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This study considers a process that 
manages the distribution of computing 
resources in the fog layer of the mobile 
high-density Internet of Things. The 
task addressed is to reduce the load 
imbalance of fog servers by devising 
a method for controlling computing 
resources in the fog layer when pro­
cessing information flows. 

Information flows are formed by 
intelligent gateways of the mobile 
high-density Internet of Things, which 
receive data from the boundary layer. 
In the process of research, a mathe­
matical model for the process of con­
trolling computing resources in the fog 
layer was built. Its main difference 
from existing ones is a module hierar­
chical structure according to the basic 
levels of decision-making when man­
aging computing resources. 

When constructing the model, the  
principle of process decomposition 
into adjacent time intervals was used. 
Its application made it possible to 
carry out local optimization of the pro­
cess of managing computing resources  
in short time intervals. The mathe­
matical model has made it possible to 
devise a method for controlling com­
puting resources in the fog layer. 

The main difference of this method 
from existing ones is that the process 
optimization is carried out according 
to the area of the relative deviation 
from the balanced load in the time 
interval under study. In addition,  
a two-stage algorithm for distribut­
ing tasks of free fog devices across fog 
layer servers is also used. That made it 
possible to reduce the time for finding 
an approximate solution for distribut­
ing computing resources of fog servers 
by up to 50%. 

The research results can be attrib­
uted to the combined use of the simulat­
ed annealing algorithm and the genetic 
algorithm. The method is effective when 
the load on the fog layer is from 20% to 
70% of the maximum possible load
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1. Introduction

The rapid evolution of Internet of Things (IoT) tech-
nologies has led to significant changes in approaches to 
data collection, transmission, and processing [1]. State-

of-the-art IoT systems combine billions of interconnected 
devices that provide interaction between physical objects 
and information infrastructures [2]. Such integration helps 
increase the efficiency of process management in many  
areas [3, 4].
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One of the fields of IoT development is the Mobile 
High-Density Internet of Things (MHDIoT). It is characterized 
by a significant concentration of mobile devices within limited 
geographical areas [5]. This system provides connectivity of  
a large number of IoT devices under limited space conditions.

However, MHDIoT is characterized by uneven traffic, 
dynamic changes in the topology of the support ecosystem net-
work, as well as high requirements for data exchange speed [6]. 
The characteristic features of MHDIoT are the combination of 
mobility and high density of sensors with high heterogeneity 
of devices and protocols [7]. In addition, the MHDIoT support 
ecosystem must be able to process large amounts of informa-
tion in real time. At the same time, under conditions of rapidly 
changing network characteristics, it is necessary to enable 
connection stability, energy efficiency, and specified quality of 
service (QoS) parameters [8].

The MHDIoT ecosystem operation is accompanied by 
a  number of technical problems. The main problematic issues 
are the following [9]:

– overload of communication channels;
– limited computing resources at peripheral levels;
– the complexity of effective management of routing of 

information flows in the MHDIoT support ecosystem.
In addition, the high dynamics of device movement com-

plicate the processes of load balancing, protocol coordination, 
and maintaining network stability.

To increase the efficiency of MHDIoT functioning under 
such conditions, a fog layer is widely used [10]. It acts as an 
intermediate link between cloud services and peripheral de-
vices [11]. Fog nodes and servers perform local data process-
ing [12]. This allows for the following:

– reducing delays in data transmission and processing 
processes;

– reducing the load on MHDIoT cloud data centers;
– implementing a real-time mode for processing opera-

tional transactions;
– increasing the overall performance of the MHDIoT sup-

port ecosystem.
For mobile devices in the fog layer, the first issue to con-

sider is energy efficiency. In addition, it should be noted that 
the computing resources of devices and servers in the fog 
layer are limited [13]. Also, any fog layer is a distributed sys-
tem, which consists of a number of dynamic mobile clusters 
with centralized management. Typically, in the MHDIoT fog 
layer there is always a large number of individual mobile de-
vices that do not belong to any cluster. Such devices contribute 
to generating an imbalance in the use of computing resources. 

Therefore, the issue of improving the efficiency of manag-
ing computing resources in the fog layer is relevant. Solving 
this task could make it possible to increase the functioning 
efficiency of the MHDIoT support ecosystem.

2. Literature review and problem statement

In [14], an approach to managing the process of informa-
tion flow in the IoT ecosphere is proposed. In particular, the 
construction of virtual clusters at the edge of the Internet of 
Things is proposed. Each cluster is oriented to a specific gate-
way that maintains communication with the corresponding 
clusters of the fog layer. This approach allows for the effective 
use of computing resources of the boundary and fog layers of 
the IoT support ecosystem. However, the mobility of a portion 
of devices is not taken into account, which does not allow the 

formation of stable static clusters on both layers. In addition, 
the high density of IoT devices contributes to the overloading 
of the ecosystem in some areas due to restrictions on the num-
ber of elements of virtual clusters. 

Such restrictions are removed in [15], that is, the algorithm 
proposed in it could be used for high-density IoT networks. 
However, as in [14], the designed virtual clusters will not be 
stable because of the mobility of most devices. The features 
of mobile high-density IoT are taken into account in [16]. The 
work proposes an MHDIoT architecture that takes into ac-
count the specificity of the system. However, the limitation of 
the proposed algorithm regarding the mandatory clustering of 
all devices of the boundary and fog layers is usually impossible 
to implement in real systems. Due to mobility, it is impossible 
to bind a fraction of fog devices to a specific fog cluster. Such 
free devices establish a connection with the nearest fog cluster 
during periods of activity, which leads to an imbalance in the 
load on fog servers. As a result, delays in servicing tasks in-
crease. Therefore, when managing the computing resource of 
the fog layer, it is necessary to take into account the directions 
of requests from free fog devices.

Balancing algorithms for IoT systems are proposed in many 
studies. Thus, in [17], the study is aimed at achieving load 
balancing using the method of optimal server selection and re-
source allocation based on TOPSIS. TOPSIS (Technique for Or-
der Preference by Similarity to Ideal Solution) is a multi-criteria 
decision-making method. It determines the best alternative, the 
closest to the ideal solution and the farthest from the worst. The 
method is based on the normalization of criteria and determin-
ing the ranking of alternatives by the degree of proximity to the 
optimal option. However, the process of obtaining the required 
solution takes time, which is unacceptable for MHDIoT. 

The method of load balancing for IoT/Fog/Cloud environ-
ments, proposed in [18], provides faster proposals. The method 
is based on the prediction of the workload and the presence 
of unstable mobile nodes and could be used for decentralized 
systems with a high density of elements. However, the method 
does not take into account the presence of dynamic mobile 
clusters. Therefore, when distributing computing resources, it 
is impossible to distinguish between free and cluster fog nodes.

The balancing algorithm for IoT systems proposed in [19] 
also works quickly. However, balancing occurs by switching to 
less congested channels, without taking into account the mo-
bility of fog devices. The mobility of fog devices is taken into 
account in [20] but as in [16], the specificity of free fog devices 
are not taken into consideration.

In [21], the authors proposed task distribution by im-
plementing the Hopcroft-Karp algorithm, which combines 
breadth-first and depth-first search. This algorithm reduces 
the distribution delay and improves the quality of service. 
However, a mandatory requirement is full clustering of fog 
devices, which cannot be performed in MHDIoT.

Therefore, there are reasons to argue that it is advisable 
to conduct research aimed at reducing the load imbalance 
at fog servers when processing information flows of mobile 
high-density IoT.

3. The aim and objectives of the study

The aim of our study is to devise a method for managing 
fog layer computing resources when processing information 
flows generated by mobile high-density Internet of Things 
gateways. This will make it possible to meet the quality of 



Mathematics and Cybernetics – applied aspects 

17

service (QoS) requirements even with a high density of mobile 
devices by reducing the load imbalance of fog servers.

To achieve the goal, the following tasks were set:
– to construct a mathematical model of the fog layer com-

puting resource management process;
– to define the criterion and quality indicators of the fog 

layer computing resource management process;
– to develop a two-stage algorithm for distributing tasks of 

free fog devices across fog layer servers.

4. The study materials and methods

The object of our study is the process of managing the dis-
tribution of computing resources in the fog layer of the mobile 
high-density Internet of Things. The work considers mobile 
fog devices that have accepted tasks generated by MHDIoT 
gateways for transmission to fog servers for further processing. 
The mobile fog device selects for transmission one of the ac-
cessible fog servers that has sufficient computing resources for 
further processing.

The principal hypothesis of the study assumes that the 
implementation of a new method for managing computing 
resources in the fog layer could make it possible to reduce the 
imbalance of the fog server load. The method is based on find-
ing an approximate solution to a combinatorial optimization 
problem of high dimensionality. This will enable increased 
efficiency in the use of limited computing resources in the fog 
layer, and accordingly, the efficiency of MHDIoT operation 
will increase.

When devising the method for managing computing re-
sources, the following conditions were used:

Condition 1. A foggy mobile device enters the active 
state immediately after receiving a task for processing by the 
foggy server.

Condition 2. Gateways accept tasks from edge layer devic-
es and transfer them to foggy devices as they accumulate, in 
discrete time intervals.

Condition 3. Devices of temporary persistent foggy mobile 
clusters transfer tasks only to the server that is the center of 
the corresponding cluster.

Condition 4. The free computing resource of each foggy 
server is calculated only after servicing all active elements of 
the corresponding cluster.

Condition 5. Each persistent foggy mobile cluster has only 
one foggy server, which is the center of this cluster.

In the process of devising a method for managing the 
distribution of computing resources in the foggy layer of the 
mobile high-density Internet of Things, a number of different 
methods and algorithms were applied.

When constructing a mathematical model of the process 
that manages the computational resources in the fog layer, the 
principle of decomposition of the process into adjacent time 
intervals was used [22]. The principle implies dividing the 
time interval of the studied process into a sequence of smaller 
time intervals that have a lower computational complexity in 
the research process [23]. Instead of considering the system or 
process as a whole for a long time, the entire time range [0; T] 
is divided into K adjacent intervals in the following way

[0; T] = [t0; t1] È [t1; t2] È … È [tK – 1; tK],	 (1)

where t0 = 0; tK = T; [tk – 1; tk] is a separate time subinter-
val,  k = 1…K.

At each interval, the process is described by its own sub-
model. Such submodels may have different parameters or 
external conditions but the connections between the intervals 
are preserved through boundary conditions

x t x tk k
� �� � � � �, 	 (2)

that is, the final state of the previous interval is the initial state 
of the next.

The principle of time decomposition is used for:
– simplification of calculations or optimization of com-

plex dynamic processes;
– increasing the accuracy of numerical modeling;
– construction of adaptive or recurrent control algorithms;
– organization of parallel calculations (when different 

time intervals can be processed independently);
– local optimization of control over short time intervals.
In particular, when controlling the distribution of compu-

tational resources in the MHDIoT fog layer, the process can be 
performed not continuously, but in time slots. For each interval, 
local optimization of resources is performed, after which the 
results are transferred to the next interval as initial conditions.

Therefore, the application of this principle in construct-
ing a hierarchical model of a dynamic process provides the 
following advantages:

– reduction of computational complexity;
– flexibility in changing model parameters at different stages;
– possibility of adaptive or online control;
– convenience for parallel or distributed implementation.
When determining the quality indicators of the fog layer 

computational resource management process, the concept of 
the area of the time process parameter S was used [24]. The value 
of S is an integral characteristic of a dynamic process, which 
shows the accumulated value of a certain parameter over time. 

Let us consider some continuous time process x(t), which 
determines the change of some system parameter over time t. 
Then its area on the time interval [t0; t1] is defined as

S x tcontinuous
t

t

� � ��
0

1

dt . 	 (3)

In the discrete case, such as when using partitioning (1), 
the area of the discrete parameter is calculated over the bound-
aries of discrete intervals as follows

S x t tdiscrete i
i t

t

i� � ��
�
�

0

1

� . 	 (4)

When analyzing the load on the MHDIoT fog layer: the 
area of the parameter can be used, for example, to estimate 
the total load on the nodes for a certain period of time.

When finding solutions to the combinatorial optimization 
problem by a two-stage method, the Simulated Annealing 
Algorithm [25] was used at the first stage. The algorithm uses a 
stochastic metaheuristic method to find an approximate solu-
tion to the combinatorial problem. The method simulates the 
physical annealing process: the system cools down gradually, 
sometimes taking "worst" states to avoid local minima. The al-
gorithm can be described by the following sequence of actions:

1. Initialization of the simulated annealing process. The 
initial values of the algorithm variables are set:

– initial solution x0;
– initial temperature T0;
– number of iterations N at one temperature level.
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2. Main cycle. For each iteration, a new solution xnew 
is generated that is a neighbor to current solution x. The 
change in the quality function (fitness function) is calculated 
as follows

ΔE = f(xnew) − f(x).	 (5)

3. Acceptance criterion. If ΔE < 0, that is, the result is 
improved, then we accept the new solution xnew as the current 
solution. Otherwise, the new value is accepted with a proba-
bility calculated as

P eaccept
E T� �� / . 	 (6)

4. Cooling. The temperature decreases according to the 
following scheme

T Tk k� � �1 � ,  0 1� �� , 	 (7)

where Tk is the temperature value at the k-th step; α is the 
cooling rate, which determines how quickly the system tem-
perature decreases with each iteration.

If α is close to 1 (for example, it takes the value 0.95…0.99), 
then the cooling is slow, the algorithm has a better chance of 
finding a global minimum, but it works longer. If α is less 
than 0.8, then we have fast cooling, the algorithm works faster 
but can "get stuck" in a local minimum.

5. Termination. The process is repeated until tempera-
ture T becomes very small or the maximum number of 
iterations is reached. The process can also be terminated if 
there is no improvement in the solution for a certain number 
of steps.

The given algorithm is simple and universal; it works for 
continuous and discrete problems. Due to stochastic devi-
ations, the algorithm avoids local minima. By choosing the 
value of the cooling rate, the algorithm allows one to speed 
up the process of finding a solution, which is essential for the 
MHDIoT ecosystem.

In the second stage of the two-stage method, the selection 
of a new population was carried out using a classical genetic 
algorithm [26].

A genetic algorithm is an evolutionary optimization method 
that imitates natural selection: the best solutions "survive" and 
combine to form new generations [27]. The algorithm can be 
described by the following sequence of actions:

1. Initialization of the algorithm. An initial population is 
created

P0 = {x1, x2, …, xn},	 (8)

where each element of the given set is formed by the corre-
sponding workflow of the first stage and is a variant of the 
distribution of computational resources.

2. Fitness assessment. For each i-th element of the current 
population, the value of the fitness function or fitness func-
tion is calculated: fi = f(xi). 

3. Selection. Individuals are selected for reproduction in 
proportion to their fitness, for example, there may be such 
a  selection operator

p f

f
i

i

ii
n

�
�� 1

, 	 (9)

where pi is the probability of selecting individual xi.

4. Crossover or crossing. Offspring are created from two 
selected parents

xnew = (1 – β) ⋅ xa + β ⋅ xb,	 (10)

where xa and xb are the chosen parents, and β is the crossover 
parameter, 0 < β < 1.

5. Mutation. A random change is made to some elements 
of the individuals according to the formula

xnew = xi + δ, δ ~ N (+ 0, σ2),	 (11)

that is, mutation parameter δ is distributed according to the 
normal distribution law near 0 with variance σ2 and has only 
non-negative values.

6. Formation of a new generation. Steps 2–5 are repeated 
until the stopping criterion is met, that is, until the maximum 
iterations or the specified accuracy is reached.

So, the key formula for population update in the classical 
genetic algorithm takes the following form

Pk + 1 = Mutation (Crossover (Selection (Pk))).	 (12)

Using a classical genetic algorithm at the second stage of 
searching for an approximate solution allows one to speed up 
the annealing process by correcting the initial population of 
individuals.

5. Results related to devising and investigating 
a method for managing computing resources  

in the MHDIoT fog layer

5. 1. Mathematical model of the process that con-
trols computing resources in the fog layer

The ecosystem of the mobile high-density Internet of 
Things has a specific four-layer architecture. The lower layer 
of the ecosystem contains IoT devices that are engaged in in-
formation collection. The next, boundary layer, is focused on 
receiving and preliminary composition of information from IoT 
devices. Both individual mobile elements and IoT devices can 
be used as devices of this layer. Such IoT devices must have the 
ability to simultaneously receive information from several sen-
sors, accumulate it and transmit it to the gateway for commu-
nication with the fog layer. A feature of boundary layer devices 
is their location at a short distance from the lower layer devices, 
which provides the ability to receive information in real time.

Communication between the boundary and fog layers is 
carried out using intelligent gateways. They act as an interme-
diary between edge devices and fog nodes, providing data pro-
cessing and transmission at a short distance from the source 
of their origin. 

At the same time, gateways are able to perform a number 
of simple functions, such as:

– local data preprocessing, that is, minimal data analysis 
and aggregation before further transmission;

– information filtering and compression to reduce the 
amount of transmitted data to save channel bandwidth;

– information security and encryption to control access, 
authenticate devices, and protect communication channels;

– data conversion between different communication pro-
tocols;

– making operational decisions in emergency situations 
without the need to refer to higher layers.
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Based on the above tasks, intelligent gateways of the mo-
bile high-density Internet of Things ecosystem should have 
the following characteristics:

– the presence of built-in machine learning or analytics 
algorithms;

– the presence of support for several types of connections;
– the ability to connect a large number of boundary layer 

devices;
– the ability to perform some data processing functions in 

the absence of a connection to the fog layer;
– energy efficiency due to optimal energy consumption.
The fog layer will receive IoT data streams generated by 

intelligent gateways. This layer is an intermediate, "intelli-
gent" link between edge devices and the cloud.

Elements of the fog layer are local servers, stationary and 
local fog nodes, micro data centers located close to IoT data 
sources. They provide distributed processing, storage, and 
management of information flows in real time and perform 
a number of functions, the main of which are the following:

– local (intermediate) processing of data received from 
gateways;

– the ability to respond in real time to extreme events;
– temporary data storage (caching);
– the ability to work with limitations even when there is 

a temporary lack of communication with the cloud;
– reduce the amount of data transmitted to the cloud;
– store critical information locally without sending it to 

the cloud;
– minimize the amount of data transmitted further through 

filtering or compression;
– enable stable system operation even with limited net-

work bandwidth.
Among the elements of the fog layer, the main work is 

performed by fog servers. They maintain constant commu-
nication with the cloud data processing center, transmitting 
information flows to the cloud and receiving the results 
of the analysis. In addition, the MHDIoT fog layer servers 
are the centers of mobile clusters that are stable for a fixed 
time interval T. The components of such clusters are mobile 
components of the fog layer, which during this interval are 
constantly in the coverage area of the corresponding fog 
server. These components have a small computing resource. 
The main task of these components is to accept information 
flows generated by the intelligent gateway, perform minimal 
processing if necessary and transfer them to the fog server.

But in the MHDIoT fog layer there are still many free mobile 
elements that do not belong to any cluster. Such elements, if 
necessary, transfer information, look for the nearest fog server.

The cloud layer is the top layer of the MHDIoT ecosystem, 
which provides centralized storage, processing, analytics, and 
data management from the entire MHDIoT environment. Its 
role is to perform tasks that require high computing power, 
scalability, and global access.

The cloud layer receives data from fog and edge devices 
and stores it in databases, Big Data repositories, or data cen-
ters. Cloud services perform Big Data analytics, AI/ML pro-
cessing, pattern recognition, and event prediction. The cloud 
also provides centralized administration of IoT devices. But 
all tasks that require real-time or near-real-time operations 
must be performed closer to the data, that is, in the fog layer.

So, the MHDIoT ecosystem has the architecture shown 
in Fig. 1. Fig. 1 shows the following:

– Things – the device layer of the Internet of Things;
– MD A – an active mobile device of the boundary layer;

– MD N – an inactive mobile device of the boundary layer;
– GW – an intelligent gateway between the boundary and 

fog layers;
– FCA – an active mobile fog device that is part of a cluster;
– FCN – an inactive mobile fog device that is part of a cluster;
– FA – a free active mobile fog device;
– FN – a free inactive mobile fog device.
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Fig. 1. Example of mobile high-density IoT ecosystem 
architecture

The boundary layer collects raw data from sensors. Intel-
ligent gateways pre-process, filter, and transmit data to the 
fog layer. The cloud layer is responsible for global analytics, 
long-term storage, and strategic management. The fog layer 
is responsible for operational tasks, local analytics, security, 
and information transmission to the cloud layer. In MHDIoT, 
the fog layer usually carries the most workload. The fog 
layer’s computational resource control system (CSCR) has 
a hierarchical structure. To build a model, the CSCR is 
divided into hierarchical decision-making levels. Each 
level reduces the uncertainty of a complex situation by 
defining and fixing a number of parameters for the higher 
level. Four basic decision-making levels are distinguished,  
shown in Fig. 2.

 

І. Receiving information flows generated by 
intelligent gateways 

ІІ. Adjusting the current state of fog layer 
computing resources 

ІІІ. Managing the allocation of free 
computing resources of the fog layer 

ІV. 2. Organizing the transfer of tasks 
and data to the cloud center 

ІV. 1. Performing local 
MHDIoT tasks 

 
 

  

Fig. 2. Basic levels of decision-making in managing fog 
computing resources
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The first-level programs organize the reception of data 
from the boundary layer. The second-level programs are com-
ponents of the monitor of the current state of the computing 
resources in the fog layer. The third level provides the distri-
bution of free computing resources. At this level, decisions 
are made related to the management of the load of servers of 
the fog layer clusters. These decisions are determined by the 
priorities of the operating modes, the task queue, the state of 
system resources, operator directives, etc. At the fourth level, 
fog servers perform local tasks of the Internet of Things and 
organize the transmission of information flows to the cloud 
data center.

Let CSCR be represented by a set of modules Si, i = 1..4, 
where i is the corresponding basic level of the hierarchy, as 
shown in Fig. 1. The fog layer has K fog servers, which make 
up the set MK = {Cl1, …, Clk, …, ClK}, card MK = K. In addi-
tion, the components of the fog layer are also MS fog devices 
that accept tasks from gateways. Each fog server is the center 
of a stable fog cluster.

The model considers a time interval of length T of 
conditional time units, which is a union of I disjoint inter-
vals  τі = [ti, ti + 1]

T t ti
i

I

i i
i

I
� � �� ��

�

�

�
�

�

�
0

1

1
0

1

 

; , 	 (13)

where t0 is the start time of time interval T; ti is the start time 
of the i-th partition interval, tI is the end time of time inter-
val T; Δti = (ti + 1 – ti) is the size of the i-th partition interval.

At the beginning of each i-th interval, the current state of 
the fog layer is monitored. During this interval, the state of the 
fog devices does not change.

Let the following parameters be obtained as a result of 
monitoring time interval τі:

– Mi is the number of free devices, that is, those that are 
not involved in fog clusters, Mi < MS;

– Miа is the number of active free devices, that is, those 
that received tasks from the gateways of the combination of 
the boundary and fog layers, Miа £ Mі;

– riаk is the size of the computing resource that an active 
free device a needs to transfer the task to the fog server k, 
a = 1…Miа, k = 1...K;

– rik is the size of the available computing resource on 
server k, which will remain after servicing the tasks of its own 
cluster, k = 1…K;

– riаk is the size of the generalized costs of transferring 
tasks from the fog device a to server k.

If the server k during the current time interval does not 
have sufficient computing resources, then rik = 0.

Active free devices of time interval τі constitute the set 
MIA = {mi1, …, mia, …, miMia}, card MIA = Miа. The distribu-
tion of the free resource of fog servers occurs according to one 
of the possible options γi for time interval τі

γi = {(miа, k)}, a = 1..Miа, k = 1..K,	 (14)

where miа Î MIA and the following mandatory conditions 
are met:

1) each active fog device can choose only one fog server to 
transmit the task, that is

m m a aia ia1 2 1 2� � � ; 	 (15)

2) all tasks received from IoT edge layer gateways must be 
transferred to fog servers, that is

card γi = Miа;	 (16)

3) the free resource of each fog server should be enough to 
implement tasks transferred from fog devices, that is

r ri k
m k

ik
i i







,

,
� ��� �
� �

�

 k K=1.. . 	 (17)

To select the required resource allocation option γ i
* , it is 

necessary to form the corresponding Crit criterion in such  
a way that the following condition is met

� �
�

i iextr Crit
i

* .� � ��

�
�

�

�
�� �

	 (18)

With the selected control quality criterion, expression (18) 
will be the objective function of the combinatorial optimi-
zation problem. Accordingly, conditions (15) to (17) will be 
considered as a constraint to this problem.

5. 2. Criteria and quality indicators of the fog layer 
computing resource management process

The quantitative characteristics of CSCR should include 
quality indicators measured in one way or another, which 
include the following:

– average queue length, which determines the average 
number of tasks in the queue for the analyzed period;

– useful load of fog servers;
– fog layer throughput as the number of tasks served per 

time period;
– load balance as the uniform load of all fog servers;
– "honesty" in relation to CSCR to tasks as the variance of 

the waiting time of tasks in the queue;
– completeness of coverage as the ratio of the number of 

tasks processed before the target deadline to the total number 
of tasks.

All of these quality indicators primarily reflect the effi-
ciency of CSCR distribution. In addition, quality indicators 
that reflect the scalability of CSCR can be used:

– the maximum number of tasks that can be served by fog 
layer servers;

– the maximum number of tasks that can be simultane-
ously sent by MHDIoT ecosphere gateways.

Next, the most commonly used quality indicators of the 
fog layer computing resource management system of the 
MHDIoT ecosystem are analyzed.

In the time interval τі = [ti; ti + 1] at time ti, MHDIoT gate-
ways activate fog devices, transmitting information received 
from the boundary layer. Fog devices form two types of tasks 
for fog servers:

– tasks of the first type that need to be transmitted to the 
cloud layer;

– tasks of the second type that need to be performed on 
the fog server.

Tasks of the first type, transferred from device a to server m at 
interval τі, require riam1 conditional units of computing resource. 
Tasks of the second type under such conditions require riam2 
conditional units. Then in general, the server must have no less 
than riam = riam1 + riam2 conditional units of computing resource. 
It should be taken into account that all active fog devices be-
longing to fog clusters transfer tasks to the server of this cluster.
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Free fog devices can choose any fog server that has suffi-
cient computing resource left.

Let the task of fog device a be queued to fog server k at 
time tiak1. The task is accepted for processing at time tiak2 and 
completed at time tiak3. Then the time Piak = tiak1 – ti will be the 
time of delivery of the task to the fog server. The time Qiak = 
= tiak2 – tiak1 will be the waiting time of task a in the queue, and 
the time Eiak = tiak3 – tiak2 will be the execution time of task a. 
Therefore, the walltime of the task in the system is defined as

WTiak = Piak + Qiak + Eiak..	 (19)

To reduce time WTiak, it is necessary to minimize the com-
ponents of formula (19).

The average waiting time of a task in the queue Q(T) for 
time interval T is called the slowdown coefficient. It can be 
calculated as

Q T Q
K
iak

k

K

a

M

i

I ia

� � �
���
���

111
.	 (20)

It should be noted that in real systems the spread of Q i  val-
ues can be significant. Therefore, the median value of this indi-
cator is often used instead of the average waiting time of a  task 
in the queue. Therefore, the average waiting time of a  task in 
the queue has ceased to be an informative indicator and can 
only compare the quality of different resource management 
systems for the same information flow.

The time WT of a task in the system is some general in-
dicator that characterizes the quality of the allocation of fog 
layer resources. This affects both the waiting time of a task in 
the queue and the performance of fog servers.

During each separate time interval τі, the values of the 
main numerical indicators of the fog layer state do not change. 
In particular, the total available free resource of the fog layer is

R r i Ii ik
k

K
� �

�
� , , .1

1
	 (21)

Then the time area of the available resource will be

R R t r ti
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The total required resource of the fog layer of time inter-
val τі is

r r i Ii iak
k

K

a

Mia

� �
��
�� , , .1

11
	 (23)

The relative time area of the required resource is calcu
lated as follows
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The load of computational resources of the fog layer 
during time interval T is calculated as follows

U T r
R

r t

r t

iak i
k

K

a

M

i

I

ik
k

K

i
i

I

ia

� � � �
�

�

���

��

���

��
�

�

�

�

111

11

,  �t Ti
i

I

�

�
1


.	 (25)

In some cases, the downtime rate of computing resources 
I(T) is used as the opposite of the load

U T U T_ .� � � � � �1 	 (26)

At a fixed load, the downtime will be minimal with a bal-
anced distribution of fog layer resources.

At the i-th time interval, the relative free resource for the 
k-th fog server will be

�
ik

r
R
ik

i
� , �

ik

k

K
�

�
� 1

1
. 	 (27)

When choosing the distribution option γі, free fog devices 
transmit to the k-th fog server tasks that require the following 
relative amount of computing resources

� ik
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Then the normalized relative deviation from the balanced 
load of fog layer servers at the i-th time interval is calculated as

�
� �

i
k

K
ik ik
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1
. 	 (29)

Now it is possible to calculate the normalized area of the 
relative deviation from the balanced load over the entire con-
sidered interval of length T

�
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I t
T
�

1
.	 (30)

The minimum value of this indicator will indicate the best 
balance of the distribution of resources of the fog layer, and as 
a result, a decrease in deceleration and downtime coefficients.

5. 3. Two-stage algorithm for distributing tasks of free 
fog devices to fog layer servers

The task of distributing unoccupied fog layer resources is 
equivalent to the task of mapping free fog devices to fog servers.

We consider the set of fog servers MK = {Cl1, …, Clk, …, ClK} 
and free fog devices MIA = {mi1, …, mia, …, miMia} in time 
interval τі. Each resource distribution option γi corresponds 
to a functional, everywhere defined on MIA correspondence 
between the sets MIA and MK

Y: MIA ® МK.	 (31)

In the general case, this correspondence is neither injec-
tive nor surjective. Its graphical representation is a bigraph G. 
The vertices of this graph are weighted elements of the sets 
MIA and MK. The weight of each vertex is the corresponding 
size of the computational resource. Next, we consider the se-
quence of variants γi, given by vector γ

γ = {γ1, γ2, …, γi, …, γI}.	 (32)

Then, using (30), it is possible to formulate the objective 
function of the optimization problem for the distribution of 
resources of the for layer in the IoT ecosphere as follows

�
�� �� �� min. 	 (33)
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In this case, it is necessary to take into account a number 
of restrictions given by expressions (15) to (17).

Most of the input data of this optimization problem is 
formed on the basis of a short-term forecast. The main require-
ment for its solution is the time to obtain at least an approxi-
mate solution. Therefore, the use of exact methods for finding 
a solution is impractical. Reducing the solution time to accept-
able values is possible by using approximate algorithms. These 
algorithms generally find a rational solution close to the opti-
mal one, which provides the minimum value of the objective 
function (33). Among the approximate algorithms, heuristic 
algorithms are distinguished, which can be divided into iter-
ative and population. Population algorithms include genetic 
algorithms, swarm algorithms, and evolutionary algorithms. 
According to the criterion of the speed of finding, among the 
iterative algorithms, the following can be distinguished:

– Tabu Search Algorithm, which uses the memory of pre-
vious solutions to avoid local minima;

– Greedy Randomized Adaptive Search Algorithm (GRASA);
– Simulated Annealing algorithm, the search speed de-

pends significantly on the initial settings.
Among the heuristic algorithms, the most widespread are 

the simulated annealing and genetic selection algorithms. 
In complex combinatorial problems, the genetic algorithm 
outperforms other heuristics in terms of solution accuracy, 
while the simulated annealing algorithm is one of the fastest 
algorithms. Therefore, the simulated annealing algorithm was 
chosen to find a solution to the optimization problem.

The function for calculating the normalized area of the 
relative deviation was chosen as the fitness function. To speed 
up the solution finding, a two-stage algorithm was proposed. 
At the first stage, the simulated annealing algorithm is used 
with a limited number of iterations. At this stage, several 
work processes are executed in parallel. The initial solution of 
each work process is a part of the individuals of the current 
population. The results of the calculations form a new current 
population, which is transferred to the second stage. At the 
second stage, the main process processes the current popula-
tion using the genetic algorithm and distributes its individuals 
to the work processes as initial solutions.

The algorithm of each workflow contains five subsequent 
steps of simulated annealing:

Step 1. We consider the initial temperature to be T0 and 
the value of the iteration counter to be 1.

Step 2. As the initial mapping X, we select the solution 
passed by the master process and calculate the value of the 
fitness function.

Step 3. At the next iteration, we randomly select one of the 
vertices (i) of graph G. We iterate over the remaining vertices 
of the graph in turn. We swap the selected vertex i and the ver-
tices being iterated. We calculate the increase in the objective 
function Δη(Х) when swapping the selected vertex i and the 
next vertex j. If Δη(Х) < 0, then the replacement is fixed, and 
the transition to a new iteration is performed. If Δη(Х) > 0, 
then the replacement is fixed with probability e−ΔηТ, where 
T is the current annealing temperature, and the transition to 
a new iteration is performed. If the fixation does not occur,  
a new, (j + 1)-th, vertex of the program graph is selected, and 
its places are exchanged with the vertex i selected at the be-
ginning of the iteration.

Step 4. Temperature decrease according to the Т = Т0/t law.
Step 5. After a certain number of iterations, or if the fit-

ness function η(Х) is fixed at a stationary value, we complete 
the algorithm, otherwise we proceed to Step 3.

The main process collects the results of all work processes 
into a new population. This process performs selection opera-
tions on the population, rejects the worst individuals, and forms 
new individuals by crossing. The obtained individuals, together 
with the individuals selected as a result of selection, form a new 
population. The new population is distributed among the work 
processes, and the next step of the algorithm begins.

The algorithm stops if after a given number of steps there 
is no improvement in the fitness function.

To assess the effectiveness of the proposed method, a sim-
ulation model of an autonomous fragment of the fog layer of 
the ecosystem supporting the mobile high-density Internet of 
Things was used. The coverage area was 100 km2. The frag-
ment contains the following devices:

– 12 active intelligent gateways, the reachability radius of 
the data transmission channel is 3 km;

– 5 fog servers with the ability to guarantee information 
reception within a radius of 1 km via 10 independent channels;

– 150 fog mobile devices.
For one hour, the gateways are constantly receiving infor-

mation received from MHDIoT sensors and transmitted by 
boundary layer devices. Gateways form information flows of 
tasks that are transmitted to mobile devices of the fog layer 
that are within reach. The trajectories of mobile devices are 
random variables.

To assess the quality of management of computing re-
sources in the fog layer, the load on intelligent gateways was 
simulated.

Two control options were considered:
– option 1: standard control, in which the task is trans-

ferred to the nearest available server;
– option 2: control using a two-stage task distribution 

algorithm.
Different options for forming stable mobile clusters were 

also chosen. In the first option, the average number of free fog 
devices h was 20% of the total number, in the second – 50%.

The load balance and average task dwell time in the fog layer 
indicators were evaluated. The normalized area of the relative 
deviation from the balanced load (ηrelative) was considered as an 
indicator of load balance. The second indicator was estimated by 
the ratio of the average task dwell time in the system for differ-
ent control options (WTaverage = WT1average / WT2average). In this 
indicator, the numerator corresponds to the proposed control 
method, and the denominator to the standard one. The simu-
lation results for these indicators are shown in Fig. 3, 4.

When modeling load θ on intelligent gateways, it was 
formed in the amount of 0.1 to 0.9 fraction of the maximum 
possible load. The information flows of tasks formed by in-
telligent gateways were transmitted to foggy mobile devices 
discretely, with a step of 4 minutes.
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Fig. 3. Dependence of fog server load balancing on the input 
load on the fog layer
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Fig. 4. Dependence of the ratio of the average task residence 
time in the system for different control options on the input 

load on the fog layer

6. Results of investigating the method for managing 
computing resources in the fog layer of the mobile 

high-density Internet of Things: discussion  
and summary 

A mathematical model of the process of managing com-
puting resources in the fog layer has been proposed. A feature 
of this model is its module hierarchical structure according to 
the basic levels of decision-making when managing comput-
ing resources (Fig. 2). The model is based on the architecture 
of the MHDIoT ecosystem (Fig. 1). The application of the 
principle of process decomposition by adjacent time intervals 
made it possible to formulate constraints (15) to (17) for the 
combinatorial optimization problem (18).

The criteria and quality indicators of the process of manag-
ing computing resources in the fog layer have been determined. 
A feature of the proposed quality indicators is the use of the 
concept of the area of the parameter of the time process (for-
mulas (3), (4)). This made it possible to estimate the total load 
on nodes for a certain period of time and formulate the objec-
tive function (30) of the optimization combinatorial problem.

When devising a method for managing the computational 
resources in the fog layer of the mobile high-density Internet 
of Things, the simulated annealing algorithm and the genetic 
algorithm were used. The main difference is the joint use of 
algorithms when finding a solution. This allowed us to reduce 
the time for searching for the distribution of the computa-
tional resource of the fog layer. The method is performed in 
2 stages. At the first stage, the simulated annealing algorithm 
finds several autonomous solutions. At the second stage, the 
genetic algorithm strengthens the resulting population, which 
helps increase the convergence rate.

The proposed method was evaluated by load balance in-
dicators and average task residence time in the fog layer. The 
normalized area of the relative deviation from the balanced  
load was considered as an indicator of load balance. The assess-
ment of the effectiveness of the proposed method (Fig. 3, 4) 
showed the following results:

1. With a small load on the fog layer (θ < 0.2), the pro-
posed method balances the load significantly better than the 
classical one (Fig. 3). However, the average task residence 
time in the system with the proposed method is somewhat 
higher than with the classical method (Fig. 4).

2. With a load on the fog layer from 0.2 to 0.7 fractions of 
the maximum possible, the proposed method also balanced 
the load better than the classical one (Fig. 3). Also, with an 
increase in the load, the average task residence time in the 
system was less than with the classical method.

3. With a large load on the fog layer (θ > 0.8), the indica-
tors under consideration almost did not differ.

The results of our study of the proposed method can be 
explained by the use of the simulated annealing algorithm 
in combination with the genetic algorithm. Unlike [14, 15], 
which propose resource allocation algorithms for the edge 
and fog layers of IoT, the proposed method takes into account 
the features of high-density IoT. In addition, the proposed 
method, unlike [16, 20], takes into account requests from fog 
devices that do not belong to stable fog clusters.

Unlike [17], in which the TOPSIS method is used, the 
proposed method finds a solution significantly faster. Also, 
unlike [18, 21], in which all fog devices are clustered, our 
method distinguishes between free and clustered fog nodes. 
Unlike [19], in which balancing occurs by switching to less 
congested channels, the proposed algorithm takes into ac-
count the mobility of fog devices.

Thus, the devised method for managing computing re-
sources in the fog layer of the mobile high-density Internet 
of Things has made it possible to reduce the imbalance of fog 
server load. That has made it possible to meet QoS require-
ments even with the high density of mobile devices.

However, the proposed results should be applied under 
the following restrictions:

– high density of IoT mobile devices;
– the presence of stable mobile clusters, the center of 

which is the fog server.
In addition, the proposed method is advisable to use if the 

average load on fog servers is in the range from 20% to 70% of 
the maximum possible.

As a drawback of this study, it should be noted that the work 
does not analyze the impact of the location of fog servers on the 
quality of balancing. To eliminate this drawback, it is necessary to 
expand the simulation model of the autonomous fragment of the 
fog layer of the MHDIoT support ecosystem with an additional 
procedure. This procedure should implement different options 
for the location of fog servers in the territory covered by MHDIoT.

The following will advance our study in the future.
First, it is necessary to investigate the impact on load bal-

ancing of information flow servers with different priorities. 
Second, it is necessary to conduct research on the selection of 
the optimal number of intelligent gateways and fog servers for 
the MHDIoT ecosystem.

7. Conclusions

1. A mathematical model of the process of managing com-
puting resources in the fog layer has been proposed. A feature 
of this model is its module hierarchical structure according to the 
basic levels of decision-making in managing computing resources. 
The model is based on the architecture of the ecosystem of the 
mobile high-density Internet of Things. When constructing the 
model, the principle of process decomposition by adjacent time 
intervals was used. Its application has made it possible to carry 
out local optimization of the process of managing computing 
resources at short time intervals. This mathematical model has 
made it possible to formulate constraints for the combinatorial 
optimization problem and requirements for its objective function.

2. The criterion and quality indicators of the process of 
managing computing resources in the fog layer have been 
determined. A feature of the proposed quality indicators is 
the use of the concept of the area of the parameter of the time 
process. This has made it possible to estimate the total load 
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on the nodes for a certain period of time and to formulate the 
objective function of the optimization combinatorial problem.

3. A two-stage algorithm for distributing tasks of free fog 
devices across fog layer servers has been developed. The main 
difference of this algorithm is the combined use of the simulat-
ed annealing algorithm and the genetic algorithm. At the first 
stage, the simulated annealing algorithm finds several auton-
omous solutions. At the second stage, the genetic algorithm 
strengthens the resulting population, which helps increase the 
convergence rate. That has made it possible to reduce the search 
time for distributing the computational resource of the fog lay-
er. The optimization of the process is carried out according to 
the criterion of balancing the load of fog servers. The results of 
our study have made it possible to assess the effectiveness of the 
devised method. With a small load on the fog layer, up to 20% of 
the maximum possible, the proposed method balances the load 
significantly better than the classical one. However, the average 
time a task stays in the system with the proposed method is 
somewhat higher than with the classical method. With a load 
on the fog layer from 20% to 70% of the maximum possible, our 
method also balanced the load better than the classical one. 
But the average time the task spent in the system was already 
1.1–1.6 times less than with the classical method. With a high 
load on the fog layer, more than 80% of the maximum possible, 
the indicators under consideration were almost the same.
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