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The study object is daily data on electricity consumption
of one of the coal mines in the Karaganda basin for 2024.
This article solves the problem of the lack of accurate tools
that can predict complex and variable modes of energy
consumption in a coal mine and thereby ensure more effi-
cient management of energy-intensive installations.

This article presents a comparative analysis of three
electricity demand forecasting models using data from
a coal mine in the Karaganda basin for 2024. The study
explores the effectiveness of both classical approaches (sea-
sonal ARIMA model and simple exponential smoothing)
and an LSTM neural network model. To handle non-sta-
tionary data, the first difference method was applied,
allowing the time series to be stationary. The forecast was
generated for 7 days in advance. A comparative analysis
of the models’ accuracy was conducted using the MAPE
metric on both the training and test sets. The study found
that the LSTM model demonstrated the best results with
a MAPE of 5.37% on the test set demonstrating its supe-
rior ability to capture complex data dynamics compared to
ARIMA and simple exponential smoothing.

The developed predictive LSTM model can be effec-
tively used in automated energy monitoring and manage-
ment systems, providing accurate short-term load fore-
casts for coal mines and other mining and metallurgical
enterprises with complex and volatile energy structures,
provided the initial data is highly reliable and complete.
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1. Introduction

The modern energy industry is facing increasing demands
for the accuracy of forecasting power consumption parame-
ters, since the efficiency of energy system management di-
rectly depends on the ability to anticipate load changes in con-
ditions of high uncertainty. The growth of energy-intensive
industries, the introduction of digital technologies, and the
development of automated control systems have led to the fact
that the task of accurately predicting energy consumption has
become global and critically important. Worldwide, there is
an increasing interest in intelligent forecasting methods that
can take into account the nonlinear structure of data, seasonal
fluctuations, the effects of stochastic factors and complex rela-
tionships between technological processes.

Industrial enterprises, including the mining sector, play
a key role in the structure of global energy consumption.
At the same time, the daily schedules of electricity consump-
tion are characterized by high dynamics, pronounced season-
ality and sensitivity to technological modes. In such circum-
stances, traditional forecasting methods based primarily on
linear models often turn out to be insufficiently accurate, and
emphasize the need to move to adaptive, computationally sta-
ble and intelligent forecasting models capable of operating in
real time and providing high-quality forecasting in conditions
of uncertainty.
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This problem is of particular importance for energy-inten-
sive industries, including the coal industry. Coal enterprises
all over the world have a complex architecture of energy
supply: long electrical networks, many heterogeneous energy
consumers, irregular equipment operating hours and the sto-
chastic nature of the electrical load. These features make the
forecasting task particularly difficult and require the use of
methods that take into account the nonlinear dynamics and
internal patterns of time series [1].

Despite a significant amount of global research in the field
of energy consumption forecasting, existing approaches often
prove insufficient for industrial facilities with a complex load
structure. This necessitates the development and implementa-
tion of modern intelligent models capable of providing higher
accuracy of short-term forecasting and improving the efficiency
of energy management at such enterprises [1].

2. Literature review and problem statement

In the work [2], an approach to optimizing the operation of
an integrated coal mine energy system is considered, charac-
terized by a high level of energy consumption and a complex
structure of energy sources. To reduce the impact of uncertain-
ties related to load changes, renewable energy generation, and
forecasting errors, the authors proposed a multiscale interval




strategy for optimal dispatching control, providing more ac-
curate and flexible management of energy flows. It should be
noted that electricity generation and consumption may vary
due to weather, forecast errors, or unstable equipment oper-
ation, while in underground coal mining, the temperature is
constant and the operating mode is round-the clock.

In this work [3], the authors propose a new model called
BayesMAR for time series forecasting. BayesMAR combines
the advantages of median regression and the Bayes approach
allowing it to be robust to outliers and effectively account for
uncertainty in the model. It should be noted that the proposed
BayesMAR is very challenging for a forecasting model in coal
mines since coal mines require the fastest possible forecast
data acquisition.

Paper [4] present a method that uses Digital Twin tech-
nology and deep learning for highly accurate and adaptive
forecasting of electricity consumption in large industrial
furnaces for aluminum annealing. Traditional forecasting
approaches are ineffective because multi-day furnace pro-
duction cycles, interrelated operating modes, and complex
thermal process dynamics create insurmountable obstacles to
accurate modeling. It should be noted that aluminum anneal-
ing furnaces, as large-scale energy-intensive industrial equip-
ment, operate at a single voltage level, whereas a coal mine is
a highly complex facility with multiple network voltage levels.

Paper [5] propose a model based on the least-squares sup-
port vector machine (LS-SVM) for optimizing electricity con-
sumption in Turkiye. The authors [6], in turn, examine and
compare the effectiveness of both traditional statistical and
modern machine learning algorithms (XGBoost, Linear Trees,
Prophet) to forecast electricity consumption in the UK. The
article [7] presents a method for short-term seasonal forecast-
ing of hourly electricity demand in New England. However,
it should be noted that the proposed models are acceptable
for a specific country with specific parameters, whereas the
nature of formation of electric load patterns in coal mines is
stochastic, determined by the number of power consumers
and a variety of technological characteristics and operating
modes of electrical equipment [8].

The AECF-UC method proposed in paper [9] is designed
to overcome the shortcomings of traditional energy consump-
tion forecasting models. It adapts to gradual changes in data
and accounts for user diversity. The model uses an innovative
joint loss function and dynamic weight adjustment to cope
with changing data patterns. A significant disadvantage of
this method is its reliance on universal environments, which
leads to the neglect of critical peak loads.

The paper [10] presents an adaptive method (AECF-UC)
that addresses the problem of variability in data patterns and
consumer heterogeneity in electricity consumption forecast-
ing in Vietnam. It should be noted that the model uses a joint
loss function and dynamic weight adjustment, which allows it
to adapt to new conditions while the quantitative characteris-
tics of primary information sources mainly depend on the size
of the mine and the applied power supply scheme.

The works [11, 12] analyze the issues of energy infra-
structure planning and grid management in the Kingdom
of Bahrain, as well as develop approaches aimed at assisting
the Ministry of Energy of the Philippines in optimizing elec-
tricity consumption and implementing effective strategies to
respond to fluctuations in consumer demand. In particular,
the study [11] uses the ARIMA model to analyze and predict
electricity consumption based on data from the Ministry of
Energy of the Philippines. The use of the K-means algorithm

makes it possible to differentiate periods of high, medium
and low consumption, which ensures the identification of
months of peak demand. For future planning in the Kingdom
of Bahrain, paper [12] proposes a new hybrid forecasting
model based on a combination of ARIMA models (for linear
patterns) and artificial neural networks to account for nonlin-
ear dependencies.

It should be noted that the authors’ study is mainly fo-
cused on minimizing total electricity consumption across
the national grid (Philippines) and the Kingdom of Bah-
rain, while our study focuses on optimizing the power con-
sumption modes of specific energy-intensive installations in
a mining enterprise. This approach requires taking into ac-
count the specifics of operational modes and a multi-level
network architecture.

Thus, in the reviewed studies, the existing universal
models do not always effectively predict coal mine electricity
consumption modes as they fail to account for the facility spe-
cifics, namely 24-hour operation, constant temperature, and
the highly complex, stochastic nature of the load caused by
multiple technological processes and a multi-level network.
As a result, these methods are too complex for operational
application, use irrelevant external factors, and fail to account
for critical peak loads the analysis of which is key to this study.

The above justifies the need to develop a forecasting
model capable of taking into account the complex dynamic
characteristics of energy consumption in coal mines to opti-
mize energy consumption for coal enterprises.

3. The aim and objectives of the study

The work’s aim is to develop forecasting models for op-
timizing energy consumption at coal enterprises the results
of which will enable implementation of optimal energy con-
sumption modes and ensure effective management of under-
ground coal mining.

To achieve this aim, the following objectives were accom-
plished:

to perform the necessary transformations to bring the
time series to a stationary form;

-to conduct a study of modern time series forecasting
models and determine the optimal ones for modeling the en-
ergy consumption of coal enterprises;

- to perform a comparative analysis of the accuracy of
forecast models on a test sample using the MAPE metric and
to determine the most effective model for forecasting the dy-
namics of electricity consumption.

4. Materials and methods

The study object is daily data on electricity consumption
of one of the coal mines in the Karaganda basin for 2024.

The main hypothesis of the study is that the use of deep
learning models, in particular the architecture of recurrent
neural networks with long short-term memory (LSTM), pro-
vides significantly higher accuracy in short-term forecasting
of electricity consumption at coal enterprises compared to
classical time series models (ARIMA, SES), which is a critical
condition for effective operational optimization of energy load.

It was assumed that the emissions detected in the time
series of electricity consumption were seasonal fluctuations
and did not need to be eliminated.



The following assumptions were made when conducting
the study:

— stationarity of the time series: for the correct application
of a number of classical analytical methods, it is necessary
that the time series under study be stationary;

-unchanged technological scheme: within the study pe-
riod, the technological scheme for coal mining and ventilation
at the enterprise is considered unchanged, excluding major
reconstructions or the introduction of new energy-intensive
units capable of causing a structural shift in the data;

- quality of input data: the collected data on electricity
consumption must be reliable, complete, and reflect actual
consumption without significant measurement errors.

Time series reflecting energy consumption dynamics have
a number of features, such as seasonality, trend, and random
fluctuations, which require the use of various modeling
methods to improve the accuracy of forecasts. The graph of
electricity consumption for 2024 is shown in Fig. 1.

Fig. 1 shows that the initial time series has a pronounced
seasonality. There are regular peaks and troughs in electricity
consumption throughout the year. Peaks tend to occur in the
winter months, while declines occur in the summer months.
The data has high volatility, i.e. there are significant fluctu-
ations in electricity consumption from one day to the next.
They may indicate atypical failures in the accounting system,
which will later require additional analysis. In the study, these
emissions were considered seasonal, and the possibility of
eliminating them was not considered.

The time series shown in Fig. 1 is not stationary. Fore-
casting non-stationary time series is a difficult task due to the
presence of trends, seasonal fluctuations and variability of
statistical properties over time.

One of the key problems is the presence of a deterministic
or stochastic trend, which leads to a change in the average level
of the series. If the trend is not eliminated or not taken into
account in the model, this will cause a systematic bias in fore-
casts. Failure to account for seasonality leads to underestima-
tion or overestimation of future values, especially during peak
periods. Therefore, for the methodologically correct application
of a wide range of classical analytical approaches, it is required
that the time series possess the properties of stationarity.
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Fig. 1. Electricity consumption chart for 2024
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To bring the studied time series of power consumption to
a stationary form, standard data preprocessing methods were
used: logarithm of the dependent variable and the method of
first differences. The stationarity of the time series was evalu-
ated using the extended Dickey-Fuller test.

The experiment plan includes the following steps:

- data preparation: the selected series will be divided into
training and test samples. The training sample will contain
values from January 1, 2024, to December 24, 2024. The last
7 values (from December 25, 2024, to December 31, 2024) of
the total time series are selected for the test sample in order
to compare the forecast values obtained for the models built
based on the training sample with the existing data and, based
on this, evaluate the quality of the forecast;

- building forecast models: each of the three models (ARIMA,
SES, LSTM) will be trained on the training sample, and forecast
values for 7 days ahead will be calculated for each model;

- comparative analysis: the obtained forecast values will
be compared with the actual data from the test sample, and
the accuracy will be assessed using the MAPE metric.

The research methods used include analysis of existing
forecasting models:

- a seasonal ARIMA model, it allows to take into account
the autocorrelation structure of the data and the trend due
to the integration parameter, and also takes into account the
seasonal component;

- simple exponential smoothing (SES) model;

- neural network modeling based on the LSTM model.

The seasonal ARIMA model is an extension of the clas-
sical ARIMA (Autoregressive Integrated Moving Average)
model designed for analyzing and forecasting time series with
seasonal fluctuations. Seasonal ARIMA is a powerful tool for
seasonal time series, but requires careful tuning. The general
form of the model is [13]

®p(B* )¢, (B)VEVIX, =0y (B*)0,(B)e,, (1)

where X; - time series; &; — white noise; B — shift operator

(BX;=X,1); s — seasonal period; V¢ — non-seasonal differ-

entiation operator of d order; VP - seasonal differentia-
tion operator of D order; @p(B) — non-
seasonal AR polynomial of p order;
O4(B) - non-seasonal MA polynomial
of q order; ®p(B*) — seasonal AR polyno-
mial of P order; ®y(B®) — seasonal MA
polynomial of Q order.

The correlogram consisting of the au-
tocorrelation function.

Simple exponential smoothing (SES)
is a time series forecasting method that
assigns exponentially decreasing weights
to past observations. To forecast future
values using the simple exponential
smoothing method, the forecast is based
on a weighted average of past data, where
more recent observations receive higher
weights. The formula for simple exponen-
tial smoothing is given as follows [14]

Days yt+1:a*yt+(1_a)*5)t! ()

where y,,; — forecasted value of a series
in the period t + 1; y; — actual value of the



series level in the period t; y, — forecasted value of a series in
the period t; & — smoothing parameter.

A long short-term memory (LSTM) neural network is
a deep learning model specifically designed for analyzing se-
quential data with long-term dependencies. Each subsequent
computational step in an LSTM model is described by the
following equations [15]:

Thus, it can be concluded that logarithmic transformation
did not help to overcome the non-stationarity of the series.
The distribution of the logarithm does not differ from the dis-
tribution of the original electricity consumption values. The
above graph still does not exhibit constant variance, which
confirms the lack of stationarity in the data. To eliminate the
trend in the time series, let’s take the first differences

Ay =y1—Yo, (10)
where y, — first value of the time series; y; — subsequent value
of the dependent variable.

Fig. 3 shows a graph of the distribution of first differences
for visual analysis of the stationarity of the series.

Analysis of Fig. 3 shows that the original time series be-
came stationary, thus eliminating the trend using first-order
differences. The result of the repeated Dickey-Fuller test is
presented in Fig. 4.
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where y, — initial value of a time series; y, - modal value of
a time series; n — number of observations.

5. Results of development of a forecasting model
for optimizing energy consumption at coal enterprises

5.1. Transformation of time series into stationary form

The logarithm method of the dependent variable was cho-
sen to transform the time series to stationarity. The Dickey-
Fuller test was used to test the series for stationarity. Its result
is presented in Fig. 2 [17].

The extended Dickey-Fuller test for the |_Qt
test. starting with 30 lags, the AIC criterion
is the sample size of 350
the null hypothesis of the single root: a =1
the consanta test
including 8 lags for (1-L)L_Qt
model: (1-L)y = b0 +(a-1)*y(-1) + ...+ e
score for (a-1): -0.196167
test statistic: tau_c(1) =-2.72789
asymptotic p-value 0.06927
Ist order autocorrelation coefficient for e: 0.016
lag for differences: F(8, 340) = 6.783 [0.0000]

Fig. 2. Result of the Dickey-Fuller test

As Fig. 2 shows, the asymptotic p-value for the constant
test is 0.06927, which exceeds the test’s specified value of 0.05.
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Fig. 3. Graph of first differences in electricity consumption for 2024

The extended Dickey-Fuller test for the d_Qt
test. starting with 30 lags, the AIC criterion
is the sample size of 348
the null hypothesis of the single root: a=1
the consanta test
including 9 lags for (1-L)d Qt
model: (1-L)y =b0 +(a-1)*y(-1) + ... + e
score for (a-1): -4.01349
test statistic: tau_c(1) = - 8.35826
asymptotic p-value 4.332¢-14
1st order autocorrelation coefficient for e: -0.011
lag for differences: (9, 337) = 12.961 [0.0000]

Fig. 4. Result of the Dickey-Fuller test

The obtained p-value when conducting the test is
(4.332e-14) < 0.05, which means that the test confirms the
stationarity of the time series.

5.2. Development of forecasting models for opti-
mizing energy consumption of coal enterprises

5.2.1. Autoregressive integrated moving average
model

The correlogram consisting of the autocorrelation func-
tion (ACF) and partial autocorrelation function (PACF)
graphs serves as a key diagnostic tool in time series analysis. It
provides both visual and statistical assessments of the internal
autocorrelation structure of the series. Interpretation of ACF
and PACF is critically important for the proper specification
of the ARIMA model parameters (p and q) as it allows one to



empirically determine the orders of the autoregressive and
moving average components.

The integrating component in time series modeling was
defined as d =1, which corresponds to linearizing the data
using first-order differences to stabilize the first-order (mean)
moments. Achieving stationarity allows for the correct esti-
mation of covariance functions. A graphical representation of
the ACF of this stationary time series, which is necessary for
subsequent identification of the autoregressive and moving
average orders is shown in Fig. 5.

Since its distribution has fluctuations, and the largest of
them is at the first lag, this means that the parameter g in the
further constructed model will be equal to 1.

Examination of the empirical autocorrelation function
(ACF) revealed a statistically significant coefficient exclusive-
ly at lag p = 1, followed by a sharp drop to insignificance. This
structure is diagnostic of a first-order moving average process,
AR(1). Therefore, the order of the moving average (q) in the
specified model is set to one (q = 1).

Next, to determine the autoregressive order (p), the partial
autocorrelation function (PACF) was analyzed. The PACF
graph exhibits a sinusoidal decay with decreasing amplitude
without an abrupt break. According to the Box-Jenkins model
identification criteria, a decaying PACF with a simultaneous
ACF break indicates the presence of a first-order autoregres-
sive component, AR(1). Therefore, the autoregressive order
(p) is assumed to be equal to one (p =1). The PACF graph
confirming this identification is shown in Fig. 6.

Electricity consumption

04
M Coefficient

a —Upper bound of the confidence interval
2 —The lower limit of the confidence interval
g 02
=
=
2
k5]
o 0.0
=)
5]
2
2
5
)
v -0.2
=
[_.

-0.4

1 3 5 7 9 11131517 19 21 23 25 27 29
Lag number

Fig. 5. The distribution graph of the autocorrelation
function, for g=1

Power consumption

0.4 .
M Coefficient

5 — Upper bound of the confidence interval
b5 = The lower limit of the confidence interval
g 02
=
=
2
=
g 00
8
Q
Q
=
<
= .02
5
[

04

1 3 5 7 9 1113 1517 19 21 23 25 27 29
Lag number

Fig. 6. Partial autocorrelation function distribution graph

To construct the ARIMA model, the following values were
selected with parameters p =0,d =1, ¢ = 1, as well as seasonal
components P=1, D=0, Q=1. Table 1 presents the results
and statistics of the resulting model.

Table 1
Parameters of the ARIMA model
Parameters Estimate Standard Studgnt s t-dis- | Signifi-
error tribution cance

Difference 1 0 - -
Moving average 0.825 0.031 26.543 0.000
AR (seasonality) | -0.770 0.213 -3.622 0.000
Movingaverage | ¢31 | 187 -4.454 0.000
(seasonality)

As a result of the model construction, the R-squared value
is 0.263, which means that 26.3% of the model is explained by
the included factors, while the remaining 73.7% are explained
by error and factors not included in the model. The mean
absolute percentage error (MAPE) of the training dataset is
11.27%, which means that 88.73% of the model is explained
by the included factors. A seven-day forecast was generated
using the developed ARIMA model. The adequacy of the
selected model was assessed by comparing the forecasting
data with the actual values from the test dataset, the details of
which are provided in Table 2.

Table 2

Comparison of forecasting values for the ARIMA model
with a test dataset on actual data

Day number Actual data Forecasting values
360 28.08 24.73
361 24.84 24.63
362 28.68 24.69
363 25.32 24.78
364 27.12 24.76
365 25.92 24.93
366 15.24 25.12

Analysis of Table 2 shows that the actual data fluctuate
within the range of 15.24-28.68 demonstrating variability.
The ARIMA forecast provides more stable values within
24.63-25.12 indicating a possible underestimation of volatility
by the model. The key discrepancies lie in the significant un-
derestimation of the forecast and the failure to capture sharp
fluctuations in the actual t rend - its peaks and drops. The de-
veloped seasonal ARIMA model failed to account for external
factors, such as sharp change on the 366" day of 2024 (with
values of 15.25 and 25.12), which could have been caused by
seasonality. The mean absolute percentage error (MAPE) of
the forecast was calculated using formula (9)

MAPE(ARIMA ) :%*100% =6.87%.

A MAPE of 6.87% means that, on average, forecasting
values deviate from actual data by approximately 7%. In the
context of economics, business, or other socioeconomic pro-
cesses, this MAPE level indicates a very good level of model
accuracy.



Fig. 7 shows the graphs of the autocorrelation function
(ACF) and partial autocorrelation function (PACF) for the
residuals of the ARIMA model, which can be used to check
the adequacy of the constructed model.

Analysis of Table 3 shows that the forecast based on the
Simple Exponential Smoothing (SES) method produced iden-
tical results for all seven points, since the smoothing coeffi-
cient was set to a value close to zero, i.e., o = 0.174. A small

a value indicates that the model almost ignores
recent observations relying primarily on the
previous forecast. The calculation of the mean
absolute percentage error (MAPE) for the SES
model was performed using formula (9)

MAPE(SES) =$*100% =7.25%.

Since MAPE = 7.25%, this means that, on
average, the forecast deviates by 7.25% from
the actual electricity consumption data. This is
a low error, which falls within the range of "very
good" forecast accuracy. The ARIMA model
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Fig. 7. Graphs residuals for the autoregressive integrated
moving average model: a — autocorrelation function; b — partial

autocorrelation function

Validation analysis of the residual series was performed
using a correlogram (ACF and PACF). According to the di-
agnostic test criterion, the white noise hypothesis is accepted
if all empirical autocorrelation coefficients (ACF) lie within
their statistical confidence intervals. Since no statistically
significant spikes are observed on the ACF graph of the re-
siduals, it can be concluded that the residuals represent white
noise, which verifies the adequacy and completeness of the
constructed model. Additionally, in the original series rep-
resented by daily data, a pronounced weekly seasonality was
identified, manifested by periodic peaks on the ACF graph at
lags that are multiples of seven, with a similar but less pro-
nounced pattern on the PACF graph. This indicates the need
to account for the seasonal component in subsequent stages
of modeling.

5.2. 2. Simple exponential smoothing method

Based on the developed simple exponential smoothing
model, the parameter a is set to 0.174. To assess the adequacy
of the forecast and the relative effectiveness of the SES and
ARIMA models, a comparison of their seven-day forecasted
values with the actual data was conducted, and the results are
presented in Table 3.

Table 3

Comparison of the forecast results
of the SES and ARIMA models with actual data

Day Actual Forecast values, Forecast values,
number data ARIMA model SES
360 28.08 24.73 24.66
361 24.84 24.63 24.66
362 28.68 24.69 24.66
363 25.32 24.78 24.66
364 27.12 24.76 24.66
365 25.92 24.93 24.66
366 15.24 25.12 24.66

forecast (6.87%) turned out to be slightly more
accurate than the SES model forecast (7.25%), al-
though the difference is insignificant. Compared
to the ARIMA model’s forecast values, it can be
noted that the ARIMA model adapts to changes,
so its predictions vary (24.63-25.12), while the
SES model’s forecast values remain static.

It should also be noted that the ARIMA model partially
captures the trend (its forecasts increase from 24.63 to 25.12),
but still fails on the 366" day, whereas the SES model com-
pletely ignores changes in the time series.

As with ARIMA model diagnostics, to validate the alter-
native SES model, it is possible to analyze the autocorrelation
function (ACF) and partial autocorrelation function (PACF)
of its residuals (forecast errors). PACF analysis allows to es-
timate the conditional correlation between current and past
error values excluding the linear influence of intermediate
time lags. In this case, since the ACF graph of the residuals
lacks statistically significant outliers (i.e., all coefficients lie
within the confidence interval), it is possible to conclude
that the residual series conforms to the properties of white
noise. This confirms the adequacy and completeness of
the model specification: all autocorrelations present in the
original series were effectively extracted and accounted for
by the model.

The autocorrelation functions of the residuals of the
ARIMA model and the SES model show high similarity and
almost identical behavioral parameters.

In addition, when analyzing the ACF residuals, as with
the seasonal ARIMA model, periodic peaks with lags of seven
days (lags of 7, 14, 21, etc.) are observed. This feature is due
to the presence of pronounced weekly seasonality in the
original daily time series. Presence of these seasonal peaks in
the residuals may indicate that the seasonal component was
not fully or adequately accounted for in the structure of the
analyzed model.

Visual analysis is used to further evaluate the model’s pre-
dictive ability. The graph of predicted values obtained using
the SES method is presented in Fig. 8 and serves to visually
assess the adequacy of the model relative to actual data and
confidence intervals.

As shown in Fig. 8, the confidence intervals of the forecast
obtained using the simple exponential smoothing method do
not capture most of the sharp peaks and drops, which can be
explained by the choice of a small value for the smoothing
parameter «.
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Fig. 8. Graphs residuals for the simple exponential
smoothing method: a — autocorrelation function;
b — partial autocorrelation function

5.2. 3. Neural network model of long short-
term memory

When building an LSTM neural model using Py-
thon code in Google.Colab, it is possible to split the
dataset (previously the training set) into a test and
a training dataset. The test dataset will be 80% of the
data while the training dataset will be 20%. It is pos-
sible to base the forecast on the test dataset (80% of
the data from the initial training dataset), and use the
same data to compare the forecast results. The forecast
result based on the LSTM model is shown in Fig. 9.

MAPE on the training sample: 10.1194%
1/1 5ms/

1/1
1/1
1/1

1/1

1/1 0s 50m:

/1 0s 49ms/step

7-day forecast: [ 27.372805 26.19292 24.96334 26.387417 27.883404
26.96911 25.87351 ]

Fig. 9. Forecast results based on the model
of long short-term memory

Analysis of Fig.9 shows that the MAPE of the
LSTM model on the training dataset is 10.1194%, which
is at the boundary between "very good" and "satisfac-
tory”. This indicates that the model already demon-
strates high quality, but still has some potential for
optimization.

The average relative error modulus of the forecast
values obtained by the LSTM neural network without
taking into account the 7" forecast point (366" day)
was obtained using formula (9)

MAPE (LSTM) = %*100% =5.37%.

A MAPE value of 5.37% means that, on average, the
LSTM model’s forecast deviates from the actual data
by about 5%, which corresponds to "very high forecast
accuracy” for highly variable time series. Fig. 9 presents
a graph of all forecasted values for visual comparison
of the results.

Fig. 10 shows a graph of all forecasting val-
ues for visual comparison of results.

Table 5 shows comparisons of the MAPE of
all constructed models, including those on the
training dataset and on the forecasting values.

Table 4
Comparison of the forecast results
of SES, ARIMA and LSTM models with actual data
Day Actual Forecasting Forecasting | Forecasting
number data values, seas, values, values,
ARIMA SES LSTM
360 28.08 24.73 24.66 27.37
361 24.84 24.63 24.66 26.19
362 28.68 24.69 24.66 24.96
363 25.32 24.78 24.66 26.39
364 27.12 24.76 24.66 27.88
365 25.92 24.93 24.66 26.97
366 15.24 25.12 24.66 25.87
281
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Days
—— Real data
—— Autoregressive integrated moving average model
—— Simple exponential smoothing method
—— A long short-term memory model
Fig. 10. Comparison of forecasts with actual data from models:

an autoregressive integrated moving average model,
a simple exponential smoothing method and model
of long short-term memory



Table 5

Comparison of MAPE forecasts of SES, ARIMA
and LSTM models

MAPE on training dataset MAPE on .fo%'ecastmg
Model (1.01.2024-24.12.2024), % values of training dataset
R e 7| (25.12.2024-31.12.2024), %
ARIMA 11.269 6.87
SES 11.426 7.25
LSTM 10.1194 5.37

When analyzing errors on the training dataset, the LSTM
model (10.12%) shows the best result and the highest ability to
learn and adapt to historical data. The MAPEs of the ARIMA
and SES models on the training dataset are similar, but worse
than those of the LSTM model, which is typical for linear
modeling methods when working with rapidly changing data.

6. Comparative analysis and evaluation of the
effectiveness of the developed predictive models
for predicting energy consumption in a coal mine

As part of the study, three forecasting models were devel-
oped and tested: a seasonal ARIMA model, a simple exponen-
tial smoothing (SES), and a long short-term memory (LSTM)
neural network.

The analysis of the initial time series revealed a pro-
nounced trend and instability of variance. The applied log-
arithmic transformation did not achieve the required sta-
tionarity, which is confirmed by the Dickey-Fuller test result
in Fig. 2, where the p-value of 0.06927 exceeds the signifi-
cance threshold of 0.05, indicating that the series remains
non-stationary. Thus, logarithmic transformation did not
eliminate the trend component.

After applying the transformation of the first differences
(formula (10)), the structure of the series has changed signifi-
cantly, which is graphically shown in Fig. 3. Visually, there is
a disappearance of the trend and stabilization of fluctuations
around the zero level. The repeated Dickey-Fuller test shown
in Fig. 4 shows a p-value of 4.332e-14 < 0.05, finally con-
firming the stationarity of the transformed series. Thus, the
transformation of the first differences is correct and sufficient
to prepare the data for modeling.

The components of the model were determined based on
the analysis of ACF and PACF graphs. Fig. 5 shows the values
of the ACF of the stationary series: the dominant peak in
the first lag indicates the presence of the MA(1) component,
which allows to assume q =1. The PACF in Fig. 6 demon-
strates a gradual attenuation without a sharp break, a diagnos-
tic sign of AR(1), which justifies the choice of p = 1.

The parameters of the final seasonal ARIMA model
(0,1,1)(1,0,1) are presented in Table 1. All coefficients are
significant (p < 0.001), which confirms the correctness of the
model. However, the coefficient of determination R2 = 0.263
indicates the limited ability of the model to explain the vari-
ations in the series, despite the acceptable value of MAPE for
the training sample (11.27%).

According to Table 2, actual values range from 15.24 to
28.68, while the ARIMA forecast ranges from 24.63 to 25.12,
indicating that the model underestimates the degree of
variability. Significant discrepancies are associated with the

omission of peaks and troughs, including a sharp change on
day 366 of 2024, probably caused by seasonal fluctuations.

The residue estimates shown in Fig. 7, a, b demonstrate
the absence of significant autocorrelations, which confirms
the hypothesis of "white noise” and, consequently, the ade-
quacy of the model. The observed seasonal peaks at lags of
multiples of 7 indicate the presence of weekly seasonality,
which is only partially accounted for by the model.

Analysis of the data presented in Table 3 shows that
the forecast made using the simple exponential smoothing
method was the same for all seven observation points. This
behavior is due to the small smoothing coefficient (a = 0.174),
which indicates that the model practically does not take into
account the latest observations and is mainly based on previ-
ous forecast values.

The analysis of the remnants of the SES model shown
in Fig. 8 shows the absence of significant autocorrelations,
however, there are still signs of weekly seasonality in the
data. The results obtained (MAPE = 7.25%) confirm that SES
is less sensitive to the dynamics of the series under consid-
eration and is less suitable for predicting complex non-sta-
tionary processes.

The forecast results for the LSTM model, shown in Fig. 9,
demonstrate improved forecasting quality due to the model’s
ability to capture nonlinear dependencies. Its MAPE in the
training sample was 10.1194%, which corresponds to the
boundary between "very good” and "satisfactory”. However,
when analyzing the average relative errors of the forecast (ex-
cluding the anomalous 366™ day), MAPE = 5.37%, which is the
best result among all the models under consideration.

In Table 4, the actual and forecast data for 7 days shows
strong variability (values ranging from 15.24 to 26.68). The
ARIMA and SES models produce almost constant forecasts
in the range of 24.6-25.1 failing to capture sharp fluctuations.
The LSTM neural network model, on the other hand, provides
a more flexible forecast (values ranging from 24.96 to 27.88),
which follows the trend of the actual data.

Fig. 10 confirms that the LSTM model is the most adequate
and accurate for predicting electricity compared to ARIMA
and SES, as it visually matches the real graph better and shows
fewer deviations.

Table 5 shows that the MAPE values decreased on the
test dataset for all models: ARIMA (-4.399%), SES (-4.176%),
LSTM (-4.749%). This change may be due to the training
dataset being more "noisy” than the test dataset. The MAPE
decrease on the test dataset indicates that there is no overfit-
ting in the forecast models.

Within the framework of this study, the LSTM neural net-
work model was proposed and tested, which, as the discussion
showed, made it possible to adequately take into account the
complex dynamics of actual energy consumption modes and
demonstrated superiority over classical methods (ARIMA, SES).
Its best predictive indicator MAPE (5.37%) on the test sample
confirms that the model effectively copes with significant
variability and stochasticity of the load schedule.

Existing approaches to forecasting electricity consump-
tion do not adequately take into account the complex, stochas-
tic nature and multi-level network architecture of the electric
load of a coal mine and are either too complex for operational
use or are focused on universal environments that ignore
critical peak loads.

The developed LSTM forecast model can be effectively used
in automated systems for operational control and manage-
ment of electricity consumption and for short-term forecasting



of electrical load at coal mines and other mining and met-
allurgical enterprises with a complex and stochastic energy
consumption profile.

The conditions for applying the research results are that
the developed model demonstrates high efficiency with sig-
nificant variability and stochasticity of the load graph, which
limits the application of classical linear methods. The optimal
area of application for the model is short-term planning (up
to 7 days). To ensure high reliability of forecasts in areas of
abnormal emissions, additional verification and preliminary
filtering of the initial data is necessary.

The use of the LSTM model makes it possible to increase
economic efficiency by optimizing electricity consumption,
improve the manageability of production processes, minimize
the risks of technological disruptions, and ensure a technolog-
ical advantage over traditional forecasting methods.

A limitation of this study is presence of anomalous outli-
ers in the original time series (a sharp drop in consumption
to 15-20 units), which were not fully processed or explained.
Forecasting such critical drops remains a challenging task for
all developed models, reducing the overall reliability of the
forecast at points of extreme load decline.

A disadvantage of this study is that the training dataset
turned out to be noisier than the test dataset as evidenced by
the decrease in MAPE on the test dataset for all models (for
example, for LSTM by 4.749%).

Further development of the study involves considering
the possibility of ensemble of several models to increase the
reliability of forecasts in critical areas, and it is also necessary
to conduct additional verification and filtering of historical
data to reduce the "noisiness"” of the training dataset.

7. Conclusion

1. The initial data for the electricity consumption time
series were analyzed and converted to stationarity using the
first-difference method. This was confirmed by the Dickey-
Fuller test, which showed a p-value of 4.332e-14 providing
a valid basis for further modeling.

2. To study the complex, stochastic dynamics of energy
consumption at a coal enterprise, three forecasting models
were developed and tested, representing both classical linear

approaches (seasonal ARIMA and PES) and modern nonlin-
ear deep learning (LSTM).

3. A comparative analysis of the developed forecasting
models was conducted using the MAPE metric, which re-
vealed that the LSTM neural network model provides the
most accurate forecasts. Its MAPE is 5.37% on the test dataset.
This result quantitatively demonstrates the superiority of
LSTM in capturing the complex dynamics of the data making
it the most effective tool for optimizing energy consumption
in coal enterprises.
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