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This study considers forced vibrations of a hetero-
geneous elastic structure in the form of a multilayer
cylindrical shell consisting of rigidly connected layers
and reinforced with discrete ring elements.

A mathematical model of vibrations of an elastic
heterogeneous structure under the action of a non-sta-
tionary load has been constructed. The stressed-
strained state of a multilayer cylindrical shell with
discrete ring ribs was investigated using the geometri-
cally nonlinear theory of Timoshenko-type shells and
rods. The presence of a complex right-hand side and
discontinuous coefficients in the spatial coordinates
in the hyperbolic equations of vibrations of a hetero-
geneous elastic cylindrical shell (at the locations of
the reinforcing ribs) necessitated the use of numeri-
cal methods for solving them. A numerical algorithm
using Richardson extrapolations has been proposed
Jor studying the constructed model.

For example, a three-layer reinforced cylin-
drical shell is considered, taking into account the
discreteness of the ribs’ placement under dynam-
ic loading with rigidly clamped ribs. The proposed
numerical algorithm has made it possible to investi-
gate the stressed-strained state of a three-layer rein-
forced elastic structure of a cylindrical type at any
given moment in time. A comparative analysis of the
numerical results of the calculations revealed that,
according to the standard approach, the discrepancy
in the deflection values for n = 40 and n = 160 reached
31%, for n = 80 and n = 160 it was about 5%, accord-
ing to Richardson’s approach for n = 40 + 80 and the
standard approach for n = 160, this difference was
about 1%.

A distinctive feature of this study is the use of
Richardson extrapolation to identify the stressed-
strained state of a three-layer reinforced cylindrical
shell, which made it possible to increase the accuracy
of the solution to the dynamic problem without reduc-
ing the calculation step.

The study’s results reported in this work could
be used for investigating unsteady vibrations of shell
structures at research and engineering organizations
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1. Introduction

Multilayer reinforced cylindrical shells occupy an im-
portant place in modern mechanical engineering and related
industries due to the combination of high strength, heat resis-
tance, as well as resistance to aggressive environments. The
most typical areas of their application are rocket and space
technology, shipbuilding, underwater equipment, multilayer
pipelines with special functional layers, as well as medical
technology and bioengineering. The need for in-depth sci-
entific research of multilayer reinforced cylindrical shells is
due to their ability to provide an optimal set of operational
properties through the rational combination of various mate-
rials. This approach increases resistance to loads, allows for

| DOI: 10.15587/1729-4061.2025.34589 |

NUMERICAL
IMPLEMENTATION

OF RICHARDSON
EXTRAPOLATION FOR
DYNAMIC PROBLEMS OF
MULTILAYER CYLINDRICAL
SHELLS

Yuliia Meish

Doctor of Technical Sciences, Professor*
Maryna Belova

Corresponding author

PhD, Associate Professor

Department of Digital Economy and System Analysis
State University of Trade and Economics

Kyoto str., 19, Kyiv, Ukraine, 02156

E-mail: marisha67®@ukr.net

Nataliia Arnauta

PhD, Associate Professor*

Nataliia Maiborodina

PhD, Associate Professor

Department of Natural Sciences, Mathematics

and General Engineering Disciplines**
Viacheslav Gerasymenko

PhD, Associate Professor

Department of Electric Power Engineering, Electrical
Engineering and Electromechanics**

*Department of Higher and Applied Mathematics**
**National University of Life

and Environmental Sciences of Ukraine

Heroiv Oborony str., 15, Kyiv, Ukraine, 03041

How to Cite: Meish, Y., Belova, M., Arnauta, N., Maiborodina, N., Gerasymenko, V. (2025).
Numerical implementation of Richardson extrapolation for dynamic problems of multilayer

cylindrical shells. Eastern-European Journal of Enterprise Technologies, 6 (7 (138)), 16-29.

https://doi.org/10.15587/1729-4061.2025.345897

local reinforcement in the most loaded areas, and provides a
significant reduction in the mass of structures while main-
taining or even improving strength characteristics.

That is why the construction of new mathematical models
of shells and shell structures, the development of methods
for calculating structures are relevant for modern scientists
around the world.

2. Literature review and problem statement

When setting the research problems of multilayer shells,
various shell theories are used: classical theory (Kirch-
hoff-Love theory), first-order theory taking into account
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shear, higher-order theory taking into account nonlinear
distribution of stresses and strains along the thickness, and
others. Most researchers use classical shell theory - a sim-
plified mathematical model that describes the mechanical
behavior of thin shells, based on assumptions about a small
shell thickness compared to other dimensions and without
taking into account deformation in the thickness direction.

In study [1], the propagation of non-axisymmetric waves
in a three-layer viscoelastic cylindrical shell is considered.
The displacement of the outer layer is described using shell
equations built on the basis of the Kirchhoff-Love hypothesis,
and the behavior of the middle layer is modeled on the basis
of viscoelasticity equations in a polar coordinate system. To
solve the problem, approaches from the theory of elasticity
and numerical methods were used, in particular the methods
of Muller, Gauss, and Laplace. The results showed that with
increasing thickness of the intermediate layer, the real and
imaginary parts of the phase velocity of the first mode in-
crease, while for the second mode they decrease. The issue of
wave propagation in three-layer cylindrical shells remained
unresolved if the outer layers are relatively thick. The reason
for this was the use in the work of a simplified model built on
the basis of the Kirchhoff-Love hypothesis. The application of
the Kirchhoff-Love hypothesis is suitable only for thin shells.

In [2], the geometrically nonlinear response of shell
structures made of magnetoelectroelastic composites was
investigated. The proposed finite element model was based
on the Kirchhoff-Love shell theory. A four-node shell finite
element was used to model the nonlinear behavior of the
structures. The discrete system of geometrically nonlinear
equilibrium equations was solved using the Newton-Raph-
son method. A numerical analysis of the hyperboloid shell
was performed; the results were compared with the available
literature data to verify the effectiveness and accuracy of the
proposed model, especially for thin-walled structures. High
compliance of the results and adequate static response of the
composite material under conditions of significant deforma-
tions and finite rotations were obtained. Such a model [2]
may not be accurate enough if the shell has a larger thickness
or its deformation goes beyond the assumptions of the theory
of thin structures. The main reason for this was the use of a
model based on the Kirchhoff-Love hypothesis in the work.
The issue of studying the deformations of shells with variable
thickness remained unresolved.

In study [3], the natural frequency characteristics of a func-
tionally gradient multilayer hybrid composite cylindrical shell
panel reinforced with graphene plates and carbon nanotubes
were analyzed. To assess the effective material properties of
the composite, a modified micromechanical model combining
the Halpin-Tsai approach and the rule of mixtures was used.
Based on the first-order shear deformation theory, Hamilton’s
principle, and the finite element method, stiffness and mass
matrices of the structure were constructed. The accuracy of
the proposed approach was confirmed by comparison with the
results from the literature. The influence of a number of pa-
rameters, in particular the number of layers, the content of re-
inforcing elements, their distribution schemes, the volumetric
content of carbon nanotubes, the ratio of the thickness to the
length of the panel, the angle of flight, the stiffness of the Win-
kler elastic base and the types of boundary conditions were
analyzed. The results of the study showed that three-phase
cylindrical shells can effectively combine the advantages of
reinforcement with graphene plates and carbon nanotubes,
which significantly improves their dynamic response in the

free vibration mode. Since the free vibrations of a multilayer
cylindrical shell panel were investigated in [3], the issue of
forced vibrations of the shell panel under the action of dynamic
loading remained unresolved.

In [4], the authors analyzed the bending of a function-
ally gradient cylindrical nanoshell based on the nonlocal
theory of elasticity and the theory of first-order shear defor-
mation. The nanoshell is made of a combination of ceramic
and metal materials reinforced with composite sheets with
carbon nanotubes, which are placed along the outer radius.
The structure was based on the Pasternak foundation. The
equation of motion was derived using the principle of vir-
tual work, and the properties of the reinforced composite
sheets were estimated using the rule of mixtures. To verify
the developed model, a comparative analysis of numerical
results was performed. The influence of the core parameters,
nonlocal parameter, volume fraction, and number of carbon
nanotube layers, functionally gradient index, and foundation
characteristics on the bending behavior of the shell was in-
vestigated. The question of the real interaction of the shell
components under complex dynamic loads remained unre-
solved since the use of the rule of mixtures in the work did
not allow local effects to be reflected.

The authors of work [5] investigated the forced oscilla-
tions of discretely reinforced five-layer cylindrical, spherical
and conical shells under the action of unsteady loading. The
dynamic behavior of the shells was investigated using the
theory of shells and rods of the Tymoshenko type. The re-
sults of the studies showed that five-layer cylindrical shells
with a less rigid filler demonstrated larger deflections and
higher sensitivity to dynamic loading. In addition, for the
shell with a less rigid filler, the influence of reinforcing el-
ements was clearly observed, which was not observed with
a stiffer filler. Numerical modeling demonstrated that the
reinforcement of the hole in the five-layer spherical shell sig-
nificantly affected the distribution of stresses and strains. At
the moment of maximum loading of the unreinforced shell,
significant differences in kinematic and static characteristics
were observed in the hole zone: the presence of a reinforc-
ing ring reduced local extrema several times compared to
the unreinforced shell. The analysis of the results obtained
for a five-layer conical shell conducted in the work allowed
the authors to assess the influence of the taper angle on the
symmetry of the distribution of displacements and stresses
along the spatial coordinate. The issue of reliable accuracy of
the solution to the problem for five-layer shells with discrete
reinforcement remained unresolved since the accuracy may
be low in the areas of reinforcement by ribs. The reason was
the use of numerical methods by the authors in solving the
problem.

The analysis of forced oscillations of a truncated elliptical
conical shell arising under the action of a distributed impulse
load was carried out in [6]. To solve the problem, a numerical
algorithm was developed based on the finite-difference ap-
proximation of the initial equations in spatial and temporal
coordinates. However, the studies carried out in the work are
limited to the analysis of the dynamic behavior of the selected
type of shell.

In [7], the deformation of multilayer ellipsoidal shells
under the action of a non-stationary distributed load was
considered. In order to increase the strength of the structure,
the authors proposed reinforcing the shell with longitudinal
stiffening ribs. To describe the mechanical behavior of the
system, the theory of shells and rods by Tymoshenko was



used, which allowed them to study the influence of longitu-
dinal ribs on the stressed-strained state of the shell taking
into account the discrete placement of the ribs. Based on
the Hamilton-Ostrogradsky variational principle, a mathe-
matical model of structural oscillations under the action of
a short-term non-stationary load was built. The solution to
the problem was obtained using a numerical algorithm based
on the integrated-interpolation approach to constructing
finite-difference schemes in spatial coordinates and an ex-
plicit finite-difference scheme in time coordinate. Analysis
of the obtained dependences revealed that the presence of
reinforcing ribs significantly affects the deformations of
the multilayer shell. It was established that the influence of
ribs on the deformed state of the reinforced ellipsoidal shell
increases over time. The issues of accuracy and stability at
large time steps and over a long period of modeling remained
unresolved. The main reason was the use by the authors of fi-
nite-difference schemes in spatial coordinates and an explicit
finite-difference scheme in time coordinate.

The authors of work [8] proposed a generalized com-
putational model for analyzing the stability and initial
post-critical behavior of cylindrical shells of the “sandwich”
type with an elastic core, on which only transverse tension
and compression act. The developed model is based on non-
linear equations of equilibrium of mixed form, asymptotic
equations obtained by the Koiter-Budyansky method. The
work proposes an analytical solution to a homogeneous
problem on eigenvalues and a non-homogeneous problem for
determining the values of unknown functions at the critical
point. Numerical modeling showed a significant influence of
internal pressure on the critical load and the nature of the
shell deformation after critical deformation. However, the
issue of the influence of unsteady pressure on the behavior
of the shell remained unresolved. The reason could be the
analytical solution to the problem proposed by the authors,
which becomes more complicated under unsteady loading.

The theory of higher-order shear deformations is a de-
velopment of the first-order theory and allows for a more
accurate description of the operation of plates and shells.
In this theory, transverse shear deformations are given by
higher-order functions (quadratic, cubic, etc.), which ensures
their variability over the thickness and adequate distribution
of stresses in multilayer structures.

In study [9], a numerical analysis of geometrically non-
linear forced vibrations of a doubly curved sandwich shell
with a honeycomb core manufactured by the method of
modeling by deposited deposition was carried out. The theory
of higher-order shear deformations was used to describe the
operating mode of the structure. The dynamic behavior of
each layer of the shell is described using five variables: three
components of displacement and two components of rotation
of the normal to the median surface. A system of geometri-
cally nonlinear ordinary differential equations was obtained,
which simulated the forced vibrations of the shell. The
method of assumed modes was used to derive this system.
The analysis of nonlinear periodic oscillations was carried
out based on a numerical approach combining the method of
continuation of solutions and the method of survey. The use
of the method of assumed modes left unresolved the issue of
local high-frequency oscillations and stress concentrations,
which can significantly affect the accuracy of solutions for
shells under the action of complex loads.

The authors of [10] conducted an analytical study of the
bending of isotropic, layered cylindrical sandwich shells

based on the theory of higher-order shear deformation. The
proposed model included only four variables and did not re-
quire a shear correction factor, unlike traditional theories of
this class. The work used Hamilton’s principle and the Navier
method to formulate the problem and solve the equations of
motion. The results of the analytical model are compared
with studies known in the literature. The authors used the
finite element method to analyze displacements and stresses.
Shells with different radii of curvature and thicknesses un-
der the influence of uniform loading were considered. The
analysis revealed that the proposed model allowed for more
accurate modeling of the behavior of layered plates and shells
compared to traditional approaches. The paper proposes
an analytical model for static bending of layered sandwich
shells, so the question of the influence of dynamic loads on
the deformed state of the shells remains open.

For laminated and hybrid composites, zigzag functions
are used, which reflect a sharp change in the slope of defor-
mations between layers and increase the accuracy of model-
ing internal stresses.

In [11], free vibrations and losses of stability of a compos-
ite layered shell were investigated using the theory of zigzag
deformations. Piecewise linear zigzag functions were used to
describe the deformation state of multilayer shell structures,
and the d’Alembert principle was used to derive the oscilla-
tion equations and boundary conditions. The authors con-
ducted a study of free vibrations and losses of stability for cy-
lindrical and spherical shells with different layering schemes,
which allowed them to assess the accuracy and effectiveness
of the proposed model. The results obtained were compared
with three-dimensional and analytical solutions given in
the literature. The comparison showed higher accuracy and
better computational efficiency of the model compared to
classical high-order theories. The work investigated only free
vibrations and critical loads. The influence of unsteady loads
on the dynamic behavior of the shell was not considered.

In [12], a model of bending of composite layered shells
was proposed, based on the theory of zigzag deformations.
The model differed from first-order theories in that planar
linear zigzag functions along the thickness were used. This
allowed the authors to exclude shear correction coefficients.
Based on the principle of virtual work, equilibrium equations
and boundary conditions were derived. The static properties
of shells were described using solutions of Navier series. To
assess the effectiveness of the model, numerical examples
are given, in which the influence of layering schemes and
geometric parameters was analyzed. The results of the study
were compared with the three-dimensional theory of elastic-
ity, first-order models known in the literature. Comparative
analysis revealed high accuracy of the proposed model. Since
work [12] considers static loads, the issue of shell deforma-
tions under real conditions when shells are under the action
of dynamic loads remained unresolved.

During the loading of multilayer shell structures, local
disturbances that arise in the zones of change in the physical
and mechanical properties of the layers cause a significant
change in the distribution of stresses and strains throughout
the volume of the structure. Such complexity of the stressed-
strained state necessitates the use of modern numerical
methods of analysis (finite element method, finite difference
method, etc.). The use of modern numerical methods of anal-
ysis ensures adequate reproduction of the mechanical behav-
ior of multilayer shells, taking into account interlayer inter-
actions, anisotropy of materials, and geometric nonlinearity.



The authors of study [13] analyzed the mechanical be-
havior of multilayer axisymmetric shells under different
conditions of internal pressure based on theoretical modeling
and numerical analysis using the finite element method in
the ANSYS environment. Critical design parameters that af-
fected the strength of the structure were established. The in-
fluence of the mechanical characteristics of the material, the
geometric properties of the shell, and the internal pressure
was studied. The studies showed the gradual nature of the
development of damage in multilayer shells manufactured by
the surfacing method. The authors of the work investigated
the optimization of the parameters of the cellular structure,
in particular the thickness of the shell, the height and thick-
ness of the honeycomb walls and the dimensions of the cells.
It was determined that the specified parameters significantly
affected the reduction of stress concentration and the in-
crease in the structural integrity of the structure. The model
proposed in the work made it possible to assess the general
patterns of deformations of multilayer shells, but the issues of
accuracy and convergence of numerical models for complex
shell structures remained open. The reason was the use of
the finite element method in the ANSYS environment by the
authors of the work.

In [14], the problem of optimizing the mass of layered
orthotropic open shells of constant thickness under the
action of an impulse load was considered. The study used
an improved shell theory, in which a shell with a complex
geometry was modeled by an auxiliary layered cylindrical
open rectangular shell with an identical layer structure. The
analytical solution was obtained in the form of a trigono-
metric series with the corresponding contour and boundary
conditions. The adaptive optimization method using hybrid
finite elements solved the problem of optimal shell design.
The influence of geometric parameters on the optimal
characteristics of a two-layer composite shell was analyzed.
The work determined the extreme values corresponding to
the optimal shapes of shell and plate structures. The use of
hybrid finite elements in [14] left the issue of convergence
and accuracy of numerical calculation for very thin layers or
complex geometries unresolved.

In [15], an approach to modeling the process of forming
the power shell of a composite fuel tank manufactured by
the filament winding method is reported. To model the fiber
stacking in the area of the end parts of a tank with com-
plex geometry, the authors proposed a graphical procedure
for forming the shell of a nonlinear composite tank with a
small pole hole. The developed model was based on a math-
ematical description of the mandrel profile for forming the
first layer, with subsequent iterative growth of subsequent
layers. Three-dimensional CAD systems were selected for
modeling, which provided parametric specification of the
shell geometry and accurate representation of the structure
configuration. Particular attention was paid to the pole hole
area, in particular for modeling tanks with complex bottom
shapes. The effectiveness of the model proposed in the work
was confirmed by test results that reflected the nature of
structural damage. The correctness of the model was con-
firmed by verification based on the manufacture of an ex-
perimental sample. Although CAD systems and parametric
modeling were used, the issue of accuracy and convergence
of calculations for complex geometries, thin layers, and large
pole holes remained unresolved. The reason is the authors’
use of a mandrel to form the first layer, followed by iterative
build-up of subsequent layers.

In [16], an effective approach to the analysis of the acous-
tic characteristics of bi-curved multilayer composite shells
reinforced with carbon nanotubes was proposed, based on
three-dimensional theory and the state space method in com-
bination with the fourth-order Runge-Kutta algorithm. The
material properties of nanocomposites are described using
the rule of mixtures. Variants of a homogeneous and func-
tional-gradient distribution of nanotubes in the direction of
the shell thickness are considered. The modeling of the equa-
tions of state was carried out for each s-th layer by combining
the constitutive relations, deformation and motion equations
within the state space. The assumption of a plane-wave solu-
tion allowed the authors to reduce the partial differential
equations to systems of ordinary differential equations. For
numerical integration, the authors used the Runge-Kutta
method to construct the propagation matrix within each
layer. The comparison of these matrices made it possible to
form a general transfer matrix of the entire structure, on the
basis of which the sound transmission losses were calculated.
The work shows that the volume fraction of nanotubes, their
spatial distribution, the geometric parameters of the shell,
the angle of incidence of the acoustic wave and the shape of
the surface significantly affect the acoustic efficiency of the
structure. However, the issues of research on local high-fre-
quency vibrations and stress concentrations remained un-
resolved. In addition, additional research is required on the
issue of stability and accuracy of the proposed algorithm for
complex configurations. The reason was the use of the rule of
mixtures by the authors of the work.

In study [17], a numerical study of free vibrations of hy-
brid layered thin-walled cylindrical shells made of graphite
composites and functionally gradient materials reinforced
with carbon nanotubes was carried out. The analysis is based
on the Sanders thin shell theory and the concept of artificial
springs using the Rayleigh-Ritz method. Rotational effects,
in particular Coriolis forces and centrifugal forces, are taken
into account. It is found that optimizing the layer stacking
sequence and geometric characteristics can significantly
improve the dynamic performance of the shells. The work
offers a numerical analysis of free vibrations of hybrid nano-
composite shells, but the issue of nonlinear behavior at large
deformations for complex shells remains open. The reason
was the authors’ use of the Rayleigh-Ritz method, which has
limitations.

It is known that extrapolation methods are widely used
to solve differential equations that require high accuracy of
the solution. The advantage of extrapolation methods is pri-
marily that when using them, there is no need to recalculate
the right-hand sides of the differential equations many times.
In cases where the right-hand sides of the equations are quite
complex, this advantage is very important. Scientists and
engineers use Richardson extrapolation as a computational
tool to improve the accuracy of numerical algorithms for
solving systems of partial differential equations. This method
improves the computational efficiency of the solution process
by automatically changing the step sizes in time.

In study [18], higher-order convergence was numerically
proven for the class of singularly perturbed Fredholm in-
tegrated-differential equations. To approximate the deriva-
tives, a non-standard difference scheme was used, in which
the integral term is approximated using the trapezoidal
rule. The proposed numerical approach provided a uniform
convergence rate that did not depend on the value of the
perturbation parameter. The use of Richardson extrapolation



allowed the authors to increase the accuracy of the solutions:
fourth-order convergence was achieved for reaction-diffu-
sion problems and second-order for convection-diffusion
problems. The experiments confirmed the effectiveness and
reliability of the theoretical results. The issue of ensuring the
long-term stability of the numerical solution remained unre-
solved. The reason was the use by the authors of a non-stan-
dard difference scheme for approximating derivatives.

Our review of the literature [1-18] showed that despite a
fairly large number of works reporting studies on vibrations
of multilayer reinforced shells, certain issues remained un-
resolved. In the analyzed works [1, 2], simplified models of
shells were used, without taking into account shear deforma-
tions and transverse stresses. The use of the rule of mixtures
in [3, 4] to specify the properties of layers was a significant
simplification of modeling vibrations of multilayer shells
and did not reflect the real heterogeneity of the material. In
papers [5-7], the authors used the Tymoshenko theory taking
into account shear but limited themselves to the analysis of
the dynamic behavior of the selected type of shells and the
issue of high-order convergence of the selected numerical
methods remained unresolved. The authors of [8] proposed
an analytical solution to the problem of eigenvalues for the
analysis of the stability of cylindrical shells, which com-
plicates the use of the proposed method in modeling shells
under dynamic loads. The authors of [9] proposed only free
vibrations of shells, without taking into account real dynam-
ic loads. In [10-13] the authors limited the study to static or
only free vibrations, so the issue of taking into account real
dynamic loads when studying vibrations of reinforced shells
remained unresolved. The complexity of studying vibrations
of reinforced shells led the authors of [14-18] to use various
numerical methods, but the issue of increasing the accuracy
of solving problems for inhomogeneous reinforced shells
remained unresolved.

Therefore, it is advisable to conduct a study on determin-
ing the forced vibrations of reinforced multilayer cylindrical
shells and developing a numerical algorithm that will in-
crease the accuracy of solving the problem.

3. The aim and objectives of the study

The aim of our research is to increase the accuracy of
solving dynamic problems by developing a numerical algo-
rithm based on finding approximate solutions to partial dif-
ferential equations using Richardson extrapolation. This will
make it possible to expand existing approaches to numerical
analysis of dynamic systems and use the results to improve
the design of structures in various industries.

To achieve the goal, the following tasks are set:

- to state the problem of deformation of multilayer cylin-
drical shells taking into account the discrete placement of ribs;

-to derive the equations of oscillations of multilayer
cylindrical shells supported by transverse ribs and natural
boundary conditions;

—-to apply the numerical method of finite-difference
schemes in spatial coordinates and explicit finite-difference
schemes in time coordinates to solve the problem;

— to use the Richardson extrapolation method to find ap-
proximate solutions to the problem;

- to carry out a comparative analysis of the deflection and
stress obtained using the proposed methods.

4. The study materials and methods

The object of our study is the forced oscillations of a
non-uniform elastic structure in the form of a multilayer cy-
lindrical shell, which consists of rigidly connected layers and
is reinforced by discrete ring elements.

In this study, it was hypothesized that the use of Rich-
ardson extrapolation to find approximate solutions to dy-
namic problems could increase the accuracy of the solution
compared to the method of finite-difference schemes. It was
assumed that the layers of the shell and discrete reinforcing
ribs are rigidly connected to each other.

The following research methods were used in this
work. At the stage of stating the problem of deformation
of multilayer cylindrical shells discretely reinforced with
transverse ridges, the method of imaginary construction of
the object under study was used. The method of imaginary
experiment was chosen because it provided the detection
of the influence of reinforcing ribs on the deflection and
deformation of multilayer cylindrical shells under un-
steady loading without conducting expensive experimental
studies.

The equation of oscillations of multilayer cylindrical
shells reinforced with transverse ribs and natural bound-
ary conditions under unsteady loading was obtained
through the use of such research methods as imaginary
experiment and modeling. The selected methods proved
effective in detecting the influence of various factors on
the deflection and deformation of multilayer cylindrical
shells reinforced with ribs.

During dynamic loading of multilayer reinforced cy-
lindrical shells, local disturbances in the region of changes
in the physical and mechanical parameters of ribs led to a
significant redistribution of the parameters of the stressed-
strained state in the entire studied area. The complexity of
the processes that arose in this case necessitated the use of
a modern integrated-interpolation numerical method for
solving problems of the behavior of reinforced ellipsoidal
shell structures taking into account the discrete placement
of ribs. This method was based on the construction of
finite-difference schemes in spatial coordinates and an ex-
plicit finite-difference scheme of the “cross” type in the time
coordinate. The choice of this approach allowed us to solve
a system of partial differential equations in the presence
of spatial discontinuities, which ensured the consideration
of the discreteness of the reinforcing ribs. To implement
the developed numerical algorithm, a computer search
construction method was used, which was based on the
application of modern computer and information technol-
ogies. In addition, when solving the problem, Richardson
extrapolation was employed to find approximate solutions
to the problem. Computerization of the studied object was
carried out using the FortranPowerStation programming
language (USA).

In order to solve the problem of comparative analysis
of the accuracy of the solution of deflection and stress ac-
cording to the proposed methods, the following research
methods were used: graphical method, analysis, compar-
ison. The graphical method was implemented using the
MATLAB software package for numerical analysis and
programming (USA). The graphical method allowed us
to visualize the results of the influence of reinforcing
ribs on the deflection and stress of multilayer cylindrical



shells reinforced with transverse ribs when subjected to
an unsteady load. The use of the graphical method made
it possible to see the process of deformation of multilayer
cylindrical shells reinforced with ribs in dynamics. Based
on the results of this method, a comparative analysis of
deflections and stresses obtained using the method of fi-
nite-difference schemes and Richardson extrapolation was
carried out to confirm our research hypothesis.

5. Results of the development of a numerical algorithm
using Richardson extrapolation

5.1. Results of stating the problem of deformation
of multilayer cylindrical shells taking into account the
discrete placement of ribs

A non-uniform elastic shell structure was considered,
which was a multilayer reinforced cylindrical shell. The
research was based on the geometrically nonlinear theory
of shells of the Tymoshenko type in the quadratic approxi-
mation using hypotheses for the entire package as a whole.
The reinforcing elements were considered as a set of curved
rods that are rigidly connected to the shell. The theory of
curved rods by Tymoshenko was adopted for the calculation
of the ribs.

The change in displacements along the thickness of
the m-th layer was given by an approximation in the fol-
lowing form:
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where Uiy, Usms Usms @1ms @2m are the components of the
generalized displacement vector of the middle surface of the
m-th layer.

The transverse shear stresses o7, and o}, varied along the

thickness of the corresponding layer according to the formula
o8 (%.3.2) = f (2) 0% (x.7),
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where functions f1,,(z), f2m(z) were chosen from the condition
of continuity of transverse stresses along the thickness.

The deformed state of the rib directed along the a, axis
was determined by the vector of displacement of the center of
gravity line of the cross section:

UL (x3n2) = U, (x) + 39, (x) 20, (x),

U, (x)+20,(x),
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where Uy, Uy, Usj, 1), @2 » @3 are the components of the

generalized vector of displacements of the center of gravity of
the cross section of the j-th rib.
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5.2. Results of deriving the equations of oscillations
of multilayer cylindrical shells reinforced with trans-
verse ribs

To study the axisymmetric vibrations of a multilayer in-
homogeneous elastic structure, the equations of oscillations
of the layered shell in the smooth region and separately for
the reinforcing ribs were compiled.

The equations of oscillations of the layered shell in the
smooth region between the corresponding discrete ribs:
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The equation of oscillations of the j-th annular rib at the
points of discontinuities x = x; (points of projection of the cen-
ters of gravity of the cross section onto the reduced median
surface of the smooth multilayer shell):
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In equations (4), (5) the following notations are introduced:
X, t —spatial and temporal coordinates, respectively; R — radius of
the reduced median surface of the multilayer shell. The densities
of the materials of the k-th shell layer and the j-th rib, respec-
tively - px, pj; the thicknesses of the corresponding layers of the
shell - hy; the distance from the median surface of the initial
layer to the median surface of the k-th layer — h.. The distance
from the initial median surface to the line of the center of gravity
of the cross-section of the j-th rib is denoted by h,j, and x; is the
coordinate of the line of contact of the j-th rib with the multilay-
er shell. The geometric parameters of the j-th rib are R;, Fj, Iy,

In the notations for the magnitudes of forces and moments,
it was assumed that 0,7, o, o,° are the stresses along the

12 ~22°
h h,
thickness of the k-th layer, respectively, at7?k< z<—%, k=1,3.

The relationship between the magnitudes of stresses and
the components of deformations was obtained from the fol-
lowing formula:
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where the components of the strain tensor in the coordinate
system X, z took the form:
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Equations (4) to (7) are supplemented with natural
boundary and initial conditions, respectively.

5.3. Algorithm for applying the numerical method
of finite-difference schemes to study vibrations of rein-
forced cylindrical shells

The presence of discontinuity coefficients in the original
equations of oscillations was one of the reasons for the complex-
ity of solving boundary value problems of the theory of inhomo-
geneous shells, namely reinforced shells taking into account the
discrete placement of ribs. According to, to solve such problems,
first the solution to the problem was found in the smooth part,
and then “gluing” took place on the discontinuity lines. In the
problem proposed in our work, the discontinuity lines were the
points of projection of the centers of gravity of the cross-section of
the corresponding j-th edge onto the middle surface of the shell.

To construct the difference scheme when solving
equations (4) to (7), the integrated-interpolation method
of constructing finite-difference schemes for hyperbolic
equations was used. According to this approach, equa-
tion (4) is represented in the following form in the domain
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After standard transformations in ratios (8), the fol-
lowing difference approximations of equations (4) are
obtained:
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In relations (9) U} = (ul”l,u;‘l, gol"é), and the notation of discrete
derivatives was introduced according to [5]. Based on (9), the
magnitudes of forces and moments were related to the difference
points in the spatial coordinate in half-integer points, and in the
time coordinate — in integer points of the difference scheme
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Based on this, equations (6), (7) were integrated, respec-
tively, in the areas
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Similarly, numerical integration of oscillation equa-
tions (5) for the j-th reinforcing element was carried out.

5. 4. Application of Richardson extrapolation to find
approximate solutions to the problem of vibrations of
reinforced cylindrical shells

As already noted, in a number of cases, when numerically
solving equations (4) to (7) based on approximations (9), the
convergence of numerical results deteriorated. In order to build
a more effective numerical algorithm for solving this problem,
the approach of finding approximate solutions using Richardson
extrapolation was used [19]. The sequence of approximate ap-
proximations in the spatial coordinate was applied with a fixed
difference step in the time coordinate. It was assumed that
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where (7[(' ) and U( (axr2) 3T€ numerical solutions of the oscil-

lation equations (9), (10), and Ax, Ax/2 are the corresponding
discrete steps along the spatial coordinate.

The expressions for the forces and moments are decom-
posed into linear and nonlinear parts:
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After standard transformations, we obtain

%LINL (Un

l(Ax/Z)) ; LlNL (Un

l(AX))

’ ” A "
u3(xl)u3 Kxgu (x )u;m(xz)_
11 _£ oy Ax

480 *°

2608 u"ul” + O(Ax4 )

Therefore, the difference operator LINL(ﬁl") at point x;

had the fourth order of approximation.
L ( e )) based on formulae (9) and (15)
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Therefore, the difference operator L, ( ) at point x; had
the fourth order of approximation.
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It follows that expression %L (U" ) %Ll(ﬁﬁm) ap-
proximated the first equation of system (4) with the fourth
order of accuracy.
Expressions
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also approximated the second and third equations of sys-
tem (4) with the fourth order of accuracy, respectively.

Therefore, the order of accuracy in the coordinate x with
which (11) approximates the original equations of oscilla-
tions (4) in the smooth domain is the fourth.

5.5. Comparative analysis of deflection and stress
values according to the method of finite-difference
schemes and Richardson extrapolation

We consider the problem of unsteady oscillations of a
three-layer reinforced cylindrical shell taking into account
the discreteness of the placement of ribs under dynamic load-
ing, and the edges of the shell were rigidly clamped.

The boundary conditions took the following form at
x =0, x =L, where L is the length of the shell
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Zero initial conditions at t = 0 were assumed in the form
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The geometric and physical-mechanical parameters were
assumed to be as follows:
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The normal impulse load was given in the form
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where A is the load amplitude; T is the load duration, and
these parameters in the problem were assumed to be as fol-
lows: A = 10° Pa, T = 0.625L/c. The reinforcing elements were
located at points x; = 0.25L;, j=1,3.



The obtained numerical results made it possible to as-
sess the nature of the stressed-strained state of a three-layer
reinforced elastic structure of a cylindrical type at an arbi-
trary time point in the studied time interval. In this case,
calculations were performed on the time interval 0 <t <40T.
Depending on the value of the discrete step along the spatial
coordinate, a comparative analysis of the calculation results
was performed.

Fig. 1, 2 show the dependences of u3 values on the spatial
coordinate x at time points ¢ = 8T. In Fig. 1 curve 1 correspond-
ed to the case n = 40; curve 2 - n = 80; curve 3 - n = 160; cal-
culations were carried out according to the standard approach.
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Fig. 1. Dependence of the w3 value on the spatial coordinate x
at time t=8T

Analysis of the presented graphic material in Fig. 1
revealed that the value of deflection u; in the spatial coor-
w)| _, =6.25-10"m)is
1.25 times greater than the value of deflection u; for the case

dinate x = 0.15m for the case n = 40 (

n=2380 (u3|n:80 =5.01-10"° m) in the same spatial coordinate
Ul 625107
| 5.01-10°

n=80

In Fig. 1, the u; value of deflection in the spatial coordi-
w| . =478:10"m)is
1.05 times smaller than the us value of deflection for the case
n = 80 in the same spatial coordinate

nate x = 0.15m for the case n = 160 (

u
31n=80

u

501107 1
4.78-10°

3 |n:160

The uz value of deflection in the spatial coordinate
x=0.15m for the case n =40 (u3|n:40 =6.25-10" m) is
1.31 times greater than the u;value of deflection for the case

n =160 (u3|n:80 =4.78-107 m) in the same spatial coordinate
Uslso _ 6.25-107 ~1.31.
u, 4.78-107
n=160

In Fig. 2, curve 1 corresponded to the case n = 160; the
calculation was carried out according to the standard approach;

curve 2 - n = 40 + 80; the calculation was carried out according
to the Richardson approach. Our analysis of the graphic materi-
al in Fig. 2 revealed that the u; value of deflection in the spatial
coordinate x = 0.15m for the case n = 160 according to the stan-
dard approach is (143|n:160 =4.78-107 m), which is 1.01 times
greater than the us value of deflection for the case n = 40 + 80
according to the Richardson approach (u3| =4.73-107 m)
in the same spatial coordinate

n=40+80

U,

478107
4.73-10°

n=160

u
3 |n=40+80

Fig. 3, 4 show the dependences of ,, values on the spatial
coordinate x at time ¢t = 7T. In Fig. 3, curve 1 corresponds to
the case of n = 40, curve 2 - n = 80, curve 3 - n = 160; calcu-
lations were carried out according to the standard approach.
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Fig. 2. Dependence of the u3 value on the spatial coordinate
x at time t= 8T
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Fig. 3. Dependence of 6, value on the spatial coordinate x at
timet=17T

Analysis of the given graphic material in Fig. 3 revealed
that the o0, value of stress magnitude in the spatial coordi-

nate x = 0.1m for the case n = 40 is (022|n:40 =0.63-10° Pa),



and this is 1.17 times greater than the o,, stress magnitude

for the case n = 80 (0'22|n:80 =0.54-10° Pa) in the same spatial
coordinate

920 0.63-10° _

o, ,, 054100

In Fig. 3, the o, value of stress magnitude in the spatial coor-
dinate x = 0.1 m for the case n =160 is (o- =0,53-10° Pa),

22|n:160
that is, 1.02 times less than the o5, stress magnitude for the case

n = 80 in the same spatial coordinate

T2lps0 0.54-10° N
o, 0.53-10°

n=160

The o, value of stress magnitude in the spatial coordi-
nate x = 0.1m for the case n = 40 (o-22 o =0.63-10° Pa) is
1.31 times greater than the o5, stress magnitude for the case
n=160(c

22|n:160 =0.53-10° Pa) in the same spatial coordinate
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22
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|
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In Fig. 4, curve 1 corresponded to the case n = 160; the cal-
culation was carried out according to the standard approach;
curve 2 - n = 40 + 80; the calculation was carried out accord-
ing to the Richardson approach. Our analysis of the graphic
material in Fig. 4 revealed that the o,, value of stress magni-
tude in the spatial coordinate x = 0.1m for the case n = 160
according to the standard approach is (O'22 |n:160 =0.530-10° Pa),

and this is 1.01 times greater than the o,, value of stress mag-
nitude for the case n = 40 + 80 according to the Richardson

approach (0'22|n=40+80 =0.526-10° Pa) in the same spatial co-
ordinate
0,y 107, Pa; t=7T
6

Fig. 4. Dependence of 0;, value on the spatial coordinate x
attime t=17T

So, a comparative analysis of the numerical results of
our calculations revealed that at time ¢t = 8T according to the
standard approach, the discrepancy in the values of deflec-
tions us; for n = 40 and n = 160 reached 31%, for n = 80 and
n = 160 of the order of 5% (Fig. 1). According to the Richard-

son approach for n = 40 + 80 and the standard approach for
n = 160, this difference was about 1% (Fig. 2).

At time t = 7T according to the standard approach, the
discrepancy for the o,, values of stresses for n =40 and
n =160 reached 19%, for n =80 and n =160 of the order
of 2%, (Fig. 3). According to the Richardson approach for
n =40+ 80 and the standard approach for n = 160, this dif-
ference was about 0.8% (Fig. 4).

From our graphical results, it is concluded that the use of
Richardson extrapolation, in comparison with the standard
approach to the numerical solution of the given equations,
made it possible to achieve the required accuracy on coarser
difference grids in the spatial coordinate.

The constructed numerical algorithms for solving prob-
lems of the theory of discretely reinforced multilayer cylin-
drical shells under the action of unsteady loading were tested
on test calculations. The results of our calculations of this
problem were compared with the results reported in [15]. The
calculations, according to the numerical method devised in
the current work, were in satisfactory agreement with the
solutions in [19], which confirmed the reliability of our results.

6. Discussion of results of investigating the dynamic
problems of layered cylindrical shells using Richardson
extrapolation

Our work has considered a multilayer reinforced cylin-
drical shell under the action of a non-stationary load. The
research was based on the geometrically nonlinear theory of
shells of the Tymoshenko type in the quadratic approximation
using hypotheses for the entire package as a whole. The rein-
forcing elements were considered as a set of curved rods that
are rigidly connected to the shell. The theory of curved rods by
Tymoshenko was adopted for the calculation of the ribs.

To study the axisymmetric vibrations of a multilayer
inhomogeneous elastic structure, the equations of shell
vibrations in the smooth region (4) and separately for the
reinforcing ribs (5) were derived separately. The presence of
discontinuity coefficients in the original vibration equations
necessitated the need to “glue” the solutions to individual
problems for the smooth region of the shell and reinforc-
ing ribs on the discontinuity lines. The discontinuity lines
were the points of projection of the centers of gravity of the
cross-section of the corresponding j-th rib onto the middle
surface of the shell.

To construct a difference scheme when solving equa-
tions (4) to (7), the integrated-interpolation method of con-
structing finite-difference schemes for hyperbolic equations
was used. When numerically solving equations (4) to (7)
based on approximations (9), the convergence of numerical
results deteriorated. To construct a more efficient numerical
algorithm for solving this problem, the approach of finding
approximate solutions using the Richardson approxima-
tion (11) was used. The sequence of approximate approx-
imations along the spatial coordinate was applied with a
fixed difference step along the time coordinate. Our work
shows that the order of accuracy along the x coordinate, with
which (11) approximates the original oscillation equations (4)
in a smooth domain, is the fourth.

This paper considers the problem of unsteady oscillations
of a three-layer reinforced cylindrical shell taking into account
the discreteness of the placement of ribs under dynamic load-
ing (19), and the ribs of the shell were rigidly clamped (16).



Geometric and physical and mechanical parameters took the
form (18). The obtained numerical results made it possible to
assess the nature of the stressed-strained state of a three-layer
reinforced elastic structure of a cylindrical type at an arbitrary
time point in the studied time interval.

As can be seen from the presented graphic material
in Fig. 1-4, the accuracy of the obtained u3 values of deflec-
tion and stress o,, increased with an increase in the value
of discrete steps along the spatial coordinate x. The results
are explained by the fact that the oscillation equations in
the smooth region (7) and on the i-th rupture line (8) are a
system of linear differential equations in partial derivatives
with respect to variables x and t. The presence of spatial
discontinuities in the x coordinate led to difficulties in
obtaining a satisfactory solution on coarse grids. Thus, the
practical convergence of the obtained results was proven.
The results of the calculations were compared depending on
the values of discrete steps in the x spatial coordinate. Our
calculations showed that satisfactory accuracy is achieved
at n = 80.

The work has also confirmed the hypothesis that the use
of Richardson extrapolation to find approximate solutions
to partial differential equations could increase the accuracy
of the solution to dynamic problems without increasing the
calculation step.

The advantages of this study in comparison with simi-
lar known ones are as follows. Unlike the results reported
in [10-12], the dynamic problem of vibrations of multilayer
shells was solved on the basis of the finite difference method.
It was this method that made it possible to study unsteady
vibrations of discretely reinforced shells taking into account
spatial discontinuities. The solution to the problem by the
finite difference method showed that the proposed method,
unlike that in study [4], contributed to the analysis of dynam-
ic deformation of axisymmetric shells for various types of
internal and external loads.

Our solutions were compared with the solutions by other
authors. Comparative analysis of the data obtained in [15]
gave satisfactory results, which confirmed the reliability
of the obtained results. In addition, the conclusions given
in [19] that the application of Richardson extrapolation to
finding approximate solutions of differential equations would
increase the accuracy of solving problems without increasing
the calculation step are consistent with the conclusions of
our study.

Given our research, it was possible to represent the results
of studying the deflection u; and stresses o, of multilayer
cylindrical shells reinforced with transverse ribs under the
influence of a non-stationary, normally distributed load. The
greatest difficulties in solving the problem of deformation
of reinforced cylindrical shells arose when considering the
action of a non-stationary load on the shell and the presence
of spatial discontinuities along the spatial coordinate. That is
why the Reissner variational principle for dynamic processes
was chosen to build a mathematical model for the equations
of oscillations of a non-uniform structure. Computational
difficulties arose due to the fact that the process of deforma-
tion of discretely supported cylindrical shells was described
by a system of nonlinear partial differential equations. The
complexity of solving such problems was the presence of dis-
continuity coefficients in the equations of oscillations along
the x coordinate.

We have proposed a method for overcoming these dif-
ficulties. The numerical algorithm for solving problems

of discretely supported multilayer cylindrical shells was
constructed as follows: solutions were sought in the smooth
region of the cylindrical shell (7) and separately on the spa-
tial discontinuity line (8). The solutions found separately
for (7) and (8) were combined on the discontinuity line using
kinematic conjugation conditions. This approach allowed us
to obtain a solution for discretely supported multilayer cylin-
drical shells with different boundary conditions and under
different unsteady loads.

The limitations in this study are attributed to the fact
that explicit finite-difference schemes are conditionally sta-
ble. Therefore, for reinforced cylindrical shells, taking into
account the discreteness of the placement of ribs, a study of
the stability of difference equations was carried out. In addi-
tion, Richardson extrapolation had its limitations. Richard-
son extrapolation works qualitatively with a known order of
error. It also has a high sensitivity to rounding errors and
instability of calculations at small steps. Because of this,
it was difficult to obtain high accuracy without increasing
computational costs.

The disadvantage of this study was that increasing the
accuracy of the solution of the dynamic problem led to
computational difficulties. In addition, when the step was re-
duced, rounding errors accumulated, which led to a decrease
in accuracy and complicated the practical implementation of
the method proposed in our work.

Further advancement of this research is to develop im-
proved numerical algorithms that would have better stability
of problem solutions and would be able to independently se-
lect the optimal integration step. It is also necessary to devise
methods that could reduce the impact of rounding errors
at small steps, while maintaining computational stability.
A promising area is the use of the finite difference method
together with Richardson extrapolation to solve problems of
oscillations of other types of shells of rotation with different
geometric and physical-mechanical parameters of the struc-
ture under the action of other types of loading.

7. Conclusions

1. The problem of deforming multilayer cylindrical
shells has been stated, taking into account the discrete
placement of the ribs. When stating the problem, the geo-
metrically nonlinear theory of shells of the Tymoshenko
type was used in the quadratic approximation, applying hy-
potheses for the entire package as a whole. The reinforcing
ribs were considered as a set of curved rods that are rigidly
connected to the cylindrical shell. The theory of curved rods
by Tymoshenko was used to describe the stressed-strained
state of the ribs.

2. Taking into account all the conditions of the problem
statement, a mathematical model was constructed for the
equations of oscillations and natural boundary conditions
of multilayer cylindrical shells, which are reinforced with
transverse ribs based on the Reissner variational principle
for dynamic processes. After standard transformations in the
variational functional, the equations of oscillations of multi-
layer reinforced cylindrical shells were obtained taking into
account the discreteness of the rib placement, as well as the
kinematic conditions of the contact of the shell and discretely
reinforced ribs. The resulting system of differential equations
describing wave processes in inhomogeneous multilayer
elastic structures with discrete ribs was a nonlinear equation



in partial derivatives in two spatial coordinates and a time
coordinate. Owing to the model proposed in our work, it was
possible to investigate the influence of geometric and physi-
cal-mechanical parameters of the structure on the stressed-
strained state of the cylindrical shell under the action of a
normal impulse load.

3. Taking into account the discreteness of the reinforc-
ing ribs led to the presence of spatial discontinuities in the
nonlinear equations of oscillations of a cylindrical shell.
This necessitated the use of modern numerical methods and
the development of appropriate algorithms. In particular, to
construct a numerical algorithm for solving equations of the
theory of multilayer shells taking into account the discrete-
ness of the placement of ribs, the integrated-interpolation
method of constructing finite-difference schemes in spatial
coordinates and the explicit difference scheme in the time
coordinate were used. This approach allowed us to take
into account the presence of spatial discontinuities at the
finite-difference level. The analysis confirmed the conver-
gence of the computational process.

4. To increase the accuracy of the solution to dynamic
problems, the Richardson extrapolation method in the spatial
coordinate was used in our work. The analysis revealed that
for the considered dynamics problems, fourth-order conver-
gence was achieved.

5. A comparative analysis of deflection and stress was car-
ried out on the basis of numerical examples. Analysis of the
results revealed that according to the standard approach, the
discrepancy in the deflection values for n = 40 and n = 160
reached 31%; for n = 80 and n = 160, it was about 5%. Ac-
cording to the Richardson approach for n = 40 + 80 and the
standard approach for n = 160, this difference was about 1%.
Therefore, the use of the Richardson extrapolation method
by the spatial coordinate made it possible to achieve the
required accuracy on coarser difference grids by the spatial
coordinate. Thus, the hypothesis put forward in our work has
been confirmed. The results of the calculations confirmed
the reliability of the proposed numerical method, which indi-
cates the possibility of its further application for modeling the
dynamic behavior of complex engineering structures.
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