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This study considers graphic differentiation, in par-
ticular, a chord method, as one of the options for 
graphic differentiation in terms of replacing graphic 
operations with analytical ones in point form.

Determining the reference point and the center of 
projection for constructing a strip of differential pro-
jection correlates its positions with respect to the values 
of the derivative of the function, which is graphically 
represented by a discrete series of points. The reference 
point, the right differential projection of the first and 
left differential projection of the second points have the 
same values in the field of derivatives. However, they 
do not coincide with the values of the derivatives of the 
original functions. To establish such a correspondence, 
the difference between the left and right differential 
projections of the first point is divided in half and sub
tracted from the first derivative of the original func-
tion  – the point polynomial.

Relative to the reference point, parallel to the first 
link of the accompanying broken line of the discretely 
represented curve, a straight line is drawn that inter-
sects the abscissa axis at the center of the projection. 
Finding the reference point and the projection center 
is carried out analytically in point form without any 
graphic operations. Rays are drawn from the projection 
center parallel to one of the links of the accompanying 
polyline, thus forming a strip of differential projections, 
within which the values of the angles of inclination of 
the tangents to the curve at the base points are select-
ed. Discrete derivative values are connected by straight 
line segments or remain separate points. The resulting 
derivative values coincide with the analytical values 
with a deviation of no more than 0.5–1.5 units.

The developed algorithms could be integrated into 
automated design and engineering analysis systems 
for effective calculation of derivatives of discretely 
given curves. In addition, they could serve as the basis 
for designing computationally productive modules in 
artificial intelligence and digital data processing sys-
tems that work with geometric and discrete informa-
tion arrays
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1. Introduction

The graphical differentiation method has historically 
proven its effectiveness [1] for rapid, albeit approximate, en-
gineering analysis and process optimization at the stages of 
initial design [2, 3].

However, in modern practice, where geometric, kinematic, 
and functional data are generated and processed exclusively 
in discrete point form (CAD/CAE, measuring systems), di-
rect application of the graphical differentiation method has 
become impossible. This is explained by the need to perform 
resource-intensive graphical constructions, which inevitably 
introduce significant subjective errors.

The restoration of the practical value of the graphi
cal differentiation method is possible only through its 
complete analytical formalization and digitization, which 
will make it possible to replace graphical operations with 
accurate computational algorithms in point form. There is 
a particular need for such algorithms in the field of me-
chanical engineering and kinematics, where it is necessary 
to quickly calculate the velocities and accelerations (first 
and second derivatives) of objects whose trajectories are 
given by discrete points or measurement data. Conventional 
methods of mathematical analysis often require preliminary 
approximation, which is inefficient for large arrays of dis- 
crete data.
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In addition, the integration of computational algorithms 
for finding derivatives can be carried out in artificial intelli-
gence models and neural networks that work with discrete 
data. For example, in problems of pattern recognition, geo-
metric data processing, or optimization processes that require 
iterative refinement of coefficients. Current scientific and 
practical research and design using artificial intelligence [4, 5]  
methods evolve reasonably well given the accuracy of the dig-
itized graphic differentiation method.

Among the entire variety of graphical differentiation 
methods, the most interesting is the chord method. Devising 
a digitization technique is relevant from the point of view of 
using in any system of digital transmission of data encoded in 
discrete signal pulses.

Thus, the relevance of research in this area is predeter-
mined by two key aspects:

– theoretical restoration: analytical representation of the 
chord method, which replaces resource-intensive graphical 
operations with high-precision computational ones, thereby 
restoring the practical value of the graphical differentiation 
method;

– technological integration: adaptation of this digitized 
method to modern technological requirements, which allows 
its effective integration into CAD/CAE systems and artificial 
intelligence algorithms for rapid analysis of discretely speci-
fied functions.

2. Literature review and problem statement

In [6], the results of research on latent variable derivative 
models of Gaussian processes that can process multidimen-
sional input data using modified covariance derivative func-
tions are reported. The modifications take into account the 
complexity of the basic data generation process, such as scaled 
derivatives, variable information in several input dimensions, 
and interaction between outputs. It is shown that the accuracy 
of the latent variable estimation can be significantly improved 
by including derivative information due to the proposed mod-
ifications of the covariance function. The issues of practical 
scaling of the method remain unresolved.

In [7], an approach to shape optimization using the finite 
element method is given. The geometry is described by a dis-
crete function of a set of levels, and the objective functionals 
are defined over volume domains. However, the same issues 
of practical scaling of the method and reducing computa-
tional costs for complex geometries remain unresolved since 
it is the computational complexity that limits its application. 
These difficulties can be overcome by improving numerical 
optimization algorithms and using more efficient approxima-
tion strategies for functions of a set of levels.

This is the approach used in [8], which reports a polyno-
mial scheme for finding exact solutions to nonlinear partial 
differential equations based on series expansions and resum-
mation associated with the renormalization group. This ap-
proach makes it possible to reduce the problem to solving only 
linear algebraic equations, avoiding complex analysis meth-
ods, and provides the construction of one- and two-soliton, 
as well as periodic, solutions. At the same time, the issues of 
scalability of the method and its application to more complex 
classes of equations remain unresolved, which is limited by 
the increase in computational complexity. These difficulties 
can be overcome by improving resummation algorithms and 
devising more efficient equation reduction procedures.

In [9], methods of geometric modeling and optimiza-
tion of multidimensional data within the framework of the 
Radischev integrated drawing system are considered. The 
authors analyze the possibilities of using such an approach 
to increase the accuracy and efficiency of processing complex 
data. In [10], the strength characteristics of high-strength 
steel-fiber concrete at elevated temperatures are investigated 
using mathematical modeling. The work is aimed at predict-
ing the behavior of the material under extreme conditions. The 
authors of [11] proposed an approach to geometric modeling 
of multifactorial processes and phenomena based on mul-
tidimensional parabolic interpolation. The work shows that 
the method allows for more accurate consideration of com-
plex dependences between parameters. Thus, papers [9–11]  
consider the construction and analysis of mathematical mod-
els for multidimensional space by constructing interpolation 
curves in point (general) form in parametric form. However, 
these studies bypass the issues of constructing derivatives 
for point interpolation curves, not to mention the graphical 
differentiation of discretely given curves.

In [12], automated control systems for hydraulic locks for 
flood prevention are considered. The authors propose opti-
mization of the design and control algorithms based on the 
integration of numerical modeling methods and analysis of 
hydrodynamic processes. A feature of the study is the use of 
adaptive algorithms that make it possible to take into account 
dynamic changes in environmental conditions. However, 
despite the effectiveness of the proposed solutions, the ques-
tion of using graphical differentiation methods for analyzing 
nonlinear dependences in systems with discrete data remains 
open, which limits the possibilities of further improving the 
accuracy of forecasting and optimization.

All this allows us to assert that the issue of devising  
a computational method for approximately finding the first 
and second derivatives for interpolation curves in parametric 
form that interpolate the original discretely given flat line 
curves is unresolved.

Our review of the literature in the field of numerical and 
geometric differentiation shows that existing methods do not 
offer a single effective solution for calculating the derivatives 
of curves given by discrete point polynomials. Numerical 
differentiation methods often require significant computa-
tional resources or preliminary approximation. In contrast, 
the chord method, despite its simplicity and clarity, remains 
unsuitable for digital application because of the need for 
graphical constructions. Thus, an unsolved task is to devise 
an analytical description of the chord method in point form, 
which would completely eliminate graphical operations, pro-
vide the necessary accuracy, and become a productive tool for 
modern systems working with discrete data.

3. The study materials and methods

The aim of our study is to devise a technique for analytical 
representation of the chord method in graphical differentia-
tion of a flat, discretely given curve line by points. This will 
make it possible to programmatically implement effective 
methods of graphical differentiation for use in further re-
search using artificial intelligence.

To achieve the goal, the following tasks were set:
– to propose a technique for determining the projection 

center for correlating the values of derivatives found by graph-
ical differentiation and analytically;
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– to develop an algorithm for forming a strip of differential 
projections and to calculate a test case for digitized graphical 
differentiation by the method of chords.

4. The study materials and methods

The object of our study is graphical differentiation, in par-
ticular, the method of chords, as one of the options for graphical 
differentiation in terms of replacing graphical operations with 
analytical ones in point form. The hypothesis of the 
study assumes that a digitized technique of forming 
a strip of differential projections for a broken line 
can be used to select approximate values of deriva-
tives at the nodes of a discretely given plane curve.

In the study, it is assumed that the plane curved 
line to be differentiated is given exclusively by  
a discrete series of points (a point polynomial). 
This is a simplification compared to a continuous 
function but corresponds to modern digital meth-
ods of data representation. 

In addition, instead of working with infinitely small incre-
ments (as in classical differentiation), the method works with 
finite chords (segments of the accompanying broken line), 
which is a fundamental simplification of the chord method.

It is adopted that the studied segments of the curve are 
regular. The assumption is that any graphical operation of the 
chord method (construction of chords, drawing parallel lines, 
finding the centers of projection) can be absolutely exactly 
replaced by the corresponding system of analytical equations 
in point form. It is accepted that to establish a correspon-
dence between the values of the derivatives obtained by the 
graphical method of chords and the values calculated by the 
methods of mathematical analysis, it is sufficient to apply  
a specific correction coefficient. This is an empirical or pro-
cedural assumption/simplification aimed at "calibrating" the 
graphical method to the analytical standard. 

The chord method can be used as one of the techniques of 
graphical differentiation. A fragment of the technique to form 
a strip of differential projections is briefly given below.

Let the initial three points A1(2, 1); A2(4, 3); A3(8, 2) be 
given in the coordinate system Oxy (Fig. 1). The simplex CAB, 
whose vertex C = 0 coincides with the origin of the coordi-
nate system – point O, and two of its points have coordinates 
A(8, 0); B(0, 4), can be combined with the coordinate system. 
In Fig. 1, CAB is drawn with thickened straight line segments.

The parameters of points A1(p1, q1, r1); A2(p2, q2, r2); 
A3(p3, q3, r3) as the coordinate relation take the following form

q y
yi
i

B
= ,  r p qi i i� � �1 ,  for i =1 3, . 	 (1)

According to (1), we can calculate parameters for Aі, 
i =1 3,  in simplex САВ:

A p q

r A

1 1 1

1 1

2
8

0 25 1
4

0 25

1 0 25 0 25 0 5 0 25 0 25 0

: . , . ,

. . . . ; . ; .

� � � �

� � � � � 55� �;
A p q

r A

2 2 2

2 2

0 5 3
4

0 75

1 0 5 0 75 0 25 0 5 0 75 0 25

: . , . ,

. . . . ; . ; .

� � �

� � � � � � �� ��;
A p q

r A

3 3 3

3 3

8
8

1 2
4

0 5

1 1 0 5 0 5 1 0 5 0 5

: , . ,

. . ; . ; . .

� � � �

� � � � � � �� � 	 (2)

The point equations of points Aі, i =1 3,  in simplex CAB 
take the following form:
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,

.
	 (3)

Point equations (3) are a calculation scheme in coordinate 
form:

The coordinates of points Aі, i =1 3,  calculated in (4) 
coincide with the values of the corresponding points – this 
means that parameters pі, qі, rі, i =1 3,  from (1) were calcu
lated correctly.
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Fig. 1. Scheme for constructing 	
diffprojections DL1, DR2, DL2, DR3

To construct differential projections DL1, DR2, DL2, DR3  
it is necessary to calculate the projection pole S (Fig. 1). Let 
the pole have coordinates S(–4, 0).

It is necessary to draw segment SK A A1 1 2 ,  using point 
equation K S A A1 2 1� � � ,  which in coordinate form is calcu-
lated as follows:
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At point M, straight line SK1 intersects the axis Oy. The 
parameters of points S and K1 in simplex CAB are calculated 
as follows:
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It is necessary to parameterize points S and K1 through the 
vertices of simplex CAB:

S Ap BqS S� � ,

K Ap BqK K1 1 1
� � . 	 (7)

The current point M on the straight line SK1 is determined 
from the following point equation [1]

M K S u S� �� � �1 , 	 (8)

or in expanded form taking into account (7)
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Point M will belong to the Oy axis if expression
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as can be seen from Fig. 1, points M and B coincide.
On a horizontal line with parameter q = 1 (Fig. 1), passing 

through point M, for point A1 a diffprojection can be found: 
DR1 0 25 1. ; ,� �  for point A2 – diffprojection DL2 0 5 1. ; .� �

Similar to point K1, it is necessary to find point K2

K S A A2 3 2� � � ,

or in coordinate form:

x x x x
y y y y

K
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Since xK2
0= , points K2 = M2 coincide (Fig. 1).

On the horizontal line with parameter q = –0.25 (Fig. 1), 
passing through point M2, for point A2 we can find diffprojec-
tion DR2 0 5 0 25. ; . ,�� �  for point A3 – diffprojection DL3 1 0 25; . .�� �  
By connecting the dashed lines of the corresponding diff-
projections, a strip of diffprojections can be obtained for the 
polyline A1A2A3. For point A2, point T D DR L2 2 2

2� �� � /  can 
be chosen for the value x2 = 4 (as one of the possible options).  
The ′yT2

 value corresponds to the angle of inclination of tan-
gent t2 and ray SM2 (Fig. 1), therefore, t SM2 2 .

5. Results of calculating the values of the first derivatives 
at the points of a discretely given plane curve

5. 1. Determining the reference point and the center 
of projection for the strip of diffprojections

Let the initial discretely given plane curve (DGC) be given 
by five points (Table 1).

Table 1
Points of initial DGC

Ai A1 A2 A3 A4 A5

xi 1 4 1 14 18
yi 2 8 9 –1 –8

The general form of the point polynomial that interpolates 
the original DGC is written as follows [2, 3]

M t A p t t t ti i
i

n
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�

�

�
1

5

1 5, ,	 (12)

which in expanded (coordinate) form is written as

M t x p t M t y p tx i i
i

y i i
i
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� �
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1

5

1

5
, . 	 (13)

In entries (12) and (13), pi(t) for i =1 5,  are the basis func-
tions of the point polynomial and are the invariants of parallel 
projection, which are formed as follows

p t

t t

t t
t t ti

i
i
i i
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i i
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�� �
� �

�
�� �

�

� �
�
�� �

�

�

�

1

5
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In the original notation (14) the functional basis of the 
point polynomial (12) is given. The index notation i = (i) un-
der the product sign in both the numerator and denominator 
means that the difference with parameter ti cannot be used in 
the products of differences. Its index coincides with the index, 
which is taken in brackets to distinguish in the notation of the 
basis functions p(i)(t).

To determine parameters ti, i =1 5, ,  which are part of the 
basis functions (14) of the point polynomial (12), the lengths 
of each of the links of the accompanying broken line (ABL), 
which is constructed at the starting points of DGC (Table 1), 
must be calculated. In general, the lengths of these links are 
denoted li, i – 1, i = 2 5, .  It should be noted that l1,0 = 0. There-
fore, for a plane curve

l x x y y ii i A A A Ai i i i, , , .� � �� � � �� � �
� �1

2 2
1 1

2 5 	 (15)

The results of calculations of the lengths of the accompa-
nying broken line (ABL) links are given in Table 2.

Let the sum of the first three segments be unity relative to 
measurement Le

L l l le � � � �1 0 2 1 3 2 12 7909664627, , , . . 	 (16)

The values of parameters ti for all initial points Ai; i =1 5,  
can be calculated taking into account that t1 = 0

t
l

L
i i i ii

i i
i

e
� �

�
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� ,

, , , , ; .
1

2 2 5 2

�

� 	 (17)

It is necessary to first calculate the numerator (Table 3).
The results of the calculations of parameters ti are given 

in Table 4.
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By substituting the values of parameters ti from Table 4 
into the basis function (14) and then into the polynomial (12), 
we can obtain the equation of the point polynomial that inter-
polates the original five points (Table 1)

The equation of the first derivative with respect to para
meter t for polynomial (18) will take the following form

The value of the first derivative (19) � � �M ty  at point A1, for 
which t1 = 0, will take the following form

� � � � � � � �M ty 2 9 20516079054
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8 4 5541059509
0 64008

.

.
.
. 8885246

9 2 38839430447
0 58956238448

1 1 29661251863
1 288

�
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.
.

.

. 110422298

8 0 96604801653
4 46921134473

13 4726482308 13 4

�
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.
.

. . 77. 	 (20)

The vertices of simplex CAB (Fig. 2) have the following 
coordinates: C(0;0); A(10;0); B(0;2). An imaginary center of 
projection S �� �4 0; ,  can be chosen arbitrarily on the Ox axis, 
i. e., always to the left of the Oy axis (Fig. 2, upper part).

For the segment (A1A2), coordinates xk1
 and yk1

 of approx-
imate point k1 are determined as follows:
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Similarly for the section 
(A2A3):
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For k1  and k2  in the CAB simplex, it is 
necessary to calculate parameters p qk k1 1

,  
and p qk k2 2

, , accordingly:
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Using (10), points M1 and M2  can be found on the Oy axis:
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. .
. .

. .
. 	 (24)

Table 2
ABL links length 

i 1 2 3 4 5

li, i – 1 0 6.70820393249 6.08276253029 10.7703296142 8.06225774829

Table 3
Cumulative length of ABL

I, i – 1 1 2 3 4 5

i�
�
2

5

0 6.70820393249 6.08276253029 10.7703296142 8.06225774829

Table 4
Values of parameters ti

Ai A1 A2 A3 A4 A5

ti 0 0.52444855922 1.0 1.84202625701 2.47233498088

M t y
t t t t

y � �� � � � � � �
1

4 3 25 83880979711 11 6555762831 9 205160790. . . 554 2 38839430447
2 38839430447

5 31436123789 8
2

3 3 2

�
�

�
� � � �

.
.

.y t t t .. .
.

.

86846718879 4 5541059509
0 64008885246

4 83880
3

4 3

� �
�

�
� �

t

y t t 9979711 6 81676648606 2 38839430447
0 58956238448

2

4

� � � �
�

�

t t

y t

. .
.

44 3 23 9967835401 4 29339605873 1 29661251863
1 28810

� � � � � �t t t. . .
. 4422298

3 36647481623 3 33252283276 0 966048
5

4 3 2

�

�
� � � � � �y t t t t. . . 001653

4 46921134473.
. (18)

� � � � � � � � �M t y t t t
y 1

3 24 3 5 83880979711 2 11 6555762831 9 20516079. . . 0054
2 38839430447

4 3 5 31436123789 2 8 8684671887
2

3 2
.

. .

�

�
� � � �y t t t 99 4 5541059509

0 64008885246
4 3 4 83880979711 2 6

3

3 2

�
�

�
� � � �

.
.

.y t t t .. .
.

.

81676648606 2 38839430447
0 58956238448

4 3 3 9967
4

3 2

�
�

�
� �y t t 8835401 2 4 29339605873 1 29661251863

1 28810422298
4

5

3

� � �
�

�

t

y t

. .
.

�� � � � �3 3 36647481623 2 3 33252283276 0 96604801653
4 469211

2t t. . .
. 334473

.  (19)
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𝐾𝐾𝐾𝐾1

𝑀𝑀𝑀𝑀1

𝑆𝑆𝑆𝑆 𝑀𝑀𝑀𝑀2
𝐾𝐾𝐾𝐾2

𝐾𝐾𝐾𝐾1

𝐷𝐷𝐷𝐷𝐿𝐿𝐿𝐿1

𝐷𝐷𝐷𝐷𝐿𝐿𝐿𝐿2
𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅1

𝐵𝐵𝐵𝐵 = 2

𝐵𝐵𝐵𝐵 = 2

𝐶𝐶𝐶𝐶

𝐶𝐶𝐶𝐶

𝐴𝐴𝐴𝐴

𝐴𝐴𝐴𝐴

𝐴𝐴𝐴𝐴1

𝐴𝐴𝐴𝐴2
𝐴𝐴𝐴𝐴3

𝐴𝐴𝐴𝐴4

𝐴𝐴𝐴𝐴5𝑀𝑀𝑀𝑀1

𝑆𝑆𝑆𝑆(4,9; 0)

𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀1 ∥ 𝐴𝐴𝐴𝐴1𝐴𝐴𝐴𝐴2

𝑆𝑆𝑆𝑆𝐾𝐾𝐾𝐾2 ∥ 𝐴𝐴𝐴𝐴2𝐴𝐴𝐴𝐴3

𝐾𝐾𝐾𝐾𝑀𝑀𝑀𝑀1 ∥ 𝐴𝐴𝐴𝐴1𝐴𝐴𝐴𝐴2

𝐷𝐷𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝑀𝑀𝑀𝑀′
𝑦𝑦𝑦𝑦(𝑡𝑡𝑡𝑡1) = 𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀′

𝑦𝑦𝑦𝑦(𝑡𝑡𝑡𝑡1)

𝑀𝑀𝑀𝑀′
𝑦𝑦𝑦𝑦(𝑡𝑡𝑡𝑡1)

Fig. 2. Construction of reference point M1 and projection 
center S

The absolute value � � �y yM M1 2
 is:

� � � �8 0 67 7 33. . ;

�
2

3 665� . . 	 (25)

Reducing the value of the first traditional derivative � � �M ty 1  
from (20) by Δ/2 gives the result

y y M tR L y1 2 1 2
13 473 3 665 9 808 9 81� � � � � � � � � �

� . . . . . 	 (26)

By increasing value � � �M ty 1  by Δ/2, we can obtain yL1

y M tL y1 1 2
13 473 3 665 17 138 17 14� � � � � � � � �

� . . . . . 	 (27)

Hence, coordinates of three differential projections can 
be obtained:

D x y DL L L1 1 11 1 17 14; ; . ;� �� � �

D x y DR R R1 1 11 1 9 81; ; . ;� �� � �

D x y DL L L2 2 22 4 9 81; ; . .� �� � � 	 (28)

From Fig. 2: y y yR L M1 2 1
= = . So, the reference point M1 will 

have coordinates x yM M1 1
0 9 81= =, . , i.e., M1(0;9.81).

It is necessary to calculate point K1, which is the fourth vertex 
of parallelogram A1A2M1K1, for which M K A A1 1 1 2 . Point form 

for calculation will take the following form: K M A A1 1 1 2� � � . 
It is expanded into coordinate notation as follows:

x x x xK A M A1 1 1 2
1 0 4 3� � � � � � � � ,

y y y yK A M A1 1 1 2
2 9 81 8 3 81� � � � � � � �. . .	 (29)

Thus, the auxiliary point K1(–3;3.81) was obtained. To 
form differential projections for all initial points, it is neces-
sary to calculate projection center S on the Ox axis. In point 
form, S M K Ox= 1 1  .

The point equation of straight line M1K1, on which point 
S is located, takes the form

S M K u K� �� � �1 1 1, 	 (30)

where u is the current parameter along line M1K1.
Points M1 and K1 in simplex CAB are defined by:

M Ap BqM M1 1 1
� � ,

K Ap BqK K1 1 1
� � , 	 (31)

where:

p
x
xM
M

A
1

1 0
10

0= = = ;  q
y
yM
M

B
1

1 9 81
2

4 91= = =
. . ;

p
x
xK
K

A
1

1 3
10

0 3� �
�

� � . ;  q
y
yK
K

B
1

1 3 81
2

1 91= = =
. . .

Substitution (31) in (30) gives the result

S Ap Bq Ap Bq U Ap Bq

A p p U p B p
M M K K K K

M K K

� � � �� � � � �

� �� � ��� �� �
1 1 1 1 1 1

1 1 1 MM K Kp U q
1 1 1
�� � ��� �� . 	 (32)

Taking into account that in (32) yS = 0

q q u qM K K1 1 1
�� � � ,  hence u

q
q q

K

K M
�

�
1

1 1

. 	 (33)

Substitution (33) in (32) allows one to write

S A p p
q

q q
p BM K

K

K M
K� �� �

�
�

�

�
�
�

�

�
�
�
� �

1 1

1

1 1

1
0. 	 (34)

Taking into account that pM1
0=  from (31), the end result 

takes the form

S A
p q
q q

pK K

K M
K�

� �
�

�
�

�
�
�

�

�
�
�

1 1

1 1

1
, 	 (35)

or in coordinate form

x x
p q
q q

pS A
K K

K M
K� �

� �
�

�
�

�
��

�

�
�� �

� �
�
�

�

1 1

1 1

1

10 0 3 1 91
1 91 4 91

0. .
. .

.33 4 91�

�
�

�

�
� � � . . 	 (36)

Thus, S(–4.91;0).
Determining the reference point M1 and the projection 

center S are mandatory for the subsequent construction of the 
strip of differential projections of the accompanying polyline. 



Eastern-European Journal of Enterprise Technologies ISSN-L 1729-3774; E-ISSN 1729-4061	 6/1 ( 138 ) 2025

60

Finding these points brings the values of the derivatives found 
by graphical differentiation using the chord method into line 
with the values of traditional derivatives calculated by mathe-
matical analysis methods.

5. 2. Algorithm for constructing a strip of diffprojec-
tions, a test case for digitizing graphic differentiation by 
the chord method

A strip of diffprojections is built on the basis of an accom-
panying polyline, the vertices of which are discretely given 
points of a regular plane curved line. It is a part of a plane 
bounded by straight lines, the inclination angles of which cor-
respond to the inclination angles of each of the links of ABL. 
The selection of tangents to the desired curve within the strip 
of diffprojections will not cause the probable appearance of 
unnecessary inflection points on this desired curved line.

Let a flat discretely given curved line be given by twelve 
points Ai; i =1 12, ,  the coordinates of which are given in Table 5.

Table 5

Coordinates of the base points of original DGC

Ai A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

xi 1 2 4 6 10 12 14 16 18 21 24 25

yi 2 5 8 10 9 5 –1 –5 –8 –9 –5 –1

The algorithm is as follows:
1. For parameterization, simplex CAB must be chosen, 

which coincides with the original coordinate system Oxy; 
therefore: C(0;0); A(10;0); B(0;2).

2. Parameters pi, qi for points Ai; i =1 12,  are

p x
xi
i

A
= , q y

yi
i

A
= ,  for i =1 12, . 	 (37)

The results of the calculations are given in Table 6.

Table 6

Parameterization of points Ai in the CAB simplex

Ai A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

pi 0.1 0.2 0.4 0.6 1 1.2 1.4 1.6 1.8 2.1 2.4 2.5

qi 1 2.5 4 5 5.5 2.5 –0.5 –2.5 –4 –4.5 –2.5 –0.5

3. It is necessary to calculate the reference point Mi, 
i =1 11,  and the projection center S. To simplify the calcula-
tions, S(–4;0) was taken or relative to simplex CAB in para
meters: p x xS S A� � � � �/ / . ;4 10 0 4  q xS B= =0 0/ :  S(–0.4;0).

4. For each of the links AiAi+1 for i =1 11,  by constructing 
parallelograms AiAi+1SKi by calculating them from the point 
equations, it is necessary to find xK1

 and yK1

K S A A
x x x x
y y y y

ii i i
K S i i

K S i i

i

i

� � � �
� � �
� � �

�
�
�

��
��

�

�
1

1

1
1 11, , , 	 (38)

and similarly in parametric form

K S A A
p p p p
q q q q

ii i i
K S i i

K S i i

i

i

� � � �
� � �
� � �

�
�
�

��
��

�

�
1

1

1
1 11, , . 	 (39)

5. Similarly to (24), coordinates yMi
 for points Mi on the 

Oy axis can be found

y y
p q
p p

q
p

q

M B
S K

S K

K

K

K

1

1

1

1

1

1

2
0 4
0 4

0 8
0 4

� �
�
�

� �
�� � �
�� � � �

�
�� ��
�

.
.

.
.�� � � � �� �p

i i n
K1

1 11 1, , , . 	 (40)

The results of the yMi
 coordinate calculations are given 

in Table 7; and for point Mi the construction is carried out  
in Fig. 3. The results of coordinates and parameters calcula-
tions (17), (18) for all links AiAi + 1 of ABL are given in Table 7.

𝐷𝐷𝐷𝐷𝐿𝐿𝐿𝐿𝐿 

𝐷𝐷𝐷𝐷𝐿𝐿𝐿𝐿𝐿 

𝐷𝐷𝐷𝐷𝐿𝐿𝐿𝐿𝐿 

𝐷𝐷𝐷𝐷𝐿𝐿𝐿𝐿𝐿 

𝐷𝐷𝐷𝐷𝐿𝐿𝐿𝐿𝐿 

𝐷𝐷𝐷𝐷𝐿𝐿𝐿𝐿𝐿 

𝐷𝐷𝐷𝐷𝐿𝐿𝐿𝐿𝐿 

𝐷𝐷𝐷𝐷𝐿𝐿𝐿𝐿𝐿 

𝐷𝐷𝐷𝐷𝐿𝐿𝐿𝐿𝐿 

𝐷𝐷𝐷𝐷𝐿𝐿𝐿𝐿10 

𝐷𝐷𝐷𝐷𝐿𝐿𝐿𝐿11 

𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝑅 

𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝑅 

𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝑅 

𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝑅 

𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝑅 

𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝑅 

𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝑅 

𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝑅 

𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅𝑅 

𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅10 

𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅11 

𝐷𝐷𝐷𝐷𝑅𝑅𝑅𝑅12 

𝐴𝐴𝐴𝐴1 

𝐴𝐴𝐴𝐴2 

𝐴𝐴𝐴𝐴3 

𝐴𝐴𝐴𝐴4 
𝐴𝐴𝐴𝐴5 

𝐴𝐴𝐴𝐴6 

𝐴𝐴𝐴𝐴7 

𝐴𝐴𝐴𝐴8 

𝐴𝐴𝐴𝐴9 

𝐴𝐴𝐴𝐴10 

𝐴𝐴𝐴𝐴11 

𝐴𝐴𝐴𝐴12 

𝐴𝐴𝐴𝐴′1 

𝐴𝐴𝐴𝐴′2 

𝐴𝐴𝐴𝐴′3 

𝐴𝐴𝐴𝐴′4 

𝐴𝐴𝐴𝐴′5 

𝐴𝐴𝐴𝐴′6 𝐴𝐴𝐴𝐴′7 

𝐴𝐴𝐴𝐴′8 

𝐴𝐴𝐴𝐴′9 

𝐴𝐴𝐴𝐴′10 

𝐴𝐴𝐴𝐴′11 

𝐴𝐴𝐴𝐴′12 

𝐴𝐴𝐴𝐴 
𝐵𝐵𝐵𝐵 

𝐶𝐶𝐶𝐶 
𝑆𝑆𝑆𝑆 

𝐾𝐾𝐾𝐾1 

𝑀𝑀𝑀𝑀1 

𝑦𝑦𝑦𝑦 = 𝑦𝑦𝑦𝑦′ 

𝑥𝑥𝑥𝑥 

𝐷𝐷𝐷𝐷𝐿𝐿𝐿𝐿12 

Fig. 3. Construction of a strip of differential projections 	
and determination of composite derivatives at the base 

points of a discretely given plane curve

Table 7
Calculation of coordinates and parameters of points Ki and Mi

AiAi + 1 A1A2 A2A3 A3A4 A4A5 A5A6 A6A7 A7A8 A8A9 A9A10 A10A11 A11A12

xKi
–3 –2 –2 0 –2 –2 –2 –2 –1 –1 –3

yKi
3 3 2 –1 –4 –6 –4 –3 –1 4 4

pKi
–0.3 –0.2 –0.2 0 –0.2 –0.2 –0.2 –0.2 –0.1 –0.1 –0.3

qKi
1.5 1.5 1 –0.5 –2 –3 –2 –1.5 –0.5 2 2

yMi
12 6 4 –1 –8 –12 –8 –6 –1.(3) 5.(3) 16
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6. The reference point Mi and the differential projec-
tions D DR Li i

, +1  have the same coordinates: y y yM D Di Ri Li
� �

�1
. 

Therefore, D x y D x yRi A M Li A Mi i i i
; , ; .� � � �� �1 1

 It is necessary to 
compile Tables 8, 9 of the differential projection calculations.

In Table 8, the DR12 value is missing; in Table 9, the DL1 value 
is missing. They can be found as the sides of a parallelogram.

7. The values of diffprojection DLi are calculated by draw-
ing a segment D D D DL L R R2 1 1 2  (Fig. 3)

D D D D y y y y
y

L R L R L R L R

L

1 1 2 2 1 1 2 2

1 12 12 6 18
� � � � � � � �

� � � � � . 	 (41)

8. The values of diffprojection DR12 can be found by draw-
ing a segment D D D DL L R R11 12 11 12  (Fig. 3)

D D D D y y y y
y

R R L L R R L L

R

12 11 12 11 12 11 12 11

12 16 16 5 3
� � � � � � � �

� � � � �.( ) 226 6.( ). 	(42)

9. The arithmetic mean of the first derivatives � �A ii , ,1 12 
for each of the base points A ii , ,=1 12  is calculated as follows

A D D y y y ii
Ri Li

i
Ri Li�

�
� � �

�
�

2 2
1 12, , . 	 (43)

The results of the calculations corresponding to (43) are 
given in Table 10.

The proposed technique for analytical representation of 
graphical differentiation in point form is quite effective in 
solving individual problems using artificial intelligence.

6. Results of investigating the proposed technique  
for analytical representation of graphic 

differentiation: discussion

The proposed method for digitizing graphic differentiation 
by the chord method has been used to confirm the hypothesis 
of our study. A strip of diffprojections was constructed and 
applied to form an algorithm for selecting approximate values 

of derivatives at the nodes of the desired continuous interpo-
lation curve line.

Unlike [9–11], the main feature of the proposed technique 
is that any initial geometric object is previously given by 
a composition of base points. They are selected on this object 
and become the basis for solving the problem. On the plane, 
simplex CAB is arbitrarily selected, relative to which the base 
points are parameterized in point form, that is, in the general 
form (3) with respect to their coordinates. On the plane, point 
forms (3) are revealed in two coordinate records. In spaces of 
higher dimensions, the number of coordinate entries will cor-
respond to the dimensions of these spaces. In expressions (3) 
and (4), parameters (1), (14) remain unchanged because they 
are invariants of parallel projection.

A segment of any regular curve line can be represented 
discretely by base points (Fig. 1). Through them, an accom-
panying polyline (A1A2A3) can be drawn. Based on it, using 
the graphical method of chords through the application of 
differential projections, one can find approximate values  
of derivatives at the base points of this curve (8) to (10).

Owing to the use of point forms (12), (13), graphical dif-
ferentiation methods are easily amenable to the development 
of computational algorithms (digitization). This provides 
significant advantages in finding values compared to the use 
of conventional differentiation methods from mathematical 
analysis (18), (19).

Problems using artificial intelligence 
have solutions in the form of a set of 
coefficients, the gradual refinement of 
which through training brings the solu-
tion to the problem closer (object recog
nition). The graphical technique of ap-
proximate finding of derivatives meets 
these requirements and is easily digitized 
at insignificant resource consumption. 
This provides significant advantages in 
solving problems using derivatives.

The determination of reference point 
M1(0;9.81) from (26) and the projec-
tion center S(–4.91;0) from (35), (36) in 
Fig. 2 correlate the traditional values of 
the first derivative (19), (20) with the 
results from the digitized technique 
of graphical dif ferentiation. Without 
correlation between the values of the 
derivatives obtained by the conven
tional method and digitized by the 
chord method, the nature of change in 
the form of the digitized and graphical 
traditional derivatives will be the same, 
but their values will differ.

In our test example (Table 5), the initial composition of 
points is given, the graphic image of which is shown by the 
main line (Fig. 3), and which is parameterized (Table 7) with 
respect to simplex CAB. The right (Table 8) and left (Table 9) dif-
fprojections are calculated, which are depicted in Fig. 3 (dashed 
lines). The results of calculating the derivatives (43), which 
are obtained by the digitized graphical method of chords, are 
given in Table 10.

The proposed technique of graphical differentiation an-
alytically formalized in point form cannot be applied to 
segments of curved lines containing inflection points of the 
1st and 2nd kind, breaking points, curve discontinuity points, 
and asymptotic points. However, if at these points the curve 

Table 8
Coordinates of right differential projections DRi

DRi DR1 DR2 DR3 DR4 DR5 DR6 DR7 DR8 DR9 DR10 DR11 DR12

xRi 1 2 4 6 10 12 14 16 18 21 24 25
yRi 12 6 4 –1 –8 –12 –8 –6 –1.(3) 5.(3) 16 –

Table 9
Coordinates of right differential projections DLi

DLi DL1 DL2 DL3 DL4 DL5 DL6 DL7 DL8 DL9 DL10 DL11 DL12

xLi 1 2 4 6 10 12 14 16 18 21 24 25
yLi 12 6 4 –1 –8 –12 –8 –6 –1.(3) 5.(3) 16

Table 10

Calculating ′yi  derivatives for the points of DGC obtained using the strip 
of diffprojections

Ai A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

xi 1 2 4 6 10 12 14 16 18 21 24 25
yRi 12 6 4 –1 –8 –12 –8 –6 –1.(3) 5.(3) 16 26.(6)
yLi 18 12 6 4 –1 –8 –12 –8 –6 –1.(3) 5.(3) 16
′yi 15 9 5 1.5 –4.5 –10 –10 –7 –3.65 2 10.65 21.33
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segment is divided into two separate ones, on which all points 
will be regular, then it will be possible to apply the proposed 
analyzed graphical differentiation to each of these segments. 
Curves are given in parametric form. Therefore, when points 
of inflection, self-tangency, or nodal points occur on the seg-
ments of curved lines, the method of graphical differentiation 
analytically formalized in point forms can be applied to them. 
In this case, only one requirement is put forward: each of the 
specified special points must be given by two separate points 
that have converged into one.

The proposed analytically formalized method of graph-
ical differentiation bridges the gap in applying different ap-
proaches and techniques to the differentiation of functions, 
which imposes certain restrictions on their use in modern 
technologies and increases resource consumption. At the 
same time, the analytically formalized method of graphical 
differentiation is the only algorithm that can be applied in the 
plane to the graphs of any functions of one variable, taking 
into account the specified restrictions.

The need to calculate the basis functions (14), the point 
polynomial (12), and its derivative (19) for the parameter value 
t = 0 is a drawback of our study.

Further advancement of the analytically formalized graph-
ical differentiation may involve its extension to spatial discrete-
ly given segments of regular curves. They generalize processes 
and are more widespread in modern technologies.

7. Conclusions

1. The parameter records pi(t) for i n=1,  devised in a gen-
eral form build functions for the basis of the interpolation 
point polynomial. The proposed methodology of parame
terization of the accompanying broken line allows us to 
determine reference point M1, the ′yM1

 coordinate of which 
coincides with coordinates ′yDR1

 and ′yDL2
 of the corresponding 

diffprojections. Point M1 makes it possible to find a projection 
center for calculating diffprojections at all points of the ac-
companying broken line, which are correlated with the values 
of the derivatives at its vertices belonging to the segment of 
a  flat continuous regular curve. The peculiarity of our result is 
that it could be applied to the discrete point representation of 
graphs of any single-valued or multi-valued functions.

2. An algorithm for the analytically formalized repre-
sentation of graphical differentiation in point form has been 

proposed, which is based on the devised parameterization  
methodology. Within the algorithm, the reference point and 
the projection center are determined, the coordinates and 
parameters for all points Ki and Mi, ( , ),i =1 12  are calculated, 
coordinates for the right DRi  and left D iLi ( , ),=1 12  diffprojec-
tions of the accompanying polyline are determined. Based on  
the values of DRi and D iLi ( , )=1 12 , the values of the de
rivatives at all ( , )i =1 12  base points are selected within the 
strip of diffprojections. A feature of the developed algorithm 
of analytically formalized graphic differentiation is that it 
does not require graphic operations to be performed for its 
implementation. The figures given in the text of our paper are 
for informational purposes only.
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