0 =,

The object of the study is the adaptive
machine learning systems that are able to
process large amounts of rapidly chang-
ing streaming data in real time. The prob-
lem of maintaining prediction accuracy and
computational efficiency in the presence
of concept drift is treated. Concept drift
refers to the overweighting of static mod-
els when stationary models are tried, and
the nature of the underlying distributions
changes. The adaptive architecture includes
revision divergence-oriented concept drift
detection, incremental model updating via
hyper-dimensional statistical clustering of
segments. Results from experiments using
simulated and real-world datasets demon-
strate that the adaptive architecture main-
tains predictive accuracy above 0.83 across
abrupt, gradual, recurrent, and continuous
drift scenarios. Compared with non-adap-
tive models, adaptation latency is reduced
by approximately 2.6X, while unneces-
sary retraining operations are decreased
by up to 40%. These results are possible
due to the fact that proposed framework
is able to retrain solutions if, and only if]
distributional changes are determined to
be statistically significant and meaning-
ful to the model. This leads to the avoid-
ance of processors being given redundant
computations and providing a steady-state
model during non-drift conditions. A prin-
cipal contribution is that feature engineer-
ing is accomplished in a drift-aware man-
ner, thresholding is made adaptive to the
distributions indicated, and update mech-
anisms are employed which efficiently uti-
lize resources in a unified high-performance
streaming pipeline. The architecture per-
forms well under abrupt, gradual, recur-
rent, and continuous drift and effective for
real-time applications which include smart-
city analytics, cyber security monitoring,
roadways system works, and IoT for indus-
trial systems

Keywords: adaptation model, computing
performance, drift detection, streaming pro-
cessing, rapid updating

| =,

Received 02.10.2025

Received in revised form 05.12.2025
Accepted 16.12.2025

Published 29.12.2025

UDC 004.896
DOI: 10.15587/1729-4061.2025.343635

OPTIMIZED ADAPTIVE
MACHINE LEARNING FOR
DYNAMIC DATA STREAMS

Aivar Sakhipov

PhD, Assistant Professor®

Aruzhan Mektepbayeva

Corresponding author

Master’s Student*

E-mail: aruzhan.mektepbaevaa@gmail.com

Amangul Talgat

Senior Lector

Department of Information Technology

K. Kulazhanov Kazakh University of Technology and Business
Kaiym Mukhamedkhanov str., 37A, Astana,

Republic of Kazakhstan, 010000

Maxot Rakhmetov

PhD, Associate Professor

Department of Computer Science**

Ainagul Adiyeva

PhD, Associate Professor

Department of Mathematics and Methodical

Teaching of Mathematics**

Altynbek Seitenov

MSc, Senior Lecturer*

Nurzhan Ualiyev

Candidate of Physical and Mathematical Sciences, Senior Lecturer
Department of Information Technology and Artificial Intelligence
I. Zhansugurov Zhetysu University

I. Zhansugurov str., 187a, Taldy-Kurgan,

Republic of Kazakhstan, 040009

Shynar Yelezhanova

Candidate of Physico-Mathematical Sciences

Department of Software Engineering**

*School of Software Engineering

Astana IT University

Mangilik El ave., 55/11, Astana, Republic of Kazakhstan, 010000
**Kh. Dosmukhamedov Atyrau University

Studenchesky ave., 1, Atyrau, Republic of Kazakhstan, 060011

How to Cite: Sakhipov, A., Mektepbayeva, A., Talgat, A., Rakhmetov, M., Adiyeva, A., Seitenov, A.,
Ualiyev, N., Yelezhanova, S. (2025). Optimized adaptive machine learning for dynamic data streams.

Eastern-European Journal of Enterprise Technologies, 6 (3 (138)), 15-25.
https://doi.org/10.15587/1729-4061.2025.343635

1. Introductions

by 2026, with almost one third of the total produced in real

In the modern era of computer science and engineering,
the explosive growth of digital information has transformed
the foundations of intelligent computation.

The International Data Corporation estimates that the
global datasphere will approximately exceed 175 zettabytes

time from interconnected sensors, IoT devices and cloud in-
frastructures [1]. The resulting data streams exhibit massive
scale, large dimensionality and are time varying in character,
thus posing complex challenges for real-time analysis and
decision making. The ability to develop adaptive, high-quality
ML systems is relevant because current and future systems

that process large amounts of data are going to need to be
consistently accurate and efficient regardless of the frequent
changes in the characteristics of the input data. Efficient ex-
traction of valid knowledge from this data is dependent not
only on high predictive accuracy but also on computational
scalability, adaptability and robustness in continuously vary-
ing conditions [2].

Traditional machine learning methods have, however,
developed to deal with large volumes of well-structured data
that are fixed in time and environment leading to a situation
where they are no longer suitable for the analysis of these
varying environments. Models such as support vector ma-
chines, Bolsus method of estimation, random forests, and
classical deep networks tend to become unstable when the
statistical properties of data change over time a condition
referred to as concept drift [3]. In rapidly changing conditions
as those exhibited by financial markets, the cyber-world, and
transport systems, this normally leads to delayed and inaccu-
rate responses.

The need for frequent full retraining significantly in-
creases the computational load on deployments, reaching
40-60% of the processing time during stream processing. This
is due, in part, to the need to continuously adapt models in
response to changes in the data distribution [4]. The field of
high-performance machine learning has therefore become
a crucial research direction at the intersection of algorithm
design, big data analytics, and high-performance computing.
Modern architectures making use of GPU acceleration, dis-
tributed frameworks and adaptive optimization mechanisms
can allow learning and inference in real time on massive
data volumes. Online learning and incremental learning and
dynamic learning approaches make it possible to maintain
model accuracy and functionality without retraining exten-
sively, thus reducing latency of solutions in addition to scaling.

However, the extent to which speed adaptability and in-
terpretability of these methods can be balanced is still a major
problem for both researchers and end-users. The importance
of the problem is wide in application. In transport and smart
city systems, adaptive learning models predict traffic conges-
tion, customer demand for transport, and vehicle routing in
changing and varying conditions. In the cyber-world they
intercept evolving attack conditions in the analysis of large-
scale network traffic. In health, energy, and industrial IoT
they predictively monitor diagnose and control automatically
through processing massive data flows. In all these cases the
facility for continuous learning of high-velocity non-homoge-
neous data streams is now recognized as a mandatory prereq-
uisite for intelligent self-adapting systems.

At the same time, of course, there has been an ever-increas-
ing growth in research on scalable and adaptive learning sys-
tems in the scientific world. Over the past five years the number
of papers published in Scopus and in IEEE Xplore indexed un-
der the parameters of adaptive machine learning and real time
big data analysis has grown by more than a factor of three [5].

Despite this advance, however, the majority of solutions
provided appear now still to be limited by static learning rates,
high energy usage and also the lack of autonomous feedback
mechanisms which will control and adapt model parameters
in the light of subsequent continuously varying data flow.
It advances the understanding of how intelligent systems can
maintain accuracy, speed of use, efficiency and transparency
under continuously varying, dynamic and uncertain environ-
ments. Therefore, research on the development of high-per-
formance machine learning algorithms for processing big

data and dynamically changing systems is highly relevant,
representing a significant step toward the next generation of
intelligent computational technologies.

2. Literature review and problem statement

Recent advances in artificial intelligence and in data-inten-
sive computing, have resulted in a significant advance when
developing adaptive, scalable learning architectures. However,
as the complexity of environments for real-time data process-
ing, it remains one of the outstanding problems for the com-
munity of scientists to achieve the optimum equilibrium be-
tween computational efficiency, adaptivity and interpretability.

The paper [6] presents the results of extensive survey of
the use of techniques in deep learning and of the way data
streams at high rates have been processed. It is shown that
the techniques which are considered are convolutional neural
networks (CNNs), recurrent neural networks (RNNs) and
autoencoders. The study indicates clearly that the increased
recognition performance attained by utilizing hierarchical fea-
ture extraction on the high volume of features. It is more con-
ventional on large sized figures including CIC-IDS2018 and
UCI streaming benchmarks. But there were unresolved issues
related to the problem with dynamic overfitting of multiple
machine learning models. Overfitting leads to deterioration
in performance and accuracy, especially when working with
conceptual frames. A way to overcome these difficulties can
be approaches such as regularization, dropout, early stopping,
and ensemble methods. This approach was used in [6], how-
ever it can still lead to some loss of performance in complex
models, or important parameter values may be lost. All this
suggests that it is advisable to conduct the study while leaving
the number of examples in the training set unchanged.

The paper [7] presents the results of implementing hybrid
CNN-LSTM architecture in relation to IoT sensor networks
and telemetry industrial inputs data. It was shown that
combining convolutional and recurrent layers enables simul-
taneous capture of temporal dependencies. But there were
unresolved issues related to the model required frequent full
retraining, increasing computational cost by over 40% due to
the absence of drift detection or adaptive optimization. All
this suggests that it is advisable to conduct the study on entro-
py learning modulation as a possible success way, but will not
implement it experimentally.

The paper [8] presents the results of analysis distributed
deep learning infrastructures for optimized for GPU-based
training using Apache Spark and TensorFlow Distributed.
It is shown that the approximate 2.3-fold increase in process-
ing throughput, with an important acceleration in conver-
gence times for ResNet and GRU models. But there were un-
resolved issues related to synchronization delay and uneven
data partitioning remained important bottlenecks. All this
suggests that it is advisable to conduct the study on an adap-
tive scheduling and load-balancing strategies presented a ne-
cessity for real scalability in dynamic big data environments.

The paper [9] proposed an online Reinforcement Learn-
ing algorithm including Q-learning and neural networks. It
was used for predictive maintenance and streaming anomaly
detection. But there were unresolved issues related to the ab-
sence of explicit drift detection with the model produced over-
fitting to temporally varying changes. All this suggests that it
is advisable to conduct the study on continuous reward-ori-
ented updates meant that adaptability in environments.

The paper [10] presents the results of entropy environ-
mental control systems using learning-rate during training
and optimization to check the speed the predictions. A timely
improvement in convergence times of approximately 15%. But
there were unresolved issues related to the absence of results,
because there were not tested against non-stationary multi-
variate datasets. All this suggests that it is advisable to conduct
the study on interpretation and testing against non-stationary
multivariate datasets.

The paper [11] presents the results of evaluated both
CNN-GRU and CNN-BiLSTM hybrid models to provide spatio
and temporal classification in the cyber-physical and trans-
portation systems. It is shown that the hybridization produces
increases in generalizability against a background of volatile
inputs. But there were unresolved issues related to the ab-
sence of incremental retraining pipelines and explainable Al
facilities. So, it means that the model output was less than
emerging practices. All this suggests that it is advisable to con-
duct the study on drift and aware retraining together with in-
terpretability practices, for example Grad-CAM and SHAP are
good for practical use of the models in real-time environments.

The paper [12] presents the results of the implementation
of created architectures evaluated by transformer and attention
models in streaming data bases. It is shown that the approach
allowed the long-term dependency modelling to be improved.
It also increased outputs over the LSTM model approaches in
energy consumption and data from network telemetry data
bases. However, it was noted that transformer architecture suf-
fered from great computational overhead, such as memory re-
quirements. It increased the proportionally to O(n?) and made
them less than sufficient for real-time deployment. All this
suggests that it is advisable to conduct the study on the areas
of scalability and inference latency remain outstanding issues.

The paper [13] presents the results of examined ex-
plainable machine learning in big data analytics contexts. It
incorporated both the SHAP and LIME frameworks into gra-
dient-boosting predictive models (XGBoost, LightGBM). Im-
provements in interpretability were observed in the models.
But there were unresolved issues related to computational
layer meant total inference timings, which were qualitatively
degraded by the equivalent of 30%. All this suggests that it is
advisable to conduct the study on the necessity and the impor-
tance of lightweight explainability methods within adaptive
opportunity architectures.

The paper [14] presents the results of using an adaptive
gradient optimizer such as the Adam, AdaBelief and RMSProp
approaches on dynamically evolving datasets. It was seen that
whilst adaptive learning rates accelerated learning speeds. But
there were unresolved issues related to random optimizers,
because they had no sense of contextual awareness in any
data. All this suggests that it is advisable to conduct the study
on teach optimizing models themselves through data drift.

The paper [15] presents the results of conducted analysis
on semi and integrative overview of online learning and in-
cremental learning methods. Shown, Hoeffding Trees, Online
SVM, and Deep Stream models. But there were unresolved
issues related to incremental updates. They reduced the cost
of retraining, the class of methods generally tended to com-
promise global consistencies. They also were remiss in that
they frequently required manual hyper empirical parameter
tuning. All this suggests that it is advisable to conduct the
study on the consistency of learnt models and explanations
of learning, which was achieved by high-performance models
trained in unexplored situations.

Two areas of research dealing with the simultaneously
operative open questions have also been addressed. The stud-
ies reveal that despite the observed and named overwhelming
successes in deep and distributed learning research, current
research work is characterized by the existence of at least
three fundamental factors:

1) an insufficiency of adaptability towards dynamically
changing forms of data and concept-drifts;

2) the lack of opportunity for the scalability of computa-
tions on distributive and real-time contexts;

3) totally insufficient functionality as a result of the lack of
explanation-centric methods in adaptive pipelines.

The analysis of recent studies [6-15] has shown that even
though there are many advances made in adaptive and scal-
able Machine Learning, there remains a list of unresolved
interrelated issues. The first issue see is that many existing ap-
proaches to the problem of Concept Drift lack robustness due
to the fact that they either use static learning strategies or need
repeated full retraining of the model which results in degraded
model performance and increased instability during operation
within non-stationary environments. The second issue is that
while larger deep learning and transformer-based models have
significantly improved the ability of those models to predict
accurately, they also come with a high level of computational
overhead that will limit their usability within real-time and
high-throughput environments. The last issue that was found
is that the majority of adaptive and online learning solutions
are missing a principled approach for maximizing drift de-
tection and tightly integrated pre-processing pipelines which
causes them to adapt at a late point in time, use resources inef-
ficiently, and deliver low or inconsistent model quality.

Analysis of trends in research suggests that many factors
have contributed to an identified need for continued research
into the following areas. The need for a single integrated frame-
work that supports both stable performance with concept drift,
systems with real-time/high-volume data flows, and systematic
updates of the models based upon detected drifts of the input
variables. Therefore, further analysis on the creation of an in-
tegrated/combined, real-time, and high-performance machine
learning system that meets both accuracy and stability needs to
support dynamic data stream scenarios is warranted.

3. The aim and objectives of the study

The aim of the study is to construct and optimize effective
machine learning algorithms for the processing of large-scale,
high-speed and dynamic data streams under real-time con-
straints. This will make it possible to creation of adaptive com-
putational technology that is able to guarantee the operation
of stable and accurate models in non-stationary environments
with changing distributions associated with concept drift and
changing sources of input data.

To achieve this aim, the following objectives were accom-
plished:

- to design and validate the unified adaptive learning ar-
chitecture integrating ingestion, preprocessing, drift detection
and incremental model updating for dynamic data streams;

- to develop and evaluate preprocessing, sliding-window and
adaptive learning mechanisms capable of ensuring stable perfor-
mance under heterogeneous, imbalanced and drifting conditions;

- to assess the effectiveness of the proposed framework un-
der controlled non-stationary environments through accuracy,
drift-detection quality, F1-score and adaptation latency.

4. Materials and methods

4.1. The object and hypothesis of the study

The object of the study is the adaptive machine learning
systems that are able to process large amounts of rapidly chang-
ing streaming data in real time.

The primary hypothesis of this research is that by using
drift detection and correction along with incremental training,
then can create an integrated system with superior stability,
reduced latency and the minimum need to completely re-train
the model under non-stationary conditions.

This study assumes that:

- there is a measurable drift in the distribution of incom-
ing data streams over time;

— it is possible to detect drift in incoming data streams
using statistically derived divergence metrics without having
to wait for complete access to future data;

- an incremental model can approximate the same level of
performance as a fully-trained model when the extent of drift
is moderate;

- computational constraints for real-time processing are
caused more by the need for timely results rather than by the
limitations of available storage.

The following simplifications were made when conducting
this study: instead of using real-world non-stationarity, synthetic
types of drift created to simulate the effects; experiments have
concentrated only on representative examples of the adaptive mod-
els; rather than calculating total costs of energy used for training a
new model, only adaptation latency and retraining frequency were
taken together to evaluate cost; and parallel computing and distrib-
uting resource scheduling are not explicitly addressed in the model.

4. 2. General workflow of research

The research is inherently multi-stage including: continu-
ous data ingestion; data preprocessing; adaptive learning; drift
monitoring; and incremental updates to models. Fig. 1 presents
a diagram of the general workflow, showing the functioning of
the system in a dynamic big-data environment.

Dynamic Big Data
Environment

All numerical features were normalized. This was exe-
cuted by subtracting the first feature valid minimum, then
dividing the results by the range. In summary, each of the nu-
merical variables was then normalized to a start of [0,1], and
this normalization was consistent across the datasets.

As seen in Fig. 1, heterogeneous sources of data are in-
gested, normalized and mapped to structured feature repre-
sentations. These features are fed into the adaptive machine
learning model, which drifting detection mechanism con-
tinuously controls for any change in the distribution of data
to update models accordingly. This flow diagram is used for
tracking data throughout the lifecycle of a data warehouse’s
transformation to a production system.

4. 3. Software tools and computational environment

The research was conducted in an industrial-grade envi-
ronment for model training and data processing. All prepro-
cessing tasks and classical machine learning models were de-
veloped in Python 3.10 using NumPy, Pandas and Scikit-learn.
A moving-window estimator was utilized which determined the
window average over recent observations, and thus contained
particular values in a discrete rolling window of fixed size.

Neural-streaming models such as LSTM and GRU were
implemented using TensorFlow 2.x or PyTorch 2.x. Stream-
ing data ingestion or pseudo-real-time ingestion of data was
performed using Apache Kafka, and distributed micro-batch
processing was performed using Apache Spark Structured
Streaming. Experimentation tracking and reproducibility was
performed using MLflow, and a Docker container was used to
isolate and deploy the software compute environment.

The hardware configuration consisted of an Intel Xeon
12-core CPU, NVIDIA RTX A5000 GPU, 118 GB of RAM, and
hosting Ubuntu 22.04 Operating System. A Spark cluster of
six executors facilitated distributed processing. Both the soft-
ware and hardware configurations utilized realistic high-loads
over a prolonged duration both for realistic performance, and
thus, to reflect typical implementation conditions and typical
a typical operational of a real-time big-data systems.

System Optimization Objectives
— Improve scalability and
throughput
— Minimize latency
— Maintain model accuracy
— Optimize resource allocation
— Handle real-time data drift

Learning type
— Supervised Learning
— Semi-supervised Learning
— Online / Incremental
Learning
— Reinforcement Learning

Learning task

Regression

T

Learning problem
— Detect data drift and anom

ly A ’—\
— Update parameters in real-time ~ Anomaly Detection |

Classification

Time-series
alies Forecasting

Clustering ‘

Learning method

Adaptive XGBoost / Incremental Random Fores

“
=

Adaptive Feedback ; .
Loop O Retrain model incremental!
Monitor, Analyze o
(Pre dict,) Evol\zlc) ? - Opt.umze hyperparameters
i adaptively
— Maintain performance under
Model Management & non-stationary data
Evaluation
— Drift monitoring
— Auto-scheduler for retraining
— Model performance dashboard
= Impl tation Fr
T o — Apache Spark, Kafka for data
streaming
Deployed Adaptive ML System — TensorFlow / PyTorch

— Real-time predictions model training

— Continuous updates
— Low-latency data integration

nodes

— Distributed computation

k LSTM / GRU for streaming data }*

Reinforcement Learning Agents }

for CNN for pattern
extraction

Hybrid and Ensemble Techniques }

Fig. 1. Machine learning design process for dynamically updating big-data-driven systems

4.4. A view of the study from an algorithmic per-
spective

The adaptive part of the system consists of three main
mechanisms. The first is incremental learning, where the
model itself updates based on small batches of new data. This
allows the model to adapt without a full retrain.

The second is drift detection where distributions of in-
coming data create a divergence score. This score captures
how different the current window is from the reference distri-
bution, and the larger the score the greater the change in the
pattern of the data.

The third mechanism is dynamic learning-rate change,
which increases when the model is uncertain and decreases
when the model is confident, allowing the model to be able to
respond during drift, and slowly and steadily during normal
times. In the case of the regression tasks, the optimization was
based on mean squared error, which is the average of squared
differences between predictions and true values.

Fig. 2 outlines how the mechanisms work together. The
system has a continuous data ingestion mechanism that is
constantly calculating drift scores, checking thresholds, and
updating the model when needed. This is done to support
adaptive processing.

All the steps of the method are straightforward and come
right after one another. The system receives the data, parti-
tions it into windows, predicts drift scores, checks the thresh-
olds, fire the partial updates, and stores the results.

4. 5. Datasets and data preprocessing

The robustness of the system was evaluated using a vari-
ety of datasets. These datasets incorporate a range of concept
drift: abrupt, gradual, continuous, recurrent and cases with
imbalanced distribution. This provides a means to evaluate
model behavior under drift concept.

The model uncertainty was assessed using prediction en-
tropy. Entropy is defined as the negative summation of class
probabilities weighted by their logarithm. When entropy is
high, the model is uncertain. In these higher entropy situa-
tions, learning rate is increased, which helps with faster adap-
tation. This principle is based on a prior experiment [11]. The

1

2

3

4: ile stream({X t}) i= active do
5: %x_t « parallel_ingest(X_t, E)
6 f t « feature extraction(x t)
7

8

9

s t -« D(f t, W ref)

: s t > 1_drift and
10: n_t—n_t

datasets consist of synthetic benchmarks, "real” data streams,
and datasets from the THU Concept Drift benchmark suite.
Synthetic datasets are used to assess the behavior over con-
trolled drift scenarios. Real-world datasets provide insights
into the model’s behavior under natural drift. Finally, the im-
balanced datasets are used to assess sensitivity to rare events.
To implement the proposed framework, different types of data-
sets were summarized, and the list is demonstrated in Table 1.

All datasets were preprocessed with a uniform preprocess-
ing pipeline. This guaranteed that all models were trained with
data in similar formats according to the flowchart in Table 1.
The pipeline actions were identical and trivial.

The first step was to normalize numerical values. The sec-
ond step was to encode the categorical values. Subsequently,
the entire dataset was segmented into sliding windows, in such
a way as to preserve the temporal semantics in the dataset.
Drift-related features were also enhanced to bring attention
the notable changes in the data. Lastly, data were streamed
through Kafka using controlled micro-batches. These steps es-
tablished stable and comparable conditions for all experiment
replications.

4. 6. Setup for experimentation and conditions for
evaluation

Experiments were organized in order to determine if the
components that adapted followed reliably when tested with
streaming conditions, etc. based on feasibility, along with sta-
bility, and computational efficiency, to sample how the compo-
nents were evaluated.

Drift was determined using the Kullback-Leibler diver-
gence, and was determined as the summed product of each
component of the new distribution multiplied by the natural
logarithm of the ratio of the normalized distribution to the
reference distribution, which allowed the reader to see how
strong the incoming data changed.

Streaming intensity varied from a rate of 2,000 events to
20,000 events within a second relative to the new distribution,
where window size rates changed from 5 seconds to 60 sec-
onds. Each experiment was repeated at minimum, 10 times to
verify consistent, and valid results.

Input:
{X_t} — streaming data batches from multiple heterogeneous sources
M = {Ml,.,Mn} - initial set of base models (e.g., XGBoost, LSTM, GRU)
D(-) — drift detector (e.g., KL-divergence, PSI, Page-Hinkley)
n_t - adaptive learning-rate controller
R - resource monitor (CPU/GPU utilisation, latency thresholds)
Output
M* — adapted model ensemble for dynamic big data streams
Initialise distributed environment E (e.g., Spark cluster, GPUs)

Draw initial reference window W_ref « sample (X 0)
Train initial ensemble M « { train(M i, W_ref

for each M 1 & M }

¥ t < aggregate predictions(M, £ t) b ensemble output

b drift score

R.is available() then

(1 + o - entropy(y_t)) b entropy-aware LR
11: AM ~ partial update(M, f t, y t, n_t) P incremental training
12: M < merge (M, AM) > update ensemble
13: update (W ref, £ t) t refresh reference window
14: end if
15: log_metrics({accuracy, Fl, latency, throughput, energy usage}
16: auto_scheduler — check(trigger_rules, R)
17: if auto_scheduler = True then
18: redistribute load(E, priority = "GPU") P maintain low latency
19: end if

Fig. 2. Drift-aware incremental learning process

Table 1

List of all datasets used in the study to evaluate concept drift

Dataset Name Drift type Description
Synthetic | SEA concepts Drift This dataset consists of three numerical features. Although these features are defined at an
Y p abrupt initial time, drift occurs when the decisions are modified through time
Synthetic Hyperplane Drift Drift comes through very gradual incremental change in the position and/or orientation
gradual of hyperplane
Svnthetic Rotating Drift The decision boundary rotates through time. This produces smooth and therefore, continu-
Y Hyperplane continuous ous drift through the duration of the data [16]
Synthetic Random RBF Drift Data come from centroids that are positioned randomly. Drift occurs as centroids, and their
Yy gradual standard deviations, shift their position within the data
Real-world Electricity Drift This dataset is an example of data that shows both abrupt and gradual drift. The dataset pres-
Market (Elec2) gradual ents price data for electricity that is subsequently used to predict the direction of pricing [17]
Airlines Drift with exter- | This dataset is based on the concept of delays of flights. The reason for drift is anchored to
Real-world . . o L s
concept nal influences | changing weather conditions and other external contributing conditions [18]
Real-world | KDD Cup 1999 Attack This dataset is based on network 1ntru51op data. Drift is re}evant since it comes into the data
patterns because the types of attack change at variances through time
Real-world Weather Drift Meteorological data shows an abrupt drift either at seasonal or event-based changes. These
Data abrupt moderate models of drift would test the robustness of the models [19]
Imbalanced Credit Card Rare cases, This dataset involves transaction activities that are highly imbalanced. Drift is consequen-
fraud detection imbalance, tial due to rare events of fraud patterns changing through time
Medical Drift Healthcare data introduces patient records as data. Drift instigates an account of additive
Imbalanced . - L .
records event cases as patient behaviour and conditions change through time
Benchmark Linear Drift graduf'il., Drift is created by implementing a linear decision boundary that is in a position of rotation
abrupt, repetitive
Cake Drift The data is sliced up into angular sections whereby drift is created through a changing con-
Benchmark . - .
Rotation rotational figuration
Benchmark Chocolate Drift Drift occurs at the repetition of rotational movements of two spatial patterns along the
Rotation rotational X + y plane
Benchmark | Torus Rolling Overlapping | The dataset has overlapping mzflmfolds. Drift is Freated when a structur.e ca}pable of moving
classes through the feature space manipulates the original data by way of replication [20]

Drift was built into the functionality of the experimental
apparatus regarding synthetic datasets at some pre-deter-
mined intervals. In real datasets, drift was naturally built-in;
it was recorded as it happened.

There were 3 modes of operation for testing purposes;
a CPU only mode, a GPU contributor mode, and a hybrid
of both.

All metrics on performance were tracked and recorded.

In this evaluation phase of "epochs”, utilized the standard
measuring of:

- accuracy;

- F1-score;

- inference latency;

- throughput;

- adaptation time;

- % CPU usage and % GPU Usage.

In this section of work, only the evaluation and setup
were previewed. In the following section 5, let’s interpret the
meaning of the results.

4.7. Adaptive model components implementation

The adaptive model was implemented as a modular frame-
work consisting of multiple inter-functional components.
These were the predictive learning model, drift detection
mechanism, feature storage, and update control to modify an
incremental model.

In addition to traditional machine learning models, the
framework supported sequence-based models, such as long
short-term memory, gated recurrent unit.

Incremental update functions were used for the adaption
of the predictive learning models. These provided for partial
retraining of the predictive learning models on streaming data
windows without the requirement of completely reconstruct-
ing the model.

Drift detection was performed by determining the distri-
bution divergence from one period or category to another.
Once drift detection was completed, the selective update
procedure was initiated based on an algorithmic correlation
process.

Dynamic learning rate adjustments based on prediction
uncertainty estimations were integrated to provide adaptive
behaviors in non-stationary conditions. Strategies to merge
ensembles occurred when appropriate. These components
work can together collaborate to develop real-time adaptive
behavior which is later investigated in Section 5.

4. 8. Reproducibility of experiments

All experiments were designed to be fully reproducible.
All datasets, preprocessing scripts and, training configura-
tions were reconcilable in Git and MLflow. Random seeds
were fixed for all runs to hold results the same between
runs. Docker images were created to save the computational
environment. Drift schedules, window size and streaming
parameters were also saved unchanged. In combination, this
framework can be used for recreating experiments with a high
level of accuracy.

This means that reports for findings identified in Section 5
are entirely reproducible.

5. Results of the study on development and
optimization of adaptive machine learning
architectures

5.1. Development of the unified adaptive learning
architecture

The outcome of the research is a consolidated adaptive
learning architecture that is designed for the real-time pro-
cessing of dynamic data streams where changes in concept
occur. The integrated components of the architecture that
comprise the adaptive nature and performance capabilities
are: drift detection and a drift-aware preprocessing process,
and an incremental update process for model training.

The architecture has been structured to facilitate greater
understanding of how the components interact and has been
demonstrated in Fig. 3. To evaluate the architecture’s predic-

tive accuracy, adaptation latency and retraining ability, it was
tested using non-stationary scenarios under laboratory condi-
tions. During the evaluation period the streaming architecture
demonstrated consistently high accuracy throughout the test-
ing period. Specifically, accuracy values ranged from 0.91-0.83
during repetitive drift events, while the static/non-adaptive
system dropped from 0.50-0.76 after sequential drift events.

The systems response to persistent drift is illustrated in Fig. 4
and the overall accuracy values at the drift are given in Table 2.
The overall accuracy values remained stable throughout the ex-
periment indicating that the architecture was able to ingest data,
detect drift, and adapt, all while maintaining its performance.

Fig. 4 shows the accuracy values for all models for the
200 sliding windows, with four segments of recurring drift indi-
cated by vertical indicators. Table 2 gives an idea of the accuracy
values obtained at the drift points, shown for quantitatively.

Data sources

— Historical datasets
— External public data

Streaming & Ingestion

— IoT sensors Layer Storage
— Transaction logs — Kafka topics — Normalization & encoding
£ | — Spark/Flink stream — Sliding windows
— API streams . . .
Ingestion — Dirift-aware feature updates

— Micro -batching

Feature Engineering &

— Feature Store (historical + real

— Performance monitoring

— Windowing strategies time)
Adaptive ML Model
Dgployment Layer Drift Detector — Base models: XGBoost, Random
— Real time inference — KL divereence Forest
— REST/GRPC model endpoints _ ADWINg — Streaming models: LSTM, GRU

— Online learning: incremental

(latency, throughput)
— Auto-scaling

[—1 — Page-Hinkley

— Dirift type classification
Sudden/ gradual/ recurring

update, partial fit
Ensemble update mechanism

— Model registry . . — Real time hyperparameter
Triggered update policy adaptation
— Drift-triggered retraining
Fig. 3. Framework of layered architecture of adaptive system
1.0 Accuracy dynamics of competing models under recurring concept drift
0.9
0.8 M
o
g W
o
Q
- A A
—— Random Forest (static)
—— LSTM (non-adaptive) m\J‘A—"
0.6 —— CNN-LSTM (non-adaptive) N\~
—— Transformer (static attention) = =]
—— Adaptive streaming model (AET) E M E
0.5 T : T T T T :
0 25 50 75 100 125 150 175 200
Streaming window index
Fig. 4. Accuracy trend at recurring concept drift
Table 2
Accuracy values at drift points
Model Drift 1 Drift 2 Drift 3 Drift 4
Random forest (static) 0.74 0.63 0.59 0.50
LSTM (non-adaptive) 0.82 0.77 0.71 0.69
CNN-LSTM (non-adaptive) 0.85 0.79 0.72 0.71
Transformer (static attention) 0.88 0.82 0.78 0.76
Adaptive streaming model (AET) 0.91 0.88 0.85 0.83

Table 2 shows the available numerical accuracy levels at
the absolute drift points for each model.

5. 2. Evaluation of preprocessing and adaptive learn-
ing mechanisms

The adaptive preprocessing and learning mechanisms
achieved higher levels of 0.85-0.88 F1 score, while reducing
the adaptations time frame by approximately 2-3 times for
each drift event when compared to the static models. The
above components were evaluated under four drift scenarios
to find out if they provided some level of stable feature repre-
sentation and speed of adaptation.

The resulting F1-scores and adaptation delay times are
detailed in Fig. 5 and summarized in Table 3. The adaptive
model consistently achieved a higher level of predictive
performance and lower recovery times than static baselines.
This confirms that the preprocessing pipeline and adaptive
learning mechanisms provided stable performance under
non-stationary conditions.

Fig. 5 shows the F1 scores for the baseline and adaptive
models, and adaptation times plotted on a secondary axis. The
lag is verbally defined as the elapsed time between the drift
event and when the updated model achieves a stable level
of predictive performance again. The numerical summary is
shown below in Table 3.

Table 3 shows the Fl-scores and adaptation time values
recorded for all drift scenarios.

5. 3. Quality of drift-detection and efficacy of frame-
work

The adaptive KL-divergence drift detection detected all
drift types, including gradual and continuous drift. It also
had a shorter detection delay (2-7 snapshots) than static
threshold D3M, which cannot detect gradual and continu-
ous drifts.

The KL-divergence trajectory and threshold curves are
displayed in Fig. 6, while detection statistics are contained
in Table 4.

F1-score and adaptation latency across drift scenarios

0.95

F200

r150

r100

Adaptation time (seconds)

r50
-0
Abrupt Gradual Recurrent Continuous
I Static baseline (F1) —-e- Baseline adaptation time
[Adaptive framework (F1) —e- Adaptive adaptation time
Fig. 5. F1 score and adaptation time
Table 3
F1 score and adaptation time (secs)

Drift scenario Static F1 Adaptive F1 Static adaptation time Adaptive time
Abrupt 0.74 0.88 90 45
Gradual 0.70 0.85 120 52

Recurrent 0.67 0.86 140 48
Continuous 0.72 0.87 130 44
Drift score trajectories and adaptive detection threshold
—_— KL—div.ergence score
275
0.275 ——-Adaptive threshold
0.250 1 ﬁé & ﬁé ------ Static tpreshold
A A ::/
© 0.225
=}
@
© 0.200
o
5
2 0.175 1
~
2
a 0.150 1
0.1251
0100 i oo
0.075 fr e proneeeeeedeeseses jrresesssnnnreeeeed il St bbbt b ekl freeeresssates .‘..—I..'::'.:.-..—.:-..—.nr
0 25 50 75 100 125 150 175 200

Streaming window index

Fig. 6. Kullback-Leibler divergence and adaptive threshold

Table 4

Drift detection statistics for drift types

Drift type Average KL score Static threshold trigger Adaptive threshold trigger Detection delay (windows)
Abrupt 0.245 Yes Yes 3
Gradual 0.182 No Yes 5
Recurrent 0.231 Yes Yes 2
Continuous 0.167 No Yes 7

The two drift-detection capability, adaptive threshold, de-
tected all types of drift, but shorter times from the start of the
streaming window than the static threshold that only detected
abrupt and recurrent drift types. Overall, this demonstrated
effective drift-detection capacity, while showing some stability
in the face of changing data distributions.

The divergence values, across 200 streaming windows, that
are computed are shown in Fig. 6 along with a static threshold
and an adaptive threshold that is updated for each window.

Detection statistics for the various drift types are summa-
rized in Table 4.

The calculated divergence scores, threshold activations
and detection delays are presented in Table 4.

6. Discussion of the results of the study on the
development and optimizing of adaptive machine
learning architectures

The results associated with the unified adaptive architec-
ture, as illustrated in Fig. 4 and Table 2, demonstrate stable
predictive performance under changing streaming conditions.
As a result, the adaptive architecture provides predictive sta-
bility after recurring drift events when contrasted with static
and non-adaptive models, which progressively degrade. This
phenomenon can be explained by the way in which the adap-
tive architecture is designed so that model updates occur after
the detection of statistically significant changes in distribution,
as opposed to fixed, time-driven update schedules. Unlike
CNN-LSTM streaming approaches in [2], which required
a complete retraining of the model after every identified drift
and thus created a lot of computational load, an architecture
was developed that restricts the updates to the segments of the
data stream where there has been drift. This allows for quicker
recovery of model accuracy through the update of only those
segments where the drift has occurred. Thus, eliminating un-
necessary computations as well as addressing key challenges
related to model instability and inefficient resource utilization.

The next results were obtained using several different pre-
processing strategies and adaptive learning algorithms within
the framework. The comparative results presented in Fig. 5
and in Table 3 illustrated that using the combination of sliding
window segmentation, normalization and incremental updates
produced better predictive performance and more rapid adap-
tation than when compared to the static baselines identified in
this study. This finding can be attributed to the close integra-
tion of preprocessing and drift-aware learning in that the fea-
ture representations are updated regularly as a response to the
detection of changes in the underlying data distributions rather
than being kept at a constant value during streaming. Unlike
traditional preprocessing methods in [5] and [6], the proposed
methodology distinguishes itself by aligning feature scaling
and temporal segmentation with the changing distribution
of the input data, allowing the training system to demonstrate
stable behavior when working with heterogeneous and/or

imbalanced data. It achieves its goal of ensuring stable and ro-
bust performance in a dynamic environment. Another online
learning approaches outlined in [10] typically take a lot less
time to train but the models generated are normally unstable
after numerous updates because they are derived from heuris-
tic methods and not principled drift indicators. This architec-
ture overcomes this problem by linking all model updates to
divergence-based signals. Therefore, this adaptive update cycle
maintains prediction stability, as evidenced by the decreased
variability of performance depicted in Fig. 5.

Drift detection results further support the adaptive update
strategy since using adaptive kl-divergence thresholding al-
lows for the detection of the four drift types, such as abrupt,
gradual, recurrent, and continuous drift, while the methods
for using static thresholds [7] cannot reliably detect gradual
and continuous distributional changes as shown in both Fig. 6
and Table 4. This difference is due to the dynamic adjustment
of the drift detection thresholds using both divergence and
entropy measures, which gives greater sensitivity to subtle
changes in data distribution but limits false alarms during
stable periods. While static approaches in [9] and [10] suffer
from delayed detection resulting in late or incomplete adap-
tation, with the adaptation mechanism, model updates can
be triggered in a timely manner and therefore allow for finer
control of the adaptation process.

A comparison of streamed and online learning solutions
demonstrates the benefits of the proposed framework over
others. The online learning strategies based on heuristic update
rules, for instance, inherently experience instability after mul-
tiple updates due to the lack of principled drift indicators. The
transformer-based streaming models suffer from high computa-
tional expense because of their quadratic attention mechanisms
while also achieving high predictive accuracy therefore severely
limiting their usability in high-velocity real-time scenarios. Con-
sequently, the proposed framework has combined lightweight
learning models, selective updates, and GPU acceleration, all
of which enable efficient processing of high-throughput data
streams while maintaining low adaptation latency.

The results obtained from this research support the solu-
tions that have been provided for the problems identified in
the problem statement. Selective incremental updating will
minimize the risk of catastrophic forgetting and lessens the
burden of retraining. Adaptive drift detection allows for an
effective response to changing data distributions, while asso-
ciated integrated preprocessing maintains both the temporal
and statistical continuity of features. The unique combination
of these features provides the explanation for the observed
stability, efficiency, and scalability of the adaptive framework
in a non-stationary environment.

There are also many limitations associated with this re-
search. For example, a portion of my experimental assessment
involved creating synthetic drifting test scenarios, which
do not accurately represent the challenging characteristics
associated with vast quantities of data in a real-world data
stream. Although the performance of the adaptive model was

largely assessed through latency indicators, no additional
investigation into the energy consumed and long-term re-
source utilized, were performed. Also, currently there are no
interpretative capabilities integrated into the adaptive cycle
that will provide users with insight into how a model reached
a specific decision when presented with a drift event.

These limitations provide the basis and direction for future
development in this area. Future research may focus on the val-
idation of the adaptive framework using large-scale real-world
streaming datasets, integration of model-specific interpretation
techniques, creation of reinforcement-learning-based drift con-
trollers, and extension of the adaptive framework to accommo-
date multimodal and graph-structured data representations.

7. Conclusion

1. The unified and adaptive machine learning architecture
for nonstationary data streams was developed and experimen-
tally validated. It incorporates drift detection, selective incre-
mental updates and adaptive control into a single operational
framework. By preserving the architecture’s ability to contin-
ually predict data streams and adapting to various drift events
over time, the architecture showed above 0.83 accuracy score
under both continuous and repetitive drift. over time through
comparative analyses of model predictive performance. With
the supports provided through the new architecture’s robust-
ness in predictive performance, the new architecture localized
model update activity to the data streams most affected by
drift events; this reduced the amounts of unnecessary model
retraining previously reported and addressed the problem of
prediction instability described in previous literature.

2. Adaptive preprocessing and learning mechanisms were
realized based on sliding window segmentation, incremental
updating, and normalization methods. As stated in the pre-
vious section, a key feature of this accomplishment is how
closely the processes used to pre-process data segments were
combined with the processes used for learning by adapting
the feature representations generated directly from the cur-
rent distribution of the data being processed. The comparative
evaluations of the architecture against both static preprocess-
ing pipelines and heuristic-based online learning were shown
to provide superior predictive quality and produce shorter
adaptation times. The predictive performance was enhanced
with high predictive quality Fl-score of 0.88. The average
time to adapt the model, was also reduced to approximately
2-3 times faster than previously experienced with respect to
all variations of drift detected in imbalanced conditions.

3. The evaluation of the proposed framework based on its
predictive quality F1 score, drift detection accuracy, and re-
sponse delay determines that the proposed framework provides
an effective solution to ongoing accuracy and efficiency within
dynamic environments. The ability of using adaptive KL-diver-
gence thresholds provides the capacity to effectively identify
all forms of drift, such as abrupt to gradual, recurrent to con-
tinuous, when traditional drift detection methods, which used

fixed threshold values, failed in their ability to detect drift and
changes in data distribution. The evaluation results showed
that the adaptive drift detection mechanism reduced the time
between adjusted model response and detection of drift, by al-
lowing adjustment of the model to occur after only 2-7 stream-
ing windows at each of the different drift types tested. These
evaluations highlight the need for verifying the proposed
architecture within large-scale data streams in a reality-based
application environment as an area of potential future research,
in addition to using light-weight, interpretable mechanisms in
conjunction with the proposed framework of adaptive learning.

Conflict of interests

The authors have no conflicts of interest regarding this study
regarding finance, personal matters, authorship or any others.

Financing

The study has been undertaken without external support/
funding.

Data availability

Data supporting the findings of this study are not available
publicly due to institutional and privacy restrictions, and can be
obtained from the corresponding author on reasonable request.

Use of artificial intelligence

The authors declare the use of generative Al in the research
and preparation of the manuscript. Tasks delegated to gener-
ative Al tools under full human supervision: finding sources
for a literature review, preliminary methodology development,
grammar editing.

Generative Al tool used: OpenAl, GPT-5.1.

The authors bear full responsibility for the final manuscript.

Generative Al tools are not credited and are not responsi-
ble for the final results.

Declaration submitted by: Aivar Sakhipov, Aruzhan Mektep-
bayeva, Amangul Talgat, Maxot Rakhmetov, Ainagul Adiyeva,
Altynbek Seitenov, Nurzhan Ualiyev, Shynar Yelezhanova.

Authors’ contributions

Aivar Sakhipov: Investigation, Conceptualization, Aru-
zhan Mektepbayeva: Corresponding author, Methodology,
Review and editing, Amangul Talgat: Resources, Formal
analysis; Maxot Rakhmetov: Data curation, Software; Aina-
gul Adiyeva: Literature review, Data curation; Altynbek
Seitenov: Supervision, Software; Nurzhan Ualiyev: Vali-
dation, Visualization; Shynar Yelezhanova: Visualization,
Review and editing.

References

1. Wang, I, Lu, T, Li, L., Huang, D. (2024). Enhancing Personalized Search with AI: A Hybrid Approach Integrating Deep Learning and
Cloud Computing. Journal of Advanced Computing Systems, 4 (10), 1-13. https://doi.org/10.69987/jacs.2024.41001

2. Navaux, P. O. A, Lorenzon, A. F., Serpa, M. da S. (2023). Challenges in High-Performance Computing. Journal of the Brazilian Com-
puter Society, 29 (1), 51-62. https://doi.org/10.5753/jbcs.2023.2219

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Mektepbaeva, A., Medarov, A., Kulmuratova, A. (2024). Analysis of Penetration Testing Methods for Specific IoT Device: IP Camera.
2024 IEEE 4th International Conference on Smart Information Systems and Technologies (SIST), 76-82. https://doi.org/10.1109/
Sist61555.2024.10629431

Jones, R., Davies, H. (2024). High-Performance Digital Forensic Framework for Anomalous Ransomware Detection in File System Log
Data. https://doi.org/10.36227/techrxiv.172599923.38750111/v1

Xing, S., Wang, Y. (2025). Proactive Data Placement in Heterogeneous Storage Systems via Predictive Multi-Objective Reinforcement
Learning. IEEE Access, 13, 117986-117998. https://doi.org/10.1109/access.2025.3586378

Wilson, A., Anwar, M. R. (2024). The Future of Adaptive Machine Learning Algorithms in High-Dimensional Data Processing. Inter-
national Transactions on Artificial Intelligence (ITALIC), 3 (1), 97-107. https://doi.org/10.33050/italic.v3i1.656

Rane, N., Paramesha, M., Choudhary, S., Rane, J. (2024). Machine Learning and Deep Learning for Big Data Analytics: a Review of
Methods and Applications. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4835655

Kamila, N. K., Frnda, J., Pani, S. K., Das, R., Islam, S. M. N., Bharti, P. K., Muduli, K. (2022). Machine learning model design for high
performance cloud computing & load balancing resiliency: An innovative approach. Journal of King Saud University - Computer and
Information Sciences, 34 (10), 9991-10009. https://doi.org/10.1016/j.jksuci.2022.10.001

Ahmadi, S. (2023). Optimizing Data Warehousing Performance through Machine Learning Algorithms in the Cloud. International
Journal of Science and Research (IJSR), 12 (12), 1859-1867. https://doi.org/10.21275/sr231224074241

Ji, E., Wang, Y., Xing, S., Jin, J. (2025). Hierarchical Reinforcement Learning for Energy-Efficient API Traffic Optimization in Large-
Scale Advertising Systems. IEEE Access, 13, 142493-142516. https://doi.org/10.1109/access.2025.3598712

Wang, S., Zheng, H., Wen, X., Fu, S. (2024). Distributed high-performance computing methods for accelerating deep learning training.
Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (Online), 3 (3), 108-126. https://doi.org/10.60087/jklst.v3.n4.p22
Cravero, A., Sepulveda, S. (2021). Use and Adaptations of Machine Learning in Big Data — Applications in Real Cases in Agriculture.
Electronics, 10 (5), 552. https://doi.org/10.3390/electronics10050552

Naayini, P., Kamatala, S. (2023). High-Performance Data Computing: Parallel Frameworks, Execution Strategies, and Real-World
Deployments. International Journal Of Scientific Advances, 4 (6). https://doi.org/10.51542/ijscia.v4i6.33

Usman, S., Mehmood, R., Katib, I., Albeshri, A. (2022). Data Locality in High Performance Computing, Big Data, and Converged Systems:
An Analysis of the Cutting Edge and a Future System Architecture. Electronics, 12 (1), 53. https://doi.org/10.3390/electronics12010053
Gadde, H. (2023). Leveraging Al for Scalable Query Processing in Big Data Environments. International Journal of Advanced Engi-
neering Technologies and Innovations, 1 (02), 435-465. Available at: https://www.academia.edu/124871455/Leveraging_AI_for_Scal-
able_Query_Processing_in_Big Data_Environments

Sakhipov, A., Omirzak, I., Fedenko, A. (2025). Beyond Face Recognition: A Multi-Layered Approach to Academic Integrity in Online
Exams. Electronic Journal of E-Learning, 23 (1), 81-95. https://doi.org/10.34190/ejel.23.1.3896

Kaveh, M., Mesgari, M. S. (2022). Application of Meta-Heuristic Algorithms for Training Neural Networks and Deep Learning Archi-
tectures: A Comprehensive Review. Neural Processing Letters, 55 (4), 4519-4622. https://doi.org/10.1007/s11063-022-11055-6
Mektepbayeva, A., Begisbayev, D., Seiitbek, R., Khaimuldin, N., Sakhipov, A., Rakhimzhanov, D. (2025). Adaptive Machine Learning
Algorithms for Data Processing in Transportation Systems. 2025 IEEE 5th International Conference on Smart Information Systems
and Technologies (SIST), 1-8. https://doi.org/10.1109/sist61657.2025.11139286

Jumagaliyeva, A., Abdykerimova, E., Turkmenbayev, A., Serimbetov, B., Muratova, G., Yersultanova, Z., Zhiyembayev, Z. (2024).
Identifying patterns and mechanisms of Al integration in blockchain for e-voting network security. Eastern-European Journal of
Enterprise Technologies, 4 (2 (130)), 6-18. https://doi.org/10.15587/1729-4061.2024.305696

Chinchanikar, S., Shaikh, A. A. (2022). A Review on Machine Learning, Big Data Analytics, and Design for Additive Manufacturing for
Aerospace Applications. Journal of Materials Engineering and Performance, 31 (8), 6112-6130. https://doi.org/10.1007/511665-022-07125-4

