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The study object is daily data on electricity consumption 
of one of the coal mines in the Karaganda basin for 2024. 
This article solves the problem of the lack of accurate tools 
that can predict complex and variable modes of energy 
consumption in a coal mine and thereby ensure more effi­
cient management of energy-intensive installations.

This article presents a comparative analysis of three 
electricity demand forecasting models using data from 
a coal mine in the Karaganda basin for 2024. The study 
explores the effectiveness of both classical approaches (sea­
sonal ARIMA model and simple exponential smoothing) 
and an LSTM neural network model. To handle non-sta­
tionary data, the first difference method was applied, 
allowing the time series to be stationary. The forecast was 
generated for 7 days in advance. A comparative analysis 
of the models’ accuracy was conducted using the MAPE 
metric on both the training and test sets. The study found 
that the LSTM model demonstrated the best results with 
a  MAPE of 5.37% on the test set demonstrating its supe­
rior ability to capture complex data dynamics compared to 
ARIMA and simple exponential smoothing. 

The developed predictive LSTM model can be effec­
tively used in automated energy monitoring and manage­
ment systems, providing accurate short-term load fore­
casts for coal mines and other mining and metallurgical 
enterprises with complex and volatile energy structures, 
provided the initial data is highly reliable and complete.
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1. Introduction

The modern energy industry is facing increasing demands 
for the accuracy of forecasting power consumption parame
ters, since the efficiency of energy system management di-
rectly depends on the ability to anticipate load changes in con-
ditions of high uncertainty. The growth of energy-intensive 
industries, the introduction of digital technologies, and the 
development of automated control systems have led to the fact 
that the task of accurately predicting energy consumption has 
become global and critically important. Worldwide, there is 
an increasing interest in intelligent forecasting methods that 
can take into account the nonlinear structure of data, seasonal 
fluctuations, the effects of stochastic factors and complex rela-
tionships between technological processes.

Industrial enterprises, including the mining sector, play 
a key role in the structure of global energy consumption.  
At the same time, the daily schedules of electricity consump-
tion are characterized by high dynamics, pronounced season-
ality and sensitivity to technological modes. In such circum-
stances, traditional forecasting methods based primarily on 
linear models often turn out to be insufficiently accurate, and 
emphasize the need to move to adaptive, computationally sta-
ble and intelligent forecasting models capable of operating in 
real time and providing high-quality forecasting in conditions 
of uncertainty.

This problem is of particular importance for energy-inten-
sive industries, including the coal industry. Coal enterprises 
all over the world have a complex architecture of energy 
supply: long electrical networks, many heterogeneous energy 
consumers, irregular equipment operating hours and the sto-
chastic nature of the electrical load. These features make the 
forecasting task particularly difficult and require the use of 
methods that take into account the nonlinear dynamics and 
internal patterns of time series [1].

Despite a significant amount of global research in the field 
of energy consumption forecasting, existing approaches often 
prove insufficient for industrial facilities with a complex load 
structure. This necessitates the development and implementa-
tion of modern intelligent models capable of providing higher 
accuracy of short-term forecasting and improving the efficiency 
of energy management at such enterprises [1].

2. Literature review and problem statement

In the work [2], an approach to optimizing the operation of 
an integrated coal mine energy system is considered, charac-
terized by a high level of energy consumption and a complex 
structure of energy sources. To reduce the impact of uncertain-
ties related to load changes, renewable energy generation, and 
forecasting errors, the authors proposed a multiscale interval 
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strategy for optimal dispatching control, providing more ac-
curate and flexible management of energy flows. It should be 
noted that electricity generation and consumption may vary 
due to weather, forecast errors, or unstable equipment oper-
ation, while in underground coal mining, the temperature is 
constant and the operating mode is round-the clock.

In this work [3], the authors propose a new model called 
BayesMAR for time series forecasting. BayesMAR combines 
the advantages of median regression and the Bayes approach 
allowing it to be robust to outliers and effectively account for 
uncertainty in the model. It should be noted that the proposed 
BayesMAR is very challenging for a forecasting model in coal 
mines since coal mines require the fastest possible forecast 
data acquisition.

Paper [4] present a method that uses Digital Twin tech-
nology and deep learning for highly accurate and adaptive 
forecasting of electricity consumption in large industrial 
furnaces for aluminum annealing. Traditional forecasting 
approaches are ineffective because multi-day furnace pro-
duction cycles, interrelated operating modes, and complex 
thermal process dynamics create insurmountable obstacles to 
accurate modeling. It should be noted that aluminum anneal-
ing furnaces, as large-scale energy-intensive industrial equip-
ment, operate at a single voltage level, whereas a coal mine is  
a highly complex facility with multiple network voltage levels.

Paper [5] propose a model based on the least-squares sup-
port vector machine (LS-SVM) for optimizing electricity con-
sumption in Turkiye. The authors [6], in turn, examine and 
compare the effectiveness of both traditional statistical and 
modern machine learning algorithms (XGBoost, Linear Trees, 
Prophet) to forecast electricity consumption in the UK. The 
article [7] presents a method for short-term seasonal forecast-
ing of hourly electricity demand in New England. However, 
it should be noted that the proposed models are acceptable 
for a specific country with specific parameters, whereas the 
nature of formation of electric load patterns in coal mines is 
stochastic, determined by the number of power consumers 
and a variety of technological characteristics and operating 
modes of electrical equipment [8].

The AECF-UC method proposed in paper [9] is designed 
to overcome the shortcomings of traditional energy consump-
tion forecasting models. It adapts to gradual changes in data 
and accounts for user diversity. The model uses an innovative 
joint loss function and dynamic weight adjustment to cope 
with changing data patterns. A significant disadvantage of 
this method is its reliance on universal environments, which 
leads to the neglect of critical peak loads. 

The paper [10] presents an adaptive method (AECF-UC) 
that addresses the problem of variability in data patterns and 
consumer heterogeneity in electricity consumption forecast-
ing in Vietnam. It should be noted that the model uses a joint 
loss function and dynamic weight adjustment, which allows it 
to adapt to new conditions while the quantitative characteris-
tics of primary information sources mainly depend on the size 
of the mine and the applied power supply scheme.

The works [11, 12] analyze the issues of energy infra-
structure planning and grid management in the Kingdom 
of Bahrain, as well as develop approaches aimed at assisting 
the Ministry of Energy of the Philippines in optimizing elec-
tricity consumption and implementing effective strategies to 
respond to fluctuations in consumer demand. In particular, 
the study [11] uses the ARIMA model to analyze and predict 
electricity consumption based on data from the Ministry of 
Energy of the Philippines. The use of the K-means algorithm 

makes it possible to differentiate periods of high, medium 
and low consumption, which ensures the identification of 
months of peak demand. For future planning in the Kingdom 
of Bahrain, paper [12] proposes a new hybrid forecasting 
model based on a combination of ARIMA models (for linear 
patterns) and artificial neural networks to account for nonlin-
ear dependencies.

It should be noted that the authors’ study is mainly fo-
cused on minimizing total electricity consumption across 
the national grid (Philippines) and the Kingdom of Bah-
rain, while our study focuses on optimizing the power con-
sumption modes of specific energy-intensive installations in  
a mining enterprise. This approach requires taking into ac-
count the specifics of operational modes and a multi-level 
network architecture.

Thus, in the reviewed studies, the existing universal 
models do not always effectively predict coal mine electricity 
consumption modes as they fail to account for the facility spe-
cifics, namely 24-hour operation, constant temperature, and 
the highly complex, stochastic nature of the load caused by 
multiple technological processes and a multi-level network. 
As a result, these methods are too complex for operational 
application, use irrelevant external factors, and fail to account 
for critical peak loads the analysis of which is key to this study.

The above justifies the need to develop a forecasting 
model capable of taking into account the complex dynamic 
characteristics of energy consumption in coal mines to opti-
mize energy consumption for coal enterprises.

3. The aim and objectives of the study

The work’s aim is to develop forecasting models for op-
timizing energy consumption at coal enterprises the results 
of which will enable implementation of optimal energy con-
sumption modes and ensure effective management of under-
ground coal mining.

To achieve this aim, the following objectives were accom-
plished:

 to perform the necessary transformations to bring the 
time series to a stationary form;

– to conduct a study of modern time series forecasting 
models and determine the optimal ones for modeling the en-
ergy consumption of coal enterprises;

– to perform a comparative analysis of the accuracy of 
forecast models on a test sample using the MAPE metric and 
to determine the most effective model for forecasting the dy-
namics of electricity consumption. 

4. Materials and methods

The study object is daily data on electricity consumption 
of one of the coal mines in the Karaganda basin for 2024. 

The main hypothesis of the study is that the use of deep 
learning models, in particular the architecture of recurrent 
neural networks with long short-term memory (LSTM), pro-
vides significantly higher accuracy in short-term forecasting 
of electricity consumption at coal enterprises compared to 
classical time series models (ARIMA, SES), which is a critical 
condition for effective operational optimization of energy load. 

It was assumed that the emissions detected in the time 
series of electricity consumption were seasonal fluctuations 
and did not need to be eliminated.
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The following assumptions were made when conducting 
the study:

– stationarity of the time series: for the correct application 
of a number of classical analytical methods, it is necessary 
that the time series under study be stationary;

– unchanged technological scheme: within the study pe
riod, the technological scheme for coal mining and ventilation 
at the enterprise is considered unchanged, excluding major 
reconstructions or the introduction of new energy-intensive 
units capable of causing a structural shift in the data;

– quality of input data: the collected data on electricity 
consumption must be reliable, complete, and reflect actual 
consumption without significant measurement errors.

Time series reflecting energy consumption dynamics have 
a number of features, such as seasonality, trend, and random 
fluctuations, which require the use of various modeling 
methods to improve the accuracy of forecasts. The graph of 
electricity consumption for 2024 is shown in Fig. 1.

Fig. 1 shows that the initial time series has a pronounced 
seasonality. There are regular peaks and troughs in electricity 
consumption throughout the year. Peaks tend to occur in the 
winter months, while declines occur in the summer months. 
The data has high volatility, i.e. there are significant fluctu-
ations in electricity consumption from one day to the next. 
They may indicate atypical failures in the accounting system, 
which will later require additional analysis. In the study, these 
emissions were considered seasonal, and the possibility of 
eliminating them was not considered.

The time series shown in Fig. 1 is not stationary. Fore-
casting non-stationary time series is a difficult task due to the 
presence of trends, seasonal fluctuations and variability of 
statistical properties over time.

One of the key problems is the presence of a deterministic 
or stochastic trend, which leads to a change in the average level 
of the series. If the trend is not eliminated or not taken into 
account in the model, this will cause a systematic bias in fore-
casts. Failure to account for seasonality leads to underestima-
tion or overestimation of future values, especially during peak 
periods. Therefore, for the methodologically correct application 
of a wide range of classical analytical approaches, it is required 
that the time series possess the properties of stationarity.

To bring the studied time series of power consumption to 
a stationary form, standard data preprocessing methods were 
used: logarithm of the dependent variable and the method of 
first differences. The stationarity of the time series was evalu-
ated using the extended Dickey-Fuller test.

The experiment plan includes the following steps:
– data preparation: the selected series will be divided into 

training and test samples. The training sample will contain 
values from January 1, 2024, to December 24, 2024. The last 
7 values (from December 25, 2024, to December 31, 2024) of 
the total time series are selected for the test sample in order 
to compare the forecast values obtained for the models built 
based on the training sample with the existing data and, based 
on this, evaluate the quality of the forecast;

– building forecast models: each of the three models (ARIMA,  
SES, LSTM) will be trained on the training sample, and forecast 
values for 7 days ahead will be calculated for each model;

– comparative analysis: the obtained forecast values will 
be compared with the actual data from the test sample, and 
the accuracy will be assessed using the MAPE metric.

The research methods used include analysis of existing 
forecasting models:

– a seasonal ARIMA model, it allows to take into account 
the autocorrelation structure of the data and the trend due 
to the integration parameter, and also takes into account the 
seasonal component;

– simple exponential smoothing (SES) model;
– neural network modeling based on the LSTM model. 
The seasonal ARIMA model is an extension of the clas-

sical ARIMA (Autoregressive Integrated Moving Average) 
model designed for analyzing and forecasting time series with 
seasonal fluctuations. Seasonal ARIMA is a powerful tool for 
seasonal time series, but requires careful tuning. The general 
form of the model is [13]

� � � � � � ��
s

s
D d

t Q
s

q tX� � � �� � � � � � �� �� � , 	 (1)

where Xt – time series; εt – white noise; В – shift operator 
(BXt = Xt–1); s – seasonal period; Ñd – non-seasonal differ-
entiation operator of d order; Ñs

D  – seasonal differentia-
tion operator of D order; ФP(В) – non- 
seasonal AR polynomial of p order;  
Оq(В) – non-seasonal MA polynomial  
of q order; ФP(В s) – seasonal AR polyno-
mial of P order; ΘQ(В s) – seasonal MA 
polynomial of Q order. 

The correlogram consisting of the au-
tocorrelation function.

Simple exponential smoothing (SES) 
is a time series forecasting method that 
assigns exponentially decreasing weights 
to past observations. To forecast future 
values using the simple exponential 
smoothing method, the forecast is based 
on a weighted average of past data, where 
more recent observations receive higher 
weights. The formula for simple exponen-
tial smoothing is given as follows [14]

 y y yt t t� � � �� �1 1� �* * , 	 (2)

where yt+1  – forecasted value of a series 
in the period t + 1; yt – actual value of the Fig. 1. Electricity consumption chart for 2024
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series level in the period t; yt  – forecasted value of a series in 
the period t; α – smoothing parameter. 

A long short-term memory (LSTM) neural network is  
a deep learning model specifically designed for analyzing se-
quential data with long-term dependencies. Each subsequent 
computational step in an LSTM model is described by the 
following equations [15]:

f W h x bt f t t f� �� �� �� ��� * , ,1 	 (3)

i W h x bt i t t i� �� �� �� ��� * , ,1 	 (4)

C W h x bt C t t C� �� �� �� ��tanh * , ,1 	 (5)

C f C i Ct t t t t� ��� � �1 , 	 (6)

� �t o t t oW h x b� �� �� �� ��* , ,1 	 (7)

h Ct t t� � ��  tanh , 	 (8)

where σ – sigmoid activation function;  
 – element-wise multiplication; W, b – train-

able parameters; ht, Ct – hidden state and cell 
state at step t.

The procedure for processing exper-
imental data consists of a comparative 
quantitative assessment of the accuracy 
of forecasts obtained by each of the three 
developed models by comparing them with 
the actual data of the test sample. The mean 
relative approximation error (MAPE) will 
be used as a metric for assessing the quality 
of the constructed forecast, calculated using 
the following formula [16]

MAPE
n

y y
y

t t

t
�

�
�1 100



* %, 	 (9)

where yt – initial value of a time series; yt  – modal value of 
a  time series; n – number of observations.

5. Results of development of a forecasting model  
for optimizing energy consumption at coal enterprises

5. 1. Transformation of time series into stationary form
The logarithm method of the dependent variable was cho-

sen to transform the time series to stationarity. The Dickey- 
Fuller test was used to test the series for stationarity. Its result 
is presented in Fig. 2 [17].

Fig. 2. Result of the Dickey-Fuller test

As Fig. 2 shows, the asymptotic p-value for the constant 
test is 0.06927, which exceeds the test’s specified value of 0.05. 

Thus, it can be concluded that logarithmic transformation 
did not help to overcome the non-stationarity of the series.  
The distribution of the logarithm does not differ from the dis-
tribution of the original electricity consumption values. The 
above graph still does not exhibit constant variance, which 
confirms the lack of stationarity in the data. To eliminate the 
trend in the time series, let’s take the first differences

�y y y� �1 0, 	 (10)

where y0 – first value of the time series; y1 – subsequent value 
of the dependent variable. 

Fig. 3 shows a graph of the distribution of first differences 
for visual analysis of the stationarity of the series.

Analysis of Fig. 3 shows that the original time series be-
came stationary, thus eliminating the trend using first-order 
differences. The result of the repeated Dickey-Fuller test is 
presented in Fig. 4.

The obtained p-value when conducting the test is  
(4.332e-14) < 0.05, which means that the test confirms the 
stationarity of the time series.

5. 2. Development of forecasting models for opti-
mizing energy consumption of coal enterprises 

5. 2. 1. Autoregressive integrated moving average 
model

The correlogram consisting of the autocorrelation func-
tion (ACF) and partial autocorrelation function (PACF) 
graphs serves as a key diagnostic tool in time series analysis. It 
provides both visual and statistical assessments of the internal 
autocorrelation structure of the series. Interpretation of ACF 
and PACF is critically important for the proper specification 
of the ARIMA model parameters (p and q) as it allows one to 

Fig. 3. Graph of first differences in electricity consumption for 2024

Fig. 4. Result of the Dickey-Fuller test



Eastern-European Journal of Enterprise Technologies ISSN-L 1729-3774; E-ISSN 1729-4061	 6/4 ( 138 ) 2025

30

empirically determine the orders of the autoregressive and 
moving average components.

The integrating component in time series modeling was 
defined as d = 1, which corresponds to linearizing the data 
using first-order differences to stabilize the first-order (mean) 
moments. Achieving stationarity allows for the correct esti-
mation of covariance functions. A graphical representation of 
the ACF of this stationary time series, which is necessary for 
subsequent identification of the autoregressive and moving 
average orders is shown in Fig. 5.

Since its distribution has fluctuations, and the largest of 
them is at the first lag, this means that the parameter q in the 
further constructed model will be equal to 1.

Examination of the empirical autocorrelation function 
(ACF) revealed a statistically significant coefficient exclusive-
ly at lag p = 1, followed by a sharp drop to insignificance. This 
structure is diagnostic of a first-order moving average process, 
AR(1). Therefore, the order of the moving average (q) in the 
specified model is set to one (q = 1).

Next, to determine the autoregressive order (p), the partial 
autocorrelation function (PACF) was analyzed. The PACF 
graph exhibits a sinusoidal decay with decreasing amplitude 
without an abrupt break. According to the Box-Jenkins model 
identification criteria, a decaying PACF with a simultaneous 
ACF break indicates the presence of a first-order autoregres-
sive component, AR(1). Therefore, the autoregressive order 
(p) is assumed to be equal to one (p = 1). The PACF graph 
confirming this identification is shown in Fig. 6.

Fig. 5. The distribution graph of the autocorrelation 	
function, for q = 1

Fig. 6. Partial autocorrelation function distribution graph

To construct the ARIMA model, the following values were 
selected with parameters p = 0, d = 1, q = 1, as well as seasonal 
components P = 1, D = 0, Q = 1. Table 1 presents the results 
and statistics of the resulting model.

Table 1

Parameters of the ARIMA model

Parameters Estimate Standard 
error

Student’s t-dis-
tribution

Signifi-
cance

Difference 1 0 – –

Moving average 0.825 0.031 26.543 0.000

AR (seasonality) –0.770 0.213 –3.622 0.000

Moving average 
(seasonality) –0.831 0.187 –4.454 0.000

As a result of the model construction, the R-squared value 
is 0.263, which means that 26.3% of the model is explained by 
the included factors, while the remaining 73.7% are explained 
by error and factors not included in the model. The mean 
absolute percentage error (MAPE) of the training dataset is 
11.27%, which means that 88.73% of the model is explained 
by the included factors. A seven-day forecast was generated 
using the developed ARIMA model. The adequacy of the 
selected model was assessed by comparing the forecasting 
data with the actual values from the test dataset, the details of 
which are provided in Table 2.

Table 2

Comparison of forecasting values for the ARIMA model 	
with a test dataset on actual data

Day number Actual data Forecasting values
360 28.08 24.73
361 24.84 24.63
362 28.68 24.69
363 25.32 24.78
364 27.12 24.76
365 25.92 24.93
366 15.24 25.12

Analysis of Table 2 shows that the actual data fluctuate 
within the range of 15.24–28.68 demonstrating variability. 
The ARIMA forecast provides more stable values within 
24.63–25.12 indicating a possible underestimation of volatility 
by the model. The key discrepancies lie in the significant un-
derestimation of the forecast and the failure to capture sharp 
fluctuations in the actual t rend – its peaks and drops. The de-
veloped seasonal ARIMA model failed to account for external 
factors, such as sharp change on the 366th day of 2024 (with 
values of 15.25 and 25.12), which could have been caused by 
seasonality. The mean absolute percentage error (MAPE) of 
the forecast was calculated using formula (9)

MAPE ARIMA� � � �
0 412

6
100 6 87. * % . %.

A MAPE of 6.87% means that, on average, forecasting 
values deviate from actual data by approximately 7%. In the 
context of economics, business, or other socioeconomic pro-
cesses, this MAPE level indicates a very good level of model 
accuracy.
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Fig. 7 shows the graphs of the autocorrelation function 
(ACF) and partial autocorrelation function (PACF) for the 
residuals of the ARIMA model, which can be used to check 
the adequacy of the constructed model.

Validation analysis of the residual series was performed 
using a correlogram (ACF and PACF). According to the di-
agnostic test criterion, the white noise hypothesis is accepted 
if all empirical autocorrelation coefficients (ACF) lie within 
their statistical confidence intervals. Since no statistically 
significant spikes are observed on the ACF graph of the re-
siduals, it can be concluded that the residuals represent white 
noise, which verifies the adequacy and completeness of the 
constructed model. Additionally, in the original series rep-
resented by daily data, a pronounced weekly seasonality was 
identified, manifested by periodic peaks on the ACF graph at 
lags that are multiples of seven, with a similar but less pro-
nounced pattern on the PACF graph. This indicates the need 
to account for the seasonal component in subsequent stages 
of modeling.

5. 2. 2. Simple exponential smoothing method
Based on the developed simple exponential smoothing 

model, the parameter α is set to 0.174. To assess the adequacy 
of the forecast and the relative effectiveness of the SES and 
ARIMA models, a comparison of their seven-day forecasted 
values with the actual data was conducted, and the results are 
presented in Table 3.

Table 3

Comparison of the forecast results 	
of the SES and ARIMA models with actual data

Day  
number 

Actual  
data

Forecast values, 
ARIMA model

Forecast values, 
SES

360 28.08 24.73 24.66

361 24.84 24.63 24.66

362 28.68 24.69 24.66

363 25.32 24.78 24.66

364 27.12 24.76 24.66

365 25.92 24.93 24.66

366 15.24 25.12 24.66

Analysis of Table 3 shows that the forecast based on the 
Simple Exponential Smoothing (SES) method produced iden-
tical results for all seven points, since the smoothing coeffi-
cient was set to a value close to zero, i.e., α = 0.174. A small 

α value indicates that the model almost ignores 
recent observations relying primarily on the 
previous forecast. The calculation of the mean 
absolute percentage error (MAPE) for the SES 
model was performed using formula (9)

MAPE SES� � � �
0 435

6
100 7 25. * % . %.

Since MAPE = 7.25%, this means that, on 
average, the forecast deviates by 7.25% from 
the actual electricity consumption data. This is 
a  low error, which falls within the range of "very 
good" forecast accuracy. The ARIMA model 
forecast (6.87%) turned out to be slightly more 
accurate than the SES model forecast (7.25%), al-
though the difference is insignificant. Compared 
to the ARIMA model’s forecast values, it can be 
noted that the ARIMA model adapts to changes, 
so its predictions vary (24.63–25.12), while the 
SES model’s forecast values remain static. 

It should also be noted that the ARIMA model partially 
captures the trend (its forecasts increase from 24.63 to 25.12), 
but still fails on the 366th day, whereas the SES model com-
pletely ignores changes in the time series.

As with ARIMA model diagnostics, to validate the alter-
native SES model, it is possible to analyze the autocorrelation 
function (ACF) and partial autocorrelation function (PACF) 
of its residuals (forecast errors). PACF analysis allows to es-
timate the conditional correlation between current and past 
error values excluding the linear influence of intermediate 
time lags. In this case, since the ACF graph of the residuals 
lacks statistically significant outliers (i.e., all coefficients lie 
within the confidence interval), it is possible to conclude 
that the residual series conforms to the properties of white 
noise. This confirms the adequacy and completeness of 
the model specification: all autocorrelations present in the 
original series were effectively extracted and accounted for 
by the model.

The autocorrelation functions of the residuals of the 
ARIMA model and the SES model show high similarity and 
almost identical behavioral parameters.

In addition, when analyzing the ACF residuals, as with 
the seasonal ARIMA model, periodic peaks with lags of seven 
days (lags of 7, 14, 21, etc.) are observed. This feature is due 
to the presence of pronounced weekly seasonality in the 
original daily time series. Presence of these seasonal peaks in 
the residuals may indicate that the seasonal component was 
not fully or adequately accounted for in the structure of the 
analyzed model. 

Visual analysis is used to further evaluate the model’s pre-
dictive ability. The graph of predicted values obtained using 
the SES method is presented in Fig. 8 and serves to visually 
assess the adequacy of the model relative to actual data and 
confidence intervals.

As shown in Fig. 8, the confidence intervals of the forecast 
obtained using the simple exponential smoothing method do 
not capture most of the sharp peaks and drops, which can be 
explained by the choice of a small value for the smoothing 
parameter α.

a b

Fig. 7. Graphs residuals for the autoregressive integrated 	
moving average model: a – autocorrelation function; b – partial 

autocorrelation function
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5. 2. 3. Neural network model of long short-
term memory 

When building an LSTM neural model using Py-
thon code in Google.Colab, it is possible to split the 
dataset (previously the training set) into a test and  
a training dataset. The test dataset will be 80% of the 
data while the training dataset will be 20%. It is pos-
sible to base the forecast on the test dataset (80% of 
the data from the initial training dataset), and use the 
same data to compare the forecast results. The forecast 
result based on the LSTM model is shown in Fig. 9.

 
Fig. 9. Forecast results based on the model 	

of long short-term memory

Analysis of Fig. 9 shows that the MAPE of the 
LSTM model on the training dataset is 10.1194%, which 
is at the boundary between "very good" and "satisfac-
tory". This indicates that the model already demon-
strates high quality, but still has some potential for 
optimization.

The average relative error modulus of the forecast 
values obtained by the LSTM neural network without 
taking into account the 7th forecast point (366th day) 
was obtained using formula (9)

MAPE LSTM� � � �
0 322

6
100 5 37. * % . %.

A MAPE value of 5.37% means that, on average, the 
LSTM model’s forecast deviates from the actual data 
by about 5%, which corresponds to "very high forecast 
accuracy" for highly variable time series. Fig. 9 presents 
a graph of all forecasted values for visual comparison 
of the results.

5. 3. Comparative analysis of the fore-
casting accuracy of models

For making informed decisions in the field 
of energy planning, it is critically important 
not only to be able to forecast but also to com-
pare the effectiveness of different forecasting 
models. 

Table 4 presents the actual data and seven- 
day forecast values obtained using three differ-
ent approaches: the classical statistical method 
ARIMA, simple exponential smoothing, and 
the long short-term memory (LSTM) neural 
network. A detailed analysis of these data will 
make it possible to assess their accuracy and 
identify the most suitable model for solving the 
given task.

Fig. 10 shows a graph of all forecasting val-
ues for visual comparison of results.

Table 5 shows comparisons of the MAPE of 
all constructed models, including those on the 
training dataset and on the forecasting values.

Fig. 8. Graphs residuals for the simple exponential 	
smoothing method: a – autocorrelation function;  

b – partial autocorrelation function

a b

Fig. 10. Comparison of forecasts with actual data from models: 	
an autoregressive integrated moving average model, 	
a simple exponential smoothing method and model 	

of long short-term memory

Table 4

Comparison of the forecast results 	
of SES, ARIMA and LSTM models with actual data

Day  
number

Actual  
data

Forecasting  
values, seas, 

ARIMA

Forecasting 
values,  

SES

Forecasting 
values,  
LSTM

360 28.08 24.73 24.66 27.37

361 24.84 24.63 24.66 26.19

362 28.68 24.69 24.66 24.96

363 25.32 24.78 24.66 26.39

364 27.12 24.76 24.66 27.88

365 25.92 24.93 24.66 26.97

366 15.24 25.12 24.66 25.87
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Table 5

Comparison of MAPE forecasts of SES, ARIMA 	
and LSTM models

Model МАРЕ on training dataset 
(1.01.2024–24.12.2024), %

МАРЕ on forecasting 
values of training dataset 

(25.12.2024–31.12.2024), %

ARIMA 11.269 6.87

SES 11.426 7.25

LSTM 10.1194 5.37

When analyzing errors on the training dataset, the LSTM 
model (10.12%) shows the best result and the highest ability to 
learn and adapt to historical data. The MAPEs of the ARIMA 
and SES models on the training dataset are similar, but worse 
than those of the LSTM model, which is typical for linear 
modeling methods when working with rapidly changing data.

6. Comparative analysis and evaluation of the 
effectiveness of the developed predictive models  

for predicting energy consumption in a сoal mine

As part of the study, three forecasting models were devel-
oped and tested: a seasonal ARIMA model, a simple exponen-
tial smoothing (SES), and a long short-term memory (LSTM) 
neural network.

The analysis of the initial time series revealed a pro-
nounced trend and instability of variance. The applied log-
arithmic transformation did not achieve the required sta-
tionarity, which is confirmed by the Dickey-Fuller test result  
in Fig. 2, where the p-value of 0.06927 exceeds the signifi-
cance threshold of 0.05, indicating that the series remains 
non-stationary. Thus, logarithmic transformation did not 
eliminate the trend component.

After applying the transformation of the first differences 
(formula (10)), the structure of the series has changed signifi-
cantly, which is graphically shown in Fig. 3. Visually, there is 
a disappearance of the trend and stabilization of fluctuations 
around the zero level. The repeated Dickey-Fuller test shown 
in Fig. 4 shows a p-value of 4.332e–14 < 0.05, finally con-
firming the stationarity of the transformed series. Thus, the 
transformation of the first differences is correct and sufficient 
to prepare the data for modeling.

The components of the model were determined based on 
the analysis of ACF and PACF graphs. Fig. 5 shows the values 
of the ACF of the stationary series: the dominant peak in 
the first lag indicates the presence of the MA(1) component, 
which allows to assume q = 1. The PACF in Fig. 6 demon-
strates a gradual attenuation without a sharp break, a diagnos-
tic sign of AR(1), which justifies the choice of p = 1.

The parameters of the final seasonal ARIMA model 
(0,1,1)(1,0,1) are presented in Table 1. All coefficients are 
significant (p < 0.001), which confirms the correctness of the 
model. However, the coefficient of determination R2 = 0.263 
indicates the limited ability of the model to explain the vari-
ations in the series, despite the acceptable value of MAPE for 
the training sample (11.27%).

According to Table 2, actual values range from 15.24 to 
28.68, while the ARIMA forecast ranges from 24.63 to 25.12, 
indicating that the model underestimates the degree of 
variability. Significant discrepancies are associated with the  

omission of peaks and troughs, including a sharp change on 
day 366 of 2024, probably caused by seasonal fluctuations.

The residue estimates shown in Fig. 7, a, b demonstrate 
the absence of significant autocorrelations, which confirms 
the hypothesis of "white noise" and, consequently, the ade-
quacy of the model. The observed seasonal peaks at lags of 
multiples of 7 indicate the presence of weekly seasonality, 
which is only partially accounted for by the model.

Analysis of the data presented in Table 3 shows that 
the forecast made using the simple exponential smoothing 
method was the same for all seven observation points. This 
behavior is due to the small smoothing coefficient (α = 0.174), 
which indicates that the model practically does not take into 
account the latest observations and is mainly based on previ-
ous forecast values.

The analysis of the remnants of the SES model shown 
in Fig. 8 shows the absence of significant autocorrelations, 
however, there are still signs of weekly seasonality in the 
data. The results obtained (MAPE = 7.25%) confirm that SES 
is less sensitive to the dynamics of the series under consid-
eration and is less suitable for predicting complex non-sta-
tionary processes.

The forecast results for the LSTM model, shown in Fig. 9, 
demonstrate improved forecasting quality due to the model’s 
ability to capture nonlinear dependencies. Its MAPE in the 
training sample was 10.1194%, which corresponds to the 
boundary between "very good" and "satisfactory". However, 
when analyzing the average relative errors of the forecast (ex-
cluding the anomalous 366th day), MAPE = 5.37%, which is the 
best result among all the models under consideration. 

In Table 4, the actual and forecast data for 7 days shows 
strong variability (values ranging from 15.24 to 26.68). The 
ARIMA and SES models produce almost constant forecasts 
in the range of 24.6–25.1 failing to capture sharp fluctuations. 
The LSTM neural network model, on the other hand, provides 
a more flexible forecast (values ranging from 24.96 to 27.88), 
which follows the trend of the actual data.

Fig. 10 confirms that the LSTM model is the most adequate 
and accurate for predicting electricity compared to ARIMA 
and SES, as it visually matches the real graph better and shows 
fewer deviations.

Table 5 shows that the MAPE values decreased on the 
test dataset for all models: ARIMA (–4.399%), SES (–4.176%), 
LSTM (–4.749%). This change may be due to the training 
dataset being more "noisy" than the test dataset. The MAPE 
decrease on the test dataset indicates that there is no overfit-
ting in the forecast models.

Within the framework of this study, the LSTM neural net-
work model was proposed and tested, which, as the discussion 
showed, made it possible to adequately take into account the 
complex dynamics of actual energy consumption modes and 
demonstrated superiority over classical methods (ARIMA, SES). 
Its best predictive indicator MAPE (5.37%) on the test sample 
confirms that the model effectively copes with significant 
variability and stochasticity of the load schedule.

Existing approaches to forecasting electricity consump-
tion do not adequately take into account the complex, stochas-
tic nature and multi-level network architecture of the electric 
load of a coal mine and are either too complex for operational 
use or are focused on universal environments that ignore 
critical peak loads.

The developed LSTM forecast model can be effectively used 
in automated systems for operational control and manage-
ment of electricity consumption and for short-term forecasting  
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of electrical load at coal mines and other mining and met-
allurgical enterprises with a complex and stochastic energy 
consumption profile.

The conditions for applying the research results are that 
the developed model demonstrates high efficiency with sig-
nificant variability and stochasticity of the load graph, which 
limits the application of classical linear methods. The optimal 
area of application for the model is short-term planning (up 
to 7 days). To ensure high reliability of forecasts in areas of 
abnormal emissions, additional verification and preliminary 
filtering of the initial data is necessary.

The use of the LSTM model makes it possible to increase 
economic efficiency by optimizing electricity consumption, 
improve the manageability of production processes, minimize 
the risks of technological disruptions, and ensure a technolog-
ical advantage over traditional forecasting methods.

A limitation of this study is presence of anomalous outli-
ers in the original time series (a sharp drop in consumption 
to 15–20 units), which were not fully processed or explained. 
Forecasting such critical drops remains a challenging task for 
all developed models, reducing the overall reliability of the 
forecast at points of extreme load decline.

A disadvantage of this study is that the training dataset 
turned out to be noisier than the test dataset as evidenced by 
the decrease in MAPE on the test dataset for all models (for 
example, for LSTM by 4.749%). 

Further development of the study involves considering 
the possibility of ensemble of several models to increase the 
reliability of forecasts in critical areas, and it is also necessary 
to conduct additional verification and filtering of historical 
data to reduce the "noisiness" of the training dataset.

7. Conclusion

1. The initial data for the electricity consumption time 
series were analyzed and converted to stationarity using the 
first-difference method. This was confirmed by the Dickey- 
Fuller test, which showed a p-value of 4.332e-14 providing  
a valid basis for further modeling.

2. To study the complex, stochastic dynamics of energy 
consumption at a coal enterprise, three forecasting models 
were developed and tested, representing both classical linear 

approaches (seasonal ARIMA and PES) and modern nonlin-
ear deep learning (LSTM).

3. A comparative analysis of the developed forecasting 
models was conducted using the MAPE metric, which re-
vealed that the LSTM neural network model provides the 
most accurate forecasts. Its MAPE is 5.37% on the test dataset. 
This result quantitatively demonstrates the superiority of 
LSTM in capturing the complex dynamics of the data making 
it the most effective tool for optimizing energy consumption 
in coal enterprises.
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