relaxation, while also reducing dependence on global 
NLP in non-convex cases. Hybrid OA literature indicates that 
strengthening the formulation can accelerate convergence but 
tends to enlarge the master and raise numerical issues [19], 
while logic-based OA variants enrich structural information 
but increase the complexity of subproblems per iteration and 
still require a global strategy when non-convexity occurs [25]. 
This research integrates RG into the OA subproblem based 
on the principle of proximity (through limited neighborhood/
local branching) to balance relaxation strength and computa-
tional burden without enlarging the master.

Additionally, this research introduces multi-row time-ag-
gregated cover cuts (MTACC) as a cutting plane that incorpo-
rates daily capacity and task execution, spreading constraints 
proportionally into tighter time window inequalities, rather 
than summing daily limits [26, 27]. To our knowledge, there 
has been no research that explicitly integrates OA-RG with 
multi-row time-aggregated inequality for an agricultural 
context that combines productivity heterogeneity due to 
topography, transportation constraints, and daily labor num-
ber decisions at the smallholder plantation scale. MINLP 
and RCPSP-based scheduling literature demonstrates the 
relevance of time windows and capacity but has not yet pre-
sented cutting planes that capture inter-round and inter-day 
correlations as needed in coffee plantations [28]. Surrogate 
cuts, perspective cuts, disjunctive cuts, the extended cutting 
plane, and intersection cuts have been shown to tighten the 
formulation on the cutting plane side, but they have not been 
specifically directed toward multi-line time aggregation with 
spacing rules [20–24].

All this allows to assert that it is expedient to conduct a 
study on develop more efficient and practical optimization 
models that can not only solve problems faster but also be 
applied to devices with limited resources. This is urgent to 
create more efficient solutions for managing coffee plantation 
maintenance, which will ultimately support the optimal sus-
tainability of coffee production.

3. The aim and objectives of the study

The aim of this study is to develop a method for solving 
combinatorial optimization problems in MINLP that inte-
grates hybrid outer approximation (OA) decomposition tech-
niques and reduced gradient (RG) with aggregation-based 
cutting-plane modifications according to constraint char-
acteristics in the context of limited resource allocation 
optimization in coffee plantation maintenance. In practical 
terms, this method is expected to provide a lightweight and 

accurate decision support system solution for low-power 
computing devices.

To achieve this aim, the following objectives are accom-
plished:

– to develop hybrid system with MTACC architecture; 
– to evaluate the performance of the hybrid method with 

MTACC on the MINLP model;
– to visualize optimization models for limited resource 

allocation problems on land blocks and maintenance stages 
corresponding to optimal time windows.

4. Materials and methods

4. 1. The objects and hypotheses of the study
The object of this study is the NP-hard combinatorial 

optimization problem in the allocation of limited resources 
for the maintenance of smallholder coffee plantations. This 
research focuses on optimizing labor allocation with constraints 
on daily capacity, minimum frequency, proportional spacing, 
and optimal time windows in maintaining smallholder coffee 
plantations using the MINLP model. This problem falls under 
combinatorial optimization problems. The main hypothesis 
used states that integrating reduced gradient (RG) and multi- 
row time-aggregated cover cuts (MTACC) into outer approx
imation (OA) decomposition has a significant effect on 
computational time efficiency and optimality gap. This study 
assumes that the labor requirements allocated to multiple 
plots for maintenance tasks are limited.

4. 2. Mathematical formulation
Table 1 contains the decision variables, which values 

are determined by the solver to achieve an optimal solution. 
Equations (2)–(8) represent the constraints that limit the 
values of the decision variables to remain within the feasible 
solution set. Tables 2, 3 present sets and parameters that 
influence these three components.

Table 1
Decision variables

Variable Description

Binary yi,k,t 1 if stage k is performed in area i on day t, 0 otherwise

Continue hi,k,t The worker’s requirement for stage k in area i on day t

Integer wt The total number of workers employed on day t

Integer bt The number of transportation trips required on day t

Table 2
Set

Notation Description Value

i Maintained land 
blocks {1, 2, 3, …,5 38}

k Maintenance  
stage

{pr (pruning), fr (fertilization),  
wd (weed control), ps (pest control)}

t Time horizon (days) 
for maintenance {1, 2, 3, …,3 60}

Tk ⊆ T

Time window (days) for stage k

Tpr {1, …, 90}

Tfr {151, …, 360}

Twd {1, …, 360}

Tps {1, …, 180}
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Table 3
Parameter

Parameter Description

Ai Area for each plantation block i (in hectares)

pi,k,t
Worker productivity (hectares per worker per day) 
depending on land slope

fk
Number of mandatory executions fpr ≥ 3; ffr ≥ 2; fwd ≥ 6; 
fps ≥ 2

W Wage cost per worker per day

C Cost per trip for transportation

Lmax Maximum number of available workers

Based on the model description, the objective function as 
an MINLP model can be formulated as follows
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tki

� � � �� ���� 	 (1)

Subject to:

yi pu t
t Tpru

, , ,
�
� � 3  yi pu t

t Tfer

, , ,
�
� � 2  yi gi t

t Tweed
, , ,

�
� � 6

yi ha t
t Tpest

, , ,
�
� � 2  � �i I, 	 (2)

zikmt
t Tk�
� �1,  z yikmt ikt£ ,  ∀i k m t, ,� ,� , 	 (3)

� ikm ikmt
t T

tz
k

�
�
� , ∀i k m, ,� , 	 (4)

h A
p

yikt
i

si
ikt≥ , ∀i k t, , , 	 (5)

h wikt
k Ki I

t
��
�� � ,  ∀t, 	 (6)

0 £ £w Lt max ,  ∀t, 	 (7)

2b wt t≥ .  ∀t. 	 (8)

Equation (1) is the objective function to minimize the 
operational costs of all maintenance stages that must be 
carried out on all blocks within the time horizon, while 
equations  (2)–(8) are the constraints that must be adhered to.  
Constraint (2) determines the frequency of implementation 
for each stage. Constraints (3), (4) mandate the implemen-
tation of each stage with a proportional spacing in different 
areas. Constraint (5) requires the minimum worker require-
ments for scheduling stage k. Constraints (6), (7) determines 
the limit on the total number of workers that can be allo-
cated so as not to exceed available capacity. Constraint (8)  
relates the number of workers allocated to the number of 
motorcycles used.

4. 3. Numerical experiment
Numerical experiments were conducted using Windows- 

based computer hardware with the following specifications: 
CPU Intel Core i7-10750 2.6 GHz, RAM 16 GB DDR4, and 
GPU NVidia GeForce GTX 1650 Ti. The simulation was con-
ducted in several trials using dataset instances from Table 4, 
to be solved and evaluated. The tolerance value εgap is 1% and 
the time limit per instance is 3 hours.

Table 4
Instance dataset

Instance ID
Numbers of 
land blocks 

coverage

Total area of 
sloping land 

(ha)

Total area of 
steep land 

(ha)

Total 
area 
(Ha)

Ins1 50 62.9 10 72.9

Ins2 100 129.4 22.1 151.5

Ins3 150 205.3 29.8 235.1

Ins4 200 271.7 40.5 312.2

Ins5 250 335.9 52.5 388.4

Ins6 300 379 84.3 463.3

Ins7 350 398.1 139 537.1

Ins8 400 423.7 182.9 606.6

Ins9 450 461.8 225.1 687.9

Ins10 500 503.1 270.6 773.7

Ins11 538 525.9 299.6 825.5

Table 4 contains 11 instances representing the number of 
land blocks covered in a tiered manner, as well as the total 
area of each land block. This data is used to obtain the results 
of the scalability analysis during the testing process.

5. Results of the hybrid method utilizing multi-row 
time-aggregated cover cuts 

5. 1. Hybrid architecture 
The system architecture is presented in Fig. 1. The system 

constructs an initial relaxation in the form of an OA-based 
master MILP. The master solves the relaxation model and 
calculates the lower bound, then passes the information to the 
two reinforcement paths. The first path is the RG Subproblem 
Block, which manages the calling of subproblems through 
the candidate selection gate, runs the NLP subproblem with 
RG, extracts gradient or subgradient information, and applies 
a consistency filter to the global relaxation before adding the 
OA and incumbent cuts to the master. The second path is 
the MTACC Block, which triggers time window preselection, 
aggregates requests and capacity per window, determines 
multi-row covers, performs spacing-based rule lifting, evalu-
ates violations and cut depth, and applies a consistency filter 
to the global relaxation before adding the MTACC cuts to the 
master. The iterative process continues by updating the mas-
ter and repeating both paths until the solution gap does not 
exceed the tolerance ε.

The following is an explanation of the proposed hybrid 
architecture.

1. Integration of reduced gradient.
Let’s integrate reduced gradient (RG) into the continuous 

subproblems of OA decomposition. The following is the pro-
cess flow of RG.

Input from OA Master and the global lower bound. RG 
receives the master OA output, which includes a relaxation 
solution (x̄) and a global lower bound (LB). The LB value 
serves as an evaluation anchor for continuous subproblems, 
while x̄ serves as a reference for the active cut structure. This 
information guides the RG process to focus on candidates 
relevant to the global optimum, rather than just local im-
provements.
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Candidate selection (RG call gate) is based on proximity 
and quality of the boundary. The system generates integer 
candidates x̂ around a reference solution (e.g., the incumbent 
or the last master solution) using structured rounding or local 
branching within the environment || ||x xref� �1 � , and the 
system then filters the candidates using bound quality against 
LB with the criterion: Z x LBrelax

� � � ��  where Z xrelax
� � is 

the objective function value of the relaxation. This screening 
ensures that only promising candidates are processed. The 
system limits the number of RG calls per iteration to control 
computational costs.

Continuous initialization and stable trust-region. For 
each selected x  the system forms a continuous initial guess 
y0 (taken from the relaxation or incumbent) and sets the trust 
region so that the RG step remains close to a valid relaxation 
solution. This strategy stabilizes local iterations when nonlin-
ear constraints are sharp or sensitive to changes.

Solving the continuous subproblem with RG to enforce 
nonlinear feasibility through reduced space and generate  
a continuous feasible solution y*. After that, the system will 
obtain the candidate of UB x� �. If UB x� � outperforms the cur-
rent best UB, the system updates the incumbent and related 
operational plan.

The system extracts derivative information (gradient/
subgradient) at the point ( x , y*) and forms the OA segment 
(tangent/subgradient), which tightens the relaxation in the 
master. This snippet filters out regions (x, y) that are no longer 
supported by valid local information.

Filter consistency against global relaxation and coefficient 
weakening. Before the cut is inserted into the master, the 
system checks the global validity of the cut against the active 
relaxation. If the cut is too aggressive (risking cutting off the 
global solution), the system weakens the coefficient based on 
the subgradient of that relaxation until the cut is valid again. 
This step is important for non-convex cases to maintain the 
integrity of the LB.

Master update. The pieces that passed the filter were 
added to the master along with the incumbent’s fixes, and 
then the OA master was recompiled. In the same/next cycle, 
the MTACC block adds time-aggregated closing pieces based 
on Rt and a window of duration nw, causing the discrete 
space to narrow and nonlinear relaxation to increase sharply 
synergistically.

2. Development of multi-row time-aggregated cover cuts.
There is a conflict between the constraints in the above 

MINLP model, where capacity constraints apply on a daily ba-
sis, while the spreading rules are cumulative across time. This 
condition can cause looseness in the master LP relaxation. 
Therefore, let’s develop multi-row time-aggregated cover 
cuts (MTACC), a cutting technique that forms daily demand 
coefficients based on productivity and performs lifting based 
on spacing rules. The goal is to strengthen the constraints 
by considering the interdependencies of several consecutive 
periods, particularly the proportional distance between tasks. 
Fig. 2 uses pseudocode to computationally illustrate the con-
cept of MTACC.

Fig. 1. Block diagram of the overall system
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The MTACC concept is as follows:
1. Time aggregation. This technique aggregates time-relat-

ed constraints across multiple periods to create tighter bounds 
on the solution space. By considering the order of tasks for 
example, pruning, fertilizing, and pest control this cutting 
ensures scheduling adheres to the temporal dependencies 
between tasks.

2. Coverage inequality. This inequality restricts the feasible 
region by eliminating solutions that do not meet the inter-task 
spacing requirements. The cutting operation tightens the feasi-
ble region, thereby improving the bound on the objective func-
tion and accelerating convergence in the optimization process.

Here’s an explanation of the MTACC algorithmic block 
within the OA-RG hybrid:

1) Input.
The system receives input on resource capacity per pe

riod (Rt), basic requirement parameters per activity-period (αi,t), 
and the minimum distance parameter (θ). The system also 
accepts the window length (nw), and the set of candidate 
windows (Snw), which contains all continuous subranges of 
duration nw. The current state of the solution is represented 

by the master relaxation solution ( )x  or the best incumbent 
if available.

2) Output.
The process involves producing the MTACC cut family, 

which has been lifted and validated against the current global 
relaxation. These cuts tighten the MILP master along the time 
dimension without changing the meaning of the cost or wage 
terms, resulting in a stronger lower bound for the master, 
a narrower fractional solution space, and more directed sub-
sequent OA iterations.

3) Procedure:
a) trigger & window preselection. Calculate the capacity 

utilization density indicator at x  for each window SÎ

load S
x

R
t S i i t i t

t S t
� � � �

�

� �
�

� , ,
.  

Choose Scand ⊆ S containing the window of load(S) with 
the highest or most potentially conflicting spacing patterns 
(task spacing < θ). 

 

Fig. 2. Pseudocode for the proposed cutting technique
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Demand-capacity aggregation per window: for each 
S ∈ Scand , the aggregated "knapsack-cover" inequality takes 
the form Aggregate capacity

B S R
t S

t� � �
�
� .

Basic demand coefficient per activity-day

ai,t(S) = αi,t (only if t ∈ S, otherwise zero).

b) multi-line cover determination (minimum cover set). 
Find the minimal set of indices J(S) ⊆ {(i, t) : t ∈ S}, such that

i t S
i ta S B S

,
, ;

� �� � �
� � � � � �


c) spacing-based lifting. For each (i, t) ∈  (S), calculate the 
lifted coefficient: a S a S lift i t S xi t i t, , , | , , ,� � � � � � � � �  where lift(.) 
adds a proportional penalty to activities adjacent (< θ) in S  to 
sharpen the contribution to cross-day capacity consumption;

d) evaluate violations & cutting depth. Calculate violations 
against the aggregate limit

v S a S x B S
i t S

i t i t� � � � � � � �
� �� � �
�

,
, , .



 

Calculate the depth as the ratio of violations to the coef-
ficient norm

depth S
v S
a S

� � � � �
� �

1

, 

select Ssel ⊆ Scand containing the window with the largest 
depth(S) and v(S) > ε;

e) consistency filter for global relaxation. For each S ∈ Ssel, 
test the validity of the slice against the relaxation support-
ing the master. If invalid, weaken the lifting coefficient 
 a S a S a Si t i t i t, , ,,�� ,� � � � � � � �� �max �  or discard the candidate;

f) add MTACC cuts to the master. Add multi-row lifted 
cover inequalities

i t S
i t i ta S x B S

,
, , ,

� �� � �
� � � � � �




for all Ssel ⊆ Scand that pass the test, with a limit on the number 
of cuts per iteration (budget) to control the size of the master.

5. 2. Evaluating the performance of multi-row time-ag-
gregated cover cuts

Let’s conduct testing on the parameter nw used in MTACC 
to optimize the scheduling of coffee plantation maintenance. 
The parameter nw refers to the length of the time window 
used in the aggregation process to form multi-row cover 
cuts. The purpose of this analysis is to evaluate the effect of 
changes in the nw value on computational performance and 
optimal solutions, as well as to assess the trade-off between 
time efficiency and the quality of the resulting solutions.  
Tables 5, 6 show the results of the MTACC test on the OA-RG 
hybrid with nw = 7 and nw = 14.

The test results show that the optimality gap is usually 
smaller at nw = 14 than at nw = 7. The result means that 
a longer time window gives solutions that are closer to  
optimality. For example, at Ins1, the optimality gap for 
nw = 7 is 0.86, while at nw = 14, it becomes 0.32. This dif-
ference is reflected in most instances, indicating that using 
nw = 14 yields better solutions in terms of quality, although 
there are some exceptions for large instances, such as Ins10 
and Ins11.

From the perspective of computational time to solve the 
optimization problem (convergence), the comparison between 
the two parameters shows little difference. Fig. 3 presents 
a comparison of convergence times between the two nw 
MTACC parameters, which involve the master MILP time, 
MTACC separation time, and RG subproblem time.

The convergence time for nw = 7 yields longer results 
compared to nw = 14 on a small to medium scale (Ins1 to 
Ins8), whereas on a large scale (Ins9 to Ins11), nw = 7 is su-
perior to nw = 14. Let’s also observe significant differences in 
the master MILP time and MTACC separation. The master 
MILP time for nw = 7 tends to be greater than for nw = 14, 
but the MTACC separation time for nw = 7 is smaller than 
for nw = 14 across all problem scales. This data indicates that 
the parameter nw = 7 yields more MTACC cuts than nw = 14. 
When combined with the master MILP, the master prob-
lem becomes larger and denser from iteration to iteration, 
necessitating more time to process the increasingly com-
plex model.

Table 5
MTACC Test results with parameter nw = 7

No. Instance
nw = 7

Convergence 
time (s) Optimality gap MILP master 

time (s)
MTACC separation 

time (s)
Total time of RG sub 

problems (s)
Number of OA 

iterations

1 Ins1 69.9 0.86 42.3 13.4 14.2 14

2 Ins2 120.9 0.77 61.8 29.6 29.5 29

3 Ins3 165.1 0.63 82.1 41.8 41.2 41

4 Ins4 218.7 0.45 104.7 57.3 56.7 56

5 Ins5 275 0.5 130.6 72.1 72.3 71

6 Ins6 334.8 0.52 159.9 87.5 87.4 86

7 Ins7 401.1 0.66 194.4 103.8 102.9 101

8 Ins8 470.5 0.74 235 118.3 117.2 116

9 Ins9 544.8 0.85 282.2 131.8 130.8 129

10 Ins10 623.3 0.88 337.6 138.2 147.5 146

11 Ins11 710 0.92 392.3 159.6 158.1 157
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The longer separation time of MTACC at nw = 14 is due 
to the longer time window processed (14 days or two weeks) 
being combined into a single piece (cover) for problems with 
longer scheduling periods, thus increasing computational 
complexity. This MTACC separation also impacts the global 
number of iterations.

From the perspective of the total number of global 
iterations (OA), the parameter nw = 14 successfully 
reduced the number of OA iterations because it per-
formed fewer MTACC cuts, which affected the OA it-
erations globally (Fig. 4). In larger instances like Ins10 
and Ins11, changes in the nw value have a significant 
impact on the number of iterations and computation 
time. For example, in Ins11, the number of iterations 
for nw = 7 is 157, while for nw = 14, it decreases to 149. 
This difference in the number of iterations shows that 
nw = 14 is more efficient in reducing the number of 
iterations, even though it requires more time per itera-
tion. The difference in the number of OA iterations for 
both parameters increases as the number of problems 
(instances) used in the testing increases, even though 
it comes at the cost of MTACC separation time.

From an optimality gap perspective, let’s use de-
tailed parameter data from 3 instances representing 
each class: Ins3 for the small class, Ins7 for the medium 
class, and Ins10 for the large class. 

Fig. 5 shows a comparison of the optimality gap for the 
parameter nw in Ins3. The rate of gap reduction at nw = 14 is 
steeper in the first half of the iterations, reaching 84.34% in 
18 iterations (with an average of 4.69% per iteration), com-
pared to nw = 7, which reached 76.33% in 20 iterations (with 
an average of 3.82% per iteration).

Fig. 3. Comparison of convergence time between parameter nw

 

Table 6
MTACC Test results with parameter nw = 14

No. Instance
nw = 14

Convergence 
time (s) Optimality gap MILP master 

time (s)
MTACC separation 

time (s)
Total time of RG sub 

problems (s)
Number of OA 

iterations

1 Ins1 65.7 0.32 30.6 23.3 11.8 11

2 Ins2 111.7 0.38 46.2 38.9 26.6 26

3 Ins3 155.9 0.42 62.9 55.6 37.4 37

4 Ins4 208.7 0.48 81.6 73.3 53.8 52

5 Ins5 263.8 0.55 103.2 92.9 67.7 66

6 Ins6 325 0.58 129 113.7 82.3 81

7 Ins7 391 0.63 159.6 135.3 96.1 95

8 Ins8 466.7 0.75 196.2 158.9 111.6 110

9 Ins9 546.9 0.85 239.9 183.6 123.4 122

10 Ins10 641.3 0.95 291.7 209.4 140.2 139

11 Ins11 727.8 0.82 342.5 235.2 150.1 149

 

Fig. 4. Comparison of the number of iterations for the parameter nw
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In the last half of the iterations, the gap 
reduction for both nw parameters shows  
a more stable rate. At nw = 14, the reduction 
rate is 14.61% in 19 iterations, or an average 
of 0.77% per iteration, while at nw = 7, the re-
duction rate is 22.16% in 21 iterations, or an 
average of 1.06% per iteration. Fig. 6 shows 
a comparison of the optimality gap for the 
parameter nw in the medium class (Ins7). 
The difference in the rate of gap reduction 
between the two parameters, nw, appears 
significant. The gap reduction for nw = 14 
is sharper in the first half of the iterations 
than it is for nw = 7. At nw = 14, the gap re-
duction reached 80.05% in just 47 iterations, 
or an average of 1.70% per iteration, while 
the gap reduction at nw = 7 reached 64.22% 
in 50 iterations, or an average of 1.28% 
per iteration. However, for the last half of 
the iterations, the gap reduction speed for 
nw = 14 was lower than for nw = 7, at 18.96% 
in 48 iterations (an average of 0.39% per it-
eration) compared to 34.77% in 51 iterations 
(an average of 0.61% per iteration).

Fig. 7 shows a comparison of the opti-
mality gap for the parameter nw in the large 
class (Ins10). In the large class, the decrease 
in the optimality gap for both nw parameters 
shows relatively the same speed. There is 
only a noticeable difference in the first 40 it-
erations, where the decrease in the gap for 
nw = 14 is 66.59% (average 1.66% per itera-
tion) and for nw = 7 is 65.81% (average 1.65% 
per iteration). The remaining final iterations 
show a smooth decrease in speed, where 
nw = 14 reaches 32.24% in 99 iterations (av-
erage 0.33% per iteration) and nw = 7 reaches 
33.14% in 106 iterations (average 0.31% per 
iteration).

Fig. 8 shows a comparison of conver-
gence time versus the number of global 
iterations between the two OA-RG hybrids.

Hybrid OA-RG testing using MTACC 
(nw = 7) and hybrid OA-RG without MTACC 
was also conducted to evaluate this method. 
This test aims to assess the differences in 
convergence time and the number of OA 
iterations, two parameters that are crucial 
in evaluating the efficiency and solution 
quality of the applied optimization method. 
Without additional cutting strategies, the 
OA-RG hybrid without MTACC relies solely 
on the optimality cut and feasibility cut 
available in OA. The hybrid with MTACC 
significantly reduces convergence time and 
the number of global iterations compared 
to the hybrid without MTACC. The MTACC 
evaluation was also conducted on other 
cutting plane methods, particularly regard-
ing the total number of global iterations 
generated during the convergence process. 
Table 7 presents a comparison of the num-
ber of iterations derived from the computa-
tional test results.

 
Fig. 5. Comparison of the optimality gap for parameter nw in Ins3

 
Fig. 6. Comparison of the optimality gap for parameter nw in Ins7

 
Fig. 7. Comparison of the optimality gap for parameter nw in Ins10

Fig. 8. Comparison of time vs. iterations
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The number of iterations from these test results demon-
strates MTACC’s ability to handle the optimization of limited 
key resource allocation, namely labor, with daily capacity 
constraints and time-related constraints such as minimum 
frequency rules, proportional distance, and varying optimal 
time windows for each task to be performed.

5. 3. Visualization of an optimization model for an 
optimal plantation maintenance schedule

In this study use the area under the curve (AUC) to mea-
sure the performance of the nw parameter by capturing the 
dynamics of the gap reduction over iterations. AUC is used 
as an aggregate measure of "total cumulative suboptimality" 
during the convergence process to summarize how large (and 

for how long) the optimality gap persists throughout 
the iterations. 

Fig. 9 is a visualization of the maintenance sched-
ule prototype, generated as the output of the MINLP 
model, in Gantt chart format. This Gantt chart dis-
plays the plantation area ID and the time horizon in 
weeks. Inside, maintenance tasks are arranged and 
color-coded, with the number of workers allocated 
to each task. The number of maintenance tasks 
displayed indicates the frequency of task execution.

Table 8 presents the results of the AUC analy-
sis for each nw parameter, with the average value 
calculated from the aggregation of the three in
stances (Ins3, Ins7, Ins10).

Analysis of the nw value shows that increasing the 
time window from nw = 7 to nw = 14 has a significant 
impact on the pattern of decreasing optimality gap. 
The average AUC (abs) value decreased by approxi-
mately 21.6%, while the AUC per iteration decreased 
by approximately 19.9%. 

This decline indicates that throughout the iteration 
process, the optimal gap trajectory was almost one-fifth 
lower at nw = 14 compared to nw = 7. This impact indicates 
an improvement in the efficiency of the convergence mech-
anism, where the optimization process not only rapidly 
approaches the optimal value but also maintains a smaller 
gap more stably throughout the iterations. The normalized 
AUC value also decreased by 18.6%, indicating that the 
superiority of nw = 14 remained consistent even after ac-
counting for differences in initial scale and iteration length. 
This indicates that the efficiency of nw = 14 is not merely 
a result of data size or process length but truly stems 
from better algorithmic performance in controlling the  
optimality gap.

Table 7

Computational results: number of iterations

No. In-
stance

MTACC 
(nw = 14) IRS cuts 

Extended 
cutting 
plane 

Dis-
junctive 

cuts 

Per-
spective 

cuts 

Aggre-
gation 
cuts

1 Ins1 11 12 16 14 14 14
2 Ins2 26 27 35 30 29 30
3 Ins3 37 39 45 42 41 41
4 Ins4 52 54 62 58 58 57
5 Ins5 66 69 80 72 72 71
6 Ins6 81 84 95 89 89 88
7 Ins7 95 98 110 101 102 100
8 Ins8 110 115 130 122 122 119
9 Ins9 122 128 145 139 138 134

10 Ins10 139 145 165 155 155 151
11 Ins11 149 156 180 169 169 163

 
Fig. 9. Visualization of the maintenance schedule prototype

Table 8
AUC analysis for each nw value

Metric Average nw = 7 Average nw = 14 Δ% (14 vs 7)
AUC (abs) 2019.19 1583.91 −21.6

AUC per iteration 19.59 15.69 −19.9
AUC normalized 31.27 25.44 −18.6
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6. Discussion of results of the hybrid method utilizing 
multi-row time-aggregated cover cuts 

This study resulted in a maintenance schedule for small-
holder coffee plantations with optimal resource allocation for 
the limited resources optimization problem within an accept-
able computational time, using a hybrid approach of outer 
approximation (OA) and reduced gradient (RG) enhanced by 
multi-row time-aggregated cover cuts (MTACC).

The comparison results of the parameter values nw in 
Tables 5, 6 show that the MTACC separation time signifi-
cantly contributes to the total time, especially for larger 
problem scales. When nw changes from 7 to 14, the average 
time for the MILP master decreases by approximately 6.16%. 
This analysis contrasts with the study in [19], which employs 
large-scale problem-solving methods such as aggregation and 
disjunctions, resulting in a very large and complex master 
problem and causing numerical issues. MTACC introduces  
a separation time influenced by the parameter nw. Comparing 
the parameter nw across each problem scale (Ins1 to Ins11) 
reveals the impact of separation time on the overall total time 
(convergence time), particularly the time to solve the MILP 
master and subproblems, as shown in Fig. 3. This indicates 
a trade-off between the efficiency of the MILP formulation 
and the complexity of MTACC. The larger the value of nw, 
the more temporal information MTACC must handle, which 
improves the model but slows down constraint separation. 
The average separation time increased by 36.65%, while 
the contribution of separation time to the Master MILP in-
creased by 35%, and the contribution of separation time to 
convergence time increased by 10.10%. This data confirms 
that MTACC becomes an increasingly dominant component 
as the nw parameter increases (from 7 to 14), with more 
"computational cost" spent on the separation process (cut-
ting plane separation). The change also impacts the number 
of global iterations (representing the number of MTACC 
pieces), which decreases as shown in Fig. 4. This analysis 
differs from the study [25], which increases the complexity of 
subproblems per iteration and still requires a global strategy 
when non-convexity occurs. 

The comparison of the nw parameter in MTACC has been 
proven to improve the quality of the optimality gap, with 
a sharper decrease in the gap in the first 30%–40% of itera-
tions and a tighter decrease in the remaining iterations until 
convergence is reached, as shown in Fig. 5–7. Unlike previ-
ous research such as [16, 18, 21, 22, 27], MTACC has aggre-
gation control parameters, which provide better reinforce-
ment than simply processing constraints one by one; the 
result includes optimal gap reduction, which requires many 
cutting iterations to achieve convergence. Table 7 shows  
that the average number of iterations for other cutting 
methods compared to MTACC increased by 4.38% to 19.71%, 
with a standard deviation ranging from 104.41% to 117.18%. 
The increase indicates the instability of these methods’ per-
formance across instances.

Although hybrids without MTACC and classical OA, 
like the study in [12], did not produce separation time, 
their convergence time was greater with a larger number of 
iterations compared to using MTACC, as shown in Fig. 8. 
Quantitatively, MTACC is able to accelerate the average 
convergence time by 12.84% compared to MTACC without it.  
This decrease indicates that the cutting plane mechanism 
generated by MTACC successfully narrowed the solution 
space from the initial iteration, thus eliminating the need 

for the solver to explore irrelevant areas to reach the opti-
mal point. The number of OA iterations also went down 
sharply, to 38.83%, which shows that the model with 
MTACC reached stability faster and needed fewer master  
relaxation updates.

The results of this study indicate that the MTACC-based 
optimization model can be effectively applied to optimize 
coffee plantation maintenance scheduling with limited re-
sources, particularly in terms of labor allocation and daily 
capacity constraints. Based on the testing (Tables 5 and 6) 
with small- to medium-scale coffee plantation data (such as 
Ins1 to Ins5), this model shows a significant improvement in 
convergence time efficiency and a reduction in the number 
of iterations. On a larger scale, as reflected in Ins9 to Ins11, 
this model is also able to reduce labor allocation errors that 
can occur due to inaccuracies in manual scheduling.

The results of this research can be applied to real-world 
coffee plantation environments with hilly topography and 
land areas of up to hundreds of hectares. This model is suit-
able for use by small farmers or plantation managers who 
have low-specification computing devices such as smart-
phones, allowing it to be used as a decision support system 
based on simple computing devices. The application of this 
model can reduce operational costs by optimizing labor al-
location according to daily capacity and more efficient task 
execution frequency rules, improve time efficiency in mainte-
nance scheduling, which can speed up task completion time 
without sacrificing work quality, and improve the quality of 
harvest results by maintaining proportional distance rules 
between different tasks (e.g., pruning, fertilizing, and pest 
control) and ensuring tasks are performed at optimal times 
for the best results.

This study is limited to only testing performance in deter-
ministic cases without considering labor productivity uncer-
tainty or weather variations that could affect the validity of 
the optimal time window. This allows for further studies by 
integrating stochastic programming methods to accommodate 
uncertainty.

The disadvantages of this study stem from the MTACC 
formulation, which depends on the static parameter of the 
time window length (nw), resulting in the truncation’s ef-
fectiveness varying across institutions and failing to adapt 
dynamically to the iterations’ dynamics. Therefore, further de-
velopment could be directed toward the dynamic adaptation 
of MTACC parameters or considering adaptive mechanisms 
for selecting nw (based on load density/violation) to address 
these disadvantages.

7. Conclusion

1. The development of this system’s architecture demon-
strates that the hybridization of outer approximation (OA) 
and reduced gradient (RG), enhanced by multi-row time-ag-
gregated cover cuts (MTACC), results in an effective ap-
proach for addressing combinatorial optimization problems 
in complex coffee plantation maintenance. This hybrid 
architecture is designed to optimize the allocation of limited 
resources more efficiently through more structured problem 
decomposition and the use of time-aggregated-based cut-
ting techniques, which improves accuracy in maintenance 
scheduling.

2. Performance evaluation of the feature value nw MTACC 
shows an average decrease in master MILP time of up  
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to 6.16% and an increase in average contribution to con-
vergence time of up to 10.10%. Comparative evaluation of 
MTACC with other cutting methods shows a significant 
reduction in the number of iterations of up to 38.83% 
and an increase in convergence speed of 12.84%. This 
indicates that MTACC is more efficient in optimizing 
computation time and producing faster and more stable  
solutions.

3. Model data visualization produces a maintenance 
schedule that displays the results of optimizing labor alloca-
tion on plantation land to perform maintenance tasks/stages 
without violating constraints accurately based on the test 
results of AUC (abs) Ñ21.6%, AUC per iteration Ñ19.9%, and 
normalized AUC value Ñ18.6%.
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