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This study examines the heat exchange pro-
cesses for thermally active and thermally sensitive
individual nodes and elements in electronic devic-
es that are subjected to thermal loads in the areas
of canonical form. As a result of thermal loads, sig-
nificant temperature gradients arise. To improve
the accuracy of designing electronic devices and
for their effective operation, linear and nonlinear
mathematical models have been built to analyze
their temperature regimes.

Based on the stated linear and nonlinear
axisymmetric boundary value problems of heat
conduction, their analytical and analytical-nu-
merical solutions have been derived. Using these
solutions has made it possible to establish the
temperature distribution in spatial radial and
axial coordinates for given geometric and ther-
mophysical parameters (the chosen graphite has
the ability to absorb a significant amount of heat
at its thermal conductivity coefficient equal to
372 W/(m-degree)).

To effectively describe canonical heating
regions, the theory of generalized functions has
been used. A technique for linearizing nonlinear
mathematical models has been introduced. As a
result, linear second-order differential equations
with partial derivatives and a singular right-hand
side have been derived.

The numerical results reflect the temperature
distribution in the medium along the radial and
axial coordinates for the given geometric and ther-
mophysical parameters. The number of divisions of
the interval (0; r*) was chosen to be 9, which made
it possible to obtain numerical values of tempera-
ture with an accuracy of 10°. The resulting numeri-
cal values of temperature for the selected materials
with a linear temperature dependence of the ther-
mal conductivity coefficient differ from the results
obtained for its constant value by 5%.

The constructed mathematical models of heat
transfer make it possible to analyze spatial isotro-
pic media with respect to their thermal stability
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1. Introduction

With the rapid progress in digital technology, the power
and functionality of modern electronic devices are constantly
increasing. Components such as processors, microcontrol-
lers, and graphics cards are becoming more powerful, which
poses serious challenges in the field of managing their ther-
mal regimes. High levels of heat generation lead to significant
temperature gradients that cause unwanted overheating,
reduced performance, and shortened device life. The relative
influence of temperature on the reliability of microelectronic
devices is the highest (55%) compared to other factors such as
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humidity, vibration, and dust. Thermal effects are the most
important factors that affect the reliability indicators of elec-
tronic devices, in particular, the probability of failure-free
operation and the mean time to failure. In [1], the mean time
to failure of resistors, capacitors, integrated circuits, and
semiconductor components was determined.

One of the important causes of these problems is the
formation of non-uniform temperature fields in structural
elements. For example, the high density of electronic compo-
nents on a limited board area creates a significant difference
in heat generation capacity and heat dissipation conditions.
This, in turn, requires detailed analysis and optimization




to enable stable and reliable operation. Effective heat dissi-
pation is critically important because the device can over-
heat and fail without it. To solve this task, it is necessary to
deeply understand the processes of thermal conductivity in
electronic devices. Although materials with high thermal
conductivity, such as copper and aluminum, are widely used,
their properties can change under the influence of geometric
parameters and microstructural defects.

Since experimental studies of the thermal state in in-
dividual components and elements of electronic devices are
often impossible due to high temperatures and the tightness
of structures, mathematical modeling plays a decisive role in
this case. It is on the basis of mathematical models that de-
scribe complex thermophysical processes that it is possible to
obtain reliable information about the temperature regimes of
the device by performing certain computational procedures.
For the practical implementation of these models and to an-
alyze temperature regimes, modern software tools are used.
These tools make it possible to visualize temperature fields
in detail by numerical modeling and simulation, assess the
influence of certain factors on their behavior, and devise ef-
fective cooling strategies, in particular, the optimal arrange-
ment of components or the use of radiators. This approach
makes it possible to identify potential overheating problems
at the design stage, which significantly reduces the need for
expensive physical experiments.

Consequently, it is a relevant task to conduct studies
aimed at the development of mathematical models and soft-
ware tools based on them for analyzing temperature regimes
in modern electronic devices.

2. Literature review and problem statement

Analysis of current approaches to modeling thermal
processes in thermosensitive materials reveals significant
progress in the development of both analytical and analyti-
cal-numerical methods. In [2], the temperature field in an iso-
tropic thermosensitive plate under the action of thermal radi-
ation was investigated, taking into account the temperature
dependence of thermophysical properties and the spatially
inhomogeneous distribution of heat sources. The use of the
Kirchhoff transform, the Green function, and linear spline
approximation made it possible to reduce the problem to a
recurrent nonlinear algebraic equation. At the same time, the
model does not provide for describing localized surface and
internal sources of the canonical form, which limits its ap-
plicability to problems with local temperature disturbances.

In [3], a thermal conductivity model for two thermosen-
sitive layers with heat exchange with the environment was
considered. The solution was obtained by the method of suc-
cessive approximations using linearization and the integral
Laplace transform. The influence of different types of bound-
ary conditions was analyzed but the model is not suitable for
describing pulsed and point heat sources, in particular those
given by the Dirac delta function.

In [4], a generalized procedure for modeling thermal pro-
cesses in layered materials based on a modified finite element
method was proposed. The anisotropy of the material and
the conditions of continuity of temperature and heat flux at
the boundary surfaces of the layers were taken into account.
Despite good adaptability to three-dimensional structures,
the use of the model does not provide a correct description of
local heating sources of the canonical form.

In [5], an algorithm based on the boundary element
method was reported, designed to determine temperature
fields and thermal stresses in functional-gradient micropolar
composites with nonlinear properties. Although the appli-
cation of the method makes it possible to take into account
anisotropy and temperature dependence of parameters, it
is not focused on modeling local temperature disturbances.

The thermal conductivity model using fractional time
derivatives was analyzed in [6]. For a thermoelastic paral-
lelepiped with a finite volume, the Fourier-Laplace transform
was used. It was shown that the order of the fractional deriv-
ative significantly affects the formation of temperature fields.
However, the model does not allow for the consideration of
localized heat sources, and numerical calculations are accom-
panied by a significant accumulation of errors. In [7], a numer-
ical method for solving the heat conductivity equation with a
fractional spatial derivative of the Riemann-Liouville type in
combination with temperature-dependent material parame-
ters was proposed. Despite the effectiveness of the algorithm,
its applicability is limited due to simple boundary conditions.

In [8], the problem of centrally symmetric heating of a
body with a spherical hole by a harmonic heat flux was con-
sidered using the integral Fourier and Laplace transforms.
The main drawback of the model is the lack of consideration
of the temperature dependence of thermophysical parame-
ters. Instead, in [9], a neural network model of temperature
field reconstruction based on UNet and MLP is reported,
which provides high prediction accuracy but requires large
training samples and does not take into account thermal sen-
sitivity and local temperature perturbations.

In [10], heat and mass transfer in Carro nanofluids with
mobile microorganisms under the action of thermal radia-
tion and activation energy was investigated. The reduction
of partial derivative equations to the system of SDRs sig-
nificantly simplifies the description of processes but makes
it impossible to model local heat sources and temperature
dependence of medium properties. Similarly, in [11], as a re-
sult of the analysis of thermal processes in the rail grinding
zone, an analytical model with a non-uniform heat source
was constructed, confirmed experimentally, but without the
possibility of detailed reproduction of temperature gradients
important for predicting surface defects.

In [12], issues of thermal management of electronic de-
vices in transient regimes are highlighted; however, the re-
search is mainly experimental in nature, which complicates
the construction of generalized models. In [13], the PINN-TFI
temperature field inversion method based on physically in-
formed neural networks is presented; however, it is sensitive
to data noise and does not take into account the thermally
sensitive properties of the material. In [14], compact dynamic
models for predicting the temperature of mobile device cases
are described; however, the model does not provide for taking
into account localized heat sources in canonical regions.

In [15], a numerical scheme is proposed for the one-di-
mensional problem of thermal conductivity in a three-layer
body. Despite the simplicity of implementation, the use of
the method does not allow for the estimation of spatial tem-
perature gradients. In papers [16-19], models of thermal con-
ductivity in homogeneous, segmentally homogeneous, and
layered media with foreign inclusions of various geometric
shapes were considered; however, in most cases, either the
temperature dependence of the material properties was not
taken into account, or there was no description of localized
thermally active zones.



In work [20], a nonlinear model of thermal conductivity
in a layer with a semi-through cylindrical inclusion was
proposed using a linearizing function. However, the model
does not allow for the description of internal heat sources
concentrated inside a thin inclusion. Finally, paper [21] con-
sidered a three-dimensional model of heat and mass transfer
in capillary-porous materials using the finite element method
and parallel CUDA calculations. Despite high performance,
an increase in the mesh density leads to a significant accu-
mulation of errors, which limits the accuracy of modeling.

Our review of the literature demonstrates a significant
number of approaches to modeling thermal processes — from
classical analytical methods and integral transformations to
fractional models, MFE methods, and deep neural networks.
However, common limitations are observed in all papers,
namely:

- lack of support for local surface and internal heat sourc-
es of canonical form;

— failure to take into account the temperature dependence
of thermophysical characteristics in most models;

- accumulation of numerical errors when using integral
transformations, fractional derivatives, and an excessively
fine grid;

- dependence of neural network models on the volume
and quality of training data.

The identified gaps justify the feasibility of building new
analytical and numerical models that correctly describe
spatial temperature gradients in thermosensitive materials,
take into account localized heat sources of canonical form,
and provide high accuracy. Construction of such models is of
particular practical value for analyzing thermal processes in
structural heat-sensitive elements of electronic devices with
complex geometric shapes of heating sources.

3. The aim and objectives of the study

The purpose of our study is to build linear and nonlinear
mathematical models for determining temperature fields in
isotropic spatial environments with thermally active heating
zones of a canonical form. As a result, it will be possible to
increase the accuracy of determining the temperature distri-
bution and to analyze temperature regimes in more depth,
which will further affect the effectiveness of design methods
for modern electronic devices.

To achieve this goal, it is necessary to solve the following
problems:

- to construct a linear mathematical model of heat trans-
fer in a layer due to heating by a heat flow;

- to build a nonlinear mathematical model of heat transfer
in a heat-sensitive layer (thermophysical parameters of the
material depend on temperature) due to heating by a heat flow;

- to construct a linear mathematical model of heat trans-
fer in a heat-active layer (internal heating concentrated in the
volume of the cylinder);

- to build a nonlinear mathematical model of heat trans-
fer in a heat-active and heat-sensitive layer.

4. The study materials and methods

The object of the study is the process of heat transfer in
isotropic spatial environments, the heating zones of which
are geometric figures of canonical form.

Research hypothesis: if the temperature fields in the
spatial environment are caused by heating in the regions of
the canonical form, then they can be described by analytical
and analytical-numerical solutions of linear and nonlinear
axisymmetric boundary value problems of heat conduction.
The heat conduction equations of these problems contain
right-hand sides with the Dirac delta function, which makes
it possible to describe the concentration of heating in such
regions.

It is assumed that in the process of the study the spatial
environment is such that the thermophysical parameters are
invariant in spatial directions. The solutions to the boundary
value problems of heat conduction, which correspond to
linear and nonlinear heat transfer models, are determined,
describing the temperature distribution in spatial radial and
axial coordinates.

Asymmetric unit functions and the Dirac delta function
are used to display the thermally active heating zones of
the canonical form. This methodological approach makes it
possible to adequately describe thermal processes caused by
the heat flux acting on the boundary surface of the medium
within a circular contour. It is also possible to reflect heating
by internal heat sources uniformly distributed in the volume
of the cylindrical region. As a result, axisymmetric boundary
value problems with partial differential equations of the sec-
ond order and the Dirac delta function in the right-hand side
were obtained. To solve nonlinear axisymmetric heat transfer
problems caused by the thermal sensitivity of the medium
material, a special linearization procedure was proposed.
Its essence is the preliminary application of the Kirchhoff
transformation, which made it possible to linearize nonlin-
ear differential equations and partially boundary conditions,
obtaining their linear analogs and a quasi-linear boundary
condition.

An isotropic layer is considered, referred to a cylin-
drical coordinate system (Orgz), on the boundary surface
L,={ ¢ h):0<r < o, 0< ¢ < 2m} of which in region
Qo ={(R, @, h): 0 <@ <27} heating occurs by a heat flux with
a specific density qo =const. On the other boundary surface
of layer L ={(r, ¢, -h): 0 < r < o0, 0 < ¢ < 27}, the conditions
of convective heat exchange with the environment with a
constant temperature {. = const according to Newton’s law
are given (Fig. 1).

Fig. 1. Isotropic layer under the influence of heat flux

In the given medium, the temperature distribution ¢ (, z) in
spatial coordinates r and z is determined by solving the heat
conduction equation
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A thermosensitive layer (thermophysical parameters de-
pend on temperature) is considered (Fig. 1).

In the given medium, the temperature field ¢ (r, z) in the
spatial coordinates r and z is determined by solving the non-
linear heat conduction equation
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where A(f) is the thermal conductivity coefficient of the ther-
mosensitive layer.

An isotropic layer is considered, referred to a cylindrical
coordinate system (Or¢z), on the boundary surface L, = {(r,¢,h):
0<r <o, 0 < ¢ < 27} of which convective heat exchange with the
environment with a constant temperature tc occurs according to
Newton’s law. The other surface of layer L. = {(r,¢,-h): 0 < r < oo,
0 < ¢ < 27} is thermally insulated (Fig. 2).

In the given medium, the temperature distribution ¢ (1, z)
in spatial coordinates r and z is determined by solving the
heat conduction equation
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Fig. 2. Isotropic layer under the influence of internal
heating

Here 8({) is the Dirac delta function; e, is the heat trans-
fer coefficient from surface L,;
S(¢) is the symmetric unit function
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w80 i
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A thermosensitive layer is considered that is isotropic
with respect to thermophysical parameters (Fig. 2).

In the given thermosensitive medium, a nonlinear heat
conduction equation is considered to determine the tempera-
ture field t (v, 2)
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Equation (7) and boundary conditions (8) completely
determine the temperature distribution in the medium in
spatial coordinates r and z.

5. Results of research on mathematical models of
heat transfer in media with heat-active elements of
canonical form

5.1. Linear mathematical model of heat transfer in
a layer due to heating by a heat flow

The Henkel integral transformation in coordinate r is ap-
plied to equation (1) and boundary conditions (2). As a result,
an ordinary homogeneous second-order differential equation
with constant coefficients is obtained
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where é(z) is the transformant of function 0(r,z)
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— first-kind Bessel function of v-th order;

¢ is the parameter of the Henkel integral transforma-
tion.

The general solution to the ordinary homogeneous differ-
ential equation (9) will be the following expression

5(z) =cle§z +c2e’5z, (11)

in which integration constants c; and c, are determined
using boundary conditions (10). As a result, a partial solution
to problem (9), (10) is obtained
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where P(§) = A&sh2Eh + a.ch2&h.
The inverse Henkel integral transformation was applied
to relation (12), which made it possible to determine the de-

sired solution to the boundary value problem (1), (2), which is
given by the following expression
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As a result, the temperature field in the layer, caused
by heating by a heat flux concentrated in a circle on the
boundary surface, is expressed by formula (13), from
which the temperature value at any point of it can be de-
rived.

According to formula (13), temperature field ¢ (r, z) in
the given medium was calculated and its behavior was
depicted depending on the spatial axial z (Fig.3,a) and
radial r (Fig. 3, b) coordinates for the following initial data:
qo =200 W/m?; h = 0.1 m; R = 0.05 m, a. = 0. The composite
material (A = 0.840 W/(degree-m)) was chosen as the layer
material.
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The results show that temperature ¢ (7, z), as a function
of spatial coordinates, is smooth and monotonic, which con-
firms the correctness of our mathematical model. Numerical
calculations were performed with an accuracy of 10°°.

5.2. Nonlinear mathematical model of heat trans-
fer in a layer due to heating by a heat flow

To linearize the boundary value problem (3), (4), the
Kirchhoff transformation was used

{rz)

ﬁ(r,z)=% j A(¢)d¢. (14)

Here A° is the reference coefficient of thermal conductiv-
ity of the layer material.

As a result of differentiating expression (14) with respect
to variables r and z, the following relation is obtained
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taking into account which the original equation (3) and bound-
ary conditions (4) are transformed to the following form:
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As a result of the transformations, a linear homogeneous
differential equation with partial derivatives of the second
order with respect to function $ (r, ) (16) and boundary con-
ditions (17) were obtained.

t,°C| ¢
64.00 \\
63.50 \\
63.00 \\
62.50 <
0.0 0.2 0.4 0.6 0.8 7, m

b

Fig. 3. Dependence of temperature (r, z) on spatial coordinates: a — axial coordinate z for r= R; b — radial coordinate rfor z= h



The Henkel integral transformation was applied to equa-
tion (16) and boundary conditions (17) with respect to radial
coordinate r. As a result, an ordinary homogeneous differen-
tial equation of the second order with constant coefficients
was built
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where (z)= I rJ,(r&)®(r.z)dr is the transformant of func-
tion$ (r,z). —

The general solution to equation (18) is defined in the
form of (11).

The use of boundary conditions (19) made it possible to
obtain a partial solution to problem (18), (19) as a result of
determining the constants of integration c¢; and ¢,

T, (Ré).

The inverse Henkel integral transformation is applied to
relation (20) and on this basis the expression for the Kirch-
hoff function 8(r, z) is determined in the following form

S(p)= Rq, ché(z+h)

(Z) - 2’062 Sh2§h (20
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The desired temperature field ¢ (r, z) for the given medi-
um is determined by solving a nonlinear algebraic equation
obtained from the ratio of the temperature dependence of the
thermal conductivity coefficient of the structural material
using relations (14), (21).

The temperature distribution t (r; h) (Table 1) and ¢ (R; z)
(Table 2) was calculated in spatial coordinates r, z in the
composite layer for a linearly varying thermal conductivity
coefficient.

Table 1
Temperature change depending on spatial radial
coordinate r (for z= h)
r, m 0.00 0.02 0.04 0.06 0.08 0.10
t, °C 68.85 68.81 68.32 67.81 67.26 66.81
Table 2

Temperature change depending on spatial radial
coordinate z (for r=R)

zZ, m|-0.10 | -0.075| -0.05 [-0.025| 0.00 |0.025| 0.05 [0.075| 0.10

67.91 | 67.86 | 68.08 |68.25|68.32|68.57(68.94|69.26

t,°C| 67.82

The following input data values were selected:
qo =200 W/m?; h = 0.1 m; R = 0.05 m. Numerical calcula-
tions were performed with an accuracy of 10°°.

5.3. Linear mathematical model of heat transfer in
a thermally active layer

The Henkel integral transformation in coordinate r was
applied to equation (5) and boundary conditions (6). As a
result, an ordinary inhomogeneous differential equation of
the second order with constant coefficients and a singular
right-hand side was obtained
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The general solution to the ordinary homogeneous differ-
ential equation (22) will be expression (11), in which the in-
tegration constants c; and c, are determined using boundary
conditions (23). As a result, a partial solution to problem (25),
(26) is obtained
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where P(§) = A&sh2&h — a, ch2kh.

The inverse Henkel integral transformation was applied
to relation (24), which made it possible to determine the de-
sired solution to the boundary value problem (5), (6), which is
given by the following expression
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As a result, the temperature field in the layer, caused by
heating by an internal heat source concentrated in a thin cyl-
inder, is expressed by formula (25), from which it is possible
to obtain the temperature value at any point of it.

Due to the operation of electronic devices, high-preci-
sion temperature control is required. Overheating reduces
their performance and can cause damage. With a minimal
change in temperature, graphite has the ability to absorb a
significant amount of heat. As a result, it is used in electronic
cooling systems, which enables stable operation of the device
and significantly reduces the risks associated with excessive
heating.

According to formula (25), the temperature distribution
0 (R; z) (Fig. 4) was calculated along the spatial axial coor-
dinate z. Graphite was chosen as the medium material. As
a result of heating, its expansion is insignificant. Graphite
has high thermal conductivity (the thermal conductivity co-
efficient is 372 W/(m-degree), which is approximately twice
as high as for tungsten alloys) and is therefore resistant to
thermal loads. The operation of electronic devices requires
high-precision temperature control. Overheating reduces
their performance and can cause damage. For a minimal



change in temperature, graphite has the ability to absorb a
significant amount of heat. As a result, it is used in electronic
cooling systems, which enables stable operation of the device
and significantly reduces the risks associated with excessive
heating.

The following input values were selected: gy = 200 W/m3;
h =0.1 m; R = 0.05 m; oy = 17.64 W/(m?-degree). Numerical
calculations were performed with an accuracy of 10°°.

—1t,°C%

0.3

0.2 //\\
0.1 4

L

Fig. 4. Dependence of temperature £ (r, z) on spatial axial
coordinate z for r= Rin an isotropic layer due to internal
heating

The shape of the curve shows that the temperature distri-
bution as a function of the spatial coordinate is smooth and
monotonic, and the maximum values are observed in the
area of internal heat sources.

5.4.Nonlinear mathematical model of heat trans-
fer in the thermally active layer

To linearize the boundary value problem (7), (8), the Kirch-
hoff transformation (14) was used and, taking into account ex-
pressions (15), it was transformed to the following form:
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As a result of the transformations, a linear inhomoge-
neous partial differential equation of the second order with a
singular right-hand side with respect to function 9 (r, z) (26),
boundary conditions (27), and a quasilinear boundary condi-
tion (28) are obtained.

Temperature 6 (v, h) is approximated as a function of the
spatial radial coordinate r by a segment-constant function in
the form

6’(r,h)=6’1+anl(@m—t9,-)Sf(r—rl-), 29

i=1

where r; € (0; r*); r; < ry <...< rpq 6;(i € (1, n)) are unknown
approximation values of temperature 6(x,h); n is the number
of partitions of interval (0; r*); r* is the value of the radial
coordinate for which the temperature reaches value ¢, (it is
found from the corresponding linear problem).

To equation (26) and boundary conditions (27), (28) taking
into account the relation (29), the Henkel integral transforma-
tion is applied in radial coordinate r. As a result, an ordinary
inhomogeneous differential equation of the second order with
constant coefficients and a singular right-hand side is obtained
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A(E)=(t,=)8. (&)= 20, (1) (1.1,
o, (4’ )= dSégé’) is the asymmetric Dirac delta function;

S, (§) - asymmetric unit function;

1 0,
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The general solution to the homogeneous equation (30) is
defined in the form of (11).

The use of boundary conditions (31) made it possible to
obtain a partial solution to problem (30), (31) as a result of
determining the constants of integration c¢; and c;:

Rg" T, (RE)x

- he(z+h

9(z)= /10152 ¢ sh(zz;z ) chéh-shézs(z) [+h (2
+0@A(§)ch§(z+h)
C sh2én

The inverse Henkel integral transformation is applied to
relation (32) and on this basis the expression for the Kirchhoff
function 8(r, z) is determined in the following form

ﬂ(r,z)z_[ffo(rf):?(z)df. (33)

0

The desired temperature field ¢ (r, z) for the given medi-
um is determined by solving a nonlinear algebraic equation
obtained from the ratio of the temperature dependence of the
thermal conductivity coefficient of the structural material
using relations (14), (33).

The temperature distribution 6 (R; z) (Table 3) was
calculated along the spatial axial coordinate z in the
graphite layer for a linearly varying thermal conductivity
coefficient.

The following input data values were selected: o= 200 W/m3;
h = 0.1 m; R = 0.05 m; a, = 17.64 W/(m?-degree). Numerical
calculations were performed with an accuracy of 10 for the
number of divisions of interval (0; r*) n = 9.

The results obtained for the linear temperature depen-
dence of the thermal conductivity coefficient differ from



the results obtained for the constant thermal conductivity
coefficient of the composite by 5% (Tables 1, 2, Fig. 3), and for
graphite by 7% (Table 3, Fig. 4).

Table 3
Temperature change depending on spatial axial coordinate z’
Z,m -1.0 0.0 1.0 2.0 3.0
t,°C 0.0473 0.0711 0.1192 0.2252 0.1609

6. Construction of mathematical models of heat
transfer in media with thermally active zones of
canonical form: results and summary

The boundary value problems of heat conduction have
been stated in accordance with the physical nature of the
processes occurring in the considered media. As a result,
the heat transfer process is described by the equations of
mathematical physics and boundary conditions, in the right-
hand side of which the Heaviside function and its derivative
appear. The nature of the temperature curves in Fig. 3, 4,
constructed according to the obtained numerical values of
the temperature curve based on analytical solutions (13), (25),
confirms the correctness of the results. This is evidenced by
the smooth behavior of the temperature field and compliance
with the specified boundary conditions at the boundaries of
the medium.

In our studies, the apparatus of generalized functions was
used, which allowed us to correctly describe the thermally
active zones of the canonical form. As a result, the obtained
linear and nonlinear heat conduction equations contain the
Dirac delta function in the right-hand side. A technique has
been proposed that made it possible to reduce nonlinear
boundary value problems (3), (4) and (7), (8) to linear ones
and derive analytical solutions (21) and analytical-numerical
solutions (33). The temperature distribution is determined by
relations (13), (21), (25), (33) and is illustrated in Fig. 3, 4 and
in Tables 1-3.

Previous work was analyzed; it was found that the pro-
cess of heating the medium in regions with small geometric
parameters, in which surface and internal heat sources are
concentrated, was not considered. This is important since
the heating of modern electronic devices is concentrated in
local regions due to their miniaturization, in contrast to [2],
where an isotropic plate is considered, and [3] for a two-lay-
er medium, heating is concentrated on the entire surface.
Using the Kirchhoff transformation, the nonlinear heat con-
duction equation and partially the boundary conditions (8)
were linearized. In view of this, for full linearization, a seg-
ment-constant description of the temperature by the spatial
coordinate at the layer boundary was introduced according to
function (29). This approach enables the minimization of the
calculation error, which could not be achieved in [4, 5, 10, 15]
because of the use of purely numerical methods. Using the
apparatus of generalized functions, the thermally active
canonical heating zones were correctly and effectively dis-
played, which, in turn, made it possible to obtain analytical
and analytical-numerical solutions to the heat conduction
equations, the right-hand sides of which are singular.

The architecture of modern electronic devices is charac-
terized by the concentration of individual heat-active nodes
in the heating regions of the canonical form. As a result,
there is a need to build mathematical models of heat transfer

between nodes and their individual elements. These models
can have a linear or nonlinear form for isotropic spatial envi-
ronments. Although our mathematical models of heat trans-
fer are simplified, they serve as a reliable basis for the further
construction of more complex models suitable for describing
heat transfer processes in spatial composite environments.

Based on the obtained analytical and analytical-nu-
merical solutions of linear and nonlinear boundary value
problems of heat transfer, the feasibility of developing compu-
tational algorithms and software for their numerical imple-
mentation has been substantiated. This will make it possible
to conduct research for a number of materials used in the
design of digital electronic devices regarding the influence
of their thermal sensitivity on the temperature distribution.

Based on the research, it is necessary to take into account
the temperature dependence of the properties of structural
materials for a more accurate analysis of thermal regimes in
nodes and their individual electronic devices. This signifi-
cantly complicates the determination of solutions to linear
and nonlinear boundary value problems of thermal conduc-
tivity. In contrast, our solutions to these problems reproduce
the behavior of the temperature field as a function of spatial
coordinates more adequately and closer to the real physical
process.

Our research has considered a stationary process of ther-
mal conductivity, which limits the mathematical models built
that reflect the change in temperature in spatial coordinates.
The use of boundary conditions of the first, second, and third
kind on the boundary surfaces of the media should be con-
sidered a disadvantage.

In future studies, mathematical models of heat transfer,
both linear and nonlinear, will be more complex due to spa-
tial media, taking into account composite structural materi-
als and their anisotropy.

7. Conclusions

1. A linear mathematical model of heat transfer between
individual elements of structural units of electronic devices
due to heating by a heat flux concentrated in a circle at the
edge of the medium has been built. An analytical solution
to the boundary value problem in the form of an improper
integral (the upper limit of the integral contains infinity) has
been obtained. After certain mathematical transformations,
it was reduced to an integral with finite limits. As a result
of using the 3/8 Newton method of numerical integration to
determine the temperature distribution in spatial coordinates
in the medium, the accuracy of the results has been achieved
to 10°5. Such accuracy is difficult to achieve using numerical
methods for solving the original boundary value problem or
experimental measurements. Due to the concentration of
thermal heating in a circle at the boundary surface, it is effec-
tively described using asymmetric unit functions. As a result,
a sufficiently high accuracy of determining the temperature
field has been achieved.

2. A nonlinear mathematical model of heat transfer
between individual thermally sensitive elements of struc-
tural units of electronic devices due to heating by a heat
flux concentrated in a circle at the edge of the medium has
been constructed. A technique for linearizing the nonlin-
ear boundary value problem has been introduced and on
this basis an analytical solution has been obtained for the
linear temperature dependence of the thermal conductivi-



ty coefficient of the medium material. A numerical experi-
ment has been performed, as a result of which the behavior
of temperature as a function of spatial coordinates was
displayed. The results obtained for the selected material
with a linear temperature dependence of the thermal con-
ductivity coefficient differ from the results obtained for its
constant value by 5%.

3. A linear mathematical model of heat transfer be-
tween individual elements of structural units of electronic
devices with internal heating concentrated in the volume
of a thin cylinder has been built. An analytical solution to
the boundary value problem has been obtained and on this
basis, using numerical integration of the improper integral,
numerical values of temperature for selected values of ther-
mophysical and geometric parameters with an accuracy
of 10°® have been given.

4. A nonlinear mathematical model of heat transfer be-
tween individual heat-sensitive elements of structural units
of electronic devices with internal heating concentrated
in the volume of a thin cylinder has been constructed. A
technique for linearizing the nonlinear boundary value
problem has been introduced and on this basis an analyt-
ical-numerical solution has been obtained for the linear
temperature dependence of the thermal conductivity coeffi-
cient of the medium material. This solution made it possible
to build a system of nonlinear algebraic equations under an
automated mode to determine the unknown values of the
temperature at the edge of the medium, the coefficients of
which contain improper integrals. The coefficients were de-
termined by numerical integration, and the solution to the
system was obtained by Newton’s method with an accuracy
of 10°%, after which the numerical values of the temperature
were determined.
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