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This study examines the heat exchange pro-
cesses for thermally active and thermally sensitive 
individual nodes and elements in electronic devic-
es that are subjected to thermal loads in the areas 
of canonical form. As a result of thermal loads, sig-
nificant temperature gradients arise. To improve 
the accuracy of designing electronic devices and 
for their effective operation, linear and nonlinear 
mathematical models have been built to analyze 
their temperature regimes. 

Based on the stated linear and nonlinear 
axisymmetric boundary value problems of heat 
conduction, their analytical and analytical-nu-
merical solutions have been derived. Using these 
solutions has made it possible to establish the 
temperature distribution in spatial radial and 
axial coordinates for given geometric and ther-
mophysical parameters (the chosen graphite has 
the ability to absorb a significant amount of heat 
at its thermal conductivity coefficient equal to 
372 W/(m∙degree)).

To effectively describe canonical heating 
regions, the theory of generalized functions has 
been used. A technique for linearizing nonlinear 
mathematical models has been introduced. As a 
result, linear second-order differential equations 
with partial derivatives and a singular right-hand 
side have been derived.

The numerical results reflect the temperature 
distribution in the medium along the radial and 
axial coordinates for the given geometric and ther-
mophysical parameters. The number of divisions of 
the interval (0; r*) was chosen to be 9, which made 
it possible to obtain numerical values of tempera-
ture with an accuracy of 10-6. The resulting numeri-
cal values of temperature for the selected materials 
with a linear temperature dependence of the ther-
mal conductivity coefficient differ from the results 
obtained for its constant value by 5%. 

The constructed mathematical models of heat 
transfer make it possible to analyze spatial isotro-
pic media with respect to their thermal stability
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1. Introduction

With the rapid progress in digital technology, the power 
and functionality of modern electronic devices are constantly 
increasing. Components such as processors, microcontrol-
lers, and graphics cards are becoming more powerful, which 
poses serious challenges in the field of managing their ther-
mal regimes. High levels of heat generation lead to significant 
temperature gradients that cause unwanted overheating, 
reduced performance, and shortened device life. The relative 
influence of temperature on the reliability of microelectronic 
devices is the highest (55%) compared to other factors such as 

humidity, vibration, and dust. Thermal effects are the most 
important factors that affect the reliability indicators of elec-
tronic devices, in particular, the probability of failure-free 
operation and the mean time to failure. In [1], the mean time 
to failure of resistors, capacitors, integrated circuits, and 
semiconductor components was determined. 

One of the important causes of these problems is the 
formation of non-uniform temperature fields in structural 
elements. For example, the high density of electronic compo-
nents on a limited board area creates a significant difference 
in heat generation capacity and heat dissipation conditions. 
This, in turn, requires detailed analysis and optimization 
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In [5], an algorithm based on the boundary element 
method was reported, designed to determine temperature 
fields and thermal stresses in functional-gradient micropolar 
composites with nonlinear properties. Although the appli-
cation of the method makes it possible to take into account 
anisotropy and temperature dependence of parameters, it 
is not focused on modeling local temperature disturbances.

The thermal conductivity model using fractional time 
derivatives was analyzed in [6]. For a thermoelastic paral-
lelepiped with a finite volume, the Fourier-Laplace transform 
was used. It was shown that the order of the fractional deriv-
ative significantly affects the formation of temperature fields. 
However, the model does not allow for the consideration of 
localized heat sources, and numerical calculations are accom-
panied by a significant accumulation of errors. In [7], a numer-
ical method for solving the heat conductivity equation with a 
fractional spatial derivative of the Riemann-Liouville type in 
combination with temperature-dependent material parame-
ters was proposed. Despite the effectiveness of the algorithm, 
its applicability is limited due to simple boundary conditions. 

In [8], the problem of centrally symmetric heating of a 
body with a spherical hole by a harmonic heat flux was con-
sidered using the integral Fourier and Laplace transforms. 
The main drawback of the model is the lack of consideration 
of the temperature dependence of thermophysical parame-
ters. Instead, in [9], a neural network model of temperature 
field reconstruction based on UNet and MLP is reported, 
which provides high prediction accuracy but requires large 
training samples and does not take into account thermal sen-
sitivity and local temperature perturbations. 

In [10], heat and mass transfer in Carro nanofluids with 
mobile microorganisms under the action of thermal radia-
tion and activation energy was investigated. The reduction 
of partial derivative equations to the system of SDRs sig-
nificantly simplifies the description of processes but makes 
it impossible to model local heat sources and temperature 
dependence of medium properties. Similarly, in [11], as a re-
sult of the analysis of thermal processes in the rail grinding 
zone, an analytical model with a non-uniform heat source 
was constructed, confirmed experimentally, but without the 
possibility of detailed reproduction of temperature gradients 
important for predicting surface defects.

In [12], issues of thermal management of electronic de-
vices in transient regimes are highlighted; however, the re-
search is mainly experimental in nature, which complicates 
the construction of generalized models. In [13], the PINN-TFI 
temperature field inversion method based on physically in-
formed neural networks is presented; however, it is sensitive 
to data noise and does not take into account the thermally 
sensitive properties of the material. In [14], compact dynamic 
models for predicting the temperature of mobile device cases 
are described; however, the model does not provide for taking 
into account localized heat sources in canonical regions. 

In [15], a numerical scheme is proposed for the one-di-
mensional problem of thermal conductivity in a three-layer 
body. Despite the simplicity of implementation, the use of 
the method does not allow for the estimation of spatial tem-
perature gradients. In papers [16–19], models of thermal con-
ductivity in homogeneous, segmentally homogeneous, and 
layered media with foreign inclusions of various geometric 
shapes were considered; however, in most cases, either the 
temperature dependence of the material properties was not 
taken into account, or there was no description of localized 
thermally active zones. 

to enable stable and reliable operation. Effective heat dissi-
pation is critically important because the device can over-
heat and fail without it. To solve this task, it is necessary to 
deeply understand the processes of thermal conductivity in 
electronic devices. Although materials with high thermal 
conductivity, such as copper and aluminum, are widely used, 
their properties can change under the influence of geometric 
parameters and microstructural defects.

 Since experimental studies of the thermal state in in-
dividual components and elements of electronic devices are 
often impossible due to high temperatures and the tightness 
of structures, mathematical modeling plays a decisive role in 
this case. It is on the basis of mathematical models that de-
scribe complex thermophysical processes that it is possible to 
obtain reliable information about the temperature regimes of 
the device by performing certain computational procedures. 
For the practical implementation of these models and to an-
alyze temperature regimes, modern software tools are used. 
These tools make it possible to visualize temperature fields 
in detail by numerical modeling and simulation, assess the 
influence of certain factors on their behavior, and devise ef-
fective cooling strategies, in particular, the optimal arrange-
ment of components or the use of radiators. This approach 
makes it possible to identify potential overheating problems 
at the design stage, which significantly reduces the need for 
expensive physical experiments. 

Consequently, it is a relevant task to conduct studies 
aimed at the development of mathematical models and soft-
ware tools based on them for analyzing temperature regimes 
in modern electronic devices.

2. Literature review and problem statement

Analysis of current approaches to modeling thermal 
processes in thermosensitive materials reveals significant 
progress in the development of both analytical and analyti-
cal-numerical methods. In [2], the temperature field in an iso-
tropic thermosensitive plate under the action of thermal radi-
ation was investigated, taking into account the temperature 
dependence of thermophysical properties and the spatially 
inhomogeneous distribution of heat sources. The use of the 
Kirchhoff transform, the Green function, and linear spline 
approximation made it possible to reduce the problem to a 
recurrent nonlinear algebraic equation. At the same time, the 
model does not provide for describing localized surface and 
internal sources of the canonical form, which limits its ap-
plicability to problems with local temperature disturbances. 

In [3], a thermal conductivity model for two thermosen-
sitive layers with heat exchange with the environment was 
considered. The solution was obtained by the method of suc-
cessive approximations using linearization and the integral 
Laplace transform. The influence of different types of bound-
ary conditions was analyzed but the model is not suitable for 
describing pulsed and point heat sources, in particular those 
given by the Dirac delta function.

In [4], a generalized procedure for modeling thermal pro-
cesses in layered materials based on a modified finite element 
method was proposed. The anisotropy of the material and 
the conditions of continuity of temperature and heat flux at 
the boundary surfaces of the layers were taken into account. 
Despite good adaptability to three-dimensional structures, 
the use of the model does not provide a correct description of 
local heating sources of the canonical form.
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In work [20], a nonlinear model of thermal conductivity 
in a layer with a semi-through cylindrical inclusion was 
proposed using a linearizing function. However, the model 
does not allow for the description of internal heat sources 
concentrated inside a thin inclusion. Finally, paper [21] con-
sidered a three-dimensional model of heat and mass transfer 
in capillary-porous materials using the finite element method 
and parallel CUDA calculations. Despite high performance, 
an increase in the mesh density leads to a significant accu-
mulation of errors, which limits the accuracy of modeling.

Our review of the literature demonstrates a significant 
number of approaches to modeling thermal processes – from 
classical analytical methods and integral transformations to 
fractional models, MFE methods, and deep neural networks. 
However, common limitations are observed in all papers, 
namely:

– lack of support for local surface and internal heat sourc-
es of canonical form;

– failure to take into account the temperature dependence 
of thermophysical characteristics in most models;

– accumulation of numerical errors when using integral 
transformations, fractional derivatives, and an excessively 
fine grid;

– dependence of neural network models on the volume 
and quality of training data.

The identified gaps justify the feasibility of building new 
analytical and numerical models that correctly describe 
spatial temperature gradients in thermosensitive materials, 
take into account localized heat sources of canonical form, 
and provide high accuracy. Construction of such models is of 
particular practical value for analyzing thermal processes in 
structural heat-sensitive elements of electronic devices with 
complex geometric shapes of heating sources.

3. The aim and objectives of the study

The purpose of our study is to build linear and nonlinear 
mathematical models for determining temperature fields in 
isotropic spatial environments with thermally active heating 
zones of a canonical form. As a result, it will be possible to 
increase the accuracy of determining the temperature distri-
bution and to analyze temperature regimes in more depth, 
which will further affect the effectiveness of design methods 
for modern electronic devices.

To achieve this goal, it is necessary to solve the following 
problems:

– to construct a linear mathematical model of heat trans-
fer in a layer due to heating by a heat flow;

– to build a nonlinear mathematical model of heat transfer 
in a heat-sensitive layer (thermophysical parameters of the 
material depend on temperature) due to heating by a heat flow;

– to construct a linear mathematical model of heat trans-
fer in a heat-active layer (internal heating concentrated in the 
volume of the cylinder);

– to build a nonlinear mathematical model of heat trans-
fer in a heat-active and heat-sensitive layer.

4. The study materials and methods

The object of the study is the process of heat transfer in 
isotropic spatial environments, the heating zones of which 
are geometric figures of canonical form.

Research hypothesis: if the temperature fields in the 
spatial environment are caused by heating in the regions of 
the canonical form, then they can be described by analytical 
and analytical-numerical solutions of linear and nonlinear 
axisymmetric boundary value problems of heat conduction. 
The heat conduction equations of these problems contain 
right-hand sides with the Dirac delta function, which makes 
it possible to describe the concentration of heating in such 
regions.

It is assumed that in the process of the study the spatial 
environment is such that the thermophysical parameters are 
invariant in spatial directions. The solutions to the boundary 
value problems of heat conduction, which correspond to 
linear and nonlinear heat transfer models, are determined, 
describing the temperature distribution in spatial radial and 
axial coordinates.

Asymmetric unit functions and the Dirac delta function 
are used to display the thermally active heating zones of 
the canonical form. This methodological approach makes it 
possible to adequately describe thermal processes caused by 
the heat flux acting on the boundary surface of the medium 
within a circular contour. It is also possible to reflect heating 
by internal heat sources uniformly distributed in the volume 
of the cylindrical region. As a result, axisymmetric boundary 
value problems with partial differential equations of the sec-
ond order and the Dirac delta function in the right-hand side 
were obtained. To solve nonlinear axisymmetric heat transfer 
problems caused by the thermal sensitivity of the medium 
material, a special linearization procedure was proposed. 
Its essence is the preliminary application of the Kirchhoff 
transformation, which made it possible to linearize nonlin-
ear differential equations and partially boundary conditions, 
obtaining their linear analogs and a quasi-linear boundary 
condition.

An isotropic layer is considered, referred to a cylin-
drical coordinate system (Orφz), on the boundary surface 
L+ = {(r, φ, h): 0 ≤ r < ∞, 0 ≤ φ ≤ 2π} of which in region  
Ω0 = {(R, φ, h): 0 ≤ φ ≤ 2π} heating occurs by a heat flux with 
a specific density q0 =const. On the other boundary surface 
of layer L_= {(r, φ, -h): 0 ≤ r < ∞, 0 ≤ φ ≤ 2π}, the conditions 
of convective heat exchange with the environment with a 
constant temperature tc = const according to Newton’s law 
are given (Fig. 1).

Fig. 1. Isotropic layer under the influence of heat flux

In the given medium, the temperature distribution t (r, z) in 
spatial coordinates r and z is determined by solving the heat 
conduction equation
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where λ is the thermal conductivity coefficient of the layer;  
θ (r, z) = t (r, z) – tc; α- is the heat transfer coefficient from the 
boundary surface of layer L_; S_(ζ) is the asymmetric unit 
function

1, 0,
_( )

0, 0.
S

ζ
ζ

ζ
 ≥=  <

A thermosensitive layer (thermophysical parameters de-
pend on temperature) is considered (Fig. 1).

In the given medium, the temperature field t (r, z) in the 
spatial coordinates r and z is determined by solving the non-
linear heat conduction equation
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where λ(t) is the thermal conductivity coefficient of the ther-
mosensitive layer.

An isotropic layer is considered, referred to a cylindrical 
coordinate system (Orφz), on the boundary surface L+ = {(r,φ,h): 
0≤r <∞, 0 ≤ φ ≤ 2π} of which convective heat exchange with the 
environment with a constant temperature tc occurs according to 
Newton’s law. The other surface of layer L- = {(r,φ,-h): 0 ≤ r < ∞, 
0 ≤ φ ≤ 2π} is thermally insulated (Fig. 2).

In the given medium, the temperature distribution t (r, z) 
in spatial coordinates r and z is determined by solving the 
heat conduction equation
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Here δ(ζ) is the Dirac delta function; α+ is the heat trans-
fer coefficient from surface L+;

S(ζ) is the symmetric unit function
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A thermosensitive layer is considered that is isotropic 
with respect to thermophysical parameters (Fig. 2).

In the given thermosensitive medium, a nonlinear heat 
conduction equation is considered to determine the tempera-
ture field t (r, z)
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Equation (7) and boundary conditions (8) completely 
determine the temperature distribution in the medium in 
spatial coordinates r and z.

5. Results of research on mathematical models of 
heat transfer in media with heat-active elements of 

canonical form

5. 1. Linear mathematical model of heat transfer in 
a layer due to heating by a heat flow

The Henkel integral transformation in coordinate r is ap-
plied to equation (1) and boundary conditions (2). As a result, 
an ordinary homogeneous second-order differential equation 
with constant coefficients is obtained
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where ( )θ z is the transformant of function θ(r,z)
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ξ is the parameter of the Henkel integral transforma-

tion.
The general solution to the ordinary homogeneous differ-

ential equation (9) will be the following expression
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to problem (9), (10) is obtained

( ) ( )
( ) ( ) ( )ξ

θ λξ ξ α ξ
λξ ξ −

 = + − + 
0 1

2 ,
q RJ R

z ch z h sh z h
P

	 (12)

where P(ξ) = λξsh2ξh + α-ch2ξh.
The inverse Henkel integral transformation was applied 

to relation (12), which made it possible to determine the de-
sired solution to the boundary value problem (1), (2), which is 
given by the following expression
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As a result, the temperature field in the layer, caused 
by heating by a heat flux concentrated in a circle on the 
boundary surface, is expressed by formula (13), from 
which the temperature value at any point of it can be de-
rived.

According to formula (13), temperature field t (r, z) in 
the given medium was calculated and its behavior was 
depicted depending on the spatial axial z (Fig. 3, a) and 
radial r (Fig. 3, b) coordinates for the following initial data: 
q0 = 200 W/m2; h = 0.1 m; R = 0.05 m, α- = 0. The composite 
material (λ = 0.840 W/(degree∙m)) was chosen as the layer 
material.

The results show that temperature t (r, z), as a function 
of spatial coordinates, is smooth and monotonic, which con-
firms the correctness of our mathematical model. Numerical 
calculations were performed with an accuracy of 10-6.

5. 2. Nonlinear mathematical model of heat trans-
fer in a layer due to heating by a heat flow

To linearize the boundary value problem (3), (4), the 
Kirchhoff transformation was used
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As a result of the transformations, a linear homogeneous 
differential equation with partial derivatives of the second 
order with respect to function ϑ (r, z) (16) and boundary con-
ditions (17) were obtained. 
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Fig. 3. Dependence of temperature t (r, z) on spatial coordinates: a – axial coordinate z for r = R; b – radial coordinate r for z = h
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The Henkel integral transformation was applied to equa-
tion (16) and boundary conditions (17) with respect to radial 
coordinate r. As a result, an ordinary homogeneous differen-
tial equation of the second order with constant coefficients 
was built
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2
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The general solution to equation (18) is defined in the 
form of (11).

The use of boundary conditions (19) made it possible to 
obtain a partial solution to problem (18), (19) as a result of 
determining the constants of integration c1 and c2
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The inverse Henkel integral transformation is applied to 
relation (20) and on this basis the expression for the Kirch-
hoff function ϑ(r, z) is determined in the following form
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The desired temperature field t (r, z) for the given medi-
um is determined by solving a nonlinear algebraic equation 
obtained from the ratio of the temperature dependence of the 
thermal conductivity coefficient of the structural material 
using relations (14), (21).

The temperature distribution t (r; h) (Table 1) and t (R; z) 
(Table 2) was calculated in spatial coordinates r, z in the 
composite layer for a linearly varying thermal conductivity 
coefficient.

Table 1

Temperature change depending on spatial radial 	
coordinate r (for z = h)

r, m 0.00 0.02 0.04 0.06 0.08 0.10

t, °С 68.85 68.81 68.32 67.81 67.26 66.81

Table 2

Temperature change depending on spatial radial 	
coordinate z (for r = R)

z, m –0.10 –0.075 –0.05 –0.025 0.00 0.025 0.05 0.075 0.10

t, °С 67.82 67.91 67.86 68.08 68.25 68.32 68.57 68.94 69.26

The following input data values were selected: 
q0 = 200 W/m2; h = 0.1 m; R = 0.05 m. Numerical calcula-
tions were performed with an accuracy of 10-6.

5. 3. Linear mathematical model of heat transfer in 
a thermally active layer

The Henkel integral transformation in coordinate r was 
applied to equation (5) and boundary conditions (6). As a 
result, an ordinary inhomogeneous differential equation of 
the second order with constant coefficients and a singular 
right-hand side was obtained

( ) ( )θ θ ξ δ
λξ

− = −
2

2 0
12 î ,

Rqd J R z
dz 		  (22)

under boundary conditions

( )θ

=−

= 0,
z h

d z
dz

 

( ) ( )θ α θ
λ

+
=

=

= .z h

z h

d z
z

dz
		  (23)

The general solution to the ordinary homogeneous differ-
ential equation (22) will be expression (11), in which the in-
tegration constants c1 and c2 are determined using boundary 
conditions (23). As a result, a partial solution to problem (25), 
(26) is obtained

( ) ( )
( )
( ) ( )

θ ξ
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0
12

,

Rq
z J R

ch z h sh h sh zch h S z
P

	 (24)

where P(ξ) = λξsh2ξh – α+ch2ξh.
The inverse Henkel integral transformation was applied 

to relation (24), which made it possible to determine the de-
sired solution to the boundary value problem (5), (6), which is 
given by the following expression

( )
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0 1
0

,

d .

r z

ch z h sh h
ch hJ r PRq J R

sh z S z

θ
ξ α ξξξ λξξξ ξ

ξ ξ
λξ

+
∞

=
 +  

− −  
  =  
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∫ (25)

As a result, the temperature field in the layer, caused by 
heating by an internal heat source concentrated in a thin cyl-
inder, is expressed by formula (25), from which it is possible 
to obtain the temperature value at any point of it.

Due to the operation of electronic devices, high-preci-
sion temperature control is required. Overheating reduces 
their performance and can cause damage. With a minimal 
change in temperature, graphite has the ability to absorb a 
significant amount of heat. As a result, it is used in electronic 
cooling systems, which enables stable operation of the device 
and significantly reduces the risks associated with excessive 
heating.

According to formula (25), the temperature distribution 
θ (R; z) (Fig. 4) was calculated along the spatial axial coor-
dinate z. Graphite was chosen as the medium material. As 
a result of heating, its expansion is insignificant. Graphite 
has high thermal conductivity (the thermal conductivity co-
efficient is 372 W/(m∙degree), which is approximately twice 
as high as for tungsten alloys) and is therefore resistant to 
thermal loads. The operation of electronic devices requires 
high-precision temperature control. Overheating reduces 
their performance and can cause damage. For a minimal 
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change in temperature, graphite has the ability to absorb a 
significant amount of heat. As a result, it is used in electronic 
cooling systems, which enables stable operation of the device 
and significantly reduces the risks associated with excessive 
heating. 

The following input values were selected: q0 = 200 W/m3; 
h = 0.1 m; R = 0.05 m; α+ = 17.64 W/(m2∙degree). Numerical 
calculations were performed with an accuracy of 10-6.

Fig. 4. Dependence of temperature t (r, z) on spatial axial 
coordinate z for r = R in an isotropic layer due to internal 

heating

The shape of the curve shows that the temperature distri-
bution as a function of the spatial coordinate is smooth and 
monotonic, and the maximum values are observed in the 
area of internal heat sources.

5. 4. Nonlinear mathematical model of heat trans-
fer in the thermally active layer

To linearize the boundary value problem (7), (8), the Kirch-
hoff transformation (14) was used and, taking into account ex-
pressions (15), it was transformed to the following form:
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As a result of the transformations, a linear inhomoge-
neous partial differential equation of the second order with a 
singular right-hand side with respect to function ϑ (r, z) (26), 
boundary conditions (27), and a quasilinear boundary condi-
tion (28) are obtained.

Temperature θ (r, h) is approximated as a function of the 
spatial radial coordinate r by a segment-constant function in 
the form

( ) ( ) ( )θ θ θ θ
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= + − −∑
1

1 1
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, ,
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i i i
i

r h S r r 	  (29)

where ri ϵ (0; r*); r1 ≤ r2 ≤…≤ rn-1 θi (i ϵ (1, n)) are unknown 
approximation values of temperature θ(x,h); n is the number 
of partitions of interval (0; r*); r* is the value of the radial 
coordinate for which the temperature reaches value tc (it is 
found from the corresponding linear problem).

To equation (26) and boundary conditions (27), (28) taking 
into account the relation (29), the Henkel integral transforma-
tion is applied in radial coordinate r. As a result, an ordinary 
inhomogeneous differential equation of the second order with 
constant coefficients and a singular right-hand side is obtained
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is the asymmetric Dirac delta function; 

S+ (ζ) – asymmetric unit function;

( ) 1,   0,
0, 0.
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The general solution to the homogeneous equation (30) is 
defined in the form of (11).

The use of boundary conditions (31) made it possible to 
obtain a partial solution to problem (30), (31) as a result of 
determining the constants of integration c1 and c2:
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The inverse Henkel integral transformation is applied to 
relation (32) and on this basis the expression for the Kirchhoff 
function ϑ(r, z) is determined in the following form

( ) ( ) ( )0
0

, .r z J r z dϑ ξ ξ ϑ ξ
∞

= ∫ 		   (33)

The desired temperature field t (r, z) for the given medi-
um is determined by solving a nonlinear algebraic equation 
obtained from the ratio of the temperature dependence of the 
thermal conductivity coefficient of the structural material 
using relations (14), (33).

The temperature distribution θ (R; z) (Table 3) was 
calculated along the spatial axial coordinate z in the 
graphite layer for a linearly varying thermal conductivity 
coefficient.

The following input data values were selected: q0 = 200 W/m3; 
h = 0.1 m; R = 0.05 m; α+ = 17.64 W/(m2·degree). Numerical 
calculations were performed with an accuracy of 10-6 for the 
number of divisions of interval (0; r*) n = 9.

The results obtained for the linear temperature depen-
dence of the thermal conductivity coefficient differ from 
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the results obtained for the constant thermal conductivity 
coefficient of the composite by 5% (Tables 1, 2, Fig. 3), and for 
graphite by 7% (Table 3, Fig. 4).

Table 3

Temperature change depending on spatial axial coordinate z’

z, m –1.0 0.0 1.0 2.0 3.0
t, °С 0.0473 0.0711 0.1192 0.2252 0.1609

6. Construction of mathematical models of heat 
transfer in media with thermally active zones of 

canonical form: results and summary

The boundary value problems of heat conduction have 
been stated in accordance with the physical nature of the 
processes occurring in the considered media. As a result, 
the heat transfer process is described by the equations of 
mathematical physics and boundary conditions, in the right-
hand side of which the Heaviside function and its derivative 
appear. The nature of the temperature curves in Fig. 3, 4, 
constructed according to the obtained numerical values of 
the temperature curve based on analytical solutions (13), (25), 
confirms the correctness of the results. This is evidenced by 
the smooth behavior of the temperature field and compliance 
with the specified boundary conditions at the boundaries of 
the medium.

In our studies, the apparatus of generalized functions was 
used, which allowed us to correctly describe the thermally 
active zones of the canonical form. As a result, the obtained 
linear and nonlinear heat conduction equations contain the 
Dirac delta function in the right-hand side. A technique has 
been proposed that made it possible to reduce nonlinear 
boundary value problems (3), (4) and (7), (8) to linear ones 
and derive analytical solutions (21) and analytical-numerical 
solutions (33). The temperature distribution is determined by 
relations (13), (21), (25), (33) and is illustrated in Fig. 3, 4 and 
in Tables 1–3.

Previous work was analyzed; it was found that the pro-
cess of heating the medium in regions with small geometric 
parameters, in which surface and internal heat sources are 
concentrated, was not considered. This is important since 
the heating of modern electronic devices is concentrated in 
local regions due to their miniaturization, in contrast to [2], 
where an isotropic plate is considered, and [3] for a two-lay-
er medium, heating is concentrated on the entire surface. 
Using the Kirchhoff transformation, the nonlinear heat con-
duction equation and partially the boundary conditions (8) 
were linearized. In view of this, for full linearization, a seg-
ment-constant description of the temperature by the spatial 
coordinate at the layer boundary was introduced according to 
function (29). This approach enables the minimization of the 
calculation error, which could not be achieved in [4, 5, 10, 15] 
because of the use of purely numerical methods. Using the 
apparatus of generalized functions, the thermally active 
canonical heating zones were correctly and effectively dis-
played, which, in turn, made it possible to obtain analytical 
and analytical-numerical solutions to the heat conduction 
equations, the right-hand sides of which are singular.

The architecture of modern electronic devices is charac-
terized by the concentration of individual heat-active nodes 
in the heating regions of the canonical form. As a result, 
there is a need to build mathematical models of heat transfer 

between nodes and their individual elements. These models 
can have a linear or nonlinear form for isotropic spatial envi-
ronments. Although our mathematical models of heat trans-
fer are simplified, they serve as a reliable basis for the further 
construction of more complex models suitable for describing 
heat transfer processes in spatial composite environments.

Based on the obtained analytical and analytical-nu-
merical solutions of linear and nonlinear boundary value 
problems of heat transfer, the feasibility of developing compu-
tational algorithms and software for their numerical imple-
mentation has been substantiated. This will make it possible 
to conduct research for a number of materials used in the 
design of digital electronic devices regarding the influence 
of their thermal sensitivity on the temperature distribution.

Based on the research, it is necessary to take into account 
the temperature dependence of the properties of structural 
materials for a more accurate analysis of thermal regimes in 
nodes and their individual electronic devices. This signifi-
cantly complicates the determination of solutions to linear 
and nonlinear boundary value problems of thermal conduc-
tivity. In contrast, our solutions to these problems reproduce 
the behavior of the temperature field as a function of spatial 
coordinates more adequately and closer to the real physical 
process.

Our research has considered a stationary process of ther-
mal conductivity, which limits the mathematical models built 
that reflect the change in temperature in spatial coordinates. 
The use of boundary conditions of the first, second, and third 
kind on the boundary surfaces of the media should be con-
sidered a disadvantage.

In future studies, mathematical models of heat transfer, 
both linear and nonlinear, will be more complex due to spa-
tial media, taking into account composite structural materi-
als and their anisotropy.

7. Conclusions

1. A linear mathematical model of heat transfer between 
individual elements of structural units of electronic devices 
due to heating by a heat flux concentrated in a circle at the 
edge of the medium has been built. An analytical solution 
to the boundary value problem in the form of an improper 
integral (the upper limit of the integral contains infinity) has 
been obtained. After certain mathematical transformations, 
it was reduced to an integral with finite limits. As a result 
of using the 3/8 Newton method of numerical integration to 
determine the temperature distribution in spatial coordinates 
in the medium, the accuracy of the results has been achieved 
to 10-6. Such accuracy is difficult to achieve using numerical 
methods for solving the original boundary value problem or 
experimental measurements. Due to the concentration of 
thermal heating in a circle at the boundary surface, it is effec-
tively described using asymmetric unit functions. As a result, 
a sufficiently high accuracy of determining the temperature 
field has been achieved.

2. A nonlinear mathematical model of heat transfer 
between individual thermally sensitive elements of struc-
tural units of electronic devices due to heating by a heat 
flux concentrated in a circle at the edge of the medium has 
been constructed. A technique for linearizing the nonlin-
ear boundary value problem has been introduced and on 
this basis an analytical solution has been obtained for the 
linear temperature dependence of the thermal conductivi-
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ty coefficient of the medium material. A numerical experi-
ment has been performed, as a result of which the behavior 
of temperature as a function of spatial coordinates was 
displayed. The results obtained for the selected material 
with a linear temperature dependence of the thermal con-
ductivity coefficient differ from the results obtained for its 
constant value by 5%.

3. A linear mathematical model of heat transfer be-
tween individual elements of structural units of electronic 
devices with internal heating concentrated in the volume 
of a thin cylinder has been built. An analytical solution to 
the boundary value problem has been obtained and on this 
basis, using numerical integration of the improper integral, 
numerical values of temperature for selected values of ther-
mophysical and geometric parameters with an accuracy 
of 10-6 have been given.

4. A nonlinear mathematical model of heat transfer be-
tween individual heat-sensitive elements of structural units 
of electronic devices with internal heating concentrated 
in the volume of a thin cylinder has been constructed. A 
technique for linearizing the nonlinear boundary value 
problem has been introduced and on this basis an analyt-
ical-numerical solution has been obtained for the linear 
temperature dependence of the thermal conductivity coeffi-
cient of the medium material. This solution made it possible 
to build a system of nonlinear algebraic equations under an 
automated mode to determine the unknown values of the 
temperature at the edge of the medium, the coefficients of 
which contain improper integrals. The coefficients were de-
termined by numerical integration, and the solution to the 
system was obtained by Newton’s method with an accuracy 
of 10-6, after which the numerical values of the temperature 
were determined.

Conflicts of interest

The authors declare that they have no conflicts of interest 
in relation to the current study, including financial, personal, 
authorship, or any other, that could affect the study, as well 
as the results reported in this paper.

Funding

The study was conducted without financial support.

Data availability

All data are available, either in numerical or graphical 
form, in the main text of the manuscript.

Use of artificial intelligence

The authors confirm that they did not use artificial intel-
ligence technologies when creating the current work.

Authors’ contributions

Vasyl Havrysh: Conceptualization, Methodology, For-
mal analysis, Writing – original draft; Svitlana Yatsys-
hyn: Software, Visualization, Writing – review & editing; 
Mykhailo Semerak: Investigation, Resources, Validation; 
Mykhailo Klymiuk: Investigation, Resources, Validation; 
Fedir Honchar: Conceptualization, Methodology.

References

1.	 Nikitchuk, A. V. (2024). Impact of Electronic Components Thermal Resilience on the Reliability of Radio-Electronic Equipment. 
Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, 98, 38–45. https://doi.org/10.20535/radap.2024.98.38-45 

2.	 Protsiuk, B. V. (2023). Nonstationary Problems of Heat Conduction for a Thermosensitive Plate with Nonlinear Boundary Condition 
on One Surface. Journal of Mathematical Sciences, 272 (1), 135–150. https://doi.org/10.1007/s10958-023-06405-1 

3.	 Vovk, O. M. (2025). Thermal State of Two Contacting Thermosensitive Layers Under Complex Heat Exchange. Journal of Mathematical 
Sciences, 287 (2), 334–345. https://doi.org/10.1007/s10958-025-07594-7 

4.	 Kozub, H. O., Kozub, Yu. H. (2020). Modeling of thermal processes in layered bodies. Geo-Technical Mechanics, 151, 234–244. https://
doi.org/10.15407/geotm2020.151.234 

5.	 Fahmy, M. A. (2021). A new boundary element algorithm for modeling and simulation of nonlinear thermal stresses in micropolar 
FGA composites with temperature-dependent properties. Advanced Modeling and Simulation in Engineering Sciences, 8 (1). https://
doi.org/10.1186/s40323-021-00193-6 

6.	 Srinivas, V. B., Manthena, V. R., Bikram, J., Kedar, G. D. (2021). Fractional order heat conduction and thermoelastic response of a thermally 
sensitive rectangular parallelopiped. International Journal of Thermodynamics, 24 (1), 62–73. https://doi.org/10.5541/ijot.849663 

7.	 Brociek, R., Hetmaniok, E., Słota, D. (2024). Numerical Solution for the Heat Conduction Model with a Fractional Derivative and 
Temperature-Dependent Parameters. Symmetry, 16 (6), 667. https://doi.org/10.3390/sym16060667 

8.	 Povstenko, Y., Kyrylych, T., Woźna-Szcześniak, B., Yatsko, A. (2024). Fractional Heat Conduction with Heat Absorption in a Solid with 
a Spherical Cavity under Time-Harmonic Heat Flux. Applied Sciences, 14 (4), 1627. https://doi.org/10.3390/app14041627 

9.	 Peng, X., Li, X., Gong, Z., Zhao, X., Yao, W. (2022). A deep learning method based on partition modeling for reconstructing temperature 
field. International Journal of Thermal Sciences, 182, 107802. https://doi.org/10.1016/j.ijthermalsci.2022.107802 

10.	 Basit, M. A., Imran, M., Mohammed, W. W., Ali, M. R., Hendy, A. S. (2024). Thermal analysis of mathematical model of heat and mass 
transfer through bioconvective Carreau nanofluid flow over an inclined stretchable cylinder. Case Studies in Thermal Engineering,  
63, 105303. https://doi.org/10.1016/j.csite.2024.105303 

11.	 Zhou, K., Ding, H., Steenbergen, M., Wang, W., Guo, J., Liu, Q. (2021). Temperature field and material response as a 
function of rail grinding parameters. International Journal of Heat and Mass Transfer, 175, 121366. https://doi.org/10.1016/ 
j.ijheatmasstransfer.2021.121366 



Applied physics

33

12.	 Mathew, J., Krishnan, S. (2021). A Review On Transient Thermal Management of Electronic Devices. Journal of Electronic Packaging. 
https://doi.org/10.1115/1.4050002 

13.	 Liu, X., Peng, W., Gong, Z., Zhou, W., Yao, W. (2022). Temperature field inversion of heat-source systems via physics-informed neural 
networks. Engineering Applications of Artificial Intelligence, 113, 104902. https://doi.org/10.1016/j.engappai.2022.104902 

14.	 Liu, H., Yu, J., Wang, R. (2023). Dynamic compact thermal models for skin temperature prediction of portable electronic devices 
based on convolution and fitting methods. International Journal of Heat and Mass Transfer, 210, 124170. https://doi.org/10.1016/ 
j.ijheatmasstransfer.2023.124170 

15.	 Coronel, A., Lozada, E., Berres, S., Huancas, F., Murúa, N. (2024). Mathematical Modeling and Numerical Approximation of Heat 
Conduction in Three-Phase-Lag Solid. Energies, 17 (11), 2497. https://doi.org/10.3390/en17112497 

16.	 Havrysh, V., Ovchar, I., Baranetskyj, J., Pelekh, J., Serduik, P. (2017). Development and analysis of mathematical models for the process 
of thermal conductivity for piecewise uniform elements of electronic systems. Eastern-European Journal of Enterprise Technologies, 
1 (5 (85)), 23–33. https://doi.org/10.15587/1729-4061.2017.92551 

17.	 Havrysh, V., Ivasyk, H., Kolyasa, L., Ovchar, I., Pelekh, Y., Bilas, O. (2017). Examining the temperature fields in flat piecewise- uniform 
structures. Eastern-European Journal of Enterprise Technologies, 2 (5 (86)), 23–32. https://doi.org/10.15587/1729-4061.2017.97272 

18.	 Havrysh, V. I., Kosach, A. I. (2012). Boundary-value problem of heat conduction for a piecewise homogeneous layer with foreign 
inclusion. Materials Science, 47 (6), 773–782. https://doi.org/10.1007/s11003-012-9455-4 

19.	 Gavrysh, V., Tushnytskyy, R., Pelekh, Y., Pukach, P., Baranetskyi, Y. (2017). Mathematical model of thermal conductivity for piecewise 
homogeneous elements of electronic systems. 2017 14th International Conference The Experience of Designing and Application of 
CAD Systems in Microelectronics (CADSM), 333–336. https://doi.org/10.1109/cadsm.2017.7916146 

20.	 Havrysh, V., Kochan, V. (2023). Mathematical Models to Determine Temperature Fields in Heterogeneous Elements of Digital Devices 
with Thermal Sensitivity Taken into Account. 2023 IEEE 12th International Conference on Intelligent Data Acquisition and Advanced 
Computing Systems: Technology and Applications (IDAACS), 983–991. https://doi.org/10.1109/idaacs58523.2023.10348875 

21.	 Sokolovskyy, Y., Nechepurenko, A., Samotii, T., Yatsyshyn, S., Mokrytska, O., Yarkun, V. (2020). Software and Algorithmic Support 
for Finite Element Analysis of Spatial Heat-and-Moisture Transfer in Anisotropic Capillary-Porous Materials. 2020 IEEE Third 
International Conference on Data Stream Mining & Processing (DSMP), 316–320. https://doi.org/10.1109/dsmp47368.2020.9204175 


