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This study’s object is the approx-
imation of a non-swept helical tubu-
lar surface by strips of sweeping sur-
faces (toruses) and the construction of 
sweeps of these strips.

Approximating non-swept tubular 
surfaces by sections of sweep ones is 
a common practice in the design of var-
ious types of pipelines. A clear example 
of such an approximation is a sports 
ball whose outer shell consists of a cer-
tain number of separate elements. These 
elements must fit most tightly to the 
non-swept surface along its certain 
lines. Such lines are the lines of cur-
vature. The task is to find these lines 
on the surface in order to subsequently 
analytically describe the torus strip, 
which is tangent to the non-swept sur-
face along this line. 

As is known, there are two families 
of mutually perpendicular lines of cur-
vature on surfaces. This paper consid-
ers a family of curvature lines that has 
advantages over another one in terms 
of approximation. This explains the 
results reported here. Their special fea-
ture is that in order to find the desired 
family of curvature lines, it is neces-
sary to solve a differential equation. 

The solution to this equation was 
borrowed from a scientific article and 
used for further calculations. The results 
were visualized in the form of an approx-
imated tubular surface with four and  
six strips. 

The sweeps of these strips were con-
structed for a tubular surface, in which 
the center line is a helical line r = 1. All 
dimensions are given in linear units. 
Instead of a circle generatrix, it is given 
by the radius of the cylinder a = 2, 
which hosts it, and the helical parame
ter b = 1.5 (step H = 9.4). The radius of 
the circle generatrix of the tubular sur-
face of the original tubular surface in 
the approximated surface in the given 
examples is a polygon (square or equi-
lateral hexagon)
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1. Introduction

Existing approximation methods (for example, based on 
B-splines [1]) do not provide surface continuity, which com-
plicates the manufacture of pipelines because of the need to 

connect individual sections. This leads to an increase in the 
number of seams, a decrease in the strength and tightness  
of structures.

With the advent of 3D scanning, surface approximation 
based on point clouds [2] is becoming more widespread. 
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Researchers focus on constructing accurate and smooth sur-
faces from discrete data. Another area is surface reconstruc-
tion based on a set of images.

A cylinder with a straight center line can be considered 
a tubular surface. If the center line is curved, then the tubu-
lar surface is non-swept, that is, it cannot be manufactured 
by simply bending sheet material like a cylinder. A relevant 
task is to simplify the technology for manufacturing a tubular 
helical surface. Such a simplification could be achieved by ap-
proximating it with pieces of unfolded surfaces in cases when 
this does not compromise operational properties. The method 
is especially relevant for:

– pipelines (oil, gas, chemical industry), where surface 
continuity is critical for tightness;

– sports equipment (for example, balls), where reducing 
the number of seams improves aerodynamics and strength;

– aircraft structures, where lightness and strength are key 
requirements.

The task of approximating non-swept surfaces by sweep-
ing ones may arise while using an article and when the 
working surface wears our. The results of appropriate studies 
are needed by practitioners because they could simplify the 
manufacture or repair of non-swept surfaces [3, 4]. This pre-
determined the relevance of our study.

2. Literature review and problem statement

In [5], the results of studies on the reconstruction of sweep-
ing surfaces using neural implicit models are reported. It is 
shown that the use of a regularization term based on second- 
order derivatives makes it possible to achieve zero Gaussian 
curvature. This provides smooth deformations of surfaces with 
infinite resolution, overcoming the limitations of discrete rep-
resentations. However, issues related to the approximation 
of complex 3D shapes, in particular tubular helical surfaces, 
where it is necessary to take into account the specificity of two 
families of curvature lines, remain unresolved. A likely reason is 
difficulties associated with the need for an analytical description 
of the strips of sweeping surfaces, which makes neural models 
insufficiently effective for practical application in engineering. 

In [6], a method for calculating a piecewise linear sur-
face that approximates an arbitrary free-form mesh surface is 
proposed. It is shown that optimizing a given mesh shape to 
an approximately piecewise linear shape allows for improved 
alignment with the target shape. However, the method requires 
a preliminary representation of the surface in the form of para-
metric models, which complicates its application for tubular 
helical surfaces. The reason is the computational cost, as well as 
the inability to ensure the continuity of the strip approximation, 
which makes the study impractical for industrial tasks.

In [7], a method for discretizing linear surfaces for their 
manufacture is described. It is shown that discretization 
makes it possible to create complex shapes from linear surfac-
es while preserving their sweep. However, issues related to the 
approximation of tubular helical surfaces remain unresolved. 
The reason is the limitation of the method in ensuring the ac-
curacy of approximation for surfaces with complex geometry.

In [8], an approximation method is reported, which uses 
a classical definition from differential geometry. It is shown 
that the iterative process of thinning the Gaussian image of 
the surface and its deformation make it possible to achieve 
high accuracy. However, the issue of approximating tubular 
helical surfaces by strips of sweeping surfaces, rather than 

by separate sections, remains unresolved. This limits the ap-
plication of the method to surfaces that require a continuous 
description, for example, in the production of pipelines.

In [9], an approach to segmentation and approximation of 
triangular meshes is proposed. It is shown that the detection 
of exact regions and their approximation makes it possible to 
calculate parametric equations for milling on machine tools. 
However, the method does not take into account the specific-
ity of tubular helical surfaces, where it is necessary to ensure 
the continuity of the strips of sweeping surfaces along the 
lines of curvature. The reason is the limitation of the method 
with respect to the topology of the surface, which makes it 
unsuitable for approximating complex helical shapes.

A separate area is the approximation of non-swept sur
faces by pieces of sweeping ones. The main idea is to automat-
ically divide a complex 3D model into a set of small sections, 
each of which can be replaced by the corresponding section of 
the sweeping surface. This process helps in production when 
complex shapes are created from flat materials, such as sheet 
metal. An example of such an approach is work [10], in which 
the division of a non-swept surface into separate sections is 
proposed based on the search for geodesic lines on it. 

In [11], the approximation of a sphere is considered not 
by pieces, as is done on sports balls, but by a continuous strip 
of a sweeping surface. In this case, the line of contact of the 
strip with the surface is a line of curvature. Since for a sphere 
every line on it is a line of curvature, the search was reduced to 
finding a line of rational form. However, for a tubular helical 
surface, where the lines of curvature have a more complex 
geometry, this approach requires adaptation. The reason is dif-
ficulties associated with the need to take into account two fam-
ilies of curvature lines, which makes the corresponding studies 
impractical without the development of special algorithms.

One option to overcome the difficulties is to apply classical 
methods of differential geometry for finding the lines of cur-
vature and constructing tangent strips of sweeping surfaces. 
This is the approach used in [12], but it does not take into 
account the possibility of approximating a tubular helical 
surface by continuous strips.

All this allows us to state that it is advisable to conduct 
a study aimed at devising a method for approximating a tubular 
helical surface not by pieces but by strips of sweeping surfaces.

3. The aim and objectives of the study

The aim of our research is to devise a method for approxi-
mating a helical tubular surface by strips of sweeping surfaces. 
This will simplify the technology of its manufacture and repair.

To achieve this goal, the following tasks were set:
– to find parametric equations for strips of sweeping sur-

faces that uniformly wrap around a tubular helical surface;
– to construct strip sweeps that approximate the surface.

4. The study materials and methods

The object of our study is the process of approximating 
a helical tubular surface by strips of sweeping surfaces and 
constructing their sweeps. One family of curvature lines of 
a tubular surface is a set of circles – curves of the normal 
cross-section of the surface. It was hypothesized that the 
tubular surface should be approximated by strips tangent to 
a second family of curvature lines, which are perpendicular  
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to the first. It was assumed that when approximating the 
surface along its curvature lines, the strip width would be con-
stant. A simplification is to ignore the thickness of the sheet 
material when bending the sweep into the desired shape.

The axis of the tubular surface is the curve of the centers 
of the set of circles perpendicular to this curve. For a tubular 
helical surface, this is a helix, which is given by radius a of 
the cylinder on which it is located, and the helix parameter b,  
through which its pitch H = 2πb is determined. If a circle of 
radius ρ is placed at each point of the helix, then the set of 
circles will form the frame of a tubular surface. Its parametric 
equations take the following form [12]:

X a v b v

a b
� � �

�

�

�
��

�

�
��cos cos cos sin sin ;� � � �

2 2

Y a v b v

a b
� � �
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�
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�

�
��sin sin cos sin cos ;� � � �
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� �

�
�

� sin ,
2 2
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where α and v are independent surface variables that have  
a physical meaning: α is the angle of rotation of a point 
around the axis of the helix when it moves along it; v is the 
angle of rotation of a point around the center of the circle 
when it moves along it.

Parametric equations (1) describe a helical tubular sur-
face, in which only one family is a family of curvature lines, 
namely a frame of circles of radius ρ. The second family of 
curvature lines, perpendicular to the first, is of interest. As 
a result of solving the differential equation in [12], a transition 
to new surface variables is given, which provide the assign-
ment of the surface to two families of coordinate lines, which 
are curvature lines

� �
�

s

a b2 2
;  v w bs

a b
� �

�2 2
, 	 (2)

where s is a new independent surface variable – the length 
of the arc of the center line; u is the second independent 
variable – also an angle that varies within w = 0…2π, which 
provides closed circle generatrixes of the surface.

In Fig. 1, a, one revolution of the surface is constructed 
according to equations (1), and in Fig. 1, b – when switching 
to new variables according to formulas (2). 

   
a b

Fig. 1. Tubular helical surface at a = 2; b = 1.1; 	
ρ = 1 with a selected line of curvature on it: a – a family of 

lines of curvature is only the frame of the circle generatrixes; 	
b – both families of coordinate lines are lines of curvature

In the first case, the grid of coordinate lines is not orthog-
onal, and in the second – orthogonal, because both families 
of coordinate lines are lines of curvature. If we take w = const 
in the second dependence (2), then a line of curvature of the 
second family will stand out on the surface. From Fig. 1, a, 
it is clear that it is not one of the lines of curvature, but in 
Fig. 1, b – it is.

The next stage is the construction of a strip of a sweeping 
surface tangent to the helical tubular surface along the line of 
curvature, highlighted in Fig. 1 by a thick line. For this pur-
pose, the apparatus of differential geometry was used.

5. Mathematical description of strips of sweeping 
surfaces that approximate a tubular helical surface, 

their sweeps

5. 1. Parametric equations of strips tangent to the 
tubular surface along lines of curvature

A tangent sweeping surface is located as the boundary 
surface of a set of tangent planes along a given line of curva-
ture. A separate tangent plane is perpendicular to the normal 
of the tubular surface, constructed at a separate point of the 
line of curvature. Therefore, it is necessary to determine the 
coordinates of the normal to the tubular surface (1) along the 
line of curvature. The normal vector N  is the vector product 
of vectors tangent to the coordinate lines. These vectors are 
partial derivatives from equations (1) taking into account (2) 
with respect to variables s and w. Thus, we can write:

N
X Y Z
X Y Z
X Y Z

s s s

w w w

� � � �
� � �

. 	 (3)

The subscripts in (3) indicate the variable in which the par-
tial derivatives of the equations of the tubular surface are found.

Differentiation of equations (1) in variables s and w, expan-
sion of the determinant (3) was carried out using the symbolic 
mathematics product "Mathematica". The vector obtained in 
projections onto the coordinate axis was reduced to the unit 
vector. Its components take the following form:

N v b

a b
vx � �

�
cos cos sin sin ;� �

2 2

N v b

a b
vy � �

�
sin cos cos sin ;� �

2 2

N a

a b
vz � �

�2 2
sin , 	 (4)

where the expressions of angles α and v in terms of indepen-
dent variables s and w are given in (2).

The direction vector I  of a rectilinear generating of sweep-
ing surface, which passes through the point of its contact with 
the tubular surface, is determined by the vector product of 
vector (4) by its derivative vector [11]:

I
X Y Z
N N N
N N N

x y z

xs ys ys

�
� � �

. 	 (5)

The projections of the normal vector (4) must be differ-
entiated with respect to variable s because for the chosen line 
the curvature w = const. After differentiation, expansion of the 
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determinant (5) and reduction of vector L  to the unit, one can 
find its projections:

I v b

a b
vx � �

�
cos sin sin cos ;� �

2 2

I v b

a b
vy � �

�
sin sin cos cos ;� �

2 2

I a

a b
vz �

�2 2
cos ,	 (6)

where the expressions of angles α and v in terms of indepen-
dent variables s and w are given in (2).

The straight-line generatrixes of the tangential sweeping 
surface intersect the line of curvature parallel to the direction 
vector (6). In this regard, we can write the parametric equa-
tions of the sweeping surface tangent to the tubular surface:

X x s uIs x� � � � ;

Y y s uIs y� � � � ;

Z z s uIs z� � � � , 	 (7)

where x (γ), y(γ), z(γ) are parametric equations (1) taking into 
account (2) the line of curvature. They are marked with lower-
case letters because at w = const these equations are no longer 
equations of the surface but equations of a line on it, which is 
the line of curvature. u is the second independent variable of 
the surface – the length of the straight-line generatrix of torus; 
Ix, Iy, Iz are the coordinates of the direction vector (6) of the 
straight-line generatrix of sweeping surface.

Based on equations (7), Fig. 2, a shows a tangent strip 
to the turn of the tubular surface along its line of curvature. 
The width of the strip depends on the limits of change in 
parameter u.

One can choose the desired number of strips. By plac-
ing them alternately at equal intervals of parameter w, 
one can wrap a tubular surface. For example, with four 
strips, the interval of the parameter is w = 2π / 4 = π / 2. In 
Fig. 2, b, the numbers indicate the strip numbers: 1 – at w = 0;  

2 – at w = π / 2; 3 – at w = π ; 4 – at w = 3π / 2. The length of the 
straight-line generatrix of the strip varied within u = –1…1, 
which corresponds to the side of a square circumscribed 
around a circle of radius ρ = 1. In Fig. 2, c, the tubular surface 
is approximated by six strips, which corresponds to the inter-
val of the parameter: w = π / 3.

5. 2. Mathematical description of the sweeps of 
strips tangent to the tubular surface, as well as their 
construction

To construct the sweeps, the well-known provision from 
differential geometry was taken as the basis, according to 
which the geodesic curvature kg of the curve on the sweeping 
surface and on its sweep remain unchanged. Since the line of 
curvature on the tubular surface is the common line of tan-
gency of the strip of the swept surface, they will have a com-
mon geodesic curvature. It is determined from the following 
determinant:

k ds
dl

N N N
x y z
x y z

g

x y z

�
�

�
�

�

�
� � � �

�� �� ��

3

, 	 (8)

where Nx, Ny, Nz are projections of the unit normal vector (4);  
x ′, y ′, z ′, x″, y″, z″ – the first and second derivatives are the 
derivatives from the equations of the curvature line (1), (2) 
with respect to variable s at w = const; ds dl dl ds/ : / .� � �1  The 
expression dl ds/  is the derivative of the arc length l of the 
tangent line, i.e. the curvature line. It is determined through 
the first derivatives of the curvature line using the follow-
ing  formula

dl ds x y z
a

a b
w bs

a b

� � � � � � �

� �
�

�
�

�

�
�

�

�
�

2 2 2

2 2 2 2
1 � cos . 	 (9)

After calculations, the expression for geo-
desic curvature kg takes the form

k
a w bs
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a b a w bs
a b
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2 2

2 2
2 2�

	 (10)

According to the known dependence of 
geodesic curvature (10) of the curve on the sur-
face, its equation on the sweep can be derived 
using the following expressions:

x k dl lg0 � � ���cos ;d

y k dl lg0 � � ��� sin .d 	 (11)

The expression in parentheses (11) is the 
angle γ of rotation of the tangent to the curve 
on the sweep. It can be integrated taking into 
account the dl expression from (9)
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� �k dl a
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s

a
b
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a b

g 2 2 2 2

2 2

sin

cos

d

.. 	 (12)

     
a b c

Fig. 2. Surfaces constructed at a = 2; b = 1; ρ = 1: a – a turn of a tubular 
surface with a strip of the sweeping surface tangent to the line of curvature; 

b – two turns of a tubular surface approximated by four strips; c – a turn 	
of a tubular surface approximated by six strips
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Further substitution (9) and (12) in (11) yields the follow-
ing expressions:

x a
a b

w bs
a b

s0 2 2 2 2
1� �

�
�
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s0 2 2 2 2
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�

�
�

�

�
�

�

�
�� sin cos .�

� d 	 (13)

To construct curve (13), which is the line of contact of the 
strip of the swept surface on its sweep, it is necessary to ap-
ply numerical integration. Through this curve on the sweep,  
a straight-line generatrix of the strip passes perpendicular  
to it. Based on this, we can write the parametric equations of 
the sweep:

X a
a b

w bs
a b

s u0 2 2 2 2
1� �

�
�
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�
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�
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Y a
a b
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a b
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1� �
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�

�
�

�

�
�

�

�
�

�

�
� �� sin cos cos .�

�
�d 	 (14)

There is a technique to check the correspondence of the 
equations of a swept surface in space and its sweep in a plane. 
A sufficient condition for such correspondence is their com-
mon first quadratic form. It was found for surface (7) and its 
sweep (14) but is not given because of its cumbersome form.

According to equations (14), strip sweeps were constructed 
that approximate a tubular surface. For two turns of the folded 
surface (Fig. 2, b), the four-strip sweeps take the following 
form (Fig. 3).

It should be noted that the shape of the strip sweeps de-
pends on the ratio of the structural parameters of the surface 
a, b, and ρ. When the pitch of the axial line of the tubular 
surface decreases, that is, when the helical parameter de
creases from b = 1 to b = 0.9, the strips will begin to overlap 
themselves, which will lead to the need to break them into 
parts. This also applies to increasing radius ρ of the circle 
generatrix, as well as changing parameter a.

To check the reliability of our results, a full-scale model 
was made from paper by connecting the sweeps of three 
strips. The sweep under number 4 was not included in the 
model (Fig. 4) since the straight-line generating strips along 
which the bending is carried out and which are located inside 
the approximated surface would not be visible.

If we find the sweep of individual turns of the approx-
imated surface as their number increases, we can see that 
individual turns of a smaller size (Fig. 3) can be cut out of the 
general strip (Fig. 5).

 
Fig. 4. A full-scale model made by connecting the sweeps 	

of individual strips

 

Fig. 5. Periodicity of the contours of the strip sweep 	
of the approximated surface as the number 	

of its turns increases

Individual elements of the strip (Fig. 5) are periodically 
repeated.

6. Results of approximating a helical tubular 
surface by strips of sweeping surfaces: discussion

Each non-swept surface can be approximated by 
pieces of sweeping surfaces. In this case, the question 
arises about choosing such pieces of sweeping surfaces 
and their size so that the approximation of a non-swept 
surface by pieces of sweeping surfaces most accurately 
reproduces it. In work [13], the construction of a he-
lical surface from sections of a sweeping helicoid was 
proposed, in [14] – the construction of a sweeping 
surface passing through a helical line of variable pitch. 
Unlike [13, 14], in this study, we have confirmed the 
hypothesis that the surface should be approximated 
along the lines of curvature perpendicular to the family 
of circle generatrixes, which are also lines of curvature.

 

Fig. 3. The sweeps of strips corresponding to the folded surface 	
in Fig. 2, b (the numbers indicate corresponding strips 	

on the surface and on the sweep)
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For this purpose, a transition was made from equations (1), 
in which the lines of curvature were only one family of coor-
dinate lines – the frame of circle generatrixes – to equations 
with two families of curvature lines. To this end, a transition 
was made from independent variables α and v to the new 
independent variables s and w according to expressions (2). 
For the value w = const on the surface, a line of curvature 
corresponds (Fig. 1). Along it, a tangent strip of the sweeping 
surface is constructed (Fig. 2, a), the equation for which is 
given in (7). By dividing the value w = 2π into an equal num-
ber of parts, we obtain a division of the circle generatrix of the 
tubular surface into equal parts. Each part corresponds to its 
own line of curvature, along which strips of tangent sweep-
ing surfaces are constructed. In Fig. 2, b, there are four such 
strips, and in Fig. 2, c, there are six.

To find the parametric equations (7) of the tangent strip 
from the sweeping surface, the means of differential geometry 
and vector algebra were used. They allowed us to find the pro-
jections of the unit vector of the rectilinear generating sweep-
ing surface by expanding the determinant (5). Owing to this 
approach, strips were constructed that approximate the helical 
tubular surface on any number of its turns. This gives an advan-
tage over other approximation techniques in which the section 
of the sweeping surface is not a strip but a small piece [10].  
In addition, the research does not end there but continues 
with the construction of the sweeping tangent strips. For this 
purpose, the differential geometry proposition that the geodesic 
curvature of the strip’s tangent line is the same in space and on 
its sweeping surface was again used. It was found by expanding 
the determinant (8), which made it possible to derive the para-
metric equations (14) of the strip sweep.

The limitations of our study relate to the fact that the 
strip cannot be made continuous at a certain ratio of design 
parameters a, b, and ρ. For example, in Fig. 3, the sweeps are 
constructed for the extreme position, when their contours do 
not overlap each other. When the surface pitch is reduced or 
the circle generatrix is increased, overlapping occurs and the 
strip cannot be continuous. The disadvantage is that numeri-
cal integration methods must be used to construct the sweeps 
according to equations (14), which are depicted in Fig. 3.

Future studies should involve approximating surfaces with 
a variable value of the circle generatrix, which are termed 
channel surfaces.

7. Conclusions

1. A tubular helical surface is formed by a frame of circles 
of the same radius with centers on the helical line. In this 
case, the set of circles is located in planes perpendicular to 

this helical line. If a second family of lines perpendicular to 
the family of circles is found, then along them it is possible 
to approximate the surface by continuous strips. The strips 
have a constant width, which depends on their number. Af-
ter such an approximation, the cross-section of the surface 
by a plane perpendicular to the axis is a regular polygon, the 
number of sides of which is equal to the number of strips. 
In particular, with four strips, the cross-section is a square.

2. Parametric equations of the sweeps of strips have 
been derived; their contours were constructed when the 
number of strips is four. The basis for finding the sweep 
is the provision from differential geometry implying that 
the geodesic curvature and the length of the arc of a line 
on the surface and on its sweep are the same. To construct 
the sweeps based  on our equations, numerical integration 
was performed. To verify the reliability of the results, the 
individual obtained sweeps of strips were connected into an 
approximated helical tubular surface.
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