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This study investigates the process of ana-
lyzing immunohistochemical images of breast
cancer. The study has contributed to solving the
task of a standardized and objective approach
to the quantitative assessment of immunohis-
tochemical biomarkers, which would minimize
inter-individual variability in assessments and
could be computationally efficient for the analy-
sis of biomedical images.

This paper aims to balance model complex-
ity and generalization by using evolutionary
algorithms to tune deep neural networks for bio-
medical tasks, analyzing how network structure
affects performance.

Experiments were conducted on the segmen-
tation of immunohistochemical images on 13 dif-
ferent architectures of neural networks. The
evaluation was performed using five accuracy
metrics, which allowed for an objective compar-
ison of model performance. The use of a genetic
algorithm to optimize the neural network archi-
tecture made it possible to adaptively find combi-
nations of parameters, in particular the number
of layers and the size of the base filter. The evo-
lutionary approach enabled effective exploration
of configuration space, which led to an increase
in the Dice metric to 0.74. The resulting increase
in accuracy indicates the model’s improved abil-
ity to segment images with different characteris-
tics, demonstrating the practical effectiveness of
the proposed approach for biomedical diagno-
sis tasks.

The optimized architecture was used to design
a system for diagnosing breast cancer automati-
cally based on neural networks, in particular for
the method of automatic diagnosis of breast can-
cer subtypes. That contributed to improving the
accuracy of biomedical image analysis, which
could help improve the diagnostic process in clin-
ical practice
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neural network architecture optimization, IHC
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1. Introduction

In the modern world, artificial intelligence (AI) is rapidly
penetrating various areas of human activity, in particular
medicine [1, 2]. One of the most promising and relevant field
of its application is to automatically diagnose diseases using
biomedical images [3]. AI makes it possible to increase the
accuracy, quality, and efficiency of the diagnostic process,
reducing the influence of the human factor.

Of particular note is the use of deep neural networks for
the analysis of histopathological [4, 5] and immunohisto-
chemical (IHC) [6, 7] images for diagnosing breast cancer [8].
Histopathological images make it possible to identify the pres-
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ence of cancer cells, while THC studies make it possible to
detect protein markers that play an important role in deter-
mining the cell type and molecular genetic subtype of the
tumor. For this purpose, antibodies are used that bind to the
corresponding proteins, and the results are visualized using
special dyes.

It is important that determining the subtype of breast can-
cer has not only diagnostic but also therapeutic significance.
It is based on the analysis of four main biomarkers (ER, PgR,
Ki67, HER2), which correspond to the following subtypes:
luminal A, luminal B, HER2-positive, and basal-like (triple-
negative). In the diagnostic process, four corresponding ITHC
images are usually used for one histopathological image,




which are evaluated by two main parameters: average staining
intensity and percentage of positive cells.

According to statistics [9, 10], breast cancer is a fairly com-
mon oncological disease. The development of accurate deep
learning models for automatic analysis of biomedical images
of breast cancer makes it possible not only to speed up the
diagnosis but also reduce the likelihood of errors associated
with the subjective assessment by the doctor.

At the current stage of development of medical infor-
mation systems, one of the urgent tasks is the accurate seg-
mentation of micro-objects on histological and IHC images.
A significant part of the research in this area is focused on
using the U-Net architecture as a basis for building automatic
segmentation systems. The popularity of the architecture is
explained by the ability to effectively detect objects of different
sizes even on small training samples [11].

Despite significant progress, existing diagnostic methods face
certain difficulties. First, subjective assessment of THC images
by clinicians often leads to significant variability in the results,
especially for the Ki67 proliferation index. Studies confirm that
the interlaboratory reproducibility of Ki67 is only moderate, with
an intraclass correlation coefficient ranging from 0.59 to 0.71.
The geometric mean value of Ki67 for each laboratory in
100 cases ranged from 7.1% to 23.9% for central staining and
from 6.1% to 30.1% for local staining [12]. Second, the analysis
of large image samples is resource-intensive and time-consum-
ing. Infrastructural limitations and the high cost of WSI (Whole
Slide Imaging) scanners create barriers to their widespread im-
plementation and Al algorithms in clinical practice [13]. These
limitations necessitate the development of automated solutions
that can provide both high segmentation accuracy (on small,
computationally efficient fragments) and automatically convert
these segmentation results into standardized quantitative bio-
marker estimates necessary for accurate molecular subtyping.

In this context, the use of genetic algorithms for automatic
optimization of neural network architecture opens up oppor-
tunities to improve the accuracy and stability of results. The
use of a genetic approach makes it possible to select network
parameters for specific biomedical data. The results obtained
make it possible to reduce the time for analyzing IHC images,
reduce the subjectivity of evaluation, and provide more accu-
rate tumor definition.

Therefore, research to devise an integrated method for diag-
nosing breast cancer automatically based on optimized neural
networks has high practical value and is relevant. The results
could be directly integrated into automatic diagnostic systems,
providing standardized and rapid quantitative assessment.

the authors did not check the generalizability of the archi-
tecture on 2D IHC data, which have significantly different
texture and colorimetry. This creates a need to adapt U-Net to
flat biomedical images.

This approach is used in [17] but it focuses on specific
segmentation tasks rather than comprehensive analysis. In
it, the segmentation of protein expression in the membrane
region - HER2 of breast cancer was demonstrated using dif-
ferent segmentation models: FCN, SegNet, and U-Net. The
best results were shown by U-Net (94% accuracy, F1 =0.91)
but the model had low stability when overlapping cells, which
reduced Dice to 0.78. Improving this architecture by means
of residual or attention blocks could improve the quality of
nuclear separation in dense areas.

This approach is used in [18], in which the authors pro-
pose a new model Attention-Enhanced and Residual U-Net
for segmentation of protein-expressed nuclei in an aberrant
cell. The proposed approach increased the segmentation ac-
curacy by 4-6% compared to the basic U-Net, reaching Dice
up to 0.83 on IHC images. At the same time, the problem of
segmentation of overlapping cells remained unsolved. An
option to overcome such difficulties may be morphological
post-processing of segmented micro objects. This is the ap-
proach used in [19]. The method accurately selects the nuclei
of the shaded area of breast tissue images, but its effectiveness
has not been confirmed on a wide range of data.

In [20], segmentation methods based on different types of
neural networks are described: U-Net, R-CNN, and the devel-
oped GB U-Net. GB U-Net showed an accuracy of 0.88, but
when changing the tissue type, it dropped to 0.79, which indi-
cates limited generalization ability. To overcome this, in [21] a
universal model GeNSeg-Net was proposed, which on different
THC sets kept Dice within 0.84-0.87 even on small samples.

In [22], a pixel-level approach for classifying HER2 recep-
tor expression was described (accuracy 91%), however, the
model does not integrate data from other markers (ER, PgR,
Ki67), which limits its clinical ability. This emphasizes the
need for a comprehensive method that would combine the
analysis of histopathological and THC images for full-fledged
molecular subtyping.

Thus, our review of related literature demonstrates that ex-
isting U-Net architectures provide high quality local segmen-
tation but do not take into account interlaboratory differences
and are not integrated into a complete diagnostic pipeline. This
suggests that it is appropriate to conduct a study aimed at de-
vising an automatic method for diagnosing breast cancer that
combines the analysis of histopathological and THC images.

2. Literature review and problem statement

3. The aim and objectives of the study

In [14], the results from analyzing the following U-Net
architectures are reported: Basic U-Net, 3D U-Net, Attention
U-Net, Inception U-Net, Residual U-Net, Recurrent U-Net,
Dense U-Net, U-Net++, Adversarial U-Net, and Ensemble
U-Net. The work compares the above architectures and their
alternatives. However, the authors did not investigate the
influence of network depth and filter size and did not assess
the stability of the models on THC images, which limits the
generalization of the results.

In [15], the effectiveness of 3D U-Net for brain tumor
segmentation was demonstrated, in which the average Dice
coefficient was 0.87, and in the modified version [16] — 0.89.
Despite the high accuracy for three-dimensional MRI images,

The aim of our research is to devise a comprehensive
approach to diagnosing breast cancer subtypes automatically,
combining segmentation of THC images and classification
of histopathological data. This will improve the diagnosing
quality, reduce the influence of the human factor in making
a diagnosis, and enable high-quality image processing under
conditions of limited computing resources.

To achieve the goal, the following tasks were set:

- to optimize the architecture of U-Net networks for seg-
menting IHC images;

- to devise a method for automatic determination of infor-
mative parameters of IHC images and identification of breast
cancer subtypes.



4. The study materials and methods

The object of our study is the process of analyzing THC
images of breast cancer.

The principal hypothesis assumes that automatic segmen-
tation of IHC images, determination of informative param-
eters and identification of subtypes of breast cancer could
improve the accuracy of diagnosing and reduce the influence
of the human factor. This hypothesis was based on a number
of assumptions, namely:

- comparison of different modifications of the U-Net ar-
chitecture on the same set of test data with a fixed number of
training epochs will make it possible to determine the model
with the best segmentation quality;

- further optimization using a genetic algorithm will
contribute to increasing the accuracy of segmentation of THC
images of breast cancer.

At the same time, a number of simplifications were adopted
in the research process, namely:

- a fixed number of training epochs was used to compare
U-Net models;

— the pre-processing process (color nor-
malization, noise removal, scaling) was
considered sufficient and did not change
between experiments;

—-the use of a genetic algorithm to
optimize model parameters was limited to
a fixed number of generations and popu-
lation size;

- external clinical factors were not tak-
en into account (age, sex, stage of disease),
since the study focuses only on image
analysis;

- all images were assumed to have sim-
ilar staining conditions (same ITHC method
and biomarker intensity).

The method for diagnosing automati-
cally consists of the following stages (Fig. 1):

— automatic classification of histopatho-
logical images;

- automatic segmentation of THC im-
ages;

- automatic identification of breast can-
cer subtypes.

Our study was conducted on a private
dataset provided by the Department of
Pathological Anatomy at Ternopil National
Medical University. The dataset includes
histological images divided into three
classes (G1, G2, G3) and four series of IHC
images (ER, PgR, HER2, Ki67) of breast
cancer used for molecular subtyping.

The original IHC images had a reso-
lution of 4096 x 3286 pixels. The train-
ing sample included 19 samples, the test
sample — 13. To increase the number of
examples, the images were cut into frag-
ments of 128 x 128 pixels. That is, the
images were not proportionally scaled
to the given size, as this would lead to
the loss of structural details. As a result,
759 training samples, 223 test samples,
and 20% of the training sample were allo-
cated for validation.

Automatic
segmentation

Image quality depends on the staining standard and the char-
acteristics of the microscope or sensor (e.g., uneven illumination
and chromatic aberrations). The possible influence of dyes was
also considered as a factor in the color variability between series.
The influence of interlaboratory differences was partially min-
imized by colorimetric augmentations (change in brightness,
contrast, color shift) and intensity normalization before starting.
No geometric augmentations were applied to the images.

An example of a histopathological image and its four
corresponding THC images is shown in Fig. 2. The original
images are borrowed from [23].

For automatic classification of histopathological images of
breast cancer, developed CNN architecture was used. For tissue
classification, classes G1, G2, and G3 are used, which corre-
spond to different levels of differentiation and aggressiveness.

13 neural network architectures were selected for auto-
matic segmentation. This choice is due to the need to con-
duct a comprehensive evaluation of different architectural
approaches in order to assess their impact on the accuracy of
segmentation of THC images. These architectures are given
in Table 1.
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Fig. 2. Example of biomedical images:

a — histopathological; 6 — immunohistochemical ER (estrogen receptor);
¢ — immunohistochemical HER2 (human epidermal growth factor receptor 2);
d — immunohistochemical Ki67 (proliferation index); e — immunohistochemical
PgR (progesterone receptor)



Selected architectures

Table 1

No. ID

1 Base U-Net

2 ResNet

3 WideResNet

4 ResNeXt

5 RegNet

6 AlexNet

7 VGG-16

8 DenseNet

9 Attention U-Net
10 GoogLeNet
11 Inception V3
12 EfficientNet
13 EfficientNetV2

The classical U-Net architecture was
taken as a basis, which consists of two
main modules: encoder and decoder [11].
This architecture is given in Fig. 3.
All other architectures were used as
backbone.

The segmentation process is illus-
trated by the general structure shown
in Fig. 4. Pairs of original images and cor-
responding segmentation masks are used
to train the network. After training, the
model is saved and used to segment new
test data. The result is segmented images
that can be used for further analysis.

The following metrics were used to
assess the segmentation accuracy: Dice
coefficient (DC), Precision & Recall, Jac-
card index (also known as IoU), and
Accuracy [25]. To detail the metrics, we
introduce the following notations:

— TP - true positive,

- TN - true negative,

- FN - false negative,

- FP - false positive.

Precision score is the number of true
positives divided by the number of all
positives. The metric is described by for-
mula (1)

TP
Precision = ——. (1)
TP+ FP

The Recall score metric is the number
of true positives divided by the number of
all samples that should have been identi-
fied as positive. The metric is described
by formula (2)

TP
Recall =———. )
TP+ FN

The Accuracy score metric is the num-
ber of correct predictions, consisting of
correct positive and negative predictions,
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divided by the total number of predictions. The metric is de-
scribed by formula (3)

TP+TN

Accuracy =———————.
TP+TN + FN + FP

3

The F-measure is one of the most common performance
metrics in computer vision.

The DC coefficient is calculated based on the accuracy
and reproducibility of the prediction. This coefficient then
evaluates the agreement between the predicted and true
segmentation. The coefficient also takes into account false
positives, which is a common factor in multi-class unbal-
anced datasets.

Based on the F-measure, there are two popular metrics
used for biomedical image segmentation:

1) Jaccard index or IoU;

2) DC is the most widely used metric in the vast majority
of scientific publications for segmentation evaluation.
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Fig. 3. U-Net architecture (example for a 32 x 32 pixel image) [11]
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So, DC is the harmonic mean of accuracy and reproduc-
ibility. This metric is described by formula (4)

2TP

C=— =% 4)
2TP + FP+FN
Jaccard index or IoU is the area of intersection over the
union of the predicted segmentation and the ground truth.
The metric is described by formula (5)

TP

U=s— . (5)

TP+ FP+FN

DC was chosen as the main metric because it effectively
measures spatial overlap, handles class imbalance well, and
provides a balanced assessment of segmentation accuracy and
completeness.

The architecture was optimized using NNI (Neural Net-
work Intelligence) tools. 50 trials were conducted, each last-
ing 150 epochs. The network parameters were varied, such as
the number of layers (affecting its depth), the size of the base
filter (affecting feature analysis), and the learning rate, which
in certain trials, selected randomly, gradually decreased by
a factor of 10 after every 50 epochs. This allowed the learning
to stabilize at the final epochs.

The range for the number of layers was from 3 to 8, and for
the filter size — from 16 to 256 pixels. The images were reduced
to a size of 128 x 128 pixels. For example, if we take a basic
filter with a size of 64 pixels and the number of layers is 6,
then the last sixth layer of the encoder will have a dimension
of 2048 x 4096 pixels.

The clinicopathological surrogate classification of the
breast cancer subtype is determined based on the re-
sults of THC studies for four main biomarkers: ER, PgR,
HER2, Ki67.

The diagnosis is made based on the rules and characteris-
tics that are given in [26, 27].

The formalized base of production rules is given in Table 2.

It is worth noting that to increase the significance of the
results in an international context, the formalized base of
production rules is also based on international recommenda-
tions, in particular the Consensus of the European Society of
Medical Oncology (ESMO) [28].

The interaction of the expert system components for
this task occurs according to a cyclic process of "pattern
matching”. At the beginning, the initial clinical data of the
patient (ER, PgR, HER2, and Ki67 status) are loaded into the

working memory. Next, the interpreter of the system begins
its cycle:

1. Image selection: the interpreter focuses on the data in
the working memory.

2. Matching: it reviews the entire rule base (RULE-01...
RULE-05) and matches the prerequisites of each rule with the
data in the working memory. This leads to the formation of
the so-called "conflict set” — a list of all rules whose prerequi-
sites are satisfied by the current data.

3. Conflict resolution: given the hierarchical nature of the
classification described in Section 3, this step is critically im-
portant. Let’s imagine that for a tumor that is ER positive and
HER?2 positive, two rules can be triggered simultaneously: one
that looks for only HER2 positive and another that looks for
ER positive AND HER?2 positive. To avoid misclassification,
the inference mechanism must have a clear strategy. The most
logical strategy is the "longest match” strategy, which priori-
tizes the rules with the most satisfied conditions. This ensures
that the system will choose the most specific and accurate rule
that follows the logic of the diagram.

4. Rule execution: After resolving the conflict, the system
executes the selected rule, which results in the addition of a new
fact - the specified cancer subtype - to the working memory. If
only one matching subtype is found, the process is terminated.

This mechanism ensures consistent and logically correct
inference, allowing the system to go from the initial clinical
data to the final diagnostic conclusion.

The structure of an expert system based on a production
model is shown in Fig. 5.

Ki67 values should be interpreted in the context of local
laboratory values: for example, if a laboratory has a mean Ki67
score of 20% for receptor-positive disease, values of 30% or
higher may be considered clearly high; values of 10% or lower
may be considered clearly low.

"Triple-negative” also includes some special histological
types, such as lymphoma-rich stromal carcinoma (previously
called medullary), secretory carcinoma, low-grade metaplastic
carcinoma, and adenoid cystic carcinoma [26].

The Python programming language and PyTorch frame-
work were used for the experimental part of the study. Com-
putational experiments were performed in the Jarvislabs and
Kaggle cloud environments using NVIDIA Quadro RTX5000
and two T4 GPUs, respectively.

The NNI library was used for automated search for the
optimal architecture.

To determine the computational features, the OpenCV,
numpy, and scikit-image libraries were used.

Table 2
Formalized base of production rules
ID IF THEN

ER is positive (> 1%) AND HER?2 is negative (< 10% staining) AND PgR is high . . .
RULE-01 (> 20%) AND Ki67 is low (< 10%) Subtype is Luminal A-like

ER is positive (> 1%) AND HER2 is negative (< 10% staining) AND (PgR is low . . . .
RULE-02 (< 20%) OR Ki67 is high (> 30%)) Subtype is Luminal B-like (HER2-negative)
RULE-03 ER is positive (> 1%) AND HER?2 is positive (> 10% staining) Subtype is Luminal B-like (HER2-positive)
RULE-04 HER% is positive (> 10% staining) AND ER is negative (< 1%) AND PgR is Subtype is HER2-positive (non-luminal)

negative (< 1%)

i ER is negative (< 1%) AND PgR is negative (< 1%) AND HER2 is negative . O . .

RULE-05 (< 10% staining) Subtype is Basal-like (triple-negative)
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5. Results of devising a comprehensive method for
diagnosing breast cancer subtypes automatically

5.1. Optimization of the U-Net architecture

The architecture optimization procedure is shown in Fig. 6.

The following are five sequential steps that implement
the evolutionary search for the optimal configuration of hy-
perparameters:

1. Initialization. At this step, the basic parameters of the
model are set, such as the size of the initial filter, the number
of layers, and the learning rate.

2. Hyperparameter search. This stage includes automatic
testing of different hyperparameter variants to find the best
configuration.

3. Training. The model is trained with the specified pa-
rameters. At each step, the weights are adjusted using back-
propagation of the error.

4. Evaluation. At this stage, metrics are calculated after
each epoch, which allows determining the effectiveness of the
model on the validation data.

User

Initialization

Y

Hyperparameter
search

v

Training

v

Optimization  |€—

Evaluation

Fig. 6. Architecture optimization procedure

5. Optimization. This stage is the final one. Table 3
Here, NNI selects the best parameters based Results of comparing segmentation accuracy metrics
on DC.. After'that, 1F starts from step 2. This No. D DC oU Accuracy | Precision | Recall
makes it possible to improve the performance
of the model in the following stages. This con- 1 | Attention U-Net | 0.728995 | 0.60248 | 0.941858 | 0.955794 | 0.790606
tinues until the desired accuracy is found or the 2 Base U-Net 0.726499 | 0.5965 | 0.941439 | 0.9998 0.9997
resources for finding the optimal architecture 3 VGG-16 0708442 | 0.575997 | 0.940182 | 0.958385 | 0.895585
are exhausted.

Table 3 gives results from comparing the ac- 4 DenseNet | 0.707411 | 0.566541 | 0.938797 | 0.934624 | 0.849893
curacy metrics for the 13 selected architectures. 5 ResNet 0.681889 | 0.552199 | 0.932116 | 0.972939 | 0.853237
Elzje datta. is sorted in descending order by the 6 WideResNet | 0.678025 | 0.543014 | 0.933921 | 0.981421 | 0.886418

metric.

As can be seen from Table 3. the best DC 7 RegNet 0.586989 | 0.419881 | 0.911491 | 0.783565 | 0.564647
results are obtained by the Attention U-Net 8 ResNeXt 0.571013 | 0.408371 | 0.91245 | 0.794248 | 0.536481
architecture, which is why it was selected for 9 GoogLeNet | 0.526026 | 0.361661 | 0.90075 | 0.833287 | 0.540659
optimization by the genetic algorithm. o

Table 4 displays the DC metric results for 10 EfficientNetV2 | 0.511565 | 0.34633 | 0.899231 | 0.677133 | 0.466727
the 13 selected architectures and the optimized 11 EfficientNet 0.39894 | 0.241527 | 0.88585 | 0.595445 | 0.332688
version of Attention U-Net. 12 AlexNet 0234396 | 0.138411 | 0.878506 | 0.519243 | 0.233029

Table 5 gives the statistical impact of Atten- -

. N - 13 InceptionV3 0.166613 | 0.096877 | 0.878474 | 0.386335 | 0.163947
tion U-Net’s optimized hyperparameters.




Table 4

Best DC results for U-Net architectures

Name Base filter size Num layers Max DC Learning rate
Optimized Attention U-Net 32 6 0.7400 le-3
Base Attention U-Net 64 4 0.7289 le-3
Base U-Net 64 4 0.7264 le-3
VGG-16 64 16 0.708442 le-3
DenseNet 64 121 0.707411 le-3
ResNet 64 50 0.681889 le-3
WideResNet 64 50 0.678025 le-3
RegNet 32 79 0.586989 le-3
ResNeXt 64 5 0.571013 le-3
GoogLeNet 64 22 0.526026 le-3
EfficientNetV2 32 50 0.511565 le-3
EfficientNet 32 18 0.39894 le-3
AlexNet 11 8 0.234396 le-3
InceptionV3 32 48 0.166613 le-3
Table 5
Statistical impact of optimized Attention U-Net hyperparameters
ID Base filter size Num layers Max DC Average DC | Deviation DC relaIt)iSegt?‘E’;V;?e, %
Base Attention U-Net 64 4 0.7289 0.7180 0.0051 -

Optimized Attention U-Net 32 6 0.7400 0.7350 0.0033 +1.5

Optimized Attention U-Net v2 8 16 0.7295 0.71 0.0089 +0.1

Optimized Attention U-Net v3 3 128 0.6901 0.675 0.0045 -5.3

Fig. 7 shows the segmentation results using Atten-
tion U-Net. The original image is taken from [23].

1 2 3

Fig. 7. Results of Attention U-Net models:
1 — original IHC image; 2 — segmented by Base Attention
U-Net architecture; 3 — segmented by Optimized Attention
U-Net architecture
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The structure of the Attention U-Net architecture encoder
is shown in Fig. 8. Each block corresponds to a 3 X 3 convolu-
tion with a certain number of channels.

The class diagram of the implemented segmentation
software module is shown in Fig. 9. The module imple-
ments the optimized architecture of Optimized Atten-
tion U-Net.

The implemented classes provide a structured represen-
tation of the components of a neural network model for IHC
image segmentation. Their use contributes to the unification
of approaches to data processing, training, and model evalu-
ation, which facilitates analysis, optimization, and interpre-
tation of results. This, in turn, increases the accuracy and
reliability of research results.

3x32 > 32x64 > 64x128
A4
512x1024 < 256x512 < 128x256
b

Fig. 8. Encoder structure:
a — basic Attention U-Net architecture; b — its optimized version Optimized Attention U-Net
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Tensor): Tensor

TrainingAndEvaluation

+ devi
Optional[Callable]) evice
— = — 7|+ model
+ _len_ (self): int mode
+ criterion

+ optimizer

Metrics

+ train_model(model: nn.Module,
loader: DataLoader): Tuple[float,
float, float, float, float]

+ evaluate_model(model:
nn.Module, loader: DataLoader):
Tuple[float, float, float, float, float]

+ display_predictions(model:
nn.Module, loader: DataLoader,
num_images: int): None

+ dice_score(preds: Tensor,
targets: Tensor, smooth:
float): float

+ iou(pred_mask: Tensor,
groundtruth_mask: Tensor):
float

+ accuracy(pred_mask:
Tensor, groundtruth mask:
Tensor): float

+ precision_score(pred_mask:
Tensor, groundtruth_mask:
Tensor): float

+ recall_score(pred_mask:
Tensor, groundtruth_mask:
Tensor): float

Fig. 9. Segmentation software module class diagram

5.2.Method for determining the informative pa-
rameters of immunohistochemical images and identify
breast cancer subtypes automatically

In our study, the U-Net architecture was optimized for
segmenting THC images of breast cancer. Based on this
architecture, it was possible to achieve an accuracy of 74%.

In [28], a diagnosing method based on neural networks
was devised, the essence of which is the parallel classi-
fication and segmentation of biomedical images and the
combination of the results into a single formalized report.
An integral part of this method is automatic segmenta-
tion and formation of a diagnosis based on the calculated
informative features that can be obtained from the seg-
mented image.

The general scheme of the method to automatically deter-
mine the informative parameters of IHC images and identify
breast cancer subtypes is shown in Fig. 10; it consists of the
following stages:

1) loading images (original and mask);

2) contour search;

3) visualization (search) of contours;

4) calculation of average intensity;

5) calculation of percentage of positive cells;

6) determining a diagnosis.

Loading images
(original and mask)

Contour detection

Contour

visualization
‘v
. N
L. Determination of the L

Determination of Determination of the

. . percentage of . .

diagnosis o average intensity
positive cells

J

Fig. 10. General scheme of the method to automatically
determine the informative parameters and identify breast
cancer subtypes

Finding contours is a critical step in transforming a binary
segmentation mask into quantitative metrics. The contouring
method cv.findContours() from the OpenCV library was used
for this purpose. The contour extraction mode cv.RETR_



EXTERNAL and the approximation method cv.CHAIN_
APPROX_SIMPLE were selected. Using cv.RETR_EXTERNAL
makes it possible to identify only external contours, which is
appropriate for counting the number of individual structures,
without taking into account internal cavities or nested areas.
The resulting contours were used for further calculation of
quantitative features, which provided a transition from pixel-
based segmentation to interpretable quantitative metrics nec-
essary for accurate identification of breast cancer subtypes.

As described above, one histopathological image corre-
sponds to four immunohistochemical images. Therefore, four
images need to be analyzed - one for each biomarker to deter-
mine the subtype of breast cancer.

An example of one analyzed image is shown in Fig. 11.
The original image is borrowed from [23].

Fig. 11. Example of an analyzed IHC image: 1 — original;
2 — segmented mask; 3 — visualization of contours
superimposed on the original image

Based on the obtained image, informative features are
calculated, and a diagnosis is defined [25-27] (Fig. 5).

6. Discussion of the results of devising
a method for diagnosing breast cancer subtypes
automatically

As can be seen from Table 3, increasing the network
depth from 4 to 6 layers increased the Dice coefficient from
0.7289 to 0.74. Models with a larger filter size and a smaller
depth showed worse results, as this can cause overfitting or lead
to an excessive number of parameters without a significant im-
provement in segmentation quality. The learning rate parame-
ter of 1e-3 showed stable performance for most architectures.

From Fig. 8 it can be seen that the optimized architecture
has a greater depth and better ability to analyze features,
which generally improves the accuracy of segmentation.
Compared to the basic Attention U-Net, which achieved
a maximum accuracy of 0.728995, the optimized architecture
turned out to be more efficient. This was possible due to
the use of a genetic algorithm, which provided a systematic
search between the network depth and the size of the basic
filter. A depth of 6 layers improved the model’s ability to
extract more complex features. Reducing the initial filter
size to 32 increased localization accuracy and sensitivity to
fine details, which is critical for segmenting overlapping or
fuzzy kernels. As quantitatively confirmed in Table 5, this
configuration not only maximized accuracy but also reduced
the variance of the model, indicating a statistically significant
advantage over the baseline model.

The advantage of the proposed approach is the comprehen-
sive analysis of architectural changes with experimental con-
firmation of optimal configurations (Tables 3-5, Fig. 8), which
provided an increase in segmentation accuracy compared to
the basic Attention U-Net model (DC = 0.7400 versus 0.7289).

In work [17], U-Net for HER2 staining showed 94% in
the Accuracy metric and 0.78 in the Dice metric for mem-
brane segmentation, while the proposed method provides
Dice = 0.74 for complex IHC images (ER, PR, HER2, Ki67),
i.e., with higher variability of tissue types. This indicates
a better generalization ability of the model to different
biomarkers.

In contrast to[21], in which the GeNSeg-Net model
showed Dice in the range of 0.84-0.87, it did not provide sub-
type diagnosis, working only as a segmenter. The proposed
approach, although it has a lower Dice score, nevertheless
forms a complete diagnostic chain: segmentation; calculation
of quantitative features; subtype classification, which increas-
es the clinical significance of the result.

In [22], 91% accuracy of HER2 classification was achieved,
but without the integration of other types of biomarkers and
histopathological images. Unlike [22], the approach devised
in our study provides a comprehensive analysis of histo-
pathological and THC images, which ensures completeness
of the diagnosis. In addition, the proposed approach does
not require the presence of a pathologist to make a diagnosis
since it uses clinical guidelines. This provides autonomy in
making a diagnosis.

The devised approach demonstrates not only higher
stability compared to the basic Attention U-Net but also
more comprehensive functionality that covers the full cycle
of automatic diagnosis. This makes it practically useful in
clinical settings.

Thus, the proposed approach directly solves key problems,
namely:

- it provides stable segmentation accuracy when working
with different types of biomarkers and histological structures
due to adaptive tuning of model parameters;

— it allows for more accurate segmentation of cell nuclei
with overlapping or fuzzy boundaries due to an improved ar-
chitecture that takes into account morphological complexity;

— it improves the identification of fine cellular structures
by optimizing the depth and variability of filters, in contrast
to classic U-Nets with a fixed scale;

- it provides integrated analysis of histological and IHC
images, which increases the accuracy of diagnosis without the
mandatory involvement of experts at each stage;

- it is a computationally affordable solution suitable for
clinical use in resource-limited environments.

Special features of this study’s results are:

—-we have devised a comprehensive method for diag-
nosing breast cancer subtypes automatically, combining the
analysis of histopathological and IHC images;

—-we have improved the Attention U-Net architecture
using a genetic algorithm for the task of segmentation of
IHC images, which made it possible to achieve an increase
in accuracy;

- we gave devised a method to automatically determine
the quantitative features of IHC images based on the results
of segmentation for further identification of breast cancer
subtypes in accordance with clinical guidelines.

The practical significance of the results is in the applied
integration of the designed diagnostic pipeline into the sys-
tem for diagnosing breast cancer automatically [29]. This
reduces the burden on clinicians and increases the objectivity
of diagnosis.

However, worth noting are several limitations of the study:

- the efficiency of the designed architecture decreases
when the size of the input image increases beyond 512 pixels;



- at high image resolution, problems with a lack of video
memory may arise;

- segmentation results depend on the quality of annota-
tions in the training sample.

The disadvantages of the study are the lack of testing on
multi-class tasks and limitations on the number of experi-
mental configurations due to available resources.

Further research may include designing an integrated sys-
tem that combines segmentation, classification, and analysis
of informative features with the possibility of adaptation to
other types of oncological diseases.
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7. Conclusions

Data availability

1. Attention U-Net has been confirmed to be the most ef-
ficient baseline solution (DC = 0.7289). Further optimization
of this architecture using a genetic algorithm made it possible
to find the optimal configuration (6 layers, baseline filter
size 32) and improve the DC indicators to 0.74. The genetic
approach provided an increase in accuracy by 1.5% and sta-
tistical stability of the model, which is critical for application
in clinical practice.

2. A method to automatically determine informative pa-
rameters and identify breast cancer subtypes using the op-
timized architecture has been devised. The method is based
on the use of segmented mask contouring with subsequent
calculation of quantitative characteristics. A feature of the
method and its difference from existing ones is the use of rules
and characteristics in accordance with clinical guidelines.
The advantage of the method is the possibility of formalized
assessment of pathological changes, which makes it possible
to improve the consistency of expert assessments.

The data cannot be provided for the reasons stated in the
data availability statement.

Use of artificial intelligence

The authors used artificial intelligence technologies with-
in acceptable limits to provide their own verified data, which
is described in the research methodology section.
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