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The object of the study is the adaptive 
machine learning systems that are able to 
process large amounts of rapidly chang-
ing streaming data in real time. The prob-
lem of maintaining prediction accuracy and 
computational efficiency in the presence 
of concept drift is treated. Concept drift 
refers to the overweighting of static mod-
els when stationary models are tried, and 
the nature of the underlying distributions 
changes. The adaptive architecture includes 
revision divergence-oriented concept drift 
detection, incremental model updating via 
hyper-dimensional statistical clustering of 
segments. Results from experiments using 
simulated and real-world datasets demon-
strate that the adaptive architecture main-
tains predictive accuracy above 0.83 across 
abrupt, gradual, recurrent, and continuous 
drift scenarios. Compared with non-adap-
tive models, adaptation latency is reduced 
by approximately 2.6 ×, while unneces-
sary retraining operations are decreased 
by up to 40%. These results are possible 
due to the fact that proposed framework 
is able to retrain solutions if, and only if, 
distributional changes are determined to 
be statistically significant and meaning-
ful to the model. This leads to the avoid-
ance of processors being given redundant 
computations and providing a steady-state 
model during non-drift conditions. A prin-
cipal contribution is that feature engineer-
ing is accomplished in a drift-aware man-
ner, thresholding is made adaptive to the 
distributions indicated, and update mech-
anisms are employed which efficiently uti-
lize resources in a unified high-performance 
streaming pipeline. The architecture per-
forms well under abrupt, gradual, recur-
rent, and continuous drift and effective for 
real-time applications which include smart-
city analytics, cyber security monitoring, 
roadways system works, and IoT for indus-
trial systems
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1. Introductions

In the modern era of computer science and engineering, 
the explosive growth of digital information has transformed 
the foundations of intelligent computation. 

The International Data Corporation estimates that the 
global datasphere will approximately exceed 175 zettabytes 

by 2026, with almost one third of the total produced in real 
time from interconnected sensors, IoT devices and cloud in-
frastructures [1]. The resulting data streams exhibit massive 
scale, large dimensionality and are time varying in character, 
thus posing complex challenges for real-time analysis and 
decision making. The ability to develop adaptive, high-quality 
ML systems is relevant because current and future systems 



Eastern-European Journal of Enterprise Technologies ISSN-L 1729-3774; E-ISSN 1729-4061	 6/3 ( 138 ) 2025

16

that process large amounts of data are going to need to be 
consistently accurate and efficient regardless of the frequent 
changes in the characteristics of the input data. Efficient ex-
traction of valid knowledge from this data is dependent not 
only on high predictive accuracy but also on computational 
scalability, adaptability and robustness in continuously vary-
ing conditions [2].

Traditional machine learning methods have, however, 
developed to deal with large volumes of well-structured data 
that are fixed in time and environment leading to a situation 
where they are no longer suitable for the analysis of these 
varying environments. Models such as support vector ma-
chines, Bolsus method of estimation, random forests, and 
classical deep networks tend to become unstable when the 
statistical properties of data change over time a condition 
referred to as concept drift [3]. In rapidly changing conditions 
as those exhibited by financial markets, the cyber-world, and 
transport systems, this normally leads to delayed and inaccu-
rate responses. 

The need for frequent full retraining significantly in
creases the computational load on deployments, reaching 
40–60% of the processing time during stream processing. This 
is due, in part, to the need to continuously adapt models in 
response to changes in the data distribution [4]. The field of 
high-performance machine learning has therefore become 
a crucial research direction at the intersection of algorithm 
design, big data analytics, and high-performance computing. 
Modern architectures making use of GPU acceleration, dis-
tributed frameworks and adaptive optimization mechanisms 
can allow learning and inference in real time on massive 
data volumes. Online learning and incremental learning and 
dynamic learning approaches make it possible to maintain 
model accuracy and functionality without retraining exten-
sively, thus reducing latency of solutions in addition to scaling.

However, the extent to which speed adaptability and in-
terpretability of these methods can be balanced is still a major 
problem for both researchers and end-users. The importance 
of the problem is wide in application. In transport and smart 
city systems, adaptive learning models predict traffic conges-
tion, customer demand for transport, and vehicle routing in 
changing and varying conditions. In the cyber-world they 
intercept evolving attack conditions in the analysis of large-
scale network traffic. In health, energy, and industrial IoT 
they predictively monitor diagnose and control automatically 
through processing massive data flows. In all these cases the 
facility for continuous learning of high-velocity non-homoge-
neous data streams is now recognized as a mandatory prereq-
uisite for intelligent self-adapting systems. 

At the same time, of course, there has been an ever-increas-
ing growth in research on scalable and adaptive learning sys-
tems in the scientific world. Over the past five years the number 
of papers published in Scopus and in IEEE Xplore indexed un-
der the parameters of adaptive machine learning and real time 
big data analysis has grown by more than a factor of three [5]. 

Despite this advance, however, the majority of solutions 
provided appear now still to be limited by static learning rates, 
high energy usage and also the lack of autonomous feedback 
mechanisms which will control and adapt model parameters 
in the light of subsequent continuously varying data flow.  
It advances the understanding of how intelligent systems can 
maintain accuracy, speed of use, efficiency and transparency 
under continuously varying, dynamic and uncertain environ-
ments. Therefore, research on the development of high-per-
formance machine learning algorithms for processing big 

data and dynamically changing systems is highly relevant, 
representing a significant step toward the next generation of 
intelligent computational technologies.

2. Literature review and problem statement

Recent advances in artificial intelligence and in data-inten-
sive computing, have resulted in a significant advance when 
developing adaptive, scalable learning architectures. However, 
as the complexity of environments for real-time data process-
ing, it remains one of the outstanding problems for the com-
munity of scientists to achieve the optimum equilibrium be-
tween computational efficiency, adaptivity and interpretability. 

The paper [6] presents the results of extensive survey of 
the use of techniques in deep learning and of the way data 
streams at high rates have been processed. It is shown that 
the techniques which are considered are convolutional neural 
networks (CNNs), recurrent neural networks (RNNs) and 
autoencoders. The study indicates clearly that the increased 
recognition performance attained by utilizing hierarchical fea-
ture extraction on the high volume of features. It is more con-
ventional on large sized figures including CIC-IDS2018 and 
UCI streaming benchmarks. But there were unresolved issues 
related to the problem with dynamic overfitting of multiple 
machine learning models. Overfitting leads to deterioration 
in performance and accuracy, especially when working with 
conceptual frames. A way to overcome these difficulties can 
be approaches such as regularization, dropout, early stopping, 
and ensemble methods. This approach was used in [6], how-
ever it can still lead to some loss of performance in complex 
models, or important parameter values may be lost. All this 
suggests that it is advisable to conduct the study while leaving 
the number of examples in the training set unchanged.

The paper [7] presents the results of implementing hybrid 
CNN-LSTM architecture in relation to IoT sensor networks 
and telemetry industrial inputs data. It was shown that 
combining convolutional and recurrent layers enables simul-
taneous capture of temporal dependencies. But there were 
unresolved issues related to the model required frequent full 
retraining, increasing computational cost by over 40% due to 
the absence of drift detection or adaptive optimization. All 
this suggests that it is advisable to conduct the study on entro-
py learning modulation as a possible success way, but will not 
implement it experimentally.

The paper [8] presents the results of analysis distributed 
deep learning infrastructures for optimized for GPU-based 
training using Apache Spark and TensorFlow Distributed.  
It is shown that the approximate 2.3-fold increase in process-
ing throughput, with an important acceleration in conver-
gence times for ResNet and GRU models. But there were un-
resolved issues related to synchronization delay and uneven 
data partitioning remained important bottlenecks. All this 
suggests that it is advisable to conduct the study on an adap-
tive scheduling and load-balancing strategies presented a ne-
cessity for real scalability in dynamic big data environments. 

The paper [9] proposed an online Reinforcement Learn-
ing algorithm including Q-learning and neural networks. It 
was used for predictive maintenance and streaming anomaly 
detection. But there were unresolved issues related to the ab-
sence of explicit drift detection with the model produced over-
fitting to temporally varying changes. All this suggests that it 
is advisable to conduct the study on continuous reward-ori-
ented updates meant that adaptability in environments.
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The paper [10] presents the results of entropy environ-
mental control systems using learning-rate during training 
and optimization to check the speed the predictions. A timely 
improvement in convergence times of approximately 15%. But 
there were unresolved issues related to the absence of results, 
because there were not tested against non-stationary multi-
variate datasets. All this suggests that it is advisable to conduct 
the study on interpretation and testing against non-stationary 
multivariate datasets. 

The paper [11] presents the results of evaluated both 
CNN-GRU and CNN-BiLSTM hybrid models to provide spatio 
and temporal classification in the cyber-physical and trans-
portation systems. It is shown that the hybridization produces 
increases in generalizability against a background of volatile  
inputs. But there were unresolved issues related to the ab-
sence of incremental retraining pipelines and explainable AI 
facilities.  So, it means that the model output was less than 
emerging practices. All this suggests that it is advisable to con-
duct the study on drift and aware retraining together with in-
terpretability practices, for example Grad-CAM and SHAP are 
good for practical use of the models in real-time environments. 

The paper [12] presents the results of the implementation 
of created architectures evaluated by transformer and attention 
models in streaming data bases. It is shown that the approach 
allowed the long-term dependency modelling to be improved.  
It also increased outputs over the LSTM model approaches in 
energy consumption and data from network telemetry data 
bases. However, it was noted that transformer architecture suf-
fered from great computational overhead, such as memory re-
quirements. It increased the proportionally to O(n2) and made 
them less than sufficient for real-time deployment. All this 
suggests that it is advisable to conduct the study on the areas 
of scalability and inference latency remain outstanding issues. 

The paper [13] presents the results of examined ex-
plainable machine learning in big data analytics contexts. It 
incorporated both the SHAP and LIME frameworks into gra-
dient-boosting predictive models (XGBoost, LightGBM). Im-
provements in interpretability were observed in the models. 
But there were unresolved issues related to computational 
layer meant total inference timings, which were qualitatively 
degraded by the equivalent of 30%. All this suggests that it is 
advisable to conduct the study on the necessity and the impor-
tance of lightweight explainability methods within adaptive 
opportunity architectures.

The paper [14] presents the results of using an adaptive 
gradient optimizer such as the Adam, AdaBelief and RMSProp 
approaches on dynamically evolving datasets. It was seen that 
whilst adaptive learning rates accelerated learning speeds. But 
there were unresolved issues related to random optimizers, 
because they had no sense of contextual awareness in any 
data. All this suggests that it is advisable to conduct the study 
on teach optimizing models themselves through data drift.

The paper [15] presents the results of conducted analysis 
on semi and integrative overview of online learning and in-
cremental learning methods. Shown, Hoeffding Trees, Online 
SVM, and Deep Stream models. But there were unresolved 
issues related to incremental updates. They reduced the cost 
of retraining, the class of methods generally tended to com-
promise global consistencies. They also were remiss in that 
they frequently required manual hyper empirical parameter 
tuning. All this suggests that it is advisable to conduct the 
study on the consistency of learnt models and explanations 
of learning, which was achieved by high-performance models 
trained in unexplored situations. 

Two areas of research dealing with the simultaneously 
operative open questions have also been addressed. The stud-
ies reveal that despite the observed and named overwhelming 
successes in deep and distributed learning research, current 
research work is characterized by the existence of at least 
three fundamental factors: 

1) an insufficiency of adaptability towards dynamically 
changing forms of data and concept-drifts; 

2) the lack of opportunity for the scalability of computa-
tions on distributive and real-time contexts; 

3) totally insufficient functionality as a result of the lack of 
explanation-centric methods in adaptive pipelines.

The analysis of recent studies [6–15] has shown that even 
though there are many advances made in adaptive and scal-
able Machine Learning, there remains a list of unresolved 
interrelated issues. The first issue see is that many existing ap-
proaches to the problem of Concept Drift lack robustness due 
to the fact that they either use static learning strategies or need 
repeated full retraining of the model which results in degraded 
model performance and increased instability during operation 
within non-stationary environments. The second issue is that 
while larger deep learning and transformer-based models have 
significantly improved the ability of those models to predict 
accurately, they also come with a high level of computational 
overhead that will limit their usability within real-time and 
high-throughput environments. The last issue that was found 
is that the majority of adaptive and online learning solutions 
are missing a principled approach for maximizing drift de-
tection and tightly integrated pre-processing pipelines which 
causes them to adapt at a late point in time, use resources inef-
ficiently, and deliver low or inconsistent model quality. 

Analysis of trends in research suggests that many factors 
have contributed to an identified need for continued research 
into the following areas. The need for a single integrated frame-
work that supports both stable performance with concept drift, 
systems with real-time/high-volume data flows, and systematic 
updates of the models based upon detected drifts of the input 
variables. Therefore, further analysis on the creation of an in-
tegrated/combined, real-time, and high-performance machine 
learning system that meets both accuracy and stability needs to 
support dynamic data stream scenarios is warranted.

3. The aim and objectives of the study

The aim of the study is to construct and optimize effective 
machine learning algorithms for the processing of large-scale, 
high-speed and dynamic data streams under real-time con-
straints. This will make it possible to creation of adaptive com-
putational technology that is able to guarantee the operation 
of stable and accurate models in non-stationary environments 
with changing distributions associated with concept drift and 
changing sources of input data.

To achieve this aim, the following objectives were accom-
plished:

– to design and validate the unified adaptive learning ar-
chitecture integrating ingestion, preprocessing, drift detection 
and incremental model updating for dynamic data streams;

– to develop and evaluate preprocessing, sliding-window and 
adaptive learning mechanisms capable of ensuring stable perfor-
mance under heterogeneous, imbalanced and drifting conditions;

– to assess the effectiveness of the proposed framework un-
der controlled non-stationary environments through accuracy, 
drift-detection quality, F1-score and adaptation latency.
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4. Materials and methods

4. 1. The object and hypothesis of the study
The object of the study is the adaptive machine learning 

systems that are able to process large amounts of rapidly chang-
ing streaming data in real time.

The primary hypothesis of this research is that by using 
drift detection and correction along with incremental training, 
then can create an integrated system with superior stability, 
reduced latency and the minimum need to completely re-train 
the model under non-stationary conditions.

This study assumes that:
– there is a measurable drift in the distribution of incom-

ing data streams over time; 
– it is possible to detect drift in incoming data streams 

using statistically derived divergence metrics without having 
to wait for complete access to future data;

– an incremental model can approximate the same level of 
performance as a fully-trained model when the extent of drift 
is moderate; 

– computational constraints for real-time processing are 
caused more by the need for timely results rather than by the 
limitations of available storage. 

The following simplifications were made when conducting 
this study: instead of using real-world non-stationarity, synthetic 
types of drift created to simulate the effects; experiments have 
concentrated only on representative examples of the adaptive mod-
els; rather than calculating total costs of energy used for training a 
new model, only adaptation latency and retraining frequency were 
taken together to evaluate cost; and parallel computing and distrib-
uting resource scheduling are not explicitly addressed in the model.

4. 2. General workflow of research
The research is inherently multi-stage including: continu-

ous data ingestion; data preprocessing; adaptive learning; drift 
monitoring; and incremental updates to models. Fig. 1 presents 
a diagram of the general workflow, showing the functioning of 
the system in a dynamic big-data environment.

All numerical features were normalized. This was exe-
cuted by subtracting the first feature valid minimum, then 
dividing the results by the range. In summary, each of the nu-
merical variables was then normalized to a start of [0,1], and 
this normalization was consistent across the datasets.

As seen in Fig. 1, heterogeneous sources of data are in-
gested, normalized and mapped to structured feature repre-
sentations. These features are fed into the adaptive machine 
learning model, which drifting detection mechanism con-
tinuously controls for any change in the distribution of data 
to update models accordingly. This flow diagram is used for 
tracking data throughout the lifecycle of a data warehouse’s 
transformation to a production system.

4. 3. Software tools and computational environment 
The research was conducted in an industrial-grade envi-

ronment for model training and data processing. All prepro-
cessing tasks and classical machine learning models were de-
veloped in Python 3.10 using NumPy, Pandas and Scikit-learn.  
A moving-window estimator was utilized which determined the 
window average over recent observations, and thus contained 
particular values in a discrete rolling window of fixed size.

Neural-streaming models such as LSTM and GRU were 
implemented using TensorFlow 2.x or PyTorch 2.x. Stream-
ing data ingestion or pseudo-real-time ingestion of data was 
performed using Apache Kafka, and distributed micro-batch 
processing was performed using Apache Spark Structured 
Streaming. Experimentation tracking and reproducibility was 
performed using MLflow, and a Docker container was used to 
isolate and deploy the software compute environment.

The hardware configuration consisted of an Intel Xeon 
12-core CPU, NVIDIA RTX A5000 GPU, 118 GB of RAM, and 
hosting Ubuntu 22.04 Operating System. A Spark cluster of 
six executors facilitated distributed processing. Both the soft-
ware and hardware configurations utilized realistic high-loads 
over a prolonged duration both for realistic performance, and 
thus, to reflect typical implementation conditions and typical 
a typical operational of a real-time big-data systems.

 
Fig. 1. Machine learning design process for dynamically updating big-data-driven systems
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4. 4. A view of the study from an algorithmic per-
spective

The adaptive part of the system consists of three main 
mechanisms. The first is incremental learning, where the 
model itself updates based on small batches of new data. This 
allows the model to adapt without a full retrain.

The second is drift detection where distributions of in-
coming data create a divergence score. This score captures 
how different the current window is from the reference distri-
bution, and the larger the score the greater the change in the 
pattern of the data.

The third mechanism is dynamic learning-rate change, 
which increases when the model is uncertain and decreases 
when the model is confident, allowing the model to be able to 
respond during drift, and slowly and steadily during normal 
times. In the case of the regression tasks, the optimization was 
based on mean squared error, which is the average of squared 
differences between predictions and true values.

Fig. 2 outlines how the mechanisms work together. The 
system has a continuous data ingestion mechanism that is 
constantly calculating drift scores, checking thresholds, and 
updating the model when needed. This is done to support 
adaptive processing.

All the steps of the method are straightforward and come 
right after one another. The system receives the data, parti-
tions it into windows, predicts drift scores, checks the thresh-
olds, fire the partial updates, and stores the results. 

4. 5. Datasets and data preprocessing 
The robustness of the system was evaluated using a vari-

ety of datasets. These datasets incorporate a range of concept 
drift: abrupt, gradual, continuous, recurrent and cases with 
imbalanced distribution. This provides a means to evaluate 
model behavior under drift concept.

The model uncertainty was assessed using prediction en-
tropy. Entropy is defined as the negative summation of class 
probabilities weighted by their logarithm. When entropy is 
high, the model is uncertain. In these higher entropy situa-
tions, learning rate is increased, which helps with faster adap-
tation. This principle is based on a prior experiment [11]. The 

datasets consist of synthetic benchmarks, "real" data streams, 
and datasets from the THU Concept Drift benchmark suite. 
Synthetic datasets are used to assess the behavior over con-
trolled drift scenarios. Real-world datasets provide insights 
into the model’s behavior under natural drift. Finally, the im-
balanced datasets are used to assess sensitivity to rare events. 
To implement the proposed framework, different types of data-
sets were summarized, and the list is demonstrated in Table 1.

All datasets were preprocessed with a uniform preprocess-
ing pipeline. This guaranteed that all models were trained with 
data in similar formats according to the flowchart in Table 1. 
The pipeline actions were identical and trivial.

The first step was to normalize numerical values. The sec-
ond step was to encode the categorical values. Subsequently, 
the entire dataset was segmented into sliding windows, in such 
a way as to preserve the temporal semantics in the dataset. 
Drift-related features were also enhanced to bring attention 
the notable changes in the data. Lastly, data were streamed 
through Kafka using controlled micro-batches. These steps es-
tablished stable and comparable conditions for all experiment 
replications. 

4. 6. Setup for experimentation and conditions for 
evaluation

Experiments were organized in order to determine if the 
components that adapted followed reliably when tested with 
streaming conditions, etc. based on feasibility, along with sta-
bility, and computational efficiency, to sample how the compo-
nents were evaluated.

Drift was determined using the Kullback-Leibler diver-
gence, and was determined as the summed product of each 
component of the new distribution multiplied by the natural 
logarithm of the ratio of the normalized distribution to the 
reference distribution, which allowed the reader to see how 
strong the incoming data changed. 

Streaming intensity varied from a rate of 2,000 events to 
20,000 events within a second relative to the new distribution, 
where window size rates changed from 5 seconds to 60 sec-
onds. Each experiment was repeated at minimum, 10 times to 
verify consistent, and valid results.

 
Fig. 2. Drift-aware incremental learning process
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Drift was built into the functionality of the experimental 
apparatus regarding synthetic datasets at some pre-deter-
mined intervals. In real datasets, drift was naturally built-in; 
it was recorded as it happened. 

There were 3 modes of operation for testing purposes;  
a CPU only mode, a GPU contributor mode, and a hybrid  
of both. 

All metrics on performance were tracked and recorded.
In this evaluation phase of "epochs", utilized the standard 

measuring of: 
– accuracy; 
– F1-score; 
– inference latency; 
– throughput; 
– adaptation time; 
– % CPU usage and % GPU Usage. 
In this section of work, only the evaluation and setup 

were previewed. In the following section 5, let’s interpret the 
meaning of the results.

4. 7. Adaptive model components implementation 
The adaptive model was implemented as a modular frame-

work consisting of multiple inter-functional components. 
These were the predictive learning model, drift detection 
mechanism, feature storage, and update control to modify an 
incremental model.

In addition to traditional machine learning models, the 
framework supported sequence-based models, such as long 
short-term memory, gated recurrent unit.

Incremental update functions were used for the adaption 
of the predictive learning models. These provided for partial 
retraining of the predictive learning models on streaming data 
windows without the requirement of completely reconstruct-
ing the model.

Drift detection was performed by determining the distri-
bution divergence from one period or category to another. 
Once drift detection was completed, the selective update 
procedure was initiated based on an algorithmic correlation 
process.

Dynamic learning rate adjustments based on prediction 
uncertainty estimations were integrated to provide adaptive 
behaviors in non-stationary conditions. Strategies to merge 
ensembles occurred when appropriate. These components 
work can together collaborate to develop real-time adaptive 
behavior which is later investigated in Section 5.

4. 8. Reproducibility of experiments 
All experiments were designed to be fully reproducible. 

All datasets, preprocessing scripts and, training configura-
tions were reconcilable in Git and MLflow. Random seeds 
were fixed for all runs to hold results the same between 
runs. Docker images were created to save the computational 
environment. Drift schedules, window size and streaming 
parameters were also saved unchanged. In combination, this 
framework can be used for recreating experiments with a high 
level of accuracy.

This means that reports for findings identified in Section 5 
are entirely reproducible.

Table 1
List of all datasets used in the study to evaluate concept drift

Dataset Name Drift type Description

Synthetic SEA concepts Drift  
abrupt

This dataset consists of three numerical features. Although these features are defined at an 
initial time, drift occurs when the decisions are modified through time

Synthetic Hyperplane Drift  
gradual 

Drift comes through very gradual incremental change in the position and/or orientation 
of hyperplane

Synthetic Rotating  
Hyperplane

Drift  
continuous

The decision boundary rotates through time. This produces smooth and therefore, continu-
ous drift through the duration of the data [16]

Synthetic Random RBF Drift  
gradual

Data come from centroids that are positioned randomly. Drift occurs as centroids, and their 
standard deviations, shift their position within the data

Real-world Electricity  
Market (Elec2)

Drift  
gradual

This dataset is an example of data that shows both abrupt and gradual drift. The dataset pres-
ents price data for electricity that is subsequently used to predict the direction of pricing [17]

Real-world Airlines  
concept

Drift with exter-
nal influences

This dataset is based on the concept of delays of flights. The reason for drift is anchored to 
changing weather conditions and other external contributing conditions [18]

Real-world KDD Cup 1999 Attack  
patterns 

This dataset is based on network intrusion data. Drift is relevant since it comes into the data 
because the types of attack change at variances through time

Real-world Weather  
Data

Drift  
abrupt 

Meteorological data shows an abrupt drift either at seasonal or event-based changes. These 
moderate models of drift would test the robustness of the models [19]

Imbalanced Credit Card 
fraud detection

Rare cases, 
imbalance, 

This dataset involves transaction activities that are highly imbalanced. Drift is consequen-
tial due to rare events of fraud patterns changing through time

Imbalanced Medical  
records

Drift  
event

Healthcare data introduces patient records as data. Drift instigates an account of additive 
cases as patient behaviour and conditions change through time

Benchmark Linear Drift gradual, 
abrupt, repetitive Drift is created by implementing a linear decision boundary that is in a position of rotation

Benchmark Cake  
Rotation

Drift  
rotational 

The data is sliced up into angular sections whereby drift is created through a changing con-
figuration

Benchmark Chocolate 
Rotation

Drift  
rotational 

Drift occurs at the repetition of rotational movements of two spatial patterns along the 
x + y plane

Benchmark Torus Rolling Overlapping 
classes 

The dataset has overlapping manifolds. Drift is created when a structure capable of moving 
through the feature space manipulates the original data by way of replication [20]
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5. Results of the study on development and 
optimization of adaptive machine learning 

architectures 

5. 1. Development of the unified adaptive learning 
architecture

The outcome of the research is a consolidated adaptive 
learning architecture that is designed for the real-time pro-
cessing of dynamic data streams where changes in concept 
occur. The integrated components of the architecture that 
comprise the adaptive nature and performance capabilities 
are: drift detection and a drift-aware preprocessing process, 
and an incremental update process for model training.

The architecture has been structured to facilitate greater 
understanding of how the components interact and has been 
demonstrated in Fig. 3. To evaluate the architecture’s predic-

tive accuracy, adaptation latency and retraining ability, it was 
tested using non-stationary scenarios under laboratory condi-
tions. During the evaluation period the streaming architecture 
demonstrated consistently high accuracy throughout the test-
ing period. Specifically, accuracy values ranged from 0.91–0.83 
during repetitive drift events, while the static/non-adaptive 
system dropped from 0.50–0.76 after sequential drift events.

The systems response to persistent drift is illustrated in Fig. 4 
and the overall accuracy values at the drift are given in Table 2. 
The overall accuracy values remained stable throughout the ex-
periment indicating that the architecture was able to ingest data, 
detect drift, and adapt, all while maintaining its performance.

Fig. 4 shows the accuracy values for all models for the 
200 sliding windows, with four segments of recurring drift indi-
cated by vertical indicators. Table 2 gives an idea of the accuracy 
values obtained at the drift points, shown for quantitatively.

 
Fig. 3. Framework of layered architecture of adaptive system

 
Fig. 4. Accuracy trend at recurring concept drift

Table 2
Accuracy values at drift points

Model Drift 1 Drift 2 Drift 3 Drift 4
Random forest (static) 0.74 0.63 0.59 0.50
LSTM (non-adaptive) 0.82 0.77 0.71 0.69

CNN-LSTM (non-adaptive) 0.85 0.79 0.72 0.71
Transformer (static attention) 0.88 0.82 0.78 0.76

Adaptive streaming model (AET) 0.91 0.88 0.85 0.83
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Table 2 shows the available numerical accuracy levels at 
the absolute drift points for each model.

5. 2. Evaluation of preprocessing and adaptive learn-
ing mechanisms

The adaptive preprocessing and learning mechanisms 
achieved higher levels of 0.85–0.88 F1 score, while reducing 
the adaptations time frame by approximately 2–3 times for 
each drift event when compared to the static models. The 
above components were evaluated under four drift scenarios 
to find out if they provided some level of stable feature repre-
sentation and speed of adaptation. 

The resulting F1-scores and adaptation delay times are 
detailed in Fig. 5 and summarized in Table 3. The adaptive 
model consistently achieved a higher level of predictive 
performance and lower recovery times than static baselines. 
This confirms that the preprocessing pipeline and adaptive 
learning mechanisms provided stable performance under 
non-stationary conditions.

Fig. 5 shows the F1 scores for the baseline and adaptive 
models, and adaptation times plotted on a secondary axis. The 
lag is verbally defined as the elapsed time between the drift 
event and when the updated model achieves a stable level 
of predictive performance again. The numerical summary is 
shown below in Table 3.

Table 3 shows the F1-scores and adaptation time values 
recorded for all drift scenarios.

5. 3. Quality of drift-detection and efficacy of frame-
work

The adaptive KL-divergence drift detection detected all 
drift types, including gradual and continuous drift. It also  
had a shorter detection delay (2–7 snapshots) than static 
threshold D3M, which cannot detect gradual and continu-
ous drifts. 

The KL-divergence trajectory and threshold curves are 
displayed in Fig. 6, while detection statistics are contained  
in Table 4. 

 
Fig. 5. F1 score and adaptation time

Table 3
F1 score and adaptation time (secs)

Drift scenario Static F1 Adaptive F1 Static adaptation time Adaptive time
Abrupt 0.74 0.88 90 45
Gradual 0.70 0.85 120 52

Recurrent 0.67 0.86 140 48
Continuous 0.72 0.87 130 44

Fig. 6. Kullback-Leibler divergence and adaptive threshold
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The two drift-detection capability, adaptive threshold, de-
tected all types of drift, but shorter times from the start of the 
streaming window than the static threshold that only detected 
abrupt and recurrent drift types. Overall, this demonstrated 
effective drift-detection capacity, while showing some stability 
in the face of changing data distributions.

The divergence values, across 200 streaming windows, that 
are computed are shown in Fig. 6 along with a static threshold 
and an adaptive threshold that is updated for each window. 

Detection statistics for the various drift types are summa-
rized in Table 4. 

The calculated divergence scores, threshold activations 
and detection delays are presented in Table 4.

6. Discussion of the results of the study on the 
development and optimizing of adaptive machine 

learning architectures

The results associated with the unified adaptive architec-
ture, as illustrated in Fig. 4 and Table 2, demonstrate stable 
predictive performance under changing streaming conditions. 
As a result, the adaptive architecture provides predictive sta-
bility after recurring drift events when contrasted with static 
and non-adaptive models, which progressively degrade. This 
phenomenon can be explained by the way in which the adap-
tive architecture is designed so that model updates occur after 
the detection of statistically significant changes in distribution, 
as opposed to fixed, time-driven update schedules. Unlike 
CNN-LSTM streaming approaches in [2], which required  
a complete retraining of the model after every identified drift 
and thus created a lot of computational load, an architecture 
was developed that restricts the updates to the segments of the 
data stream where there has been drift. This allows for quicker 
recovery of model accuracy through the update of only those 
segments where the drift has occurred. Thus, eliminating un-
necessary computations as well as addressing key challenges 
related to model instability and inefficient resource utilization.

The next results were obtained using several different pre-
processing strategies and adaptive learning algorithms within 
the framework. The comparative results presented in Fig. 5 
and in Table 3 illustrated that using the combination of sliding 
window segmentation, normalization and incremental updates 
produced better predictive performance and more rapid adap-
tation than when compared to the static baselines identified in 
this study. This finding can be attributed to the close integra-
tion of preprocessing and drift-aware learning in that the fea-
ture representations are updated regularly as a response to the 
detection of changes in the underlying data distributions rather 
than being kept at a constant value during streaming. Unlike 
traditional preprocessing methods in [5] and [6], the proposed 
methodology distinguishes itself by aligning feature scaling 
and temporal segmentation with the changing distribution  
of the input data, allowing the training system to demonstrate 
stable behavior when working with heterogeneous and/or  

imbalanced data. It achieves its goal of ensuring stable and ro-
bust performance in a dynamic environment. Another online 
learning approaches outlined in [10] typically take a lot less 
time to train but the models generated are normally unstable 
after numerous updates because they are derived from heuris-
tic methods and not principled drift indicators. This architec-
ture overcomes this problem by linking all model updates to 
divergence-based signals. Therefore, this adaptive update cycle 
maintains prediction stability, as evidenced by the decreased 
variability of performance depicted in Fig. 5.

Drift detection results further support the adaptive update 
strategy since using adaptive kl-divergence thresholding al-
lows for the detection of the four drift types, such as abrupt, 
gradual, recurrent, and continuous drift, while the methods 
for using static thresholds [7] cannot reliably detect gradual 
and continuous distributional changes as shown in both Fig. 6 
and Table 4. This difference is due to the dynamic adjustment 
of the drift detection thresholds using both divergence and 
entropy measures, which gives greater sensitivity to subtle 
changes in data distribution but limits false alarms during 
stable periods. While static approaches in [9] and [10] suffer 
from delayed detection resulting in late or incomplete adap-
tation, with the adaptation mechanism, model updates can 
be triggered in a timely manner and therefore allow for finer 
control of the adaptation process.

A comparison of streamed and online learning solutions 
demonstrates the benefits of the proposed framework over 
others. The online learning strategies based on heuristic update 
rules, for instance, inherently experience instability after mul-
tiple updates due to the lack of principled drift indicators. The 
transformer-based streaming models suffer from high computa-
tional expense because of their quadratic attention mechanisms 
while also achieving high predictive accuracy therefore severely 
limiting their usability in high-velocity real-time scenarios. Con-
sequently, the proposed framework has combined lightweight 
learning models, selective updates, and GPU acceleration, all 
of which enable efficient processing of high-throughput data 
streams while maintaining low adaptation latency.

The results obtained from this research support the solu-
tions that have been provided for the problems identified in 
the problem statement. Selective incremental updating will 
minimize the risk of catastrophic forgetting and lessens the 
burden of retraining. Adaptive drift detection allows for an 
effective response to changing data distributions, while asso-
ciated integrated preprocessing maintains both the temporal 
and statistical continuity of features. The unique combination 
of these features provides the explanation for the observed 
stability, efficiency, and scalability of the adaptive framework 
in a non-stationary environment.

There are also many limitations associated with this re-
search. For example, a portion of my experimental assessment 
involved creating synthetic drifting test scenarios, which 
do not accurately represent the challenging characteristics 
associated with vast quantities of data in a real-world data 
stream. Although the performance of the adaptive model was 

Table 4
Drift detection statistics for drift types

Drift type Average KL score Static threshold trigger Adaptive threshold trigger Detection delay (windows)
Abrupt 0.245 Yes Yes 3
Gradual 0.182 No Yes 5

Recurrent 0.231 Yes Yes 2
Continuous 0.167 No Yes 7
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largely assessed through latency indicators, no additional 
investigation into the energy consumed and long-term re-
source utilized, were performed. Also, currently there are no 
interpretative capabilities integrated into the adaptive cycle 
that will provide users with insight into how a model reached 
a  specific decision when presented with a drift event.

These limitations provide the basis and direction for future 
development in this area. Future research may focus on the val-
idation of the adaptive framework using large-scale real-world 
streaming datasets, integration of model-specific interpretation 
techniques, creation of reinforcement-learning-based drift con-
trollers, and extension of the adaptive framework to accommo-
date multimodal and graph-structured data representations.

7. Conclusion

1. The unified and adaptive machine learning architecture 
for nonstationary data streams was developed and experimen-
tally validated. It incorporates drift detection, selective incre-
mental updates and adaptive control into a single operational 
framework. By preserving the architecture’s ability to contin-
ually predict data streams and adapting to various drift events 
over time, the architecture showed above 0.83 accuracy score 
under both continuous and repetitive drift. over time through 
comparative analyses of model predictive performance. With 
the supports provided through the new architecture’s robust-
ness in predictive performance, the new architecture localized 
model update activity to the data streams most affected by 
drift events; this reduced the amounts of unnecessary model 
retraining previously reported and addressed the problem of 
prediction instability described in previous literature.

2. Adaptive preprocessing and learning mechanisms were 
realized based on sliding window segmentation, incremental 
updating, and normalization methods. As stated in the pre-
vious section, a key feature of this accomplishment is how 
closely the processes used to pre-process data segments were 
combined with the processes used for learning by adapting 
the feature representations generated directly from the cur-
rent distribution of the data being processed. The comparative 
evaluations of the architecture against both static preprocess-
ing pipelines and heuristic-based online learning were shown 
to provide superior predictive quality and produce shorter 
adaptation times. The predictive performance was enhanced 
with high predictive quality F1-score of 0.88. The average 
time to adapt the model, was also reduced to approximately 
2–3 times faster than previously experienced with respect to 
all variations of drift detected in imbalanced conditions.

3. The evaluation of the proposed framework based on its 
predictive quality F1 score, drift detection accuracy, and re-
sponse delay determines that the proposed framework provides 
an effective solution to ongoing accuracy and efficiency within 
dynamic environments. The ability of using adaptive KL-diver-
gence thresholds provides the capacity to effectively identify 
all forms of drift, such as abrupt to gradual, recurrent to con-
tinuous, when traditional drift detection methods, which used 

fixed threshold values, failed in their ability to detect drift and  
changes in data distribution. The evaluation results showed 
that the adaptive drift detection mechanism reduced the time 
between adjusted model response and detection of drift, by al-
lowing adjustment of the model to occur after only 2–7 stream-
ing windows at each of the different drift types tested. These 
evaluations highlight the need for verifying the proposed 
architecture within large-scale data streams in a reality-based 
application environment as an area of potential future research, 
in addition to using light-weight, interpretable mechanisms in 
conjunction with the proposed framework of adaptive learning.
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