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This study considers graphic differentiation, in par-
ticular, a chord method, as one of the options for
graphic differentiation in terms of replacing graphic
operations with analytical ones in point form.

Determining the reference point and the center of
projection for constructing a strip of differential pro-
Jection correlates its positions with respect to the values
of the derivative of the function, which is graphically
represented by a discrete series of points. The reference
point, the right differential projection of the first and
left differential projection of the second points have the
same values in the field of derivatives. However, they
do not coincide with the values of the derivatives of the
original functions. To establish such a correspondence,
the difference between the left and right differential
projections of the first point is divided in half and sub-
tracted from the first derivative of the original func-
tion - the point polynomial.

Relative to the reference point, parallel to the first
link of the accompanying broken line of the discretely
represented curve, a straight line is drawn that inter-
sects the abscissa axis at the center of the projection.
Finding the reference point and the projection center
is carried out analytically in point form without any
graphic operations. Rays are drawn from the projection
center parallel to one of the links of the accompanying
polyline, thus forming a strip of differential projections,
within which the values of the angles of inclination of
the tangents to the curve at the base points are select-
ed. Discrete derivative values are connected by straight
line segments or remain separate points. The resulting
derivative values coincide with the analytical values
with a deviation of no more than 0.5-1.5 units.

The developed algorithms could be integrated into
automated design and engineering analysis systems
fJor effective calculation of derivatives of discretely
given curves. In addition, they could serve as the basis
for designing computationally productive modules in
artificial intelligence and digital data processing sys-
tems that work with geometric and discrete informa-
tion arrays
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1. Introduction

The graphical differentiation method has historically
proven its effectiveness [1] for rapid, albeit approximate, en-

gineering analysis and process optimization at the stages of

initial design [2, 3].

However, in modern practice, where geometric, kinematic,
and functional data are generated and processed exclusively
in discrete point form (CAD/CAE, measuring systems), di-
rect application of the graphical differentiation method has
become impossible. This is explained by the need to perform
resource-intensive graphical constructions, which inevitably
introduce significant subjective errors.
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The restoration of the practical value of the graphi-
cal differentiation method is possible only through its
complete analytical formalization and digitization, which
will make it possible to replace graphical operations with
accurate computational algorithms in point form. There is
a particular need for such algorithms in the field of me-
chanical engineering and kinematics, where it is necessary
to quickly calculate the velocities and accelerations (first
and second derivatives) of objects whose trajectories are
given by discrete points or measurement data. Conventional
methods of mathematical analysis often require preliminary
approximation, which is inefficient for large arrays of dis-
crete data.




In addition, the integration of computational algorithms
for finding derivatives can be carried out in artificial intelli-
gence models and neural networks that work with discrete
data. For example, in problems of pattern recognition, geo-
metric data processing, or optimization processes that require
iterative refinement of coefficients. Current scientific and
practical research and design using artificial intelligence [4, 5]
methods evolve reasonably well given the accuracy of the dig-
itized graphic differentiation method.

Among the entire variety of graphical differentiation
methods, the most interesting is the chord method. Devising
a digitization technique is relevant from the point of view of
using in any system of digital transmission of data encoded in
discrete signal pulses.

Thus, the relevance of research in this area is predeter-
mined by two key aspects:

- theoretical restoration: analytical representation of the
chord method, which replaces resource-intensive graphical
operations with high-precision computational ones, thereby
restoring the practical value of the graphical differentiation
method;

- technological integration: adaptation of this digitized
method to modern technological requirements, which allows
its effective integration into CAD/CAE systems and artificial
intelligence algorithms for rapid analysis of discretely speci-
fied functions.

2. Literature review and problem statement

In [6], the results of research on latent variable derivative
models of Gaussian processes that can process multidimen-
sional input data using modified covariance derivative func-
tions are reported. The modifications take into account the
complexity of the basic data generation process, such as scaled
derivatives, variable information in several input dimensions,
and interaction between outputs. It is shown that the accuracy
of the latent variable estimation can be significantly improved
by including derivative information due to the proposed mod-
ifications of the covariance function. The issues of practical
scaling of the method remain unresolved.

In [7], an approach to shape optimization using the finite
element method is given. The geometry is described by a dis-
crete function of a set of levels, and the objective functionals
are defined over volume domains. However, the same issues
of practical scaling of the method and reducing computa-
tional costs for complex geometries remain unresolved since
it is the computational complexity that limits its application.
These difficulties can be overcome by improving numerical
optimization algorithms and using more efficient approxima-
tion strategies for functions of a set of levels.

This is the approach used in [8], which reports a polyno-
mial scheme for finding exact solutions to nonlinear partial
differential equations based on series expansions and resum-
mation associated with the renormalization group. This ap-
proach makes it possible to reduce the problem to solving only
linear algebraic equations, avoiding complex analysis meth-
ods, and provides the construction of one- and two-soliton,
as well as periodic, solutions. At the same time, the issues of
scalability of the method and its application to more complex
classes of equations remain unresolved, which is limited by
the increase in computational complexity. These difficulties
can be overcome by improving resummation algorithms and
devising more efficient equation reduction procedures.

In [9], methods of geometric modeling and optimiza-
tion of multidimensional data within the framework of the
Radischev integrated drawing system are considered. The
authors analyze the possibilities of using such an approach
to increase the accuracy and efficiency of processing complex
data. In[10], the strength characteristics of high-strength
steel-fiber concrete at elevated temperatures are investigated
using mathematical modeling. The work is aimed at predict-
ing the behavior of the material under extreme conditions. The
authors of [11] proposed an approach to geometric modeling
of multifactorial processes and phenomena based on mul-
tidimensional parabolic interpolation. The work shows that
the method allows for more accurate consideration of com-
plex dependences between parameters. Thus, papers [9-11]
consider the construction and analysis of mathematical mod-
els for multidimensional space by constructing interpolation
curves in point (general) form in parametric form. However,
these studies bypass the issues of constructing derivatives
for point interpolation curves, not to mention the graphical
differentiation of discretely given curves.

In [12], automated control systems for hydraulic locks for
flood prevention are considered. The authors propose opti-
mization of the design and control algorithms based on the
integration of numerical modeling methods and analysis of
hydrodynamic processes. A feature of the study is the use of
adaptive algorithms that make it possible to take into account
dynamic changes in environmental conditions. However,
despite the effectiveness of the proposed solutions, the ques-
tion of using graphical differentiation methods for analyzing
nonlinear dependences in systems with discrete data remains
open, which limits the possibilities of further improving the
accuracy of forecasting and optimization.

All this allows us to assert that the issue of devising
a computational method for approximately finding the first
and second derivatives for interpolation curves in parametric
form that interpolate the original discretely given flat line
curves is unresolved.

Our review of the literature in the field of numerical and
geometric differentiation shows that existing methods do not
offer a single effective solution for calculating the derivatives
of curves given by discrete point polynomials. Numerical
differentiation methods often require significant computa-
tional resources or preliminary approximation. In contrast,
the chord method, despite its simplicity and clarity, remains
unsuitable for digital application because of the need for
graphical constructions. Thus, an unsolved task is to devise
an analytical description of the chord method in point form,
which would completely eliminate graphical operations, pro-
vide the necessary accuracy, and become a productive tool for
modern systems working with discrete data.

3. The study materials and methods

The aim of our study is to devise a technique for analytical
representation of the chord method in graphical differentia-
tion of a flat, discretely given curve line by points. This will
make it possible to programmatically implement effective
methods of graphical differentiation for use in further re-
search using artificial intelligence.

To achieve the goal, the following tasks were set:

- to propose a technique for determining the projection
center for correlating the values of derivatives found by graph-
ical differentiation and analytically;



- to develop an algorithm for forming a strip of differential
projections and to calculate a test case for digitized graphical
differentiation by the method of chords.

4. The study materials and methods

The object of our study is graphical differentiation, in par-
ticular, the method of chords, as one of the options for graphical
differentiation in terms of replacing graphical operations with
analytical ones in point form. The hypothesis of the

study assumes that a digitized technique of forming X
a strip of differential projections for a broken line 4 3{ 1
can be used to select approximate values of deriva- Y,
tives at the nodes of a discretely given plane curve. Xy,
In the study, it is assumed that the plane curved A=
line to be differentiated is given exclusively by Ya,
a discrete series of points (a point polynomial). X4,
This is a simplification compared to a continuous A= Va

function but corresponds to modern digital meth-
ods of data representation.

In addition, instead of working with infinitely small incre-
ments (as in classical differentiation), the method works with
finite chords (segments of the accompanying broken line),
which is a fundamental simplification of the chord method.

It is adopted that the studied segments of the curve are
regular. The assumption is that any graphical operation of the
chord method (construction of chords, drawing parallel lines,
finding the centers of projection) can be absolutely exactly
replaced by the corresponding system of analytical equations
in point form. It is accepted that to establish a correspon-
dence between the values of the derivatives obtained by the
graphical method of chords and the values calculated by the
methods of mathematical analysis, it is sufficient to apply
a specific correction coefficient. This is an empirical or pro-
cedural assumption/simplification aimed at "calibrating” the
graphical method to the analytical standard.

The chord method can be used as one of the techniques of
graphical differentiation. A fragment of the technique to form
a strip of differential projections is briefly given below.

Let the initial three points A;(2, 1); Ax(4, 3); A3(8,2) be
given in the coordinate system Oxy (Fig. 1). The simplex CAB,
whose vertex C =0 coincides with the origin of the coordi-
nate system — point O, and two of its points have coordinates
A(8, 0); B(0, 4), can be combined with the coordinate system.
In Fig. 1, CAB is drawn with thickened straight line segments.

The parameters of points Ai(p1, q1, r1); Ax(pas q2, 12);
As(ps, g3, 13) as the coordinate relation take the following form

_Ji _ =13

q ="+, h=1-p;—q;, fori=1,3.

VB

@

According to (1), we can calculate parameters for A;
i=1,3 in simplex CAB:

2 1
Ay :p===0.25¢=-=0.25

1:P1 3 6 1
n=1-0.25-0.25=0.5= A4,(0.25,0.250.5);

A,:p,=0.5,q, =§=0.75,

4
r,=1-0.5-0.75=-0.25=> A4, (0.5,0.75,-0.25);
8 2
Ayips=—=1,q;===0.5,
3:D3 3 as 2

r=1-1-0.5=-0.5= A;(1;0.5-0.5). )

The point equations of points A;, i=1,3 in simplex CAB
take the following form:

A, =Ap, +Bq, +Cn,

Ay = Ap, +Bq, +Cry, (3)
Az =Ap;+Bq; +Cr;.

Point equations (3) are a calculation scheme in coordinate
form:

‘@ +Xc1=8-025+0-0.25+0-0.5=2;
‘1 +Ycr1=0-0254+4-0.25+0-0.5=1;

‘P1tXp
‘P1tYs
‘P2t Xp
‘P2tYB
‘D3t Xp

‘D3 +YB

=x,
=Ya
“qy+xc 1, =8-0.5+0-0.75+0-(-0.25) = 4;
“qy+yc 1, =0-0.5+4-0.75+0-(-0.25)=3;

=Ya

“)

.q3+xc.r3:8.1+0.0_5+0.(_0'5):8;
“qs+Yc 13 =0-144-0.5+0-(-0.5)=2.

:xA

=Ya

The coordinates of points A;, i=1,3 calculated in (4)
coincide with the values of the corresponding points - this
means that parameters p;, q;, 1, i=1,3 from (1) were calcu-
lated correctly.

4 |1B=M|
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N
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Fig. 1. Scheme for constructing
diffprojections Dy, Drp, Dy2, Dr3

To construct differential projections Dyj, Dga, Dra, Dgs
it is necessary to calculate the projection pole S (Fig. 1). Let
the pole have coordinates S(-4, 0).

It is necessary to draw segment SK || A;A,, using point
equation K, =S+ A, — A;, which in coordinate form is calcu-
lated as follows:

Xg, =Xs+Xy, —Xy =—4+4-2=-2
=
Yk, =Ys+Ya, —Ya =0+3-1=2

=K (-22)= SK, [| 4| A,. (5)

At point M, straight line SK; intersects the axis Oy. The
parameters of points S and K; in simplex CAB are calculated
as follows:

Ps =5 =-0.5 qg=25=0;
XA VB
X
P =K =025 q =2K =05, ©
XA VB

Thus, S(psiqs ). K (px,3dx, )-



It is necessary to parameterize points S and K; through the
vertices of simplex CAB:

S :Aps +qu,

K, = Apg, + B, - 7

The current point M on the straight line SK; is determined
from the following point equation [1]

M=(K,-S)u+S, 8)
or in expanded form taking into account (7)

M =(Apy, +Bqy, — Aps — Bqs )u+ Apg + Bqs =
:A[(PK,—Ps)u"'PsJ*‘B[(qu—QS)LH’QS] 9

Point M will belong to the Oy axis if expression

Ps

(PK,‘PS)”‘*‘PSIOéU: ,
Ds — Dk,

then

M=B (QKl —QS)'

bs +qs |=
Ps — Dk,

B.92_
0.25

:B’qu ‘Ps —qs " Pk, _
Ds — Pk,

B, (10

as can be seen from Fig. 1, points M and B coincide.

On a horizontal line with parameter q = 1 (Fig. 1), passing
through point M, for point A; a diffprojection can be found:
Dy, (0.25;1), for point A, - diffprojection Dy, (0.51).

Similar to point Kj, it is necessary to find point K,

K,=S+A;—A,,

or in coordinate form:

Yk, =YVs+tYa, —Ya, =0+2-3=-1
= K, (0;-1) = SK, [| A, As.

Xk, =Xg+Xa —Xy =—4+8—4:0}
=

an

Since xg, =0, points K, = M, coincide (Fig. 1).

On the horizontal line with parameter q = -0.25 (Fig. 1),
passing through point M,, for point A, we can find diffprojec-
tion Dg, (0.5;—0.25), for point Az - diffprojection D, (1;—0.25).
By connecting the dashed lines of the corresponding diff-
projections, a strip of diffprojections can be obtained for the
polyline A;A,A;. For point A,, point T, :(DRz +Dy, )/ 2 can
be chosen for the value x, = 4 (as one of the possible options).
The yf. value corresponds to the angle of inclination of tan-
gent t, and ray SM, (Fig. 1), therefore, t, || SM,.

5. Results of calculating the values of the first derivatives
at the points of a discretely given plane curve

5.1. Determining the reference point and the center
of projection for the strip of diffprojections

Let the initial discretely given plane curve (DGC) be given
by five points (Table 1).

Table 1
Points of initial DGC

Ai A1 Az A3 A4 AS
Xi 1 4 1 14 18
»i 2 8 9 -1 -8

The general form of the point polynomial that interpolates
the original DGC is written as follows [2, 3]

n=5
M(t)=> Ap;(t).ti <t<ts, (12)
i=1
which in expanded (coordinate) form is written as
5 5
M ()= 2 xipy (€)- M, (1) = 2 yiei (¢)- (13)
i=1 i=1

In entries (12) and (13), pi(¢) for i= 175 are the basis func-
tions of the point polynomial and are the invariants of parallel
projection, which are formed as follows

n=>5

[T(t~1)

(14)

In the original notation (14) the functional basis of the
point polynomial (12) is given. The index notation i = (i) un-
der the product sign in both the numerator and denominator
means that the difference with parameter t; cannot be used in
the products of differences. Its index coincides with the index,
which is taken in brackets to distinguish in the notation of the
basis functions p;)(t). o

To determine parameters t;, i =1,5, which are part of the
basis functions (14) of the point polynomial (12), the lengths
of each of the links of the accompanying broken line (ABL),
which is constructed at the starting points of DGC (Table 1),
must be calculated. In general, the lengths of these links are
denoted [; ; 1, i=2,5. It should be noted that [; o = 0. There-
fore, for a plane curve

Lia= \/(XA, —Xy, )2 + (yAl —Ya, )2, i=2,5. (15)

The results of calculations of the lengths of the accompa-
nying broken line (ABL) links are given in Table 2.

Let the sum of the first three segments be unity relative to
measurement L,

Le=lho+L +15, =12.7909664627. (16)

The values of parameters ¢; for all initial points A;; i:ﬁ
can be calculated taking into account that t; =0

[(i):L,i:2,5,T:2,(i);i:(i). (17)

It is necessary to first calculate the numerator (Table 3).
The results of the calculations of parameters ¢; are given
in Table 4.



ABL links length

Table 2

i 1 2 3 4 5
Liioa 0 6.70820393249 6.08276253029 10.7703296142 8.06225774829
Table 3
Cumulative length of ABL
Li-1 1 2 3 4 5
5
Z 0 6.70820393249 6.08276253029 10.7703296142 8.06225774829
i=2
Table 4
Values of parameters t;
A A, A, A Ay As
t; 0 0.52444855922 1.0 1.84202625701 2.47233498088

By substituting the values of parameters ¢; from Table 4
into the basis function (14) and then into the polynomial (12),

we can obtain the equation of the point polynomial that inter-
polates the original five points (Table 1)

For the segment (4,A,), coordinates X, and y of approx-
imate point k; are determined as follows:

X, =Xg+X; =X =

=—4+4-1=-1,
M, (1) t4—3-5.83880979711 + 2 -11.6555762831 — £ -9.20516079054 +2.38839430447 Vi =Vs+Vr-yi= =
=N 2.38839430447 —0+8-2=6
1 —13-5.31436123789+1% -8.86846718879 1 -4.5541059509 . (x5
: 0.64008885246 =k (%37, ) =
. t4—13-4.83880979711+ 12 -6.81676648606 — £ - 2.38839430447 =k (-1;6). (21)
)3 0.58956238448
B t4—t3-3.9967835401+t2~4.29339605873—t~1.29661251863+ Similarly for the section
¢ 128810422298 (AzA45):
t* —13-3.36647481623 + 2 -3.33252283276 — £ -0.96604801653 _
+y5 . (18) Xk :x§+x3—x2:
4.46921134473 :
=—4+10-4=2,
The equation of the first derivative with respect to para- Vi, =Ys+Y3—Y2= =
meter ¢ for polynomial (18) will take the following form 0+9-8=1
ky (%30 )=
My (1) =y 413 ~31-5.83880979711 + 2¢-11.6555762831 ~9.20516079054 =k (%33,
Y ! 2.38839430447 =k (22). (22)

+y

+y

2

3

4

5

413 —3¢2.5.31436123789 +2¢ - 8.86846718879 — 4.5541059509 N

0.64008885246
413 —3t%-4.83880979711 + 2t -6.81676648606 — 2.38839430447 3

0.58956238448
413 —3t2-3.9967835401 +2¢ - 4.29339605873 —1.29661251863 +

1.28810422298
4¢3 —3t%-3.36647481623 + 2t -3.33252283276 — 0.96604801653

4.46921134473

19)

The value of the first derivative (19) M}, (t) at point A,, for
which # = 0, will take the following form

M;(1)=2
9 2.38839430447 1 1.29661251863 +

3 0.96604801653

9.20516079054
2.38839430447

4.5541059509
0.64008885246

0.58956238448 1.28810422298

=13.4726482308 ~13.47. (20)

4.46921134473

For k; and k, in the CAB simplex, it is

necessary to calculate parameters py , gy,
and py, gy, accordingly:

_ X -1
Di. = ky =—=-0.1;
Yox, 10
_ W
Q, =—=-=3
yg 2
_ X 2
B === 202
*oxu 10
@, = Ye _1_os (23)
yg 2

Using (10), points M, and M, can be found on the Oy axis:

The vertices of simplex CAB (Fig. 2) have the following
coordinates: C(0;0); A(10;0); B(0;2). An imaginary center of
projection S (—4;0), can be chosen arbitrarily on the Ox axis,
i. e., always to the left of the Oy axis (Fig. 2, upper part).

. Ps -G (-04)-3
=yp- ). =8,
T T he (~0.4)—(=0.1) "
Ds -Gk (-0.4)-0.5 @4
Vv =Vpg- 2 =2 =0.(6)=0.67
I Y b, (-04)-02 (©)



SM, || A1A,
5K, | A2A;
S
i
D, _ As
My *Dy, .
KM, || A1A,
DyyM',(t) = DpyM',,(t4)
Ky
B=2
A
S(4,90 C

Fig. 2. Construction of reference point M; and projection
center S

The absolute value A=|yy; — Yy, | is:

A= \8—0.67\ =7.33;

A
2 ~3.665. (25)

Reducing the value of the first traditional derivative M, (tl)
from (20) by 4/2 gives the result

A
YR =Y, =M, (tl)—E =13.473-3.665=9.808 ~9.81. (26)
By increasing value M, (tl) by A/2, we can obtain y,

A
yi, =M, (t1)+5 =13.473+3.665=17.138~17.14.  (27)

Hence, coordinates of three differential projections can
be obtained:

Dy, (%591, )= Dy, (1;17.14);
Dr, (xl;le ):> Dy, (1;9.81);

Dy, (%551, )= Dy, (4:9.81). (28)
From Fig. 2: yg =y;, =yu,- So, the reference point M, will
have coordinates x,; =0,yy, =9.81, i.e., M1(0;9.81).
It is necessary to calculate point K;, which is the fourth vertex
of parallelogram A;A,M; K, for which MK || A; A,. Point form

for calculation will take the following form: K; = M, + A; — A,.
It is expanded into coordinate notation as follows:

xKl :)CA1 +le —xAZ :1+0—4:—3,

Yk, =Ya T Ym, —Ya, =2+9.81-8=-381. (29)

Thus, the auxiliary point Kj(-3;3.81) was obtained. To
form differential projections for all initial points, it is neces-
sary to calculate projection center S on the Ox axis. In point
form, S =M,;K; NOx.

The point equation of straight line M;K;, on which point
S is located, takes the form

S=(M,-K;)u+K, (30)
where u is the current parameter along line M;K;.

Points M; and K; in simplex CAB are defined by:

M, = Apy, +Bqu,
K, =Apg, +Bqg,, (31)

where:

Substitution (31) in (30) gives the result

S =(Apw, +Bqu, —Apx, —Bqx, )U + Ap, +Bqy, =

= A[(pu, ~Px, )U+Dk, |+ B[(Pm, Pk, )U+ax, | (32)

Taking into account that in (32) ys=0

dxk,

_— (33)
dk, —qm,

(am, —ax, Ju+4x,» hence u=
Substitution (33) in (32) allows one to write

q
S=A{(le—pKl)Kl+pKl}+B-0. (34)

Kl - Ml

Taking into account that p,, =0 from (31), the end result
takes the form

S:A{MW}

dk, —qm,
+ Dk, j:

+ 0.3] =-4.91.

(35)

or in coordinate form

—Pk, "4k,
Xg=X,| ————
qdk, —qm,
0.3-1.91
=10 | ——— (36)
1.91-4.91
Thus, S(-4.91;0).
Determining the reference point M; and the projection
center S are mandatory for the subsequent construction of the
strip of differential projections of the accompanying polyline.



Finding these points brings the values of the derivatives found
by graphical differentiation using the chord method into line
with the values of traditional derivatives calculated by mathe-
matical analysis methods.

5.2. Algorithm for constructing a strip of diffprojec-
tions, a test case for digitizing graphic differentiation by
the chord method

A strip of diffprojections is built on the basis of an accom-
panying polyline, the vertices of which are discretely given
points of a regular plane curved line. It is a part of a plane
bounded by straight lines, the inclination angles of which cor-
respond to the inclination angles of each of the links of ABL.
The selection of tangents to the desired curve within the strip
of diffprojections will not cause the probable appearance of
unnecessary inflection points on this desired curved line.

Let a flat discretely given curved line be given by twelve
points A;; i =1,12, the coordinates of which are given in Table 5.

Table 5

Coordinates of the base points of original DGC

A | AL | Ay | As | Ag | As | Ag | A7 | As | Ag | Ao | Al | Az

X; 1 2 4 6 (10 |12 (14 |16 | 18 | 21 | 24 | 25

Vi 2 5 8§ |10 | 9 51-1|-5({-8|-9|-5]|-1

The algorithm is as follows:

1. For parameterization, simplex CAB must be chosen,
which coincides with the original coordinate system Oxy;
therefore: C(0;0); A(10;0); B(0;2).

2. Parameters p;, q; for points A;; i=1,12 are

X; .
pi=—-, q; =2
Xa Ya

, for i=1,12. (37)

The results of the calculations are given in Table 6.

Table 6

Parameterization of points A;in the CAB simplex

Ai Al AZ A3 A4 AS AG A7 AS A9 AlO All A12

pi 101020406 1 (12|14 | 16|18 |21 |24]|25

q | 1|25 4|5 |55|25|-05(-25| -4 |-45[-25|-0.5

3.1t is necessary to calculate the reference point M;,
i=1,11 and the projection center S. To simplify the calcula-
tions, S(-4;0) was taken or relative to simplex CAB in para-
meters: ps=Xg /x4 =—4/10=-0.4; q3=0/xp=0: S(-0.4;0).

4. For each of the links A;A;4; for i=1,11 by constructing
parallelograms A;A;;1SK; by calculating them from the point
equations, it is necessary to find xg and yg,

Xg =Xg+Xj —% | ——
Ki=S+A,-A={ S 5o, (38)
Yk, =Yst+Yiaa— )i
and similarly in parametric form
=De+Diq —D; J—
K =S+ A, —A = PR TPl o (39)
dk, =4qs T qi1 —qi

5. Similarly to (24), coordinates y, for points M; on the
Oy axis can be found

Ps Ak, (_0'4)'qu
_ . L, =
I b (~04)—py
~0.4)—px

The results of the y,, coordinate calculations are given
in Table 7; and for point M; the construction is carried out
in Fig. 3. The results of coordinates and parameters calcula-
tions (17), (18) for all links A;A; ; ; of ABL are given in Table 7.

' Driz

Ky

Fig. 3. Construction of a strip of differential projections
and determination of composite derivatives at the base
points of a discretely given plane curve

Table 7
Calculation of coordinates and parameters of points K;and M;
AiAi 1 A1Ay ArAs AzA4 AdAs AsAg AeA7 AzAs AgAg AgA1o A1An AnAp
Xk, -3 -2 -2 0 -2 -2 -2 -2 -1 -1 -3
Vx, 3 3 2 -1 -4 -6 -4 -3 -1 4 4
Pk, -0.3 -0.2 -0.2 0 -0.2 -0.2 -0.2 -0.2 -0.1 -0.1 -0.3
qx, 1.5 1.5 1 -0.5 -2 -3 -2 -1.5 -0.5 2 2
Yum, 12 6 4 -1 -8 -12 -8 -6 -1.(3) 5.(3) 16




6. The reference point M; and the differential projec-
tions Dg, Dy, ., have the same coordinates: yy, =yp, =Yp, -
Therefore, Dy; (xAl;yMl), DLl-H(xAM;yML). It is necessary to
compile Tables 8, 9 of the differential projection calculations.

In Table 8, the Dg;;, value is missing; in Table 9, the Dy, value
is missing. They can be found as the sides of a parallelogram.

7. The values of diffprojection Dy; are calculated by draw-
ing a segment D;,D;, || Dg, Dy, (Fig. 3)

Dpy=Dpi + D13 =Dpy = Y1 = Yr1 + Y12 = Yr2 =

=y, =12+12-6=18. (41)

8. The values of diffprojection Dg;, can be found by draw-
ing a segment Dyy1Dyy; || Dy Dgiy (Fig. 3)

Dy =Dgi1 + D1y =Dy = Yriz = Yru + Vo2 — Yo =

= Yr1p =16+16—5.(3) = 26.(6). (42)

9. The arithmetic mean of the first derivatives A;,i=1,12
for each of the base points A;,i=1,12 is calculated as follows

_ Dygi+ Dy -

o _ YRt YL
2 9

A i i:l,j.

1

(43)

The results of the calculations corresponding to (43) are
given in Table 10.

of derivatives at the nodes of the desired continuous interpo-
lation curve line.

Unlike [9-11], the main feature of the proposed technique
is that any initial geometric object is previously given by
a composition of base points. They are selected on this object
and become the basis for solving the problem. On the plane,
simplex CAB is arbitrarily selected, relative to which the base
points are parameterized in point form, that is, in the general
form (3) with respect to their coordinates. On the plane, point
forms (3) are revealed in two coordinate records. In spaces of
higher dimensions, the number of coordinate entries will cor-
respond to the dimensions of these spaces. In expressions (3)
and (4), parameters (1), (14) remain unchanged because they
are invariants of parallel projection.

A segment of any regular curve line can be represented
discretely by base points (Fig. 1). Through them, an accom-
panying polyline (A14,A3) can be drawn. Based on it, using
the graphical method of chords through the application of
differential projections, one can find approximate values
of derivatives at the base points of this curve (8) to (10).

Owing to the use of point forms (12), (13), graphical dif-
ferentiation methods are easily amenable to the development
of computational algorithms (digitization). This provides
significant advantages in finding values compared to the use
of conventional differentiation methods from mathematical
analysis (18), (19).

Problems using artificial intelligence

] ) ) ) o Table8  haye solutions in the form of a set of
Coordinates of right differential projections Dg; coefficients, the gradual refinement of
Dri | Dri | Dry | Dps | Dps | Dps | Dps | Dr7 | Dgs | Do | Drio | Dri1 | Dri2 WhiCh through training brings. the solu-
Xai 1 5 4 6 10 12 14 16 18 o1 o 5 tl?‘gl to tt%; proble}r:.l clloier 1Eo@ect ref:cog—
y | 12 | 6 | 4 | -1 | 8 |-12] -8 | -6 |-L(®)|[503)] 16 | - nition). The graphical technique of ap-
proximate finding of derivatives meets
Table 9 these requirements and is easily digitized
Coordinates of right differential projections D;; a .1n51gn1f1cant. resource consumptlop.
This provides significant advantages in

Dy | Dy | D1z | Dis | Dra | Dis | Dig | D17 | Drs | Dro | Drio | Drni | Diiz | solving problems using derivatives.
Xr; 1 2 4 6 10 12 14 16 18 21 24 25 The determination of reference point
Yii 12| 6 4 | 2] s -12] 8] -6 [-13)]503) ]| 16 | M(09.81) from (26) and the projec-
tion center S(-4.91;0) from (35), (36) in
Table 10  Fig. 2 correlate the traditional values of

Calculating y; derivatives for the points of DGC obtained using the strip

of diffprojections

the first derivative (19), (20) with the
results from the digitized technique
of graphical dif ferentiation. Without

A Ay A Az Ay As Asg Ay Ag Ay | A | An | An correlation between the values of the
X; 1 4 6 10 12 14 16 18 21 24 25 derivatives obtained by the conven-
yri | 12 4 -1 8 | -12] -8 | =6 [-1.®]503)| 16 [26.(6)| tional method and digitized by the
Vi 18 12 6 4 ) 3 | .12 | = 6 |-1.3)|503) | 16 chord method, the nature of change in

. the form of the digitized and graphical
2 L o > LS | 45| 710 ] 710 ] =7 [=365] 2 J1065]2L33| . ditional derivatives will be the same,

The proposed technique for analytical representation of
graphical differentiation in point form is quite effective in
solving individual problems using artificial intelligence.

6. Results of investigating the proposed technique
for analytical representation of graphic
differentiation: discussion

The proposed method for digitizing graphic differentiation
by the chord method has been used to confirm the hypothesis
of our study. A strip of diffprojections was constructed and
applied to form an algorithm for selecting approximate values

but their values will differ.

In our test example (Table 5), the initial composition of
points is given, the graphic image of which is shown by the
main line (Fig. 3), and which is parameterized (Table 7) with
respect to simplex CAB. The right (Table 8) and left (Table 9) dif-
fprojections are calculated, which are depicted in Fig. 3 (dashed
lines). The results of calculating the derivatives (43), which
are obtained by the digitized graphical method of chords, are
given in Table 10.

The proposed technique of graphical differentiation an-
alytically formalized in point form cannot be applied to
segments of curved lines containing inflection points of the
1st and 2nd kind, breaking points, curve discontinuity points,
and asymptotic points. However, if at these points the curve



segment is divided into two separate ones, on which all points
will be regular, then it will be possible to apply the proposed
analyzed graphical differentiation to each of these segments.
Curves are given in parametric form. Therefore, when points
of inflection, self-tangency, or nodal points occur on the seg-
ments of curved lines, the method of graphical differentiation
analytically formalized in point forms can be applied to them.
In this case, only one requirement is put forward: each of the
specified special points must be given by two separate points
that have converged into one.

The proposed analytically formalized method of graph-
ical differentiation bridges the gap in applying different ap-
proaches and techniques to the differentiation of functions,
which imposes certain restrictions on their use in modern
technologies and increases resource consumption. At the
same time, the analytically formalized method of graphical
differentiation is the only algorithm that can be applied in the
plane to the graphs of any functions of one variable, taking
into account the specified restrictions.

The need to calculate the basis functions (14), the point
polynomial (12), and its derivative (19) for the parameter value
t =0 is a drawback of our study.

Further advancement of the analytically formalized graph-
ical differentiation may involve its extension to spatial discrete-
ly given segments of regular curves. They generalize processes
and are more widespread in modern technologies.

proposed, which is based on the devised parameterization
methodology. Within the algorithm, the reference point and
the projection center are determined, the coordinates and
parameters for all points K; and M;, (i=1,12), are calculated,
coordinates for the right Dg; and left D;; (i=1,12), diffprojec-
tions of the accompanying polyline are determined. Based on
the values of Dg; and Dy; (i=1,12), the values of the de-
rivatives at all (i=1,12) base points are selected within the
strip of diffprojections. A feature of the developed algorithm
of analytically formalized graphic differentiation is that it
does not require graphic operations to be performed for its
implementation. The figures given in the text of our paper are
for informational purposes only.
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7. Conclusions

Data availability

1. The parameter records p(¢) for i=1,n devised in a gen-
eral form build functions for the basis of the interpolation
point polynomial. The proposed methodology of parame-
terization of the accompanying broken line allows us to
determine reference point M, the yj, coordinate of which
coincides with coordinates y;, and yp  of the corresponding
diffprojections. Point M; makes it possible to find a projection
center for calculating diffprojections at all points of the ac-
companying broken line, which are correlated with the values
of the derivatives at its vertices belonging to the segment of
a flat continuous regular curve. The peculiarity of our result is
that it could be applied to the discrete point representation of
graphs of any single-valued or multi-valued functions.

2. An algorithm for the analytically formalized repre-
sentation of graphical differentiation in point form has been

All data are available, either in numerical or graphical
form, in the main text of the manuscript.
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gence technologies when creating the current work.
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