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This study’s object is the approx-
imation of a non-swept helical tubu-
lar surface by strips of sweeping sur-
faces (toruses) and the construction of
sweeps of these strips.

Approximating non-swept tubular
surfaces by sections of sweep ones is
a common practice in the design of var-
ious types of pipelines. A clear example
of such an approximation is a sports
ball whose outer shell consists of a cer-
tain number of separate elements. These
elements must fit most tightly to the
non-swept surface along its certain
lines. Such lines are the lines of cur-
vature. The task is to find these lines
on the surface in order to subsequently
analytically describe the torus strip,
which is tangent to the non-swept sur-
face along this line.

As is known, there are two families
of mutually perpendicular lines of cur-
vature on surfaces. This paper consid-
ers a family of curvature lines that has
advantages over another one in terms
of approximation. This explains the
results reported here. Their special fea-
ture is that in order to find the desired
family of curvature lines, it is neces-
sary to solve a differential equation.

The solution to this equation was
borrowed from a scientific article and
used for further calculations. The results
were visualized in the form of an approx-
imated tubular surface with four and
six strips.

The sweeps of these strips were con-
structed for a tubular surface, in which
the center line is a helical line r=1. All
dimensions are given in linear units.
Instead of a circle generatrix, it is given
by the radius of the cylinder a=2,
which hosts it, and the helical parame-
ter b=1.5 (step H=9.4). The radius of
the circle generatrix of the tubular sur-
face of the original tubular surface in
the approximated surface in the given
examples is a polygon (square or equi-
lateral hexagon)
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1. Introduction

connect individual sections. This leads to an increase in the

number of seams, a decrease in the strength and tightness

Existing approximation methods (for example, based on  of structures.

B-splines [1]) do not provide surface continuity, which com-

With the advent of 3D scanning, surface approximation

plicates the manufacture of pipelines because of the need to  based on point clouds [2] is becoming more widespread.




Researchers focus on constructing accurate and smooth sur-
faces from discrete data. Another area is surface reconstruc-
tion based on a set of images.

A cylinder with a straight center line can be considered
a tubular surface. If the center line is curved, then the tubu-
lar surface is non-swept, that is, it cannot be manufactured
by simply bending sheet material like a cylinder. A relevant
task is to simplify the technology for manufacturing a tubular
helical surface. Such a simplification could be achieved by ap-
proximating it with pieces of unfolded surfaces in cases when
this does not compromise operational properties. The method
is especially relevant for:

- pipelines (oil, gas, chemical industry), where surface
continuity is critical for tightness;

- sports equipment (for example, balls), where reducing
the number of seams improves aerodynamics and strength;

- aircraft structures, where lightness and strength are key
requirements.

The task of approximating non-swept surfaces by sweep-
ing ones may arise while using an article and when the
working surface wears our. The results of appropriate studies
are needed by practitioners because they could simplify the
manufacture or repair of non-swept surfaces [3, 4]. This pre-
determined the relevance of our study.

2. Literature review and problem statement

In [5], the results of studies on the reconstruction of sweep-
ing surfaces using neural implicit models are reported. It is
shown that the use of a regularization term based on second-
order derivatives makes it possible to achieve zero Gaussian
curvature. This provides smooth deformations of surfaces with
infinite resolution, overcoming the limitations of discrete rep-
resentations. However, issues related to the approximation
of complex 3D shapes, in particular tubular helical surfaces,
where it is necessary to take into account the specificity of two
families of curvature lines, remain unresolved. A likely reason is
difficulties associated with the need for an analytical description
of the strips of sweeping surfaces, which makes neural models
insufficiently effective for practical application in engineering.

In [6], a method for calculating a piecewise linear sur-
face that approximates an arbitrary free-form mesh surface is
proposed. It is shown that optimizing a given mesh shape to
an approximately piecewise linear shape allows for improved
alignment with the target shape. However, the method requires
a preliminary representation of the surface in the form of para-
metric models, which complicates its application for tubular
helical surfaces. The reason is the computational cost, as well as
the inability to ensure the continuity of the strip approximation,
which makes the study impractical for industrial tasks.

In [7], a method for discretizing linear surfaces for their
manufacture is described. It is shown that discretization
makes it possible to create complex shapes from linear surfac-
es while preserving their sweep. However, issues related to the
approximation of tubular helical surfaces remain unresolved.
The reason is the limitation of the method in ensuring the ac-
curacy of approximation for surfaces with complex geometry.

In [8], an approximation method is reported, which uses
a classical definition from differential geometry. It is shown
that the iterative process of thinning the Gaussian image of
the surface and its deformation make it possible to achieve
high accuracy. However, the issue of approximating tubular
helical surfaces by strips of sweeping surfaces, rather than

by separate sections, remains unresolved. This limits the ap-
plication of the method to surfaces that require a continuous
description, for example, in the production of pipelines.

In [9], an approach to segmentation and approximation of
triangular meshes is proposed. It is shown that the detection
of exact regions and their approximation makes it possible to
calculate parametric equations for milling on machine tools.
However, the method does not take into account the specific-
ity of tubular helical surfaces, where it is necessary to ensure
the continuity of the strips of sweeping surfaces along the
lines of curvature. The reason is the limitation of the method
with respect to the topology of the surface, which makes it
unsuitable for approximating complex helical shapes.

A separate area is the approximation of non-swept sur-
faces by pieces of sweeping ones. The main idea is to automat-
ically divide a complex 3D model into a set of small sections,
each of which can be replaced by the corresponding section of
the sweeping surface. This process helps in production when
complex shapes are created from flat materials, such as sheet
metal. An example of such an approach is work [10], in which
the division of a non-swept surface into separate sections is
proposed based on the search for geodesic lines on it.

In [11], the approximation of a sphere is considered not
by pieces, as is done on sports balls, but by a continuous strip
of a sweeping surface. In this case, the line of contact of the
strip with the surface is a line of curvature. Since for a sphere
every line on it is a line of curvature, the search was reduced to
finding a line of rational form. However, for a tubular helical
surface, where the lines of curvature have a more complex
geometry, this approach requires adaptation. The reason is dif-
ficulties associated with the need to take into account two fam-
ilies of curvature lines, which makes the corresponding studies
impractical without the development of special algorithms.

One option to overcome the difficulties is to apply classical
methods of differential geometry for finding the lines of cur-
vature and constructing tangent strips of sweeping surfaces.
This is the approach used in [12], but it does not take into
account the possibility of approximating a tubular helical
surface by continuous strips.

All this allows us to state that it is advisable to conduct
a study aimed at devising a method for approximating a tubular
helical surface not by pieces but by strips of sweeping surfaces.

3. The aim and objectives of the study

The aim of our research is to devise a method for approxi-
mating a helical tubular surface by strips of sweeping surfaces.
This will simplify the technology of its manufacture and repair.

To achieve this goal, the following tasks were set:

- to find parametric equations for strips of sweeping sur-
faces that uniformly wrap around a tubular helical surface;

- to construct strip sweeps that approximate the surface.

4. The study materials and methods

The object of our study is the process of approximating
a helical tubular surface by strips of sweeping surfaces and
constructing their sweeps. One family of curvature lines of
a tubular surface is a set of circles — curves of the normal
cross-section of the surface. It was hypothesized that the
tubular surface should be approximated by strips tangent to
asecond family of curvature lines, which are perpendicular



to the first. It was assumed that when approximating the
surface along its curvature lines, the strip width would be con-
stant. A simplification is to ignore the thickness of the sheet
material when bending the sweep into the desired shape.

The axis of the tubular surface is the curve of the centers
of the set of circles perpendicular to this curve. For a tubular
helical surface, this is a helix, which is given by radius a of
the cylinder on which it is located, and the helix parameter b,
through which its pitch H = 2zb is determined. If a circle of
radius p is placed at each point of the helix, then the set of
circles will form the frame of a tubular surface. Its parametric
equations take the following form [12]:

bsinv

X =acosa — p| cosacosy——————sina |;
\a? +b?

bsinv

Y =asina — p| sina cosv+————==cos« |;
\a? +b?

apsinv
T
va? +b?

where a and v are independent surface variables that have
a physical meaning: o is the angle of rotation of a point
around the axis of the helix when it moves along it; v is the
angle of rotation of a point around the center of the circle
when it moves along it.

Parametric equations (1) describe a helical tubular sur-
face, in which only one family is a family of curvature lines,
namely a frame of circles of radius p. The second family of
curvature lines, perpendicular to the first, is of interest. As
a result of solving the differential equation in [12], a transition
to new surface variables is given, which provide the assign-
ment of the surface to two families of coordinate lines, which
are curvature lines

Z=ba+ )

s bs

—_— V=W 2
va? +b?

a?+b?’

where s is a new independent surface variable - the length
of the arc of the center line; u is the second independent
variable — also an angle that varies within w = 0...27z, which
provides closed circle generatrixes of the surface.

In Fig. 1, a, one revolution of the surface is constructed
according to equations (1), and in Fig. 1, b - when switching
to new variables according to formulas (2).

o=

Fig. 1. Tubular helical surface at a=2; b= 1.1;
p =1 with a selected line of curvature on it: a — a family of
lines of curvature is only the frame of the circle generatrixes;
b — both families of coordinate lines are lines of curvature

In the first case, the grid of coordinate lines is not orthog-
onal, and in the second - orthogonal, because both families
of coordinate lines are lines of curvature. If we take w = const
in the second dependence (2), then a line of curvature of the
second family will stand out on the surface. From Fig. 1, a,
it is clear that it is not one of the lines of curvature, but in
Fig. 1, b - it is.

The next stage is the construction of a strip of a sweeping
surface tangent to the helical tubular surface along the line of
curvature, highlighted in Fig. 1 by a thick line. For this pur-
pose, the apparatus of differential geometry was used.

5. Mathematical description of strips of sweeping
surfaces that approximate a tubular helical surface,
their sweeps

5.1. Parametric equations of strips tangent to the
tubular surface along lines of curvature

A tangent sweeping surface is located as the boundary
surface of a set of tangent planes along a given line of curva-
ture. A separate tangent plane is perpendicular to the normal
of the tubular surface, constructed at a separate point of the
line of curvature. Therefore, it is necessary to determine the
coordinates of the normal to the tubular surface (1) along the
line of curvature. The normal vector N is the vector product
of vectors tangent to the coordinate lines. These vectors are
partial derivatives from equations (1) taking into account (2)
with respect to variables s and w. Thus, we can write:

X Y Z
N=|X, Y. Z.. (3)
Xy Yo Z,

The subscripts in (3) indicate the variable in which the par-
tial derivatives of the equations of the tubular surface are found.

Differentiation of equations (1) in variables s and w, expan-
sion of the determinant (3) was carried out using the symbolic
mathematics product "Mathematica”. The vector obtained in
projections onto the coordinate axis was reduced to the unit
vector. Its components take the following form:

N, =cosacosv— sina sinv;

b
\a? +b?
b

N, =sinacosv+ cosa sinv;
2 2
a‘+b
a .
N, =—————=siny, 4
a’+b?

where the expressions of angles « and v in terms of indepen-
dent variables s and w are given in (2).

The direction vector I of a rectilinear generating of sweep-
ing surface, which passes through the point of its contact with
the tubular surface, is determined by the vector product of
vector (4) by its derivative vector [11]:

X Y z
I=|N, N, N,| (5)
Ny Ny Ny

The projections of the normal vector (4) must be differ-
entiated with respect to variable s because for the chosen line
the curvature w = const. After differentiation, expansion of the



determinant (5) and reduction of vector L to the unit, one can
find its projections:

I, =cosasinv+ sina cosv;
a’+b?
I, =sinasinv— COS QL COSV;
2 2
a*+b
I,= cosv, (6)

a
‘ \a? +b?

where the expressions of angles & and v in terms of indepen-
dent variables s and w are given in (2).

The straight-line generatrixes of the tangential sweeping
surface intersect the line of curvature parallel to the direction
vector (6). In this regard, we can write the parametric equa-
tions of the sweeping surface tangent to the tubular surface:

X =x(s)+ul,;
Y, :y(s)+uIy;
Z,=z(s)+ul,, (7

where x(p), y(y), z(y) are parametric equations (1) taking into
account (2) the line of curvature. They are marked with lower-
case letters because at w = const these equations are no longer
equations of the surface but equations of a line on it, which is
the line of curvature. u is the second independent variable of
the surface - the length of the straight-line generatrix of torus;
I, I, I, are the coordinates of the direction vector (6) of the
straight-line generatrix of sweeping surface.

Based on equations (7), Fig. 2, a shows a tangent strip
to the turn of the tubular surface along its line of curvature.
The width of the strip depends on the limits of change in
parameter u.

Fig. 2. Surfaces constructed at a=2; b= 1; p = 1: @ — a turn of a tubular
surface with a strip of the sweeping surface tangent to the line of curvature;
b — two turns of a tubular surface approximated by four strips; ¢ — a turn

of a tubular surface approximated by six strips

One can choose the desired number of strips. By plac-
ing them alternately at equal intervals of parameter w,
one can wrap a tubular surface. For example, with four
strips, the interval of the parameter is w=2z/4=7x/2. In
Fig. 2, b, the numbers indicate the strip numbers: 1 - at w = 0;

2-atw=mx/2;3-atw=m;4-atw=3x/2.The length of the
straight-line generatrix of the strip varied within u=-1...1,
which corresponds to the side of a square circumscribed
around a circle of radius p = 1. In Fig. 2, ¢, the tubular surface
is approximated by six strips, which corresponds to the inter-
val of the parameter: w =7/ 3.

5.2. Mathematical description of the sweeps of
strips tangent to the tubular surface, as well as their
construction

To construct the sweeps, the well-known provision from
differential geometry was taken as the basis, according to
which the geodesic curvature k; of the curve on the sweeping
surface and on its sweep remain unchanged. Since the line of
curvature on the tubular surface is the common line of tan-
gency of the strip of the swept surface, they will have a com-
mon geodesic curvature. It is determined from the following
determinant:

k, = §3lzf N’y I\z]'z (8)
“la) |t 2 )
X z

where Ny, N,, N, are projections of the unit normal vector (4);
x',y',z',x", y", 2" — the first and second derivatives are the
derivatives from the equations of the curvature line (1), (2)
with respect to variable s at w = const; ds/dl=1: (dl / ds). The
expression dl/ds is the derivative of the arc length [ of the
tangent line, i.e. the curvature line. It is determined through
the first derivatives of the curvature line using the follow-
ing formula

dlfds =[x +y?+7% =

-1--2P cos[w— bs j 9)

a’+b? a? +b?

After calculations, the expression for geo-
desic curvature kg takes the form

asin| w— bs
a’+b?

. (10)
a’+b?>—apcos| w—
P ( a2+b2j

kg =—

According to the known dependence of
geodesic curvature (10) of the curve on the sur-
face, its equation on the sweep can be derived
using the following expressions:

Xo :Jcos(fkgdl)dl;
o= sin( | kgdl)dl. (11)

The expression in parentheses (11) is the
angle y of rotation of the tangent to the curve

on the sweep. It can be integrated taking into
account the dI expression from (9)

a . bs
y:fkgdl=ja2+b2 31n(w—a2+b2st—

——Ecos W—L
b a’+b? )

(12)



Further substitution (9) and (12) in (11) yields the follow-
ing expressions:

ap bs .
X —Jcosy{l—a2+b2 cos(w—az+b2 ﬂds,

. ap bs
=|siny|1- cos| w— ds.
Yo '[ 7{ a?+b? ( a2+b2ﬂ

To construct curve (13), which is the line of contact of the
strip of the swept surface on its sweep, it is necessary to ap-
ply numerical integration. Through this curve on the sweep,
a straight-line generatrix of the strip passes perpendicular
to it. Based on this, we can write the parametric equations of
the sweep:

13)

a bs .
X, —J-cosy{l—a2 sz COS(W_a2+b2 Hds—usmy;

. a bs
Y, :-[Slm{l_az sz COS[W_a2+b2 Hds+ucosy. (14)

There is a technique to check the correspondence of the
equations of a swept surface in space and its sweep in a plane.
A sufficient condition for such correspondence is their com-
mon first quadratic form. It was found for surface (7) and its
sweep (14) but is not given because of its cumbersome form.

According to equations (14), strip sweeps were constructed
that approximate a tubular surface. For two turns of the folded
surface (Fig. 2, b), the four-strip sweeps take the following
form (Fig. 3).

It should be noted that the shape of the strip sweeps de-
pends on the ratio of the structural parameters of the surface
a, b, and p. When the pitch of the axial line of the tubular
surface decreases, that is, when the helical parameter de-
creases from b=1 to b=0.9, the strips will begin to overlap
themselves, which will lead to the need to break them into
parts. This also applies to increasing radius p of the circle
generatrix, as well as changing parameter a.

To check the reliability of our results, a full-scale model
was made from paper by connecting the sweeps of three
strips. The sweep under number 4 was not included in the
model (Fig. 4) since the straight-line generating strips along
which the bending is carried out and which are located inside
the approximated surface would not be visible.

If we find the sweep of individual turns of the approx-
imated surface as their number increases, we can see that
individual turns of a smaller size (Fig. 3) can be cut out of the
general strip (Fig. 5).

Fig. 4. A full-scale model made by connecting the sweeps
of individual strips

Fig. 5. Periodicity of the contours of the strip sweep
of the approximated surface as the number
of its turns increases

Individual elements of the strip (Fig. 5) are periodically
repeated.

6. Results of approximating a helical tubular
surface by strips of sweeping surfaces: discussion

Each non-swept surface can be approximated by
pieces of sweeping surfaces. In this case, the question
arises about choosing such pieces of sweeping surfaces
and their size so that the approximation of a non-swept
41 surface by pieces of sweeping surfaces most accurately
reproduces it. In work [13], the construction of a he-
lical surface from sections of a sweeping helicoid was

X proposed, in [14] - the construction of a sweeping

Fig. 3. The sweeps of strips corresponding to the folded surface

in Fig. 2, b (the numbers indicate corresponding strips
on the surface and on the sweep)

surface passing through a helical line of variable pitch.
Unlike [13, 14], in this study, we have confirmed the
hypothesis that the surface should be approximated
along the lines of curvature perpendicular to the family
of circle generatrixes, which are also lines of curvature.



For this purpose, a transition was made from equations (1),
in which the lines of curvature were only one family of coor-
dinate lines — the frame of circle generatrixes - to equations
with two families of curvature lines. To this end, a transition
was made from independent variables o and v to the new
independent variables s and w according to expressions (2).
For the value w = const on the surface, a line of curvature
corresponds (Fig. 1). Along it, a tangent strip of the sweeping
surface is constructed (Fig. 2, a), the equation for which is
given in (7). By dividing the value w = 27 into an equal num-
ber of parts, we obtain a division of the circle generatrix of the
tubular surface into equal parts. Each part corresponds to its
own line of curvature, along which strips of tangent sweep-
ing surfaces are constructed. In Fig. 2, b, there are four such
strips, and in Fig. 2, c, there are six.

To find the parametric equations (7) of the tangent strip
from the sweeping surface, the means of differential geometry
and vector algebra were used. They allowed us to find the pro-
jections of the unit vector of the rectilinear generating sweep-
ing surface by expanding the determinant (5). Owing to this
approach, strips were constructed that approximate the helical
tubular surface on any number of its turns. This gives an advan-
tage over other approximation techniques in which the section
of the sweeping surface is not a strip but a small piece [10].
In addition, the research does not end there but continues
with the construction of the sweeping tangent strips. For this
purpose, the differential geometry proposition that the geodesic
curvature of the strip’s tangent line is the same in space and on
its sweeping surface was again used. It was found by expanding
the determinant (8), which made it possible to derive the para-
metric equations (14) of the strip sweep.

The limitations of our study relate to the fact that the
strip cannot be made continuous at a certain ratio of design
parameters a, b, and p. For example, in Fig. 3, the sweeps are
constructed for the extreme position, when their contours do
not overlap each other. When the surface pitch is reduced or
the circle generatrix is increased, overlapping occurs and the
strip cannot be continuous. The disadvantage is that numeri-
cal integration methods must be used to construct the sweeps
according to equations (14), which are depicted in Fig. 3.

Future studies should involve approximating surfaces with
a variable value of the circle generatrix, which are termed
channel surfaces.

this helical line. If a second family of lines perpendicular to
the family of circles is found, then along them it is possible
to approximate the surface by continuous strips. The strips
have a constant width, which depends on their number. Af-
ter such an approximation, the cross-section of the surface
by a plane perpendicular to the axis is a regular polygon, the
number of sides of which is equal to the number of strips.
In particular, with four strips, the cross-section is a square.

2. Parametric equations of the sweeps of strips have
been derived; their contours were constructed when the
number of strips is four. The basis for finding the sweep
is the provision from differential geometry implying that
the geodesic curvature and the length of the arc of a line
on the surface and on its sweep are the same. To construct
the sweeps based on our equations, numerical integration
was performed. To verify the reliability of the results, the
individual obtained sweeps of strips were connected into an
approximated helical tubular surface.
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