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The object of this research is the NP-hard combinatorial
optimization problem in the allocation of limited resources
Jfor the maintenance of smallholder coffee plantations. In this
study, a hybrid method of outer Approximation (OA) and
reduced gradient (RG), enhanced by multi-row time-ag-
gregated cover cuts (MTACC) is proposed to address the
computational time efficiency problem in mixed-integer
nonlinear programming (MINLP)-based combinatorial
optimization problems. The testing was conducted using
plantation land data from the Rahmat Kinara Coffee
Farmers Association, which includes 538 land blocks with
a total area of 825.5 hectares. Based on the numerical
results obtained, it shows a reduction in the number of
iterations by up to 38.83% and an increase in the speed
of convergence time by up to 12.84%. The n,, feature in
MTACC specifically controls the length of the time win-
dow to form multi-row covering slices that are suitable
for the characteristics of the constraints, which affects the
master and RG subproblems in overcoming the compu-
tational load. The evaluation results for testing parame-
ters n,, = 7 and n,, = 14 show an increased contribution to
convergence time of up to 10.1% by reducing the average
master MILP time by 6.16%. Evaluation of the area under
curve (AUC) metric confirms that MTACC is more stable in
controlling optimality gaps across global iterations based
on AUC (abs) assessment, which decreased by 21.6%; AUC
per iteration decreased by 19.9%, and normalized AUC also
decreased by 18.6%.

The results obtained can be effectively applied in small
to large-scale coffee plantations, especially in decision sup-
port systems on low-power computing devices for produc-
tion sustainability

Keywords: outer approximation, reduced gradient,
MTACC, MINLP, plantation maintenance scheduling, lim-
ited resources optimization, smallholder coffee plantations,
combinatorial optimization, time window constraints, deci-
sion support systems
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1. Introduction

Coffee is a high-value agricultural product with a strong
global market and significant annual growth potential [1].
In Indonesia, coffee ranks among the largest plantation
commodities and is vital to the rural economy [2], with 96%
of plantations owned by smallholders [3]. However, mainte-
nance remains traditional, shaped by natural conditions such
as steep terrain and local socio-cultural factors, particularly
reliance on manual labor [4]. These factors drive up opera-
tional expenses, often causing farmer losses and threatening
sustainability. Therefore, a strategic and adaptive approach
to plantation maintenance is essential as a decision-support
system for managers to ensure sustainability.

The mixed-integer nonlinear programming (MINLP) model
can be modified for use as an optimization model in intricate
agricultural operations [5]. In this context, ‘discrete decisions’
refer to selecting from a finite set of alternatives, such as
choosing specific times for planting or harvesting. "Nonlin-
earity of constraint functions” means that the relationships
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between variables aren’t always proportional. For instance,
changing the amount of water used for irrigation might not
directly change the amount of crops produced. "Interactions
between indicators” means that multiple factors, like water,
energy, and food supplies, influence each other within the
supply chain [6]. Nonlinear constraints often arise in agri-
cultural or plantation operations. Examples include the rela-
tionship between harvest time, irrigation, and crop quality [7]
or the interaction between water, energy, and food in supply
chain design [8]. For coffee plants, ‘optimal time window
rules’ refer to timeframes when maintenance tasks yield the
best results, and ‘proportional spacing’ ensures that plants are
distributed at intervals that maximize growth and yield. These
factors form ‘optimal time window inequalities, meaning cer-
tain time and spacing requirements must be met for proper
maintenance [9]. This makes them a nonlinear factor.
Unfortunately, the NP-hard nature of mixed-integer non-
linear programming (MINLP) meaning that it is a problem that
is computationally very difficult to solve derives from mixed-in-
teger linear programming (MILP), which is also NP-hard.




Because of this, MINLP leads to a vast and non-convex (not
bowl-shaped) solution space, which is difficult to explore
thoroughly within a reasonable computational time [10].
Non-convexity makes it more challenging to utilize mathe-
matical relaxations (approximations) and hinders the straight-
forward certification of global optimality. Therefore, explora-
tion-exploitation strategies (methods for balancing the search
for new solutions versus reusing known beneficial solutions)
need to be carefully adjusted [11]. This makes it impossible for
plantation managers to operate the MINLP optimization mod-
el on low-power computing devices. As a result, developing
methods to efficiently and lightly explore the MINLP solution
space becomes crucial. This makes this research relevant for
improving computational performance to generate optimal
plantation maintenance schedules.

Applying effective decomposition techniques to solve
MINLP models with complex structures improves computa-
tional performance and maintains solution quality [12]. Outer
Approximation (OA) guarantees convergence to a global solu-
tion within reasonable computing time by dividing complex
models into a mixed-integer linear programming (MILP)
master problem and continuous nonlinear or nonlinear pro-
gramming (NLP) subproblems [13]. Reduced gradient (RG),
based on the generalized reduced gradient, generates feasible
primal solutions and multiplier estimates, making it suitable
for use as an NLP subproblem solver within a decomposition
framework, particularly OA [14]. OA and RG hybridization
provides a framework that balances the exploration and ex-
ploitation of the solution space, offering a strong alternative
to address structural and computational challenges in realistic
non-convex MINLPs. However, this hybrid has been little ex-
plored, meaning that it requires further study [15].

On the other hand, cutting planes help accelerate the
process of finding optimal solutions [16]. Research on cut-
ting strategies in OA continues to develop based on specific
needs [17]. This paper confirms the critical role of cutting
planes in improving the efficiency of exploring the MINLP
solution space. This research contributes a theoretical under-
standing of the influence of hybrid OA-RG with time-aggre-
gation-based cutting strategies for daily capacity constraints
and proportional spacing on MINLP performance. Practically,
this research produces a planned maintenance schedule that
adheres to agronomic rules. It serves as a decision-making tool
for plantation managers to allocate labor to maintenance tasks
in a specific order, aiming to reduce operational expenses.

In modern conditions, smallholder coffee plantations face
simultaneous pressure to remain economically viable, comply
with agronomic requirements, and operate under tightening
resource constraints. Managers are expected to plan labor-in-
tensive maintenance activities over extended horizons while
dealing with heterogeneous topography and limited budgets,
yet they often rely on low-power computing devices or basic
information systems. At the same time, advances in MINLP
modeling and decomposition have not yet fully translated
into tools that can be used routinely in such operational
settings because the underlying NP-hard problems typically
demand substantial computational effort and specialized
solvers. These gaps make it necessary to conduct scientific re-
search that designs algorithmic frameworks explicitly tailored
to the structure of plantation maintenance problems so that
complex time-window and capacity constraints can be han-
dled efficiently within realistic computational limits.

The results of these studies can directly support practice
by providing a scheduling framework that is both imple-

mentable and interpretable for plantation managers. By inte-
grating the hybrid OA-RG approach with multi-row time-ag-
gregated cover cuts, the proposed method is able to generate
maintenance schedules that respect daily capacity limits,
proportional spacing rules, and optimal time windows, while
reducing the computational burden compared with classical
MINLP approaches. Such an improvement creates concrete
opportunities to embed the model into decision support
systems running on low-specification devices, allowing man-
agers to allocate labors, sequence maintenance tasks across
land blocks, and assess cost scenarios in a more systematic
manner. Beyond coffee, the methodological insights obtained
here can be adapted to other resource-constrained agricul-
tural systems that require long-term, rule-based maintenance
planning, reinforcing the role of optimization as a practical
tool for sustainable production.

Therefore, research on developing a lightweight and accu-
rate optimization model for scheduling maintenance in coffee
plantations is relevant. This model must handle daily capacity
constraints and proportional spacing in optimal time window
inequalities. Such research is essential for developing costly
computational solutions and helps ensure the sustainability
of production in traditional agriculture.

2. Literature review and problem statement

Several studies on OA hybridization in MINLP cases have
aimed to make the global search more focused and achieve
faster convergence. Research [18] uses logic-based OA hy-
bridization. This method replaces the algebraic reformulation
of MINLP with the direct solution of logic and (non)convex
subproblems. This process generates feasible cuts and incum-
bents, improves exploitation of disjunctive structure, leads to
earlier infeasibility detection, and prunes the global search
space to relevant regions. However, the per-iteration cost for
subproblems increases. This expense is because it involves
solving more complex structured logic or computation and
depends on specialized solvers.

The hybrid OA variant with parallelism and decom-
position distributes the master/subproblem work or slice
generation across multiple threads. This mitigates scalability
bottlenecks by dividing the computational load. The approach
enhances the ability to handle larger instances through paral-
lel processing. This process speeds up the OA cycle without
altering the global structure of the solution. However, this
approach is mitigative, not eliminative, of the scale issue.
Careful load balancing and orchestration are still needed [19].

Strengthening the formulation through cutting planes
serves as another important accelerator in the solution process.
Research [20] demonstrates this by utilizing multiple-genera-
tion cuts and partial surrogate cuts to improve the quality of
information at each subproblem call. These strategies impact
the global solution space. The master receives more informative
cuts, which leads to improved integer candidates and lower
bounds, accelerated convergence, and often reduced runtime.
However, using many diverse cuts increases the master’s com-
plexity and lifts the computational burden with each iteration.

The disjunctive cutting tradition develops valid inequal-
ities that approach the convex hull of the feasible set. This
improves the quality of relaxation bounds and the effective-
ness of cutting procedures [21]. In 0-1 integer programs,
perspective cuts provide significant strengthening for on/off
variables. This structure often appears in scheduling decisions



for time slots [22]. In convex MINLP, the extended cutting
plane (ECP) systematically aggregates inequalities and re-
mains compatible with MILP-based OA solvers [23]. Inter-
section cuts and split cuts for structured convex sets also
enrich the set of inequalities. These cuts improve branching
policies and increase relaxation accuracy [24]. Despite this
diversity, the cutting literature has not explicitly examined
the construction of multi-row, time-aggregated inequality
that combines daily capacity and agronomic spacing rules
for plantation maintenance scheduling. This leaves room for
contribution.

This research views the existing OA hybrid architecture
as still lacking operational criteria at the subproblem level
to determine when and on which candidate’s RG should
be called so that the resulting cuts remain consistent with
global relaxation, while also reducing dependence on global
NLP in non-convex cases. Hybrid OA literature indicates that
strengthening the formulation can accelerate convergence but
tends to enlarge the master and raise numerical issues [19],
while logic-based OA variants enrich structural information
but increase the complexity of subproblems per iteration and
still require a global strategy when non-convexity occurs [25].
This research integrates RG into the OA subproblem based
on the principle of proximity (through limited neighborhood/
local branching) to balance relaxation strength and computa-
tional burden without enlarging the master.

Additionally, this research introduces multi-row time-ag-
gregated cover cuts (MTACC) as a cutting plane that incorpo-
rates daily capacity and task execution, spreading constraints
proportionally into tighter time window inequalities, rather
than summing daily limits [26, 27]. To our knowledge, there
has been no research that explicitly integrates OA-RG with
multi-row time-aggregated inequality for an agricultural
context that combines productivity heterogeneity due to
topography, transportation constraints, and daily labor num-
ber decisions at the smallholder plantation scale. MINLP
and RCPSP-based scheduling literature demonstrates the
relevance of time windows and capacity but has not yet pre-
sented cutting planes that capture inter-round and inter-day
correlations as needed in coffee plantations [28]. Surrogate
cuts, perspective cuts, disjunctive cuts, the extended cutting
plane, and intersection cuts have been shown to tighten the
formulation on the cutting plane side, but they have not been
specifically directed toward multi-line time aggregation with
spacing rules [20-24].

All this allows to assert that it is expedient to conduct a
study on develop more efficient and practical optimization
models that can not only solve problems faster but also be
applied to devices with limited resources. This is urgent to
create more efficient solutions for managing coffee plantation
maintenance, which will ultimately support the optimal sus-
tainability of coffee production.

3. The aim and objectives of the study

The aim of this study is to develop a method for solving
combinatorial optimization problems in MINLP that inte-
grates hybrid outer approximation (OA) decomposition tech-
niques and reduced gradient (RG) with aggregation-based
cutting-plane modifications according to constraint char-
acteristics in the context of limited resource allocation
optimization in coffee plantation maintenance. In practical
terms, this method is expected to provide a lightweight and

accurate decision support system solution for low-power
computing devices.

To achieve this aim, the following objectives are accom-
plished:

—to develop hybrid system with MTACC architecture;

- to evaluate the performance of the hybrid method with
MTACC on the MINLP model;

- to visualize optimization models for limited resource
allocation problems on land blocks and maintenance stages
corresponding to optimal time windows.

4. Materials and methods

4. 1. The objects and hypotheses of the study

The object of this study is the NP-hard combinatorial
optimization problem in the allocation of limited resources
for the maintenance of smallholder coffee plantations. This
research focuses on optimizing labor allocation with constraints
on daily capacity, minimum frequency, proportional spacing,
and optimal time windows in maintaining smallholder coffee
plantations using the MINLP model. This problem falls under
combinatorial optimization problems. The main hypothesis
used states that integrating reduced gradient (RG) and multi-
row time-aggregated cover cuts (MTACC) into outer approx-
imation (OA) decomposition has a significant effect on
computational time efficiency and optimality gap. This study
assumes that the labor requirements allocated to multiple
plots for maintenance tasks are limited.

4. 2. Mathematical formulation

Table 1 contains the decision variables, which values
are determined by the solver to achieve an optimal solution.
Equations (2)-(8) represent the constraints that limit the
values of the decision variables to remain within the feasible
solution set. Tables 2,3 present sets and parameters that
influence these three components.

Table 1
Decision variables
Variable Description
Binary y; i, 1 if stage k is performed in area i on day ¢, 0 otherwise

Continue h;, | The worker’s requirement for stage k in area i on day ¢

Integer wy The total number of workers employed on day ¢
Integer b, The number of transportation trips required on day ¢
Table 2
Set

Notation Description Value

. Maintained land

i blocks {1,2,3,...,5 38}

K Maintenance {pr (pruning), fr (fertilization),

stage wd (weed control), ps (pest control)}

Time horizon (days)

for maintenance {1,2,3,....3 60}

Time window (days) for stage k

Ty {1, ..., 90}
T,cT T {151, ..., 360}

Toa {1, ..., 360}

Tps {1, ..., 180}




Table 3 Table 4
Parameter Instance dataset

Parameter Description Numbers of | Total area of | Total area of | Total
3 e Instance ID | land blocks | slopingland | steep land area
A; Area for each plantation block i (in hectares) coverage (ha) (ha) (Ha)
Piie Worker.productwlty (hectares per worker per day) Insl 50 62.9 10 72.9

e depending on land slope
f Number of mandatory executions f,, > 3; f > 2; fuq > 6; [ns2 100 129.4 221 151.5
k Sps22 Ins3 150 205.3 29.8 235.1
Wage cost per worker per day Ins4 200 271.7 40.5 312.2
C Cost per trip for transportation Ins5 250 335.9 52.5 388.4
Linax Maximum number of available workers Ins6 300 379 84.3 463.3
Ins7 350 398.1 139 537.1
Based on the model description, the objective function as Ins8 200 4237 182.9 606.6

an MINLP model can be formulated as follows

Ins9 450 461.8 225.1 687.9
minZZZZZ(W'Wr +C-b, ) 6)) Ins10 500 503.1 270.6 773.7
Pkt Ins11 538 525.9 299.6 825.5

Subject to:
z yi,pu,t 2 3’ z yi,pu,t 2 2’ z yi,gi,t 2 6’
t€lon teTy, €T ea
D Vinat 22, Viel, )
el
z Zieme = L Zijgome < Yike» Vi,k,mt, 3)
teT,
Tikm = Z Zikme » Vi, k,m, (4)
teT,
A; .
hik[ 2 71yikt’ Vl,k,t, (5)
Si
z z hyy <w,, Vi, (6)
iel keK
0< w; < Lmaxa Vt, (7)
2b,>w,. Vt. 8)

Equation (1) is the objective function to minimize the
operational costs of all maintenance stages that must be
carried out on all blocks within the time horizon, while
equations (2)—(8) are the constraints that must be adhered to.
Constraint (2) determines the frequency of implementation
for each stage. Constraints (3), (4) mandate the implemen-
tation of each stage with a proportional spacing in different
areas. Constraint (5) requires the minimum worker require-
ments for scheduling stage k. Constraints (6), (7) determines
the limit on the total number of workers that can be allo-
cated so as not to exceed available capacity. Constraint (8)
relates the number of workers allocated to the number of
motorcycles used.

4. 3. Numerical experiment

Numerical experiments were conducted using Windows-
based computer hardware with the following specifications:
CPU Intel Core i7-10750 2.6 GHz, RAM 16 GB DDR4, and
GPU NVidia GeForce GTX 1650 Ti. The simulation was con-
ducted in several trials using dataset instances from Table 4,
to be solved and evaluated. The tolerance value &g, is 1% and
the time limit per instance is 3 hours.

Table 4 contains 11 instances representing the number of
land blocks covered in a tiered manner, as well as the total
area of each land block. This data is used to obtain the results
of the scalability analysis during the testing process.

5. Results of the hybrid method utilizing multi-row
time-aggregated cover cuts

5.1. Hybrid architecture

The system architecture is presented in Fig. 1. The system
constructs an initial relaxation in the form of an OA-based
master MILP. The master solves the relaxation model and
calculates the lower bound, then passes the information to the
two reinforcement paths. The first path is the RG Subproblem
Block, which manages the calling of subproblems through
the candidate selection gate, runs the NLP subproblem with
RG, extracts gradient or subgradient information, and applies
a consistency filter to the global relaxation before adding the
OA and incumbent cuts to the master. The second path is
the MTACC Block, which triggers time window preselection,
aggregates requests and capacity per window, determines
multi-row covers, performs spacing-based rule lifting, evalu-
ates violations and cut depth, and applies a consistency filter
to the global relaxation before adding the MTACC cuts to the
master. The iterative process continues by updating the mas-
ter and repeating both paths until the solution gap does not
exceed the tolerance &.

The following is an explanation of the proposed hybrid
architecture.

1. Integration of reduced gradient.

Let’s integrate reduced gradient (RG) into the continuous
subproblems of OA decomposition. The following is the pro-
cess flow of RG.

Input from OA Master and the global lower bound. RG
receives the master OA output, which includes a relaxation
solution (X) and a global lower bound (LB). The LB value
serves as an evaluation anchor for continuous subproblems,
while X serves as a reference for the active cut structure. This
information guides the RG process to focus on candidates
relevant to the global optimum, rather than just local im-
provements.
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Fig. 1. Block diagram of the overall system

Candidate selection (RG call gate) is based on proximity
and quality of the boundary. The system generates integer
candidates % around a reference solution (e.g., the incumbent
or the last master solution) using structured rounding or local
branching within the environment ||x—x"¥|,<A, and the
system then filters the candidates using bound quality against
LB with the criterion: Z,,,, (f)fLB <t where Z, ()E) is
the objective function value of the relaxation. This screening
ensures that only promising candidates are processed. The
system limits the number of RG calls per iteration to control
computational costs.

Continuous initialization and stable trust-region. For
each selected x the system forms a continuous initial guess
1° (taken from the relaxation or incumbent) and sets the trust
region so that the RG step remains close to a valid relaxation
solution. This strategy stabilizes local iterations when nonlin-
ear constraints are sharp or sensitive to changes.

Solving the continuous subproblem with RG to enforce
nonlinear feasibility through reduced space and generate
a continuous feasible solution y". After that, the system will
obtain the candidate of UB(J?). If UB()?) outperforms the cur-
rent best UB, the system updates the incumbent and related
operational plan.

The system extracts derivative information (gradient/
subgradient) at the point (X, y*) and forms the OA segment
(tangent/subgradient), which tightens the relaxation in the
master. This snippet filters out regions (x, y) that are no longer
supported by valid local information.

Filter consistency against global relaxation and coefficient
weakening. Before the cut is inserted into the master, the
system checks the global validity of the cut against the active
relaxation. If the cut is too aggressive (risking cutting off the
global solution), the system weakens the coefficient based on
the subgradient of that relaxation until the cut is valid again.
This step is important for non-convex cases to maintain the
integrity of the LB.

Master update. The pieces that passed the filter were
added to the master along with the incumbent’s fixes, and
then the OA master was recompiled. In the same/next cycle,
the MTACC block adds time-aggregated closing pieces based
on R; and a window of duration n,, causing the discrete
space to narrow and nonlinear relaxation to increase sharply
synergistically.

2. Development of multi-row time-aggregated cover cuts.

There is a conflict between the constraints in the above
MINLP model, where capacity constraints apply on a daily ba-
sis, while the spreading rules are cumulative across time. This
condition can cause looseness in the master LP relaxation.
Therefore, let’s develop multi-row time-aggregated cover
cuts (MTACC), a cutting technique that forms daily demand
coefficients based on productivity and performs lifting based
on spacing rules. The goal is to strengthen the constraints
by considering the interdependencies of several consecutive
periods, particularly the proportional distance between tasks.
Fig. 2 uses pseudocode to computationally illustrate the con-
cept of MTACC.



Algorithm 1: MTACC Block for OA-GRG (Multi-row Time-Aggregated Cover Cuts)

Input: Resource capacity per period {R;}; base demand parameters {c;+}; spacing

parameter 0;

candidate window set Sp,, (all contiguous subranges of length n,);
current relaxed master solution z; violation threshold ¢ > 0; cut budget M € N.
Output: A set of valid lifted multi-row time-aggregated cover cuts to be added to the

OA master.

1 Step 1: Trigger & Preselection of Windows
2 Scand < PreselectWindows (S, , @, {ai}, {Ri}, 0)

foreach S € Scana do
B(S) ¢ Yies
foreach activity-time (i,t) do

7 L a;1(S) + {ai’“ tes

[ )

0, otherwise

©

foreach S € S.,q do

Step 2: Aggregate Demand & Capacity per Window

// Aggregated capacity

Step 3: Minimal Multi-row Cover Identification

10 J(S) + FindMinimalCover({a;«(S)}tes, B(S)) // (oens) aidS) > B(S) and

minimal

11 Step 4: Spacing-based Lifting of Coefficients

12 foreach S € S..nq do
13 | foreach (i,t) € J(S) do

14 L @;1(S) « a;+(S) + LiftSpacing ((¢, t), S, 0, )

15 Step 5: Violation and Depth Evaluation

16 Initialize candidate cut list C < ()

17 foreach S € Scang do

18 | v(S) + Xiness) @it(S) Tix — B(S)
19 if v(S) > ¢ then

20 L depth(S) < ComputeDepth (v(S), {@;«(S)})

/1 eg v(8)/1a(S)]

Append (8, J(5), {@i4(5)}, B(S), depth(S)) to C

22 Step 6: Consistency Filter vs Global Relaxation

23 Cye < TopM(C, M)

// select top-M by depth

24 foreach candidate (S, J(S),{a::(S)}, B(S)) € Cse1 do
25 if CheckValidity ({a;; (S)}, B(S)) is false then

26 L {@;+(S)} + WeakenCoeffs ({a; ¢ (S)})

relaxation

// e.g., subgradient from convex

27 if CheckValidity ({@. (S)}, B(S)) is true then

28 Add cut
(i,t)eJ(S)

29 return All admitted MTACC cuts

@;,1(S) xiy < B(S) to the master

Fig. 2. Pseudocode for the proposed cutting technique

The MTACC concept is as follows:

1. Time aggregation. This technique aggregates time-relat-
ed constraints across multiple periods to create tighter bounds
on the solution space. By considering the order of tasks for
example, pruning, fertilizing, and pest control this cutting
ensures scheduling adheres to the temporal dependencies
between tasks.

2. Coverage inequality. This inequality restricts the feasible
region by eliminating solutions that do not meet the inter-task
spacing requirements. The cutting operation tightens the feasi-
ble region, thereby improving the bound on the objective func-
tion and accelerating convergence in the optimization process.

Here’s an explanation of the MTACC algorithmic block
within the OA-RG hybrid:

1) Input.

The system receives input on resource capacity per pe-
riod (Ry), basic requirement parameters per activity-period (e ),
and the minimum distance parameter (£). The system also
accepts the window length (n,), and the set of candidate
windows (Sy,,), which contains all continuous subranges of
duration n,,. The current state of the solution is represented

by the master relaxation solution (X) or the best incumbent
if available.

2) Output.

The process involves producing the MTACC cut family,
which has been lifted and validated against the current global
relaxation. These cuts tighten the MILP master along the time
dimension without changing the meaning of the cost or wage
terms, resulting in a stronger lower bound for the master,
a narrower fractional solution space, and more directed sub-
sequent OA iterations.

3) Procedure:

a) trigger & window preselection. Calculate the capacity
utilization density indicator at x for each window Se S

load(S)= Zteiilzr%
teS

Choose S¢gng < S containing the window of load(S) with
the highest or most potentially conflicting spacing patterns
(task spacing < 6).



Demand-capacity aggregation per window: for each
S € Scana, the aggregated "knapsack-cover” inequality takes
the form Aggregate capacity

B(S)=YR.

teS

Basic demand coefficient per activity-day
ai,i(S) = a;; (only if t € S, otherwise zero).

b) multi-line cover determination (minimum cover set).
Find the minimal set of indices J(S) < {(i, t) : t € S}, such that

>, a(8)>B(S):

(<7 (s)

¢) spacing-based lifting. For each (i, t) € J(S), calculate the
lifted coefficient: @;,(S)=a;, (S)+1ift(i,t)|S,0,%, where lLifi(.)
adds a proportional penalty to activities adjacent (< 8) in S to
sharpen the contribution to cross-day capacity consumption;

d) evaluate violations & cutting depth. Calculate violations
against the aggregate limit

v(S) = z G (S)fci,t _B(S)‘

(i) (s)

Calculate the depth as the ratio of violations to the coef-
ficient norm

depth(S) = v(S)

select Sg © Scang containing the window with the largest
depth(S) and v(S) > &;

e) consistency filter for global relaxation. For each S € S,
test the validity of the slice against the relaxation support-
ing the master. If invalid, weaken the lifting coefficient
dm(S)zmaX ai,,(S), di,,(S)—S}, or discard the candidate;

f) add MTACC cuts to the master. Add multi-row lifted
cover inequalities

> @ (S)xi. <B(S),

(i1)eT(s)

for all Sse; < Scang that pass the test, with a limit on the number
of cuts per iteration (budget) to control the size of the master.

5.2. Evaluating the performance of multi-row time-ag-
gregated cover cuts

Let’s conduct testing on the parameter n,, used in MTACC
to optimize the scheduling of coffee plantation maintenance.
The parameter n, refers to the length of the time window
used in the aggregation process to form multi-row cover
cuts. The purpose of this analysis is to evaluate the effect of
changes in the n,, value on computational performance and
optimal solutions, as well as to assess the trade-off between
time efficiency and the quality of the resulting solutions.
Tables 5, 6 show the results of the MTACC test on the OA-RG
hybrid with n,, = 7 and n,, = 14.

The test results show that the optimality gap is usually
smaller at n,, =14 than at n, =7. The result means that
a longer time window gives solutions that are closer to
optimality. For example, at Insl, the optimality gap for
n, =7 is 0.86, while at n,, = 14, it becomes 0.32. This dif-
ference is reflected in most instances, indicating that using
n,, = 14 yields better solutions in terms of quality, although
there are some exceptions for large instances, such as Ins10
and Ins11.

From the perspective of computational time to solve the
optimization problem (convergence), the comparison between
the two parameters shows little difference. Fig. 3 presents
a comparison of convergence times between the two n,
MTACC parameters, which involve the master MILP time,
MTACC separation time, and RG subproblem time.

The convergence time for n, =7 yields longer results
compared to n, =14 on a small to medium scale (Insl to
Ins8), whereas on a large scale (Ins9 to Insl11), n,, = 7 is su-
perior to n,, = 14. Let’s also observe significant differences in
the master MILP time and MTACC separation. The master
MILP time for n, =7 tends to be greater than for n,, =14,
but the MTACC separation time for n,, =7 is smaller than
for n,, = 14 across all problem scales. This data indicates that
the parameter n,, = 7 yields more MTACC cuts than n,, = 14.
When combined with the master MILP, the master prob-
lem becomes larger and denser from iteration to iteration,
necessitating more time to process the increasingly com-
plex model.

Table 5
MTACC Test results with parameter n,, =7
Nyw=7
No. Instance Cor}vergence Optimality gap MII.‘P master MTACFI separation | Total time of RG sub Nu.mber. of OA
time (s) time (s) time (s) problems (s) iterations
1 Ins1 69.9 0.86 42.3 13.4 14.2 14
2 Ins2 120.9 0.77 61.8 29.6 29.5 29
3 Ins3 165.1 0.63 82.1 41.8 41.2 41
4 Ins4 218.7 0.45 104.7 57.3 56.7 56
5 Ins5 275 0.5 130.6 72.1 72.3 71
6 Ins6 334.8 0.52 159.9 87.5 87.4 86
7 Ins7 401.1 0.66 194.4 103.8 102.9 101
8 Ins8 470.5 0.74 235 118.3 117.2 116
9 Ins9 544.8 0.85 282.2 131.8 130.8 129
10 Ins10 623.3 0.88 337.6 138.2 147.5 146
11 Ins11 710 0.92 392.3 159.6 158.1 157




Table 6

MTACC Test results with parameter n,, = 14

n, =14
No. Instance Convergence Optimality ga MILP master | MTACC separation | Total time of RG sub Number of OA
time (s) P ty gap time (s) time (s) problems (s) iterations

1 Ins1 65.7 0.32 30.6 233 11.8 11

2 Ins2 111.7 0.38 46.2 38.9 26.6 26

3 Ins3 155.9 0.42 62.9 55.6 374 37

4 Ins4 208.7 0.48 81.6 73.3 53.8 52

5 Ins5 263.8 0.55 103.2 92.9 67.7 66

6 Ins6 325 0.58 129 113.7 82.3 81

7 Ins7 391 0.63 159.6 135.3 96.1 95

8 Ins8 466.7 0.75 196.2 158.9 111.6 110

9 Ins9 546.9 0.85 239.9 183.6 123.4 122

10 Ins10 641.3 0.95 291.7 209.4 140.2 139

11 Ins11 727.8 0.82 342.5 235.2 150.1 149
Comparison of Total Convergence Time by nw=7 and nw=14 From the perspective of the total number of global
700 iterations (OA), the parameter n, =14 successfully
reduced the number of OA iterations because it per-
_boo formed fewer MTACC cuts, which affected the OA it-
2500 erations globally (Fig. 4). In larger instances like Ins10
§400 and Insl1, changes in the n,, value have a significant
by impact on the number of iterations and computation
5300 time. For example, in Insl1, the number of iterations
200 for n,, = 7 is 157, while for n,, = 14, it decreases to 149.
This difference in the number of iterations shows that
100 n, =14 is more efficient in reducing the number of
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Fig. 3. Comparison of convergence time between parameter n,,

The longer separation time of MTACC at n,, = 14 is due
to the longer time window processed (14 days or two weeks)
being combined into a single piece (cover) for problems with
longer scheduling periods, thus increasing computational
complexity. This MTACC separation also impacts the global
number of iterations.
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iterations, even though it requires more time per itera-
tion. The difference in the number of OA iterations for
both parameters increases as the number of problems
(instances) used in the testing increases, even though
it comes at the cost of MTACC separation time.

From an optimality gap perspective, let’s use de-
tailed parameter data from 3 instances representing
each class: Ins3 for the small class, Ins7 for the medium
class, and Ins10 for the large class.

Fig. 5 shows a comparison of the optimality gap for the
parameter n,, in Ins3. The rate of gap reduction at n,, = 14 is
steeper in the first half of the iterations, reaching 84.34% in
18 iterations (with an average of 4.69% per iteration), com-
pared to n,, = 7, which reached 76.33% in 20 iterations (with
an average of 3.82% per iteration).

Comparison of the number of iterations between n_w=7 and n_w=14

Ins9 Insl0 Insll

Fig. 4. Comparison of the number of iterations for the parameter n,,



In the last half of the iterations, the gap
reduction for both n,, parameters shows
a more stable rate. At n,, = 14, the reduction
rate is 14.61% in 19 iterations, or an average
of 0.77% per iteration, while at n,, = 7, the re-
duction rate is 22.16% in 21 iterations, or an
average of 1.06% per iteration. Fig. 6 shows
a comparison of the optimality gap for the
parameter n, in the medium class (Ins7).
The difference in the rate of gap reduction
between the two parameters, n,, appears
significant. The gap reduction for n,, =14
is sharper in the first half of the iterations
than it is for n,,=7. At n,,= 14, the gap re-
duction reached 80.05% in just 47 iterations,
or an average of 1.70% per iteration, while
the gap reduction at n,, =7 reached 64.22%
in 50 iterations, or an average of 1.28%
per iteration. However, for the last half of
the iterations, the gap reduction speed for
n,, = 14 was lower than for n,, = 7, at 18.96%
in 48 iterations (an average of 0.39% per it-
eration) compared to 34.77% in 51 iterations
(an average of 0.61% per iteration).

Fig. 7 shows a comparison of the opti-
mality gap for the parameter n,, in the large
class (Ins10). In the large class, the decrease
in the optimality gap for both n,, parameters
shows relatively the same speed. There is
only a noticeable difference in the first 40 it-
erations, where the decrease in the gap for
ny, =14 is 66.59% (average 1.66% per itera-
tion) and for n,, = 7 is 65.81% (average 1.65%
per iteration). The remaining final iterations
show a smooth decrease in speed, where
n,, = 14 reaches 32.24% in 99 iterations (av-
erage 0.33% per iteration) and n,, = 7 reaches
33.14% in 106 iterations (average 0.31% per
iteration).

Fig. 8 shows a comparison of conver-
gence time versus the number of global
iterations between the two OA-RG hybrids.

Hybrid OA-RG testing using MTACC
(ny =7) and hybrid OA-RG without MTACC
was also conducted to evaluate this method.
This test aims to assess the differences in
convergence time and the number of OA
iterations, two parameters that are crucial
in evaluating the efficiency and solution
quality of the applied optimization method.
Without additional cutting strategies, the
OA-RG hybrid without MTACC relies solely
on the optimality cut and feasibility cut
available in OA. The hybrid with MTACC
significantly reduces convergence time and
the number of global iterations compared
to the hybrid without MTACC. The MTACC
evaluation was also conducted on other
cutting plane methods, particularly regard-
ing the total number of global iterations
generated during the convergence process.
Table 7 presents a comparison of the num-
ber of iterations derived from the computa-
tional test results.
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The number of iterations from these test results demon-
strates MTACC’s ability to handle the optimization of limited
key resource allocation, namely labor, with daily capacity
constraints and time-related constraints such as minimum
frequency rules, proportional distance, and varying optimal
time windows for each task to be performed.

5.3. Visualization of an optimization model for an
optimal plantation maintenance schedule

In this study use the area under the curve (AUC) to mea-
sure the performance of the n,, parameter by capturing the
dynamics of the gap reduction over iterations. AUC is used
as an aggregate measure of "total cumulative suboptimality”
during the convergence process to summarize how large (and

Table 7 for how long) the optimality gap persists throughout
Computational results: number of iterations the iterations.
Fig. 9 is a visualization of the maintenance sched-
In- MTACC Extended |  Dis- Per- | Aggre- | yle prototype, generated as the output of the MINLP
No. stance | (n, =14) IRScuts | cutting | junctive | spective | gation model, in Gantt chart format. This Gantt chart dis-
plane cuts cuts cuts . - . .

plays the plantation area ID and the time horizon in
L Insl 1 12 16 14 14 14 weeks. Inside, maintenance tasks are arranged and
2 Ins2 26 27 35 30 29 30 color-coded, with the number of workers allocated
3 Ins3 37 39 45 42 41 41 to each task. The number of maintenance tasks
4 Ins4 50 54 62 58 58 57 displayed indicates the frequency of task execution.
5 Ins5 66 69 30 72 7 - Table 8 presents the results of the AUC analy-
sis for each n,, parameter, with the average value
6 [ns6 81 84 % 8 8 88 calculated from the aggregation of the three in-

7 Ins7 95 98 110 101 102 100 stances (Ins3, Ins7, Ins10).
8 Ins8 110 115 130 122 122 119 Analysis of the n,, value shows that increasing the
9 Ins9 122 128 145 139 138 134 time window from n,, =7 to n,, = 14 has a significant
10 | Insio 139 145 165 155 155 151 impact on the pattern of decreasing optimality gap.
1 Insit 129 6 150 6o 169 163 The average AUC (abs) value decreased by approxi-
mately 21.6%, while the AUC per iteration decreased

by approximately 19.9%.

This decline indicates that throughout the iteration
process, the optimal gap trajectory was almost one-fifth
lower at n,, = 14 compared to n,, = 7. This impact indicates
an improvement in the efficiency of the convergence mech-
anism, where the optimization process not only rapidly
approaches the optimal value but also maintains a smaller
gap more stably throughout the iterations. The normalized
AUC value also decreased by 18.6%, indicating that the
superiority of n, =14 remained consistent even after ac-
counting for differences in initial scale and iteration length.
This indicates that the efficiency of n,, =14 is not merely
a result of data size or process length but truly stems
from better algorithmic performance in controlling the
optimality gap.
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Fig. 9. Visualization of the maintenance schedule prototype
Table 8
AUC analysis for each n,, value
Metric Average n,, =7 Average n,, = 14 A% (14 vs 7)
AUC (abs) 2019.19 1583.91 —-21.6
AUC per iteration 19.59 15.69 -19.9
AUC normalized 31.27 25.44 —18.6




6. Discussion of results of the hybrid method utilizing
multi-row time-aggregated cover cuts

This study resulted in a maintenance schedule for small-
holder coffee plantations with optimal resource allocation for
the limited resources optimization problem within an accept-
able computational time, using a hybrid approach of outer
approximation (OA) and reduced gradient (RG) enhanced by
multi-row time-aggregated cover cuts (MTACC).

The comparison results of the parameter values n, in
Tables 5, 6 show that the MTACC separation time signifi-
cantly contributes to the total time, especially for larger
problem scales. When n,, changes from 7 to 14, the average
time for the MILP master decreases by approximately 6.16%.
This analysis contrasts with the study in [19], which employs
large-scale problem-solving methods such as aggregation and
disjunctions, resulting in a very large and complex master
problem and causing numerical issues. MTACC introduces
a separation time influenced by the parameter nw. Comparing
the parameter n,, across each problem scale (Insl to Ins11)
reveals the impact of separation time on the overall total time
(convergence time), particularly the time to solve the MILP
master and subproblems, as shown in Fig. 3. This indicates
a trade-off between the efficiency of the MILP formulation
and the complexity of MTACC. The larger the value of n,,
the more temporal information MTACC must handle, which
improves the model but slows down constraint separation.
The average separation time increased by 36.65%, while
the contribution of separation time to the Master MILP in-
creased by 35%, and the contribution of separation time to
convergence time increased by 10.10%. This data confirms
that MTACC becomes an increasingly dominant component
as the n,, parameter increases (from 7 to 14), with more
"computational cost” spent on the separation process (cut-
ting plane separation). The change also impacts the number
of global iterations (representing the number of MTACC
pieces), which decreases as shown in Fig. 4. This analysis
differs from the study [25], which increases the complexity of
subproblems per iteration and still requires a global strategy
when non-convexity occurs.

The comparison of the n,, parameter in MTACC has been
proven to improve the quality of the optimality gap, with
a sharper decrease in the gap in the first 30%-40% of itera-
tions and a tighter decrease in the remaining iterations until
convergence is reached, as shown in Fig. 5-7. Unlike previ-
ous research such as [16, 18, 21, 22, 27], MTACC has aggre-
gation control parameters, which provide better reinforce-
ment than simply processing constraints one by one; the
result includes optimal gap reduction, which requires many
cutting iterations to achieve convergence. Table 7 shows
that the average number of iterations for other cutting
methods compared to MTACC increased by 4.38% to 19.71%,
with a standard deviation ranging from 104.41% to 117.18%.
The increase indicates the instability of these methods’ per-
formance across instances.

Although hybrids without MTACC and classical OA,
like the study in[12], did not produce separation time,
their convergence time was greater with a larger number of
iterations compared to using MTACC, as shown in Fig. 8.
Quantitatively, MTACC is able to accelerate the average
convergence time by 12.84% compared to MTACC without it.
This decrease indicates that the cutting plane mechanism
generated by MTACC successfully narrowed the solution
space from the initial iteration, thus eliminating the need

for the solver to explore irrelevant areas to reach the opti-
mal point. The number of OA iterations also went down
sharply, to 38.83%, which shows that the model with
MTACC reached stability faster and needed fewer master
relaxation updates.

The results of this study indicate that the MTACC-based
optimization model can be effectively applied to optimize
coffee plantation maintenance scheduling with limited re-
sources, particularly in terms of labor allocation and daily
capacity constraints. Based on the testing (Tables 5 and 6)
with small- to medium-scale coffee plantation data (such as
Ins1 to Ins5), this model shows a significant improvement in
convergence time efficiency and a reduction in the number
of iterations. On a larger scale, as reflected in Ins9 to Insl1,
this model is also able to reduce labor allocation errors that
can occur due to inaccuracies in manual scheduling.

The results of this research can be applied to real-world
coffee plantation environments with hilly topography and
land areas of up to hundreds of hectares. This model is suit-
able for use by small farmers or plantation managers who
have low-specification computing devices such as smart-
phones, allowing it to be used as a decision support system
based on simple computing devices. The application of this
model can reduce operational costs by optimizing labor al-
location according to daily capacity and more efficient task
execution frequency rules, improve time efficiency in mainte-
nance scheduling, which can speed up task completion time
without sacrificing work quality, and improve the quality of
harvest results by maintaining proportional distance rules
between different tasks (e.g., pruning, fertilizing, and pest
control) and ensuring tasks are performed at optimal times
for the best results.

This study is limited to only testing performance in deter-
ministic cases without considering labor productivity uncer-
tainty or weather variations that could affect the validity of
the optimal time window. This allows for further studies by
integrating stochastic programming methods to accommodate
uncertainty.

The disadvantages of this study stem from the MTACC
formulation, which depends on the static parameter of the
time window length (n,,), resulting in the truncation’s ef-
fectiveness varying across institutions and failing to adapt
dynamically to the iterations’ dynamics. Therefore, further de-
velopment could be directed toward the dynamic adaptation
of MTACC parameters or considering adaptive mechanisms
for selecting n,, (based on load density/violation) to address
these disadvantages.

7. Conclusion

1. The development of this system’s architecture demon-
strates that the hybridization of outer approximation (OA)
and reduced gradient (RG), enhanced by multi-row time-ag-
gregated cover cuts (MTACC), results in an effective ap-
proach for addressing combinatorial optimization problems
in complex coffee plantation maintenance. This hybrid
architecture is designed to optimize the allocation of limited
resources more efficiently through more structured problem
decomposition and the use of time-aggregated-based cut-
ting techniques, which improves accuracy in maintenance
scheduling.

2. Performance evaluation of the feature value n,, MTACC
shows an average decrease in master MILP time of up



to 6.16% and an increase in average contribution to con-
vergence time of up to 10.10%. Comparative evaluation of
MTACC with other cutting methods shows a significant
reduction in the number of iterations of up to 38.83%
and an increase in convergence speed of 12.84%. This
indicates that MTACC is more efficient in optimizing
computation time and producing faster and more stable
solutions.

3. Model data visualization produces a maintenance
schedule that displays the results of optimizing labor alloca-
tion on plantation land to perform maintenance tasks/stages
without violating constraints accurately based on the test
results of AUC (abs) V21.6%, AUC per iteration V19.9%, and
normalized AUC value V18.6%.

Conflict of interest

The authors declare that they have no conflict of interest
in relation to this study, whether financial, personal, author-
ship or otherwise, that could affect the study and its results
presented in this paper.

Data availability

Manuscript has no associated data.

Use of artificial intelligence

The authors declare the use of generative Al in the re-
search and preparation of the manuscript. Tasks delegated to
generative Al tools under full human supervision: generation
of methodological approaches or identification of viable mod-
els for the initial proposal for further testing by the authors
during the study; visualizing the original author’s data in the
form of figures.

Declaration submitted by: Eko Hariyanto.

Authors’ contributions

Eko Hariyanto: Conceptualization, Methodology, Soft-
ware, Formal Analysis, Investigation, Resources, Data Cura-
tion, Writing Original Draft Preparation, Visualization; Poltak

Sihombing: Methodology, Formal Analysis, Investigation,
Writing Review and Editing; Erna Budhiarti Nababan:
Methodology, Formal Analysis, Writing Review and Editing;
Sawaluddin Sawaluddin: Methodology, Formal Analysis,
Writing Review and Editing.

Financing

The study was performed without financial support.

References

1. Tharatipyakul, A., Pongnumkul, S., Riansumrit, N., Kingchan, S., Pongnumkul, S. (2022). Blockchain-Based Traceability System From the
Users’ Perspective: A Case Study of Thai Coffee Supply Chain. IEEE Access, 10, 98783-98802. https://doi.org/10.1109/access.2022.3206860
2. Wulandari, S., Djufry, F., Villano, R. (2022). Coping Strategies of Smallholder Coffee Farmers under the COVID-19 Impact in Indone-
sia. Agriculture, 12 (5), 690. https://doi.org/10.3390/agriculture12050690
3. Parmawati, R., Risvita, W., Hakim, L., Rahmawati, N. O., Gunawan, F. K., Ashari, F. M., Haqqji, S. S. (2023). Sustainability Index of
Robusta Coffee Plantation (Case Study: Wagir District Smallholder Coffee Plantation in Malang, Indonesia). International Journal of
Design & Nature and Ecodynamics, 18 (2), 279-288. https://doi.org/10.18280/ijdne.180205
4. Hartoyo, A. P. P, Hutagalung, L., Kulsum, F., Sunkar, A., Herliyana, E. N., Hidayati, S. (2023). Species composition, structure, and
management in gayo coffee-based agroforestry system. Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan (Journal of Natural
Resources and Environmental Management), 13 (1), 37-48. https://doi.org/10.29244/jpsl.13.1.37-48
5. Jiang,Y., Chen, L., Fang, Y. (2018). Integrated Harvest and Distribution Scheduling with Time Windows of Perishable Agri-Products
in One-Belt and One-Road Context. Sustainability, 10 (5), 1570. https://doi.org/10.3390/su10051570
6. Hajirad, I., Ahmadaali, K., Liaghat, A. (2025). Crop yield and water productivity modeling using nonlinear growth functions. Scientific
Reports, 15 (1). https://doi.org/10.1038/s41598-025-16096-0
7. Abd El Baki, H. M., Fujimaki, H., Tokumoto, I., Saito, T. (2024). Optimization of irrigation scheduling using crop-water simulation,
water pricing, and quantitative weather forecasts. Frontiers in Agronomy, 6. https://doi.org/10.3389/fagro.2024.1376231
8. Baghizadeh, K., Cheikhrouhou, N., Govindan, K., Ziyarati, M. (2021). Sustainable agriculture supply chain network design consider-
ing water-energy-food nexus using queuing system: A hybrid robust possibilistic programming. Natural Resource Modeling, 35 (1).
https://doi.org/10.1111/nrm.12337
9. Baihaqi, A,, Sofiana, U., Usman, M., Bagio, B. (2022). Risk analysis of arabica coffee supply chain in Aceh Tengah regency, Aceh Prov-
ince, Indonesia. Coffee Science, 16, 1-9. https://doi.org/10.25186/.v16i.1984
10. Krongyvist, J., Bernal Neira, D. E., Grossmann, 1. E. (2025). 50 years of mixed-integer nonlinear and disjunctive programming. Europe-
an Journal of Operational Research. https://doi.org/10.1016/j.ejor.2025.07.016
11. Patty, S., Das, R., Mandal, D., Roy, P. K. (2025). Self-adaptive multi-population quadratic approximation guided jaya optimization
applied to economic load dispatch problems with or without valve-point effects. Results in Control and Optimization, 19, 100543.
https://doi.org/10.1016/j.rico.2025.100543
12. Linén, D. A,, Ricardez-Sandoval, L. A. (2025). Trends and perspectives in deterministic MINLP optimization for integrated planning, sched-
uling, control, and design of chemical processes. Reviews in Chemical Engineering, 41 (5), 451-472. https://doi.org/10.1515/revce-2024-0064
13. De Mauri, M., Gillis, J., Swevers, J., Pipeleers, G. (2020). A proximal-point outer approximation algorithm. Computational Optimiza-
tion and Applications, 77 (3), 755-777. https://doi.org/10.1007/s10589-020-00216-9



14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

Liu, Z. E., Long, W,, Chen, Z., Littlefield, J., Jing, L., Ren, B. et al. (2024). A novel optimization framework for natural gas transporta-
tion pipeline networks based on deep reinforcement learning. Energy and Al, 18, 100434. https://doi.org/10.1016/j.egyai.2024.100434
Wu, O., Muts, P., Nowak, 1., Hendrix, E. M. T. (2024). On the use of overlapping convex hull relaxations to solve nonconvex MINLPs.
Journal of Global Optimization, 91 (2), 415-436. https://doi.org/10.1007/s10898-024-01376-2

Kohar, A., Jakhar, S. K., Agarwal, Y. K. (2023). Strong cutting planes for the capacitated multi-pickup and delivery problem with time
windows. Transportation Research Part B: Methodological, 176, 102806. https://doi.org/10.1016/j.trb.2023.102806

Melo, W., Fampa, M., Raupp, F. (2020). Two linear approximation algorithms for convex mixed integer nonlinear programming.
Annals of Operations Research, 316 (2), 1471-1491. https://doi.org/10.1007/s10479-020-03722-5

Javaloyes-Antén, J., Kronqvist, J., Caballero, J. A. (2022). Simulation-based optimization of distillation processes using an extended
cutting plane algorithm. Computers & Chemical Engineering, 159, 107655. https://doi.org/10.1016/j.compchemeng.2021.107655
Muts, P., Nowak, I., Hendrix, E. M. T. (2020). The decomposition-based outer approximation algorithm for convex mixed-integer non-
linear programming. Journal of Global Optimization, 77 (1), 75-96. https://doi.org/10.1007/s10898-020-00888-x

Deza, A., Khalil, E. B. (2023). Machine Learning for Cutting Planes in Integer Programming: A Survey. Proceedings of the Thirty-
Second International Joint Conference on Artificial Intelligence, 6592-6600. https://doi.org/10.24963/ijcai.2023/739

Krongqyvist, J., Misener, R. (2020). A disjunctive cut strengthening technique for convex MINLP. Optimization and Engineering, 22 (3),
1315-1345. https://doi.org/10.1007/s11081-020-09551-6

Bestuzheva, K., Gleixner, A., Vigerske, S. (2023). A computational study of perspective cuts. Mathematical Programming Computa-
tion, 15 (4), 703-731. https://doi.org/10.1007/512532-023-00246-4

Lundell, A., Krongyvist, J., Westerlund, T. (2022). The supporting hyperplane optimization toolkit for convex MINLP. Journal of Global
Optimization, 84 (1), 1-41. https://doi.org/10.1007/s10898-022-01128-0

Vo, T., Baiou, M., Nguyen, V. H., Weng, P. (2025). Learning to Cut Generation in Branch-and-Cut Algorithms for Combinatorial Opti-
mization. ACM Transactions on Evolutionary Learning and Optimization, 5 (3), 1-27. https://doi.org/10.1145/3728371

Peng, Z., Cao, K., Furman, K. C., Li, C., Grossmann, L. E., Neira, D. E. B. (2024). A Convexication-based Outer-approximation Method
for Convex and Nonconvex MINLP. 34th European Symposium on Computer Aided Process Engineering / 15th International Sympo-
sium on Process Systems Engineering, 3211-3216. https://doi.org/10.1016/b978-0-443-28824-1.50536-6

Lundell, A., Krongqvist, J. (2021). Polyhedral approximation strategies for nonconvex mixed-integer nonlinear programming in SHOT.
Journal of Global Optimization, 82 (4), 863-896. https://doi.org/10.1007/s10898-021-01006-1

Bodur, M., Del Pia, A., Dey, S. S., Molinaro, M., Pokutta, S. (2017). Aggregation-based cutting-planes for packing and covering integer
programs. Mathematical Programming, 171 (1-2), 331-359. https://doi.org/10.1007/s10107-017-1192-x

Zhang, Y., Chang, R., Omrany, H., Zuo, J., Burry, J., Gu, N. (2025). Policy-gradient scheduling optimisation under multi-skill con-
straints: A comparative study on computational algorithms. Journal of Building Design and Environment. https://doi.org/10.70401/
jbde.2025.0017



