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1. Introduction

Multilayer reinforced cylindrical shells occupy an im-
portant place in modern mechanical engineering and related 
industries due to the combination of high strength, heat resis-
tance, as well as resistance to aggressive environments. The 
most typical areas of their application are rocket and space 
technology, shipbuilding, underwater equipment, multilayer 
pipelines with special functional layers, as well as medical 
technology and bioengineering. The need for in-depth sci-
entific research of multilayer reinforced cylindrical shells is 
due to their ability to provide an optimal set of operational 
properties through the rational combination of various mate-
rials. This approach increases resistance to loads, allows for 

local reinforcement in the most loaded areas, and provides a 
significant reduction in the mass of structures while main-
taining or even improving strength characteristics. 

That is why the construction of new mathematical models 
of shells and shell structures, the development of methods 
for calculating structures are relevant for modern scientists 
around the world.

2. Literature review and problem statement

When setting the research problems of multilayer shells, 
various shell theories are used: classical theory (Kirch-
hoff-Love theory), first-order theory taking into account 
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This study considers forced vibrations of a hetero-
geneous elastic structure in the form of a multilayer 
cylindrical shell consisting of rigidly connected layers 
and reinforced with discrete ring elements. 

A mathematical model of vibrations of an elastic 
heterogeneous structure under the action of a non-sta-
tionary load has been constructed. The stressed-
strained state of a multilayer cylindrical shell with 
discrete ring ribs was investigated using the geometri-
cally nonlinear theory of Timoshenko-type shells and 
rods. The presence of a complex right-hand side and 
discontinuous coefficients in the spatial coordinates 
in the hyperbolic equations of vibrations of a hetero-
geneous elastic cylindrical shell (at the locations of 
the reinforcing ribs) necessitated the use of numeri-
cal methods for solving them. A numerical algorithm 
using Richardson extrapolations has been proposed 
for studying the constructed model. 

For example, a three-layer reinforced cylin-
drical shell is considered, taking into account the 
discreteness of the ribs’ placement under dynam-
ic loading with rigidly clamped ribs. The proposed 
numerical algorithm has made it possible to investi-
gate the stressed-strained state of a three-layer rein-
forced elastic structure of a cylindrical type at any 
given moment in time. A comparative analysis of the 
numerical results of the calculations revealed that, 
according to the standard approach, the discrepancy 
in the deflection values for n = 40 and n = 160 reached 
31%, for n = 80 and n = 160 it was about 5%, accord-
ing to Richardson’s approach for n = 40 ÷ 80 and the 
standard approach for n = 160, this difference was 
about 1%. 

A distinctive feature of this study is the use of 
Richardson extrapolation to identify the stressed-
strained state of a three-layer reinforced cylindrical 
shell, which made it possible to increase the accuracy 
of the solution to the dynamic problem without reduc-
ing the calculation step.

The study’s results reported in this work could 
be used for investigating unsteady vibrations of shell 
structures at research and engineering organizations

Keywords: multilayer shells, forced vibrations, 
unsteady loading, numerical methods, Richardson 
extrapolation

UDC 539.3
DOI: 10.15587/1729-4061.2025.34589

Received 21.08.2025
Received in revised form 26.11.2025
Accepted 04.12.2025
Published 30.12.2025

Copyright © 2025, Authors. This is an open access article under the Creative Commons CC BY license

https://doi.org/10.15587/1729-4061.2025.345897


Applied mechanics

17

shear, higher-order theory taking into account nonlinear 
distribution of stresses and strains along the thickness, and 
others. Most researchers use classical shell theory – a sim-
plified mathematical model that describes the mechanical 
behavior of thin shells, based on assumptions about a small 
shell thickness compared to other dimensions and without 
taking into account deformation in the thickness direction.

In study [1], the propagation of non-axisymmetric waves 
in a three-layer viscoelastic cylindrical shell is considered. 
The displacement of the outer layer is described using shell 
equations built on the basis of the Kirchhoff-Love hypothesis, 
and the behavior of the middle layer is modeled on the basis 
of viscoelasticity equations in a polar coordinate system. To 
solve the problem, approaches from the theory of elasticity 
and numerical methods were used, in particular the methods 
of Muller, Gauss, and Laplace. The results showed that with 
increasing thickness of the intermediate layer, the real and 
imaginary parts of the phase velocity of the first mode in-
crease, while for the second mode they decrease. The issue of 
wave propagation in three-layer cylindrical shells remained 
unresolved if the outer layers are relatively thick. The reason 
for this was the use in the work of a simplified model built on 
the basis of the Kirchhoff-Love hypothesis. The application of 
the Kirchhoff-Love hypothesis is suitable only for thin shells.

In [2], the geometrically nonlinear response of shell 
structures made of magnetoelectroelastic composites was 
investigated. The proposed finite element model was based 
on the Kirchhoff-Love shell theory. A four-node shell finite 
element was used to model the nonlinear behavior of the 
structures. The discrete system of geometrically nonlinear 
equilibrium equations was solved using the Newton-Raph-
son method. A numerical analysis of the hyperboloid shell 
was performed; the results were compared with the available 
literature data to verify the effectiveness and accuracy of the 
proposed model, especially for thin-walled structures. High 
compliance of the results and adequate static response of the 
composite material under conditions of significant deforma-
tions and finite rotations were obtained. Such a model [2] 
may not be accurate enough if the shell has a larger thickness 
or its deformation goes beyond the assumptions of the theory 
of thin structures. The main reason for this was the use of a 
model based on the Kirchhoff-Love hypothesis in the work. 
The issue of studying the deformations of shells with variable 
thickness remained unresolved.

In study [3], the natural frequency characteristics of a func-
tionally gradient multilayer hybrid composite cylindrical shell 
panel reinforced with graphene plates and carbon nanotubes 
were analyzed. To assess the effective material properties of 
the composite, a modified micromechanical model combining 
the Halpin-Tsai approach and the rule of mixtures was used. 
Based on the first-order shear deformation theory, Hamilton’s 
principle, and the finite element method, stiffness and mass 
matrices of the structure were constructed. The accuracy of 
the proposed approach was confirmed by comparison with the 
results from the literature. The influence of a number of pa-
rameters, in particular the number of layers, the content of re-
inforcing elements, their distribution schemes, the volumetric 
content of carbon nanotubes, the ratio of the thickness to the 
length of the panel, the angle of flight, the stiffness of the Win-
kler elastic base and the types of boundary conditions were 
analyzed. The results of the study showed that three-phase 
cylindrical shells can effectively combine the advantages of 
reinforcement with graphene plates and carbon nanotubes, 
which significantly improves their dynamic response in the 

free vibration mode. Since the free vibrations of a multilayer 
cylindrical shell panel were investigated in [3], the issue of 
forced vibrations of the shell panel under the action of dynamic 
loading remained unresolved.

In [4], the authors analyzed the bending of a function-
ally gradient cylindrical nanoshell based on the nonlocal 
theory of elasticity and the theory of first-order shear defor-
mation. The nanoshell is made of a combination of ceramic 
and metal materials reinforced with composite sheets with 
carbon nanotubes, which are placed along the outer radius. 
The structure was based on the Pasternak foundation. The 
equation of motion was derived using the principle of vir-
tual work, and the properties of the reinforced composite 
sheets were estimated using the rule of mixtures. To verify 
the developed model, a comparative analysis of numerical 
results was performed. The influence of the core parameters, 
nonlocal parameter, volume fraction, and number of carbon 
nanotube layers, functionally gradient index, and foundation 
characteristics on the bending behavior of the shell was in-
vestigated. The question of the real interaction of the shell 
components under complex dynamic loads remained unre-
solved since the use of the rule of mixtures in the work did 
not allow local effects to be reflected.

The authors of work [5] investigated the forced oscilla-
tions of discretely reinforced five-layer cylindrical, spherical 
and conical shells under the action of unsteady loading. The 
dynamic behavior of the shells was investigated using the 
theory of shells and rods of the Tymoshenko type. The re-
sults of the studies showed that five-layer cylindrical shells 
with a less rigid filler demonstrated larger deflections and 
higher sensitivity to dynamic loading. In addition, for the 
shell with a less rigid filler, the influence of reinforcing el-
ements was clearly observed, which was not observed with 
a stiffer filler. Numerical modeling demonstrated that the 
reinforcement of the hole in the five-layer spherical shell sig-
nificantly affected the distribution of stresses and strains. At 
the moment of maximum loading of the unreinforced shell, 
significant differences in kinematic and static characteristics 
were observed in the hole zone: the presence of a reinforc-
ing ring reduced local extrema several times compared to 
the unreinforced shell. The analysis of the results obtained 
for a five-layer conical shell conducted in the work allowed 
the authors to assess the influence of the taper angle on the 
symmetry of the distribution of displacements and stresses 
along the spatial coordinate. The issue of reliable accuracy of 
the solution to the problem for five-layer shells with discrete 
reinforcement remained unresolved since the accuracy may 
be low in the areas of reinforcement by ribs. The reason was 
the use of numerical methods by the authors in solving the 
problem.

The analysis of forced oscillations of a truncated elliptical 
conical shell arising under the action of a distributed impulse 
load was carried out in [6]. To solve the problem, a numerical 
algorithm was developed based on the finite-difference ap-
proximation of the initial equations in spatial and temporal 
coordinates. However, the studies carried out in the work are 
limited to the analysis of the dynamic behavior of the selected 
type of shell.

In [7], the deformation of multilayer ellipsoidal shells 
under the action of a non-stationary distributed load was 
considered. In order to increase the strength of the structure, 
the authors proposed reinforcing the shell with longitudinal 
stiffening ribs. To describe the mechanical behavior of the 
system, the theory of shells and rods by Tymoshenko was 
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used, which allowed them to study the influence of longitu-
dinal ribs on the stressed-strained state of the shell taking 
into account the discrete placement of the ribs. Based on 
the Hamilton-Ostrogradsky variational principle, a mathe-
matical model of structural oscillations under the action of 
a short-term non-stationary load was built. The solution to 
the problem was obtained using a numerical algorithm based 
on the integrated-interpolation approach to constructing 
finite-difference schemes in spatial coordinates and an ex-
plicit finite-difference scheme in time coordinate. Analysis 
of the obtained dependences revealed that the presence of 
reinforcing ribs significantly affects the deformations of 
the multilayer shell. It was established that the influence of 
ribs on the deformed state of the reinforced ellipsoidal shell 
increases over time. The issues of accuracy and stability at 
large time steps and over a long period of modeling remained 
unresolved. The main reason was the use by the authors of fi-
nite-difference schemes in spatial coordinates and an explicit 
finite-difference scheme in time coordinate.

The authors of work [8] proposed a generalized com-
putational model for analyzing the stability and initial 
post-critical behavior of cylindrical shells of the “sandwich” 
type with an elastic core, on which only transverse tension 
and compression act. The developed model is based on non-
linear equations of equilibrium of mixed form, asymptotic 
equations obtained by the Koiter-Budyansky method. The 
work proposes an analytical solution to a homogeneous 
problem on eigenvalues and a non-homogeneous problem for 
determining the values of unknown functions at the critical 
point. Numerical modeling showed a significant influence of 
internal pressure on the critical load and the nature of the 
shell deformation after critical deformation. However, the 
issue of the influence of unsteady pressure on the behavior 
of the shell remained unresolved. The reason could be the 
analytical solution to the problem proposed by the authors, 
which becomes more complicated under unsteady loading.

The theory of higher-order shear deformations is a de-
velopment of the first-order theory and allows for a more 
accurate description of the operation of plates and shells. 
In this theory, transverse shear deformations are given by 
higher-order functions (quadratic, cubic, etc.), which ensures 
their variability over the thickness and adequate distribution 
of stresses in multilayer structures.

In study [9], a numerical analysis of geometrically non-
linear forced vibrations of a doubly curved sandwich shell 
with a honeycomb core manufactured by the method of 
modeling by deposited deposition was carried out. The theory 
of higher-order shear deformations was used to describe the 
operating mode of the structure. The dynamic behavior of 
each layer of the shell is described using five variables: three 
components of displacement and two components of rotation 
of the normal to the median surface. A system of geometri-
cally nonlinear ordinary differential equations was obtained, 
which simulated the forced vibrations of the shell. The 
method of assumed modes was used to derive this system. 
The analysis of nonlinear periodic oscillations was carried 
out based on a numerical approach combining the method of 
continuation of solutions and the method of survey. The use 
of the method of assumed modes left unresolved the issue of 
local high-frequency oscillations and stress concentrations, 
which can significantly affect the accuracy of solutions for 
shells under the action of complex loads.

The authors of [10] conducted an analytical study of the 
bending of isotropic, layered cylindrical sandwich shells 

based on the theory of higher-order shear deformation. The 
proposed model included only four variables and did not re-
quire a shear correction factor, unlike traditional theories of 
this class. The work used Hamilton’s principle and the Navier 
method to formulate the problem and solve the equations of 
motion. The results of the analytical model are compared 
with studies known in the literature. The authors used the 
finite element method to analyze displacements and stresses. 
Shells with different radii of curvature and thicknesses un-
der the influence of uniform loading were considered. The 
analysis revealed that the proposed model allowed for more 
accurate modeling of the behavior of layered plates and shells 
compared to traditional approaches. The paper proposes 
an analytical model for static bending of layered sandwich 
shells, so the question of the influence of dynamic loads on 
the deformed state of the shells remains open.

For laminated and hybrid composites, zigzag functions 
are used, which reflect a sharp change in the slope of defor-
mations between layers and increase the accuracy of model-
ing internal stresses.

In [11], free vibrations and losses of stability of a compos-
ite layered shell were investigated using the theory of zigzag 
deformations. Piecewise linear zigzag functions were used to 
describe the deformation state of multilayer shell structures, 
and the d’Alembert principle was used to derive the oscilla-
tion equations and boundary conditions. The authors con-
ducted a study of free vibrations and losses of stability for cy-
lindrical and spherical shells with different layering schemes, 
which allowed them to assess the accuracy and effectiveness 
of the proposed model. The results obtained were compared 
with three-dimensional and analytical solutions given in 
the literature. The comparison showed higher accuracy and 
better computational efficiency of the model compared to 
classical high-order theories. The work investigated only free 
vibrations and critical loads. The influence of unsteady loads 
on the dynamic behavior of the shell was not considered.

In [12], a model of bending of composite layered shells 
was proposed, based on the theory of zigzag deformations. 
The model differed from first-order theories in that planar 
linear zigzag functions along the thickness were used. This 
allowed the authors to exclude shear correction coefficients. 
Based on the principle of virtual work, equilibrium equations 
and boundary conditions were derived. The static properties 
of shells were described using solutions of Navier series. To 
assess the effectiveness of the model, numerical examples 
are given, in which the influence of layering schemes and 
geometric parameters was analyzed. The results of the study 
were compared with the three-dimensional theory of elastic-
ity, first-order models known in the literature. Comparative 
analysis revealed high accuracy of the proposed model. Since 
work [12] considers static loads, the issue of shell deforma-
tions under real conditions when shells are under the action 
of dynamic loads remained unresolved.

During the loading of multilayer shell structures, local 
disturbances that arise in the zones of change in the physical 
and mechanical properties of the layers cause a significant 
change in the distribution of stresses and strains throughout 
the volume of the structure. Such complexity of the stressed-
strained state necessitates the use of modern numerical 
methods of analysis (finite element method, finite difference 
method, etc.). The use of modern numerical methods of anal-
ysis ensures adequate reproduction of the mechanical behav-
ior of multilayer shells, taking into account interlayer inter-
actions, anisotropy of materials, and geometric nonlinearity.
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The authors of study [13] analyzed the mechanical be-
havior of multilayer axisymmetric shells under different 
conditions of internal pressure based on theoretical modeling 
and numerical analysis using the finite element method in 
the ANSYS environment. Critical design parameters that af-
fected the strength of the structure were established. The in-
fluence of the mechanical characteristics of the material, the 
geometric properties of the shell, and the internal pressure 
was studied. The studies showed the gradual nature of the 
development of damage in multilayer shells manufactured by 
the surfacing method. The authors of the work investigated 
the optimization of the parameters of the cellular structure, 
in particular the thickness of the shell, the height and thick-
ness of the honeycomb walls and the dimensions of the cells. 
It was determined that the specified parameters significantly 
affected the reduction of stress concentration and the in-
crease in the structural integrity of the structure. The model 
proposed in the work made it possible to assess the general 
patterns of deformations of multilayer shells, but the issues of 
accuracy and convergence of numerical models for complex 
shell structures remained open. The reason was the use of 
the finite element method in the ANSYS environment by the 
authors of the work.

In [14], the problem of optimizing the mass of layered 
orthotropic open shells of constant thickness under the 
action of an impulse load was considered. The study used 
an improved shell theory, in which a shell with a complex 
geometry was modeled by an auxiliary layered cylindrical 
open rectangular shell with an identical layer structure. The 
analytical solution was obtained in the form of a trigono-
metric series with the corresponding contour and boundary 
conditions. The adaptive optimization method using hybrid 
finite elements solved the problem of optimal shell design. 
The influence of geometric parameters on the optimal 
characteristics of a two-layer composite shell was analyzed. 
The work determined the extreme values corresponding to 
the optimal shapes of shell and plate structures. The use of 
hybrid finite elements in [14] left the issue of convergence 
and accuracy of numerical calculation for very thin layers or 
complex geometries unresolved.

In [15], an approach to modeling the process of forming 
the power shell of a composite fuel tank manufactured by 
the filament winding method is reported. To model the fiber 
stacking in the area of the end parts of a tank with com-
plex geometry, the authors proposed a graphical procedure 
for forming the shell of a nonlinear composite tank with a 
small pole hole. The developed model was based on a math-
ematical description of the mandrel profile for forming the 
first layer, with subsequent iterative growth of subsequent 
layers. Three-dimensional CAD systems were selected for 
modeling, which provided parametric specification of the 
shell geometry and accurate representation of the structure 
configuration. Particular attention was paid to the pole hole 
area, in particular for modeling tanks with complex bottom 
shapes. The effectiveness of the model proposed in the work 
was confirmed by test results that reflected the nature of 
structural damage. The correctness of the model was con-
firmed by verification based on the manufacture of an ex-
perimental sample. Although CAD systems and parametric 
modeling were used, the issue of accuracy and convergence 
of calculations for complex geometries, thin layers, and large 
pole holes remained unresolved. The reason is the authors’ 
use of a mandrel to form the first layer, followed by iterative 
build-up of subsequent layers.

In [16], an effective approach to the analysis of the acous-
tic characteristics of bi-curved multilayer composite shells 
reinforced with carbon nanotubes was proposed, based on 
three-dimensional theory and the state space method in com-
bination with the fourth-order Runge-Kutta algorithm. The 
material properties of nanocomposites are described using 
the rule of mixtures. Variants of a homogeneous and func-
tional-gradient distribution of nanotubes in the direction of 
the shell thickness are considered. The modeling of the equa-
tions of state was carried out for each s-th layer by combining 
the constitutive relations, deformation and motion equations 
within the state space. The assumption of a plane-wave solu-
tion allowed the authors to reduce the partial differential 
equations to systems of ordinary differential equations. For 
numerical integration, the authors used the Runge-Kutta 
method to construct the propagation matrix within each 
layer. The comparison of these matrices made it possible to 
form a general transfer matrix of the entire structure, on the 
basis of which the sound transmission losses were calculated. 
The work shows that the volume fraction of nanotubes, their 
spatial distribution, the geometric parameters of the shell, 
the angle of incidence of the acoustic wave and the shape of 
the surface significantly affect the acoustic efficiency of the 
structure. However, the issues of research on local high-fre-
quency vibrations and stress concentrations remained un-
resolved. In addition, additional research is required on the 
issue of stability and accuracy of the proposed algorithm for 
complex configurations. The reason was the use of the rule of 
mixtures by the authors of the work.

In study [17], a numerical study of free vibrations of hy-
brid layered thin-walled cylindrical shells made of graphite 
composites and functionally gradient materials reinforced 
with carbon nanotubes was carried out. The analysis is based 
on the Sanders thin shell theory and the concept of artificial 
springs using the Rayleigh-Ritz method. Rotational effects, 
in particular Coriolis forces and centrifugal forces, are taken 
into account. It is found that optimizing the layer stacking 
sequence and geometric characteristics can significantly 
improve the dynamic performance of the shells. The work 
offers a numerical analysis of free vibrations of hybrid nano-
composite shells, but the issue of nonlinear behavior at large 
deformations for complex shells remains open. The reason 
was the authors’ use of the Rayleigh-Ritz method, which has 
limitations.

It is known that extrapolation methods are widely used 
to solve differential equations that require high accuracy of 
the solution. The advantage of extrapolation methods is pri-
marily that when using them, there is no need to recalculate 
the right-hand sides of the differential equations many times. 
In cases where the right-hand sides of the equations are quite 
complex, this advantage is very important. Scientists and 
engineers use Richardson extrapolation as a computational 
tool to improve the accuracy of numerical algorithms for 
solving systems of partial differential equations. This method 
improves the computational efficiency of the solution process 
by automatically changing the step sizes in time.

In study [18], higher-order convergence was numerically 
proven for the class of singularly perturbed Fredholm in-
tegrated-differential equations. To approximate the deriva-
tives, a non-standard difference scheme was used, in which 
the integral term is approximated using the trapezoidal 
rule. The proposed numerical approach provided a uniform 
convergence rate that did not depend on the value of the 
perturbation parameter. The use of Richardson extrapolation 
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allowed the authors to increase the accuracy of the solutions: 
fourth-order convergence was achieved for reaction-diffu-
sion problems and second-order for convection-diffusion 
problems. The experiments confirmed the effectiveness and 
reliability of the theoretical results. The issue of ensuring the 
long-term stability of the numerical solution remained unre-
solved. The reason was the use by the authors of a non-stan-
dard difference scheme for approximating derivatives.

Our review of the literature [1–18] showed that despite a 
fairly large number of works reporting studies on vibrations 
of multilayer reinforced shells, certain issues remained un-
resolved. In the analyzed works [1, 2], simplified models of 
shells were used, without taking into account shear deforma-
tions and transverse stresses. The use of the rule of mixtures 
in [3, 4] to specify the properties of layers was a significant 
simplification of modeling vibrations of multilayer shells 
and did not reflect the real heterogeneity of the material. In 
papers [5–7], the authors used the Tymoshenko theory taking 
into account shear but limited themselves to the analysis of 
the dynamic behavior of the selected type of shells and the 
issue of high-order convergence of the selected numerical 
methods remained unresolved. The authors of [8] proposed 
an analytical solution to the problem of eigenvalues for the 
analysis of the stability of cylindrical shells, which com-
plicates the use of the proposed method in modeling shells 
under dynamic loads. The authors of [9] proposed only free 
vibrations of shells, without taking into account real dynam-
ic loads. In [10–13] the authors limited the study to static or 
only free vibrations, so the issue of taking into account real 
dynamic loads when studying vibrations of reinforced shells 
remained unresolved. The complexity of studying vibrations 
of reinforced shells led the authors of [14–18] to use various 
numerical methods, but the issue of increasing the accuracy 
of solving problems for inhomogeneous reinforced shells 
remained unresolved.

Therefore, it is advisable to conduct a study on determin-
ing the forced vibrations of reinforced multilayer cylindrical 
shells and developing a numerical algorithm that will in-
crease the accuracy of solving the problem.

3. The aim and objectives of the study

The aim of our research is to increase the accuracy of 
solving dynamic problems by developing a numerical algo-
rithm based on finding approximate solutions to partial dif-
ferential equations using Richardson extrapolation. This will 
make it possible to expand existing approaches to numerical 
analysis of dynamic systems and use the results to improve 
the design of structures in various industries.

To achieve the goal, the following tasks are set:
– to state the problem of deformation of multilayer cylin-

drical shells taking into account the discrete placement of ribs;
– to derive the equations of oscillations of multilayer 

cylindrical shells supported by transverse ribs and natural 
boundary conditions;

– to apply the numerical method of finite-difference 
schemes in spatial coordinates and explicit finite-difference 
schemes in time coordinates to solve the problem;

– to use the Richardson extrapolation method to find ap-
proximate solutions to the problem;

– to carry out a comparative analysis of the deflection and 
stress obtained using the proposed methods.

4. The study materials and methods

The object of our study is the forced oscillations of a 
non-uniform elastic structure in the form of a multilayer cy-
lindrical shell, which consists of rigidly connected layers and 
is reinforced by discrete ring elements.

In this study, it was hypothesized that the use of Rich-
ardson extrapolation to find approximate solutions to dy-
namic problems could increase the accuracy of the solution 
compared to the method of finite-difference schemes. It was 
assumed that the layers of the shell and discrete reinforcing 
ribs are rigidly connected to each other. 

The following research methods were used in this 
work. At the stage of stating the problem of deformation 
of multilayer cylindrical shells discretely reinforced with 
transverse ridges, the method of imaginary construction of 
the object under study was used. The method of imaginary 
experiment was chosen because it provided the detection 
of the influence of reinforcing ribs on the deflection and 
deformation of multilayer cylindrical shells under un-
steady loading without conducting expensive experimental 
studies.

The equation of oscillations of multilayer cylindrical 
shells reinforced with transverse ribs and natural bound-
ary conditions under unsteady loading was obtained 
through the use of such research methods as imaginary 
experiment and modeling. The selected methods proved 
effective in detecting the influence of various factors on 
the deflection and deformation of multilayer cylindrical 
shells reinforced with ribs.

During dynamic loading of multilayer reinforced cy-
lindrical shells, local disturbances in the region of changes 
in the physical and mechanical parameters of ribs led to a 
significant redistribution of the parameters of the stressed-
strained state in the entire studied area. The complexity of 
the processes that arose in this case necessitated the use of 
a modern integrated-interpolation numerical method for 
solving problems of the behavior of reinforced ellipsoidal 
shell structures taking into account the discrete placement 
of ribs. This method was based on the construction of 
finite-difference schemes in spatial coordinates and an ex-
plicit finite-difference scheme of the “cross” type in the time 
coordinate. The choice of this approach allowed us to solve 
a system of partial differential equations in the presence 
of spatial discontinuities, which ensured the consideration 
of the discreteness of the reinforcing ribs. To implement 
the developed numerical algorithm, a computer search 
construction method was used, which was based on the 
application of modern computer and information technol-
ogies. In addition, when solving the problem, Richardson 
extrapolation was employed to find approximate solutions 
to the problem. Computerization of the studied object was 
carried out using the FortranPowerStation programming 
language (USA).

In order to solve the problem of comparative analysis 
of the accuracy of the solution of deflection and stress ac-
cording to the proposed methods, the following research 
methods were used: graphical method, analysis, compar-
ison. The graphical method was implemented using the 
MATLAB software package for numerical analysis and 
programming (USA). The graphical method allowed us 
to visualize the results of the influence of reinforcing 
ribs on the deflection and stress of multilayer cylindrical 
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shells reinforced with transverse ribs when subjected to 
an unsteady load. The use of the graphical method made 
it possible to see the process of deformation of multilayer 
cylindrical shells reinforced with ribs in dynamics. Based 
on the results of this method, a comparative analysis of 
deflections and stresses obtained using the method of fi-
nite-difference schemes and Richardson extrapolation was 
carried out to confirm our research hypothesis.

5. Results of the development of a numerical algorithm 
using Richardson extrapolation

5. 1. Results of stating the problem of deformation 
of multilayer cylindrical shells taking into account the 
discrete placement of ribs

A non-uniform elastic shell structure was considered, 
which was a multilayer reinforced cylindrical shell. The 
research was based on the geometrically nonlinear theory 
of shells of the Tymoshenko type in the quadratic approxi-
mation using hypotheses for the entire package as a whole. 
The reinforcing elements were considered as a set of curved 
rods that are rigidly connected to the shell. The theory of 
curved rods by Tymoshenko was adopted for the calculation 
of the ribs.

The change in displacements along the thickness of 
the m-th layer was given by an approximation in the fol-
lowing form:

( ) ( ) ( )ϕ= +1 1 1, , , , , ,z
m m mU x y z U x y z z x y

( ) ( ) ( )ϕ= +2 2 2, , , , , ,z
m m mU x y z U x y z z x y

( ) ( ) ( )ϕ= +3 3 3, , , , , ,z
m m mU x y z U x y z z x y

 
∈ − 
 

, ,
2 2
m mh h

z 		  (1)

where U1m, U2m, U3m, φ1m, φ2m are the components of the 
generalized displacement vector of the middle surface of the 
m-th layer.

The transverse shear stresses σ13
z

m and σ 23
z

m varied along the 
thickness of the corresponding layer according to the formula

( ) ( ) ( )σ σ= 0
13 1 13, , , ,z

m m mx y z f z x y

( ) ( ) ( )σ σ= 0
23 2 23, , , ,z

m m mx y z f z x y 	 (2)

where functions f1m(z), f2m(z) were chosen from the condition 
of continuity of transverse stresses along the thickness.

The deformed state of the rib directed along the α2 axis 
was determined by the vector of displacement of the center of 
gravity line of the cross section:

( ) ( ) ( ) ( )ϕ ϕ= + +1 1 1 2, , ,z
j

y
j j jU x y z U x y x z x 	

( ) ( ) ( )ϕ= + 32 2, , ,yz
j jjU x y z U x z x

( ) ( ) ( )ϕ= −3 3 3, , ,yz
j j jU x y z U x y x 	 (3)

where U1j, U2j, U3j, φ1j, φ2j , φ3j are the components of the 
generalized vector of displacements of the center of gravity of 
the cross section of the j-th rib.

5. 2. Results of deriving the equations of oscillations 
of multilayer cylindrical shells reinforced with trans-
verse ribs

To study the axisymmetric vibrations of a multilayer in-
homogeneous elastic structure, the equations of oscillations 
of the layered shell in the smooth region and separately for 
the reinforcing ribs were compiled.

The equations of oscillations of the layered shell in the 
smooth region between the corresponding discrete ribs:

ϕ∂∂
+ = +

∂
∂ ∂∂

11 1
2

2

1 2
1

21

2

,
U

I
x t

T
t

P I 		

+
∂
∂

∂
+ =

∂
13 2

2
2

1
3

3 2 ,
UT

I
x R t

T P

ϕ∂∂
∂

− + = +
∂

∂
∂

*
11

3

2 2
1 1

113 2 2 2 ,
M U

T m I
t t

I
x

θ= +13 13 1 11 ,T T T  = ± 1
*
11 11 1.cmTM M h 	 (4)

The equation of oscillations of the j-th annular rib at the 
points of discontinuities x = xj (points of projection of the cen-
ters of gravity of the cross section onto the reduced median 
surface of the smooth multilayer shell):

ρ
ϕ

±
 

  =     
 

∂ ∂
∂ ∂

1
2 2

2 2
1

11 ,j jj t t
U

T F 		

ρ
∂

 


∂
− =

2
2

2
3 2

3
1 ,j

j jj
j

U
F

R t
T

T

ϕ ϕ
ρ

  
  = ± +    ∂

∂
    

∂ ∂
±

∂ ∂

2 2 2
1 1 1

11 2 2 2 ,êðj
j j j cjj

jt t t
IU

M F h h
F

	 (5)

where:

( ) ( )σ σ σ=∑∫11 22 13 11 22 13, , , , d ,kz kz kz

k z

T T T z  

( )σ=∑∫11 11 d ,kz

k z

M z z  ρ=∑1 ,k k
k

I h

ρ= ±∑2 ,k k ck
k

I h h  ρ=∑3 .
12

k
k

k

h
I

In equations (4), (5) the following notations are introduced: 
x, t – spatial and temporal coordinates, respectively; R – radius of 
the reduced median surface of the multilayer shell. The densities 
of the materials of the k-th shell layer and the j-th rib, respec-
tively – ρk, ρj; the thicknesses of the corresponding layers of the 
shell – hk; the distance from the median surface of the initial 
layer to the median surface of the k-th layer – hck. The distance 
from the initial median surface to the line of the center of gravity 
of the cross-section of the j-th rib is denoted by hcj, and xj is the 
coordinate of the line of contact of the j-th rib with the multilay-
er shell. The geometric parameters of the j-th rib are Rj, Fj, Ikpj. 

In the notations for the magnitudes of forces and moments, 
it was assumed that σ11 ,kz  σ 22 ,kz  σ13

kz are the stresses along the 

thickness of the k-th layer, respectively, at− ≤ ≤ ,
2 2

k kh h
z  =1,3.k

The relationship between the magnitudes of stresses and 
the components of deformations was obtained from the fol-
lowing formula:
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( )σ ε ν ε
ν ν

= +
−

1
11 11 2 22

1 2

,
1

k
kz kz k kz

k k

E

( )σ ε ν ε
ν ν

= +
−

2
22 22 1 11

1 2

,
1

k
kz kz k kz

k k

E

σ ε=13 13 13 ,kz kz kzG  	 (6)

where the components of the strain tensor in the coordinate 
system x, z took the form:

ε ε ν= +11 11 11,kz k kz

ε =22 2 3 ,kz kk u

( )ε ϕ θ ε θ
∂

= + = + +
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2
1

13 1 1 11 1 1 3
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∂
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∂
= −
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1 1 1 .
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k ku

k u
x

	 (7)

Equations (4) to (7) are supplemented with natural 
boundary and initial conditions, respectively.

5. 3. Algorithm for applying the numerical method 
of finite-difference schemes to study vibrations of rein-
forced cylindrical shells

The presence of discontinuity coefficients in the original 
equations of oscillations was one of the reasons for the complex-
ity of solving boundary value problems of the theory of inhomo-
geneous shells, namely reinforced shells taking into account the 
discrete placement of ribs. According to, to solve such problems, 
first the solution to the problem was found in the smooth part, 
and then “gluing” took place on the discontinuity lines. In the 
problem proposed in our work, the discontinuity lines were the 
points of projection of the centers of gravity of the cross-section of 
the corresponding j-th edge onto the middle surface of the shell.

To construct the difference scheme when solving 
equations (4) to (7), the integrated-interpolation method 
of constructing finite-difference schemes for hyperbolic 
equations was used. According to this approach, equa-
tion (4) is represented in the following form in the domain  
{xl-1/2 ≤ x ≤ xl+1/2, tn-1/2 ≤ t ≤ tn+1/2}:

ϕ+ +
+ +

− −
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After standard transformations in ratios (8), the fol-
lowing difference approximations of equations (4) are 
obtained:

( ) ( ) ( )ϕ= +1 1 1 2 1 ,n n n
l l ltt tt

L U I u I  

( ) ( ) ( )+ =2 3 1 3, ,n n
l l n l tt

L U P x t I u

( ) ( ) ( )ϕ= +3 2 1 3 1 ,n n n
l l ltt tt

L U I u I 		   	 (9)

where:

( ) ∆
+ −−

= 11 1/2 11 1/2
1 ,

n n
n l l
l

T T
L U

x

( ) ∆
+ − + −+−

= −13 1/2 13 1/2 22 1/2 22 1/2
2 ,

2

n n n n
l ln l l

l

T TT TL U
x R

( ) ∆
+ − + −− +

= −
* *
11 1/2 11 1/2 13 1/2 13 1/2

3 .
2

n n n n
n l l l l
l

M M T T
L U

x 	      	 (10)

In relations (9) ( )ϕ= 1 3 1, , ,n n n n
l l l lU u u  and the notation of discrete 

derivatives was introduced according to [5]. Based on (9), the 
magnitudes of forces and moments were related to the difference 
points in the spatial coordinate in half-integer points, and in the 
time coordinate – in integer points of the difference scheme

( ) ±± ± +
 → 
 

13 13 1/211 22 11 11 1/2 22 1/2 11 1/2, , , , , , , .
nn n n

ll l lT T T M T T T M

Based on this, equations (6), (7) were integrated, respec-
tively, in the areas 

{ }− − +≤ ≤ ≤ ≤1 1/2 1/2,l l n nx x x t t t  

and 

{ }+ − +≤ ≤ ≤ ≤1 1/2 1/2, .l l n nx x x t t t

Similarly, numerical integration of oscillation equa-
tions (5) for the j-th reinforcing element was carried out.

5. 4. Application of Richardson extrapolation to find 
approximate solutions to the problem of vibrations of 
reinforced cylindrical shells

As already noted, in a number of cases, when numerically 
solving equations (4) to (7) based on approximations (9), the 
convergence of numerical results deteriorated. In order to build 
a more effective numerical algorithm for solving this problem, 
the approach of finding approximate solutions using Richardson 
extrapolation was used [19]. The sequence of approximate ap-
proximations in the spatial coordinate was applied with a fixed 
difference step in the time coordinate. It was assumed that

( ) ( ) ( )∆ ∆ ∆= −

/2

4 1 ,
3 3

n n n
l x l x l xU U U 			    (11)

where ( )∆
n
l xU  and ( )∆ /2

n
l xU are numerical solutions of the oscil-

lation equations (9), (10), and ∆x, ∆x/2 are the corresponding 
discrete steps along the spatial coordinate.

The expressions for the forces and moments are decom-
posed into linear and nonlinear parts:

= +11 11L 11NL ,T T T  = +22 22L 22NL ,T T T

= +13 13L 13NL ,T T T  = +11 11L 11NL .M M M 		  (12)
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Then:

( ) ( ) ( )= +1 1L 1NL ,n n n
l l lL U L U L U 	
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l l lL U L U L U 		  (13)
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The components of generalized vector ( )φ= 3, ,n n n n
l ll l llU u u  

are expanded in a Taylor series at interior points (x1 ± ∆x), 
(x1 ± ∆x/2) of the difference grids, respectively, with discrete 
steps along the spatial coordinate ∆x and ∆x/2:
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After standard transformations, we obtain
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Therefore, the difference operator ( )1NL
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had the fourth order of approximation.
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Therefore, the difference operator ( )1L
n
lL U  at point x1 had 

the fourth order of approximation.

It follows that expression ( ) ( )∆ ∆−1 ( /2) 1 ( )
4 1
3 3

n n
l x l xL U L U  ap- 

proximated the first equation of system (4) with the fourth 
order of accuracy.

Expressions
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n n
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and 

( ) ( )∆ ∆−3 ( /2) 3 ( )
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3 3

n n
l x l xL U L U  

also approximated the second and third equations of sys-
tem (4) with the fourth order of accuracy, respectively.

Therefore, the order of accuracy in the coordinate x with 
which (11) approximates the original equations of oscilla-
tions (4) in the smooth domain is the fourth.

5. 5. Comparative analysis of deflection and stress 
values according to the method of finite-difference 
schemes and Richardson extrapolation

We consider the problem of unsteady oscillations of a 
three-layer reinforced cylindrical shell taking into account 
the discreteness of the placement of ribs under dynamic load-
ing, and the edges of the shell were rigidly clamped.

The boundary conditions took the following form at 
x = 0, x = L, where L is the length of the shell

ϕ= = =1 3 1 0.u u 			    	 (16)

Zero initial conditions at t = 0 were assumed in the form

ϕ= = =1 3 1 0,u u ϕ∂∂ ∂
= = =

∂ ∂ ∂
31 1 0.

uu
t t t

	    (17)

The geometric and physical-mechanical parameters were 
assumed to be as follows:
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ρ ρ ρ= = = ⋅ 3
1 3 3

kg2.7 10 .
mj 	  (18)

The normal impulse load was given in the form

( ) ( )3 sin ,TP A t t T
t
π η η = ⋅ − −   			   (19)

where A is the load amplitude; T is the load duration, and 
these parameters in the problem were assumed to be as fol-
lows: A = 106 Pa, T = 0.625L/c. The reinforcing elements were 
located at points xj = 0.25Lj, 1,3.j =
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The obtained numerical results made it possible to as-
sess the nature of the stressed-strained state of a three-layer 
reinforced elastic structure of a cylindrical type at an arbi-
trary time point in the studied time interval. In this case, 
calculations were performed on the time interval 0 ≤ t ≤ 40T. 
Depending on the value of the discrete step along the spatial 
coordinate, a comparative analysis of the calculation results 
was performed.

Fig. 1, 2 show the dependences of u3 values on the spatial 
coordinate x at time points t = 8T. In Fig. 1 curve 1 correspond-
ed to the case n = 40; curve 2 – n = 80; curve 3 – n = 160; cal-
culations were carried out according to the standard approach.

Analysis of the presented graphic material in Fig. 1 
revealed that the value of deflection u3 in the spatial coor-
dinate x = 0.15m for the case n = 40 ( )−

=
= ⋅ 5

3 40
6.25 10 m

n
u  is 

1.25 times greater than the value of deflection u3 for the case 
n = 80 ( )−

=
= ⋅ 5

3 80
5.01 10 m

n
u  in the same spatial coordinate

−
=

−

=

⋅
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⋅

5
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n

n
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u

In Fig. 1, the u3 value of deflection in the spatial coordi-
nate x = 0.15m for the case n = 160 ( )−

=
= ⋅ 5

3 160
4.78 10 m

n
u  is 

1.05 times smaller than the u3 value of deflection for the case 
n = 80 in the same spatial coordinate
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The u3 value of deflection in the spatial coordinate 
x = 0.15m for the case n = 40 ( )−

=
= ⋅ 5
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n
u  is 

1.31 times greater than the u3 value of deflection for the case 
n = 160 ( )−

=
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n
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In Fig. 2, curve 1 corresponded to the case n = 160; the 
calculation was carried out according to the standard approach; 

curve 2 – n = 40 ÷ 80; the calculation was carried out according 
to the Richardson approach. Our analysis of the graphic materi-
al in Fig. 2 revealed that the u3 value of deflection in the spatial 
coordinate x = 0.15m for the case n = 160 according to the stan-
dard approach is ( )−

=
= ⋅ 5

3 160
4.78 10 m ,

n
u  which is 1.01 times 

greater than the u3 value of deflection for the case n = 40 ÷ 80 
according to the Richardson approach ( )−

= ÷
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Fig. 3, 4 show the dependences of σ22 values on the spatial 
coordinate x at time t = 7T. In Fig. 3, curve 1 corresponds to 
the case of n = 40, curve 2 – n = 80, curve 3 – n = 160; calcu-
lations were carried out according to the standard approach.

Analysis of the given graphic material in Fig. 3 revealed 
that the σ22 value of stress magnitude in the spatial coordi-
nate x = 0.1m for the case n = 40 is ( )σ

=
= ⋅ 6

22 40
0.63 10 Pa ,

n
 

Fig. 1. Dependence of the u3 value on the spatial coordinate x 
at time t = 8T
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Fig. 2. Dependence of the u3 value on the spatial coordinate 
x at time t = 8T
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Fig. 3. Dependence of σ22 value on the spatial coordinate x at 
time t = 7T
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and this is 1.17 times greater than the σ22 stress magnitude 
for the case n = 80 ( )σ

=
= ⋅ 6

22 80
0.54 10 Pa

n
 in the same spatial 

coordinate
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In Fig. 3, the σ22 value of stress magnitude in the spatial coor-
dinate x = 0.1 m for the case n = 160 is ( )σ

=
= ⋅ 6

22 160
0,53 10 Pa ,

n
 

that is, 1.02 times less than the σ22 stress magnitude for the case 
n = 80 in the same spatial coordinate
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The σ22 value of stress magnitude in the spatial coordi-
nate x = 0.1m for the case n = 40 ( )σ
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1.31 times greater than the σ22 stress magnitude for the case 
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In Fig. 4, curve 1 corresponded to the case n = 160; the cal-
culation was carried out according to the standard approach; 
curve 2 – n = 40 ÷ 80; the calculation was carried out accord-
ing to the Richardson approach. Our analysis of the graphic 
material in Fig. 4 revealed that the σ22 value of stress magni-
tude in the spatial coordinate x = 0.1m for the case n = 160 
according to the standard approach is ( )σ

=
= ⋅ 6

22 160
0.530 10 Pa ,

n
 

and this is 1.01 times greater than the σ22 value of stress mag-
nitude for the case n = 40 ÷ 80 according to the Richardson  
approach ( )σ

= ÷
= ⋅ 6

22 40 80
0.526 10 Pa

n
 in the same spatial co-

ordinate

So, a comparative analysis of the numerical results of 
our calculations revealed that at time t = 8T according to the 
standard approach, the discrepancy in the values of deflec-
tions u3 for n = 40 and n = 160 reached 31%, for n = 80 and 
n = 160 of the order of 5% (Fig. 1). According to the Richard-

son approach for n = 40 ÷ 80 and the standard approach for 
n = 160, this difference was about 1% (Fig. 2).

At time t = 7T according to the standard approach, the 
discrepancy for the σ22 values of stresses for n = 40 and 
n = 160 reached 19%, for n = 80 and n = 160 of the order 
of 2%, (Fig. 3). According to the Richardson approach for 
n = 40 ÷ 80 and the standard approach for n = 160, this dif-
ference was about 0.8% (Fig. 4).

From our graphical results, it is concluded that the use of 
Richardson extrapolation, in comparison with the standard 
approach to the numerical solution of the given equations, 
made it possible to achieve the required accuracy on coarser 
difference grids in the spatial coordinate.

The constructed numerical algorithms for solving prob-
lems of the theory of discretely reinforced multilayer cylin-
drical shells under the action of unsteady loading were tested 
on test calculations. The results of our calculations of this 
problem were compared with the results reported in [15]. The 
calculations, according to the numerical method devised in 
the current work, were in satisfactory agreement with the 
solutions in [19], which confirmed the reliability of our results.

6. Discussion of results of investigating the dynamic 
problems of layered cylindrical shells using Richardson 

extrapolation

Our work has considered a multilayer reinforced cylin-
drical shell under the action of a non-stationary load. The 
research was based on the geometrically nonlinear theory of 
shells of the Tymoshenko type in the quadratic approximation 
using hypotheses for the entire package as a whole. The rein-
forcing elements were considered as a set of curved rods that 
are rigidly connected to the shell. The theory of curved rods by 
Tymoshenko was adopted for the calculation of the ribs.

To study the axisymmetric vibrations of a multilayer 
inhomogeneous elastic structure, the equations of shell 
vibrations in the smooth region (4) and separately for the 
reinforcing ribs (5) were derived separately. The presence of 
discontinuity coefficients in the original vibration equations 
necessitated the need to “glue” the solutions to individual 
problems for the smooth region of the shell and reinforc-
ing ribs on the discontinuity lines. The discontinuity lines 
were the points of projection of the centers of gravity of the 
cross-section of the corresponding j-th rib onto the middle 
surface of the shell.

To construct a difference scheme when solving equa-
tions (4) to (7), the integrated-interpolation method of con-
structing finite-difference schemes for hyperbolic equations 
was used. When numerically solving equations (4) to (7) 
based on approximations (9), the convergence of numerical 
results deteriorated. To construct a more efficient numerical 
algorithm for solving this problem, the approach of finding 
approximate solutions using the Richardson approxima-
tion (11) was used. The sequence of approximate approx-
imations along the spatial coordinate was applied with a 
fixed difference step along the time coordinate. Our work 
shows that the order of accuracy along the x coordinate, with 
which (11) approximates the original oscillation equations (4) 
in a smooth domain, is the fourth.

This paper considers the problem of unsteady oscillations 
of a three-layer reinforced cylindrical shell taking into account 
the discreteness of the placement of ribs under dynamic load-
ing (19), and the ribs of the shell were rigidly clamped (16). 

Fig. 4. Dependence of σ22 value on the spatial coordinate x 	
at time t = 7T
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Geometric and physical and mechanical parameters took the 
form (18). The obtained numerical results made it possible to 
assess the nature of the stressed-strained state of a three-layer 
reinforced elastic structure of a cylindrical type at an arbitrary 
time point in the studied time interval.

As can be seen from the presented graphic material 
in Fig. 1–4, the accuracy of the obtained u3 values of deflec-
tion and stress σ22 increased with an increase in the value 
of discrete steps along the spatial coordinate x. The results 
are explained by the fact that the oscillation equations in 
the smooth region (7) and on the i-th rupture line (8) are a 
system of linear differential equations in partial derivatives 
with respect to variables x and t. The presence of spatial 
discontinuities in the x coordinate led to difficulties in 
obtaining a satisfactory solution on coarse grids. Thus, the 
practical convergence of the obtained results was proven. 
The results of the calculations were compared depending on 
the values of discrete steps in the x spatial coordinate. Our 
calculations showed that satisfactory accuracy is achieved 
at n = 80. 

The work has also confirmed the hypothesis that the use 
of Richardson extrapolation to find approximate solutions 
to partial differential equations could increase the accuracy 
of the solution to dynamic problems without increasing the 
calculation step.

The advantages of this study in comparison with simi-
lar known ones are as follows. Unlike the results reported 
in [10–12], the dynamic problem of vibrations of multilayer 
shells was solved on the basis of the finite difference method. 
It was this method that made it possible to study unsteady 
vibrations of discretely reinforced shells taking into account 
spatial discontinuities. The solution to the problem by the 
finite difference method showed that the proposed method, 
unlike that in study [4], contributed to the analysis of dynam-
ic deformation of axisymmetric shells for various types of 
internal and external loads.

Our solutions were compared with the solutions by other 
authors. Comparative analysis of the data obtained in [15] 
gave satisfactory results, which confirmed the reliability 
of the obtained results. In addition, the conclusions given 
in [19] that the application of Richardson extrapolation to 
finding approximate solutions of differential equations would 
increase the accuracy of solving problems without increasing 
the calculation step are consistent with the conclusions of 
our study.

Given our research, it was possible to represent the results 
of studying the deflection u3 and stresses σ22 of multilayer 
cylindrical shells reinforced with transverse ribs under the 
influence of a non-stationary, normally distributed load. The 
greatest difficulties in solving the problem of deformation 
of reinforced cylindrical shells arose when considering the 
action of a non-stationary load on the shell and the presence 
of spatial discontinuities along the spatial coordinate. That is 
why the Reissner variational principle for dynamic processes 
was chosen to build a mathematical model for the equations 
of oscillations of a non-uniform structure. Computational 
difficulties arose due to the fact that the process of deforma-
tion of discretely supported cylindrical shells was described 
by a system of nonlinear partial differential equations. The 
complexity of solving such problems was the presence of dis-
continuity coefficients in the equations of oscillations along 
the x coordinate. 

We have proposed a method for overcoming these dif-
ficulties. The numerical algorithm for solving problems 

of discretely supported multilayer cylindrical shells was 
constructed as follows: solutions were sought in the smooth 
region of the cylindrical shell (7) and separately on the spa-
tial discontinuity line (8). The solutions found separately 
for (7) and (8) were combined on the discontinuity line using 
kinematic conjugation conditions. This approach allowed us 
to obtain a solution for discretely supported multilayer cylin-
drical shells with different boundary conditions and under 
different unsteady loads.

The limitations in this study are attributed to the fact 
that explicit finite-difference schemes are conditionally sta-
ble. Therefore, for reinforced cylindrical shells, taking into 
account the discreteness of the placement of ribs, a study of 
the stability of difference equations was carried out. In addi-
tion, Richardson extrapolation had its limitations. Richard-
son extrapolation works qualitatively with a known order of 
error. It also has a high sensitivity to rounding errors and 
instability of calculations at small steps. Because of this, 
it was difficult to obtain high accuracy without increasing 
computational costs. 

The disadvantage of this study was that increasing the 
accuracy of the solution of the dynamic problem led to 
computational difficulties. In addition, when the step was re-
duced, rounding errors accumulated, which led to a decrease 
in accuracy and complicated the practical implementation of 
the method proposed in our work.

Further advancement of this research is to develop im-
proved numerical algorithms that would have better stability 
of problem solutions and would be able to independently se-
lect the optimal integration step. It is also necessary to devise 
methods that could reduce the impact of rounding errors 
at small steps, while maintaining computational stability. 
A promising area is the use of the finite difference method 
together with Richardson extrapolation to solve problems of 
oscillations of other types of shells of rotation with different 
geometric and physical-mechanical parameters of the struc-
ture under the action of other types of loading.

7. Conclusions 

1. The problem of deforming multilayer cylindrical 
shells has been stated, taking into account the discrete 
placement of the ribs. When stating the problem, the geo-
metrically nonlinear theory of shells of the Tymoshenko 
type was used in the quadratic approximation, applying hy-
potheses for the entire package as a whole. The reinforcing 
ribs were considered as a set of curved rods that are rigidly 
connected to the cylindrical shell. The theory of curved rods 
by Tymoshenko was used to describe the stressed-strained 
state of the ribs.

2. Taking into account all the conditions of the problem 
statement, a mathematical model was constructed for the 
equations of oscillations and natural boundary conditions 
of multilayer cylindrical shells, which are reinforced with 
transverse ribs based on the Reissner variational principle 
for dynamic processes. After standard transformations in the 
variational functional, the equations of oscillations of multi-
layer reinforced cylindrical shells were obtained taking into 
account the discreteness of the rib placement, as well as the 
kinematic conditions of the contact of the shell and discretely 
reinforced ribs. The resulting system of differential equations 
describing wave processes in inhomogeneous multilayer 
elastic structures with discrete ribs was a nonlinear equation 



Eastern-European Journal of Enterprise Technologies ISSN-L 1729-3774; E-ISSN 1729-4061	 6/7 ( 138 ) 2025

28

in partial derivatives in two spatial coordinates and a time 
coordinate. Owing to the model proposed in our work, it was 
possible to investigate the influence of geometric and physi-
cal-mechanical parameters of the structure on the stressed-
strained state of the cylindrical shell under the action of a 
normal impulse load.

3. Taking into account the discreteness of the reinforc-
ing ribs led to the presence of spatial discontinuities in the 
nonlinear equations of oscillations of a cylindrical shell. 
This necessitated the use of modern numerical methods and 
the development of appropriate algorithms. In particular, to 
construct a numerical algorithm for solving equations of the 
theory of multilayer shells taking into account the discrete-
ness of the placement of ribs, the integrated-interpolation 
method of constructing finite-difference schemes in spatial 
coordinates and the explicit difference scheme in the time 
coordinate were used. This approach allowed us to take 
into account the presence of spatial discontinuities at the 
finite-difference level. The analysis confirmed the conver-
gence of the computational process.

4. To increase the accuracy of the solution to dynamic 
problems, the Richardson extrapolation method in the spatial 
coordinate was used in our work. The analysis revealed that 
for the considered dynamics problems, fourth-order conver-
gence was achieved.

5. A comparative analysis of deflection and stress was car-
ried out on the basis of numerical examples. Analysis of the 
results revealed that according to the standard approach, the 
discrepancy in the deflection values for n = 40 and n = 160 
reached 31%; for n = 80 and n = 160, it was about 5%. Ac-
cording to the Richardson approach for n = 40 ÷ 80 and the 
standard approach for n = 160, this difference was about 1%. 
Therefore, the use of the Richardson extrapolation method 
by the spatial coordinate made it possible to achieve the 
required accuracy on coarser difference grids by the spatial 
coordinate. Thus, the hypothesis put forward in our work has 
been confirmed. The results of the calculations confirmed 
the reliability of the proposed numerical method, which indi-
cates the possibility of its further application for modeling the 
dynamic behavior of complex engineering structures.
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