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This paper explores change detection in repeat-track side-
scan sonar imagery through feature matching. It addresses
insufficient matching accuracy and stability in low-contrast,
noisy, and geometrically distorted side-scan sonar imagery typ-
ically collected from surface vehicles. The experiment included
a comparison of classical, convolutional, and transformer-
based feature matching methods (SIFT, DISK, SuperPoint,
LoFTR, and LightGlue) on two real-world datasets, Atlantic
and Baltic. The results were evaluated quantitatively and qual-
itatively. Quantitative evaluation used displacement, angular
stability, and reprojection error metrics, as well as resource
consumption metrics like execution time and memory usage.
In addition, matching maps and change maps for pairs of
images were generated and analyzed qualitatively. All meth-
ods produced interpretable change maps for the low-noise
Baltic dataset, whereas the wave-affected Atlantic dataset with
stripe- and speckle noise only occasionally produced consis-
tent maps. The SuperPoint + LightGlue method demonstrated
the highest ratio of inlier correspondences after RANSAC fil-
tering (43.4% and 65.6%) and the lowest mean reprojection
error (36.0 and 3.9 px), while LoFTR provided the densest cov-
erage (up to 97%) consuming up to 15X more computational
resources. These results confirm the advantage of transformer-
based matching methods under challenging conditions due to
their global receptive field. In contrast, CNN-based methods
performed better in low-noise, well-aligned images. Overall, the
findings indicate that deep feature matchers can improve the
applicability and reliability of change detection in tasks such as
humanitarian demining, autonomous underwater navigation,
image mosaicking, and related applications
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Side-scan sonar (SSS) is extensively used for wide range of
underwater applications. Detecting changes between same-
track missions is crucial for mine counter-measures (MCM),
rescue operations, underwater and coastal inspection, port
security, marine environment studies, pipeline inspection,
underwater archeology and other use cases of side-scan so-
nar imagery.

However, analysis of SSS images over long missions is
significantly more challenging than optical images. This com-
plexity is caused by low contrast, a small number of visible ob-
jects, speckle noise, geometric distortions caused by platform
motion, and the presence of prominent acoustic shadows and
highlights. These factors make it difficult to extract and reli-
ably match keypoints between different missions, which is es-
sential for change detection tasks, mosaicking and simultane-
ous localization and mapping (SLAM). The number of images
obtained during a single survey can reach thousands. Manual
processing of such information volumes requires significant
human resources and time, and makes it impossible to make
timely decisions in military, rescue, or engineering operations.

The key area of modern research in this field is the appli-
cation of deep learning and computer vision methods to im-

prove the accuracy and reliability of image matching, change
detection, and object localization. Neural networks consider
complex patterns of intensity, texture and geometry of the
seabed, inaccessible to classical algorithms. However, most
existing studies of SSS images matching use either classical
methods, such as SIFT, SURF, and ORB, or convolutional neu-
ral networks (CNNSs), transferred from the optical domain [1].
Classical methods are not effective enough in cases of low
contrast, strong speckle noise, and lack of distinctive features,
while CNN-based approaches rely on local receptive fields
and are therefore limited in capturing global context. The lack
of open data for training and fine-tuning also limits the use
of convolutional approaches, while the active development
and success of transformer-based models make it possible to
solve the problems of image matching and change detection
assuming the image global context under complex conditions.

The evolution of deep learning methods will help move
to automated processing of SSS data. This will enable oper-
ator-free work of autonomous systems in real time. From
a practical point of view, the research will help in mine counter-
measures, environmental monitoring, inspection of marine
structures, and the development of autonomous navigation.

For Ukraine, these tasks are of particular importance: the
consequences of the war create a need for new approaches to




humanitarian demining and the safe use of coastal waters.
Thus, research aimed at applying modern deep learning
methods to SSS images matching and change detection is
relevant for both science and practical usage.

2. Literature review and problem statement

A detailed comparison of keypoint detection methods
performed on sonar images from autonomous underwater
vehicles was carried out in [1]. Ten methods (nine classical
AKAZE, BRISK, FAST, Harris, ORB, Shi-Tomasi, SIFT, SURF,
SAR-SIFT, and the KeyNet deep detector) were compared on
a dataset of sixteen SSS and forward-looking sonar (FLS) im-
ages pre-processed by filters. The methods were evaluated by
the number of points found, coverage density, time spent, and
other metrics. However, the dataset was quite limited, and the
images contained strong features, which facilitated the iden-
tification of keypoints. In addition, the images were collected
from underwater vehicles, which are much less affected by
noise and waves than surface ones.

The classification of methods for detecting changes in re-
mote sensing images divides them into two main types, as noted
in review [2]: pixel-based (PBCD) and object-based (OBCD).
The former implements image comparison at the pixel level,
which requires precise alignment. The latter aims to compare
objects previously detected by other methods. The basis of the
PBCD approach is the process of image co-registration, that
aligns two or more images using navigation information or
matching features within them with subpixel accuracy. The pa-
per confirms the relevance of deep learning methods for match-
ing (in particular, RPC, SIFT, DTM, CACO, and RANSAC) and
detecting changes in (radar) remote sensing images but not for
SSS images, which have their own specificity. It also does not
mention the transformer-based models that have gained popu-
larity in recent years.

After aligning the images by keypoints, a change map suit-
able for manual or automated analysis can be created by simple
subtraction as, for example, in study [3]. It used a convolutional
neural network (CNN) to classify potential changes into "object”
and "non-object” and reduce the percentage of false classifica-
tions. The matching was performed using a third-party library
without specifying the algorithm. However, due to the lack of
open SSS datasets, the study was mainly based on a synthetic
dataset and several real-world SSS images from underwater ve-
hicles. It is known that synthetic data cannot always reproduce
the actual environment in sufficient detail. Thus, the problem
of matching points using deep methods on sufficiently large
real-world datasets remains unsolved, partially due to the lack
of large public datasets.

In work [4], it was proposed to use deep segmentation
models (Segment Anything Model) to detect changes in syn-
thetic aperture sonar (SAS) images. The model showed better
results than traditional log-ratio based change detection. Point
detection and matching were performed using classical SIFT
and RANSAC methods. SAS images, although similar to SSS
ones, are generally of much better quality, so the question of
applicability of the methods to SSS remained open.

Image matching can also be performed for simultane-
ous localization and mapping (SLAM). For example, in [5],
the classical A-KAZE point detection method [6] is used for
matching images obtained from forward-looking sonar (FLS).
However, the application of these methods to SSS images has
not been considered.

A comparative study [7] of matching methods’ effective-
ness on images obtained in same-track SAS missions was con-
ducted. The SIFT algorithm was used for feature matching,
and the RANSAC method or its modifications, in particular
M-estimator Sample Consensus (MSAC), were used to re-
fine the results by filtering out incorrect matching. Another
work [8] also used SIFT and SURF as the main methods for
feature matching, along with other approaches. However,
deep feature detection and matching methods were not con-
sidered in these studies.

Feature matching is also a key element in mosaicking and
automatic target recognition (ATR). In [9], the sonar-to-op-
tical style transfer was used to increase the proportion of
correct matches and TFeat, a local feature descriptor based
on the VGG-19 convolutional neural network was proposed,
which exceeded the classical descriptors in quality. However,
the experiment was performed on a limited set of six images
from an AUV that contained prominent features and no trans-
former matchers were used.

In [10], SIFT was chosen to detect corner points on the
SSS image from an underwater vehicle due to its high match-
ing accuracy. However, there were numerous noticeable lines
on the flat seafloor left by anchors, which significantly helped
in detecting keypoints in these high-quality images.

In the experimental results published in [11], the SURF
algorithm was used as a keypoint detector for SAS image
matching. Also, in [12], SIFT was used to match SAS images
in a multi-stage registration system using canonical correla-
tion analysis. However, their application to SSS images was
not investigated.

In[13], a SONIC convolutional matching model was
proposed for FLS images, and an experimental comparison
was made with AKAZE and the LightGlue transformer
model [14]. However, their application to SSS images was not
investigated.

Therefore, it can be concluded that for the tasks of change
detection and feature matching in remote sensing images, in
particular sonar images, methods based on classical feature de-
tectors, such as SIFT, SURF, A-KAZE, or PatchMatch [15, 16],
in combination with descriptor matching and geometric re-
finement via RANSAC, are widely used. At the same time,
there are numerous studies of deep learning methods includ-
ing CNNs for the above-mentioned tasks. They demonstrate
increased robustness to noise, intensity variations and image
distortions, and show advantages over classical algorithms
in low contrast conditions. However, convolutional methods
mostly work with local perception fields and consequently do
not always take into account the wider context of the scene,
which is a significant drawback for sonar images with a small
number of prominent texture features.

New transformer-based approaches offer promising ways
to overcome these limitations. Instead of the traditional
"detect-describe-match” sequence, modern algorithms such
as LoFTR [17] use an attention mechanism that allows for
global analysis of correspondences between images. LOFTR
generates dense pixel-wise matches without the need for an
external detector, while LightGlue dynamically adapts the
matching process using descriptors obtained from deep de-
tectors such as SuperPoint [18], DISK [19], or classical SIFT.
These methods may be particularly promising for SSS images,
where local textures are weakly expressed, but global struc-
tural features of the seabed morphology remain stable.

Therefore, the unsolved part of the problem is the lack of
a comparative assessment of modern feature matching methods



of different architectures (classical, convolutional and trans-
former-based) specifically for real-world SSS images, including
noisy ones. Existing works are mostly focused on processing
optical or SAS images from underwater vehicles with distinct
high contrast features, which significantly simplifies the task of
keypoint detection and matching, while real-world sonar images
collected from surface vehicles have low contrast, a small num-
ber of noticeable high contrast objects, shadows, high speckle
and stripe noise. The question of methods’ effectiveness by the
"accuracy-resource consumption” criteria still remains open,
which is critically important for their use in autonomous systems
with limited computing resources.

In other words, it is advisable to conduct a study to sys-
tematically compare the effectiveness and resource utilization
of modern classical, convolutional, and transformer-based
methods for the tasks of features matching and changes de-
tection. The datasets for the study should be large enough
and contain real-world side-scan sonar images collected from
a surface vehicle.

3. The aim and objectives of the study

The aim of the study is to determine the suitability of
modern deep neural feature matching networks for the task of
change detection in side-scan sonar images under real-world
conditions. This will help define the influence of network
architecture on the accuracy and stability of feature match-
ing, and outline the directions of further adaptation of deep
models to the sonar images domain.

To achieve the goal, the following research tasks were
defined:

- to generate two real-world SSS data sets obtained from
same-track missions of uncrewed surface vessels (USV);

- to experimentally compare and quantitatively evaluate
the effectiveness of classical, convolutional, and transformer-
based feature matchers (SIFT, DISK, SuperPoint, LoFTR,
LightGlue) on the generated data;

- to determine the computational efficiency of the selected
methods (execution time, memory usage);

- to conduct a qualitative analysis of matching maps and
change maps.

4. The study materials and methods

The object of the study is the process of feature matching
between side-scan sonar images with the purpose of change
detection in the underwater environment.

The hypothesis of the study can be formulated as follows.
Modern deep learning algorithms based on convolutional
networks and transformers can provide higher density and
geometric accuracy of feature matching on real-world sonar
images compared to classical methods. This should allow to
improve the quality of change detection even in noisy and
distorted images from real SSS missions. At the same time, it
is known that transformer-based architectures require much
more computational resources, which should be confirmed by
research results.

In the process of research, the following assumptions and
simplifications were adopted, to focus on the main task of the
study without complicating the model and introducing addi-
tional restrictions and corrections, such as variations in equip-
ment parameters or changes in environmental conditions.

Assumptions accepted:

1. Image pairs (reference and matching) were obtained
with the same SSS parameters - slant range, viewing angle, etc.

2. Changes on the seabed between missions are local and
do not affect its overall geometry.

3. The influence of waves and deviations of the carrier
vehicle track is insignificant and does not require additional
correction.

Simplifications adopted:

1. When detecting keypoints, the water column was ex-
cluded (masked), which allowed to avoid unnecessary false
matches and skip areas without useful information.

2. Additional intensity equalization after time-value gain
(TVG) correction was not applied to evaluate the algorithms
on real distorted signal.

3. Homographic image warping was applied, which is
assumed to be close to the true three-dimensional geometry
of the seabed surface.

Simplified seabed geometry model and exclusion of water
column area increases the calculation stability and allows for
a more accurate quality assessment of the comparison.

Data.

The experiment was based on field data from two real SSS
operations, each consisting two "lawn mower" missions along
the same track (reference and matching, respectively). The
missions were performed using an EvoLogics Sonobot 5 USV
equipped with SSS with carrier frequency of 500 kHz. Each
point on the seabed within the area of each mission was cov-
ered at least twice. Several objects were placed on the seabed
between passes to test the ability of the algorithms to detect
changes. The first operation Atlantic was carried out off the
coast of Portugal in September 2024. The matching mission
was carried out under conditions of strong waves and wind,
which led to the appearance of noise artifacts in the images —
wave patterns and stripe noise. The second operation Baltic
was carried out close to the pier near the city of Swinoujs-
cie (Poland) in November 2024.

Hardware.

All calculations, including inference of deep learning mod-
els, were performed on a Lenovo Legion computer with Ge-
Force RTX4070 (8GB) graphics adapter, Intel Core i-7 CPU, and
32 GB of RAM. The code and weights of the models were taken
from the corresponding repositories listed in the references.

Method.

The first step in constructing a relevant seafloor change
map was to identify keypoints for each pair of reference
and matching images. In this paper, the terms keypoints and
features are used interchangeably to denote local image cor-
respondences, with the terminology adapted to the specific
matching approach (keypoint-based or dense)
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SIFT was chosen as the reference detector due to its pop-
ularity in optical and sonar imagery. DISK and SuperPoint
methods were chosen for comparison as modern deep learn-
ing approaches, whose effectiveness needs to be verified on
SSS data. The maximum number of keypoints was set to 4096
to ensure maximum coverage, and the descriptor length was
set to 256. All other parameters remained set by default.

In the second stage, the obtained keypoints were matched
to form matching pairs
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For testing purposes, a modern LightGlue matcher based
on the attention mechanism was chosen. The dense LoFTR
matcher does not have a separate detector since it forms both
keypoints and matches in one pass. LOFTR with the ResNet-
FPN backbone was initialized with weights obtained on out-
door datasets; other parameters left standard.

After obtaining pairs of matched keypoints for each im-
age, the homography matrix H = homography(M) was calcu-
lated and the matching image was warped to geometrically
aligned at the pixel level with reference one. The homography
was calculated using the OpenCV implementation [20] with
RANSAC filtering (threshold = 5).

Ultimately, a change map was constructed by absolute
subtraction of images at the pixel level. The filtered change
map was obtained after thresholding the result to highlight
the most significant changes and suppress noise. The result-
ing change map was used for qualitative assessment of the
accuracy and adequacy of matching.

Evaluation.

The evaluation was performed both quantitatively and
qualitatively. For a balanced quantitative comparison of the
selected feature detection and matching methods, two groups
of metrics were considered:

1. Quality of keypoint matching.

2. Efficiency of resource usage.

The key metrics included the number of keypoints per
image, the number of matches, spatial coverage (percentage
of 64 x 64 pixel blocks containing at least one match), and
the percentage of matches that passed the filtering (RANSAC
Inlier %). These indicators directly reflect the method’s ability
to detect and match reliable features in sonar images, noisy
and heterogeneous by nature.

Since ground truth matches require laborious manual
labeling, indirect quantitative metrics were used to assess the
matching geometric quality. The image pairs are of the same
size, geo-aligned, and acquired with the same hardware. This
implies that true matches should have close coordinates within
each image. Deviations of a few pixels are possible due to varia-
tions in roll, pitch, vehicle speed, or sea level due to turbulence,
tides, or other factors.

Therefore, the following metrics were used to assess the
quality of the matching:

1. Displacement - the difference between the coordinates
of the corresponding keypoints in two images d; = ‘k,-’ —ki‘ . For
a perfect match, the expected value and standard deviation of
the displacement should be within a few pixels.

2. Matching angle - the angle between the line connecting
the matching points in the adjacent images and the "horizon”

6, =arctan((y{—yi)/(x{+W—xi)), ©)]

where (x; y;) are the coordinates of the i-th point on the reference
image; (x,f, y,f) are the coordinates of the corresponding point
on the matching image; W is the width of the image; 6; is the
angle of the line connecting the corresponding points. Ideally,
the expected value of the angle should be close to zero, and the
standard deviation should be within a few degrees. The num-
ber of outliers was then estimated from the angle distribution.
3. Reprojection error, defined as

N
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where N is the number of matches; x; € N2 is the keypoint of
the reference image; H € R**3 is the calculated homography

x{ — proj( Hx; ) 4)
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matrix; proj(.) - projection function converting homogeneous
coordinates back to Cartesian; x; is the corresponding key-
point in the matching image.

This indicator quantitatively estimated the distance be-
tween the projected position of the point and its pair in an-
other image. A smaller value of the standard deviation means
higher quality of the match after alignment.

The study also used the resource efficiency indicators - the
processing time per one image, the consumption of random
access memory (RAM), as well as the amount of allocated
and peak memory of the graphics processor (GPU). These in-
dicators are critical for assessing the methods implementation
in real underwater missions, where computing resources are
often limited. The evaluation of each indicator was carried out
separately for each mission.

5. Results of the matching models’ comparative
research

5.1. Generated datasets

Based on the collected field data, two datasets were gener-
ated. When designating specific pairs of images (reference and
matching), the notation Baltic 1, Atlantic 5, and so on was used.
The main parameters of both datasets are given in Table 1.

Table 1
Dataset parameters
Mission Time Alti- | Slant | Number

R Bottom

Dataset | length, | between | tude, | range, | of image tvDe
m missions | m m pairs yp

Atlantic 2500 7 days |16-18 51 20 Sand
Sand

Baltic 700 1 hour | 8-10 51 14 and
silt

No additional intensity correction was applied after stan-
dard TVG correction. The water column was masked to avoid
false keypoint matching and skewed distribution. Typical
images from Atlantic mission are shown on Fig. 1.

a b

Fig. 1. Sample reference and matching images
for Atlantic 4 pair: a — reference image; b — matching image

The matching mission images contained distortion and
stripe noise (Fig. 1, b), which noticeably changed the visible
structure of the seabed. Each track from both the reference
and repeat missions was divided into relatively straight
segments with a course deviation of no more than 12°, de-
termined by the GNSS coordinates of the vessel. The naviga-
tion information was converted into "North-East" coordinate



system relative to the initial point of the reference mission.
Each matching segment was paired with the nearest reference
segment using the cKDTree algorithm [21], where more than
90% pings were within the half-meter threshold. In the ab-
sence of matches for a particular ping, the previous ping from
the paired image was reused. After that, the sonar image data
was sliced and converted into fragments of 1024 X 1024 pixels
with an overlap of 128 pixels. End images of the segments were
cropped vertically to approximately 1024 X 670 pixel size.

5. 2. Experimental comparison and quantitative eval-
uation of efficiency

Table 2 summarizes the results of keypoint detection
and matching efficiency for both datasets. SIFT, DISK, and
SuperPoint generated an average of 3,000 to 4,000 keypoints
per image; however, the number of matches remaining after
LightGlue filtering was low, ranging from 24 (SIFT) to 66 (Su-
perPoint). At the same time, LoOFTR formed a much denser set
of points — an average of 472 points per image, almost com-
pletely covering the image. However, after RANSAC, the pro-
portion of inlier matches remained low (approximately 8%),
indicating geometric inconsistency of a large fraction of the
correspondences.

Table 3 further examines the geometric quality of matches.
In the Atlantic set, traditional SIFT and DISK exhibited
rather large displacement mean (= 130 pixels) and repro-
jection error mean (> 300 pixels), reflecting unstable corre-
spondences. At the same time, the combination of Super-
Point + LightGlue showed better metrics. The displacement
mean (= 36 pixels) and reprojection error (mean 36 pixels,
standard deviation 72) indicates better geometric stability of
the matches. LoFTR, with a fairly dense coverage, showed

large displacement standard deviation (182 pixels) and mod-
erate reprojection error mean (~ 142 pixels). Although Su-
perPoint was the best in terms of metrics, it still failed to
provide reliable enough matches comparing to Baltic dataset,
which becomes obvious from qualitative analysis (see below).
In the less noisy Baltic dataset containing contrast features of
a pier, all methods showed significantly better metrics. SIFT,
DISK and SuperPoint: reprojection error mean (< 5 pixels),
displacement standard deviation (< 5 pixels), while LoFTR
produced results with higher variance due to sporadic false
matches. In general, classical and sparse methods (SIFT,
DISK, SuperPoint) showed high quality, whereas dense trans-
former-based LoFTR was statistically times worse than its
sparse counterparts.

Matching angle distributions for LoFTR and Super-
Point + LightGlue on Fig. 2 help understand the details be-
hind the collected metrics.

In the Baltic set, both LoFTR and SuperPoint + LightGlue
produced a set of matching with angles concentrated near
zero, as reflected in low angular standard deviations (ap-
proximately 1.3° for LoFTR and 0.3° for SuperPoint). LoFTR
has a sharp peak with minimal spread, while SuperPoint has
a well-centered but broader bell-shaped distribution.

In the Atlantic set, however, LOFTR (c) retains a centered
bell-shaped distribution but with "heavy tails” due to larger
angular deviations (6-7°). This indicates a higher number
of outliers and false matches under difficult conditions. At
the same time, SuperPoint + LightGlue (d) generated very
few matches with sparse and irregular angle distributions.
This explains its relatively small standard deviation (= 1.9°)
but indicates the instability of the method with a small num-
ber of matches.

Table 2
Keypoints and matches
Dataset Method Keypoints per image | Matches per image pair Spatial coverage, % RANSAC inliers, %
SIFT + LightGlue 3199 24 48 27.1
DISK + LightGlue 4096 42 57 18.6
Atlantic
SuperPoint + LightGlue 3351 66 34 434
LoFTR 472 472 96 8.0
SIFT + LightGlue 3252 1088 86 61.3
DISK + LightGlue 4096 1772 77 57.3
Baltic
SuperPoint + LightGlue 3835 1394 83 65.6
LoFTR 4674 4674 97 64.3
Table 3
Geometric consistency of matching
Displacement Matching angle Displacement Reproiection error Reprojection error
Dataset Method P . standard deviation, standard devia- Proj R standard deviation,
mean, pixels . . mean, pixels R
degrees tion, pixels pixels
SIFT + LightGlue 131.0 5.71 96.2 506.6 1124.0
DISK + LightGlue 128.5 8.26 120.9 298.6 487.8
Atlantic
SuperPoint + LightGlue 35.9 1.91 26.2 36.0 71.8
LoFTR 135.5 6.78 182.4 141.7 184.2
SIFT + LightGlue 6.1 0.35 4.2 4.3 3.3
DISK + LightGlue 5.9 0.35 4.0 4.8 3.6
Baltic
SuperPoint + LightGlue 5.6 0.34 3.8 3.9 2.7
LoFTR 10.0 1.37 28.7 8.8 28.9
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Fig. 2. Histogram of matching angles for LoOFTR and SuperPoint of sample image pairs from both datasets:
a — LoFTR for the Baltic 6 pair; b — SuperPoint + LightGlue for the Baltic 6 pair, c — LoFTR for the At/antic 17 pair,
d — SuperPoint + LightGlue for the Atlantic 17 pair; in all images, the X axis is the matching angle in degrees,
the Yaxis is the frequency of the angle in the sample

Based on matching angles distribution analysis, it can
be concluded that LoFTR provides denser, but less stable
keypoint matches. SuperPoint + LightGlue generates fewer,
but more accurate correspondences. The methods effec-
tiveness significantly depends on the data set properties.
On noisy sets, classical and convolutional methods may
lose their ability to generate coherent matches with good
scene coverage.

5. 3. Estimating computational efficiency

Computational resources usage is analyzed in Table 4.
On both datasets, the SIFT, DISK, and SuperPoint methods
demonstrated similarly low memory requirements and high

execution speed. RAM consumption was limited to 25 MB,
allocated GPU did not exceed 70 MB, and peak - 532 MB
per dataset. The average processing time of one image pair
ranged from 34 ms to 66 ms, which makes these methods
suitable for large-scale and high-load applications.

Transformer-based LoFTR, however, required signifi-
cantly more resources: for the Atlantic set, the average pro-
cessing time for a pair of images was approximately 820 ms
with a peak GPU memory consumption of about 4 GB per
set and an allocated GPU memory of 649 MB per set. Similar
results were observed for Baltic — about 856 ms per image
pair and up to 3.4 GB of peak GPU memory per set, and up
to 1009 MB allocated GPU memory per set.

Table 4
Resource usage efficiency

Dataset Method Time per image pair, ms RAM, MB Allocated GPU, MB Peak GPU, MB
SIFT + LightGlue 59 15 57 346
DISK + LightGlue 34 11 63 532

Atlantic
SuperPoint + LightGlue 55 9 65 298
LoFTR 820 541 1009 3995
SIFT + LightGlue 57 25 82 319
DISK + LightGlue 62 18 81 498
Baltic

SuperPoint + LightGlue 66 15 107 365
LoFTR 856 196 649 3348




5. 4. Qualitative evaluation of matching and change
maps

Quantitative metrics provide means of objective compar-
ison but do not sufficiently reflect the spatial distribution of
matches or the visual quality of the resulting change maps,
which is the ultimate methods goal. Therefore, an additional
qualitative analysis of the keypoints distribution, the consis-
tency of matches, and the quality of the change maps was
conducted on typical pairs of images from both datasets. Four
main aspects were taken into account:

1. Overall number of mapped keypoints.

2. Distribution of keypoints across the image.

3. Visual quality of mappings, presence of false matches.

4. Quality of the resulting change maps.

The aim of the analysis was to identify the patterns and
individual cases not covered by the metrics and to assess the
suitability of the change map for operator’s review. The results,
summarized in Table 5, demonstrate significant differences be-

tween methods and datasets, highlighting the trade-off between
density, reliability, and interpretability of keypoint matching
mapping in sonar images.

Fig. 3-8 show typical images from each experiment, illus-
trating the observations described above and demonstrating
the methods performance.

Qualitative analysis confirmed that the matching effi-
ciency depends on the detector-matcher combination, as
well as on the data set. In the Atlantic set, with a homoge-
neous seabed texture, low contrast and noise, SIFT + Light-
Glue and DISK + LightGlue generated only sparse, of-
ten false matches. SuperPoint + LightGlue provided more
consistent matches, but still with insufficient and skewed
coherence. LoFTR provided the highest density and uni-
formity of matches, which allowed for high-quality change
maps to be obtained on some pairs, although numerous
false matches prevented the calculation of a correct homo-
graphic transformation.

Table 5
Qualitative observations
Number of
Dataset Method matched key- Spatial distribution of keypoints Matching quality Change map
points
ool | o ey o | ary e maches | a0 procuc
SIFT + LightGlue . ) Mages group (angles), 100% for | interpretable change
sparse points corner. Some images with very few .
. some images maps
points
Dozens of More evenly than in SIFT, less bound False matches Failed to produce
DISK + LightGlue points, more to contrast areas. All on one side for interpretable change
. present
Atlantic than SIFT two images maps
From several | Big variations from very dense groups | Highly coherent
SuperPoint + LightGlue | to hundreds of | to even distribution. One image with- | matches with few Interpretable chapge
. . map in a few pairs
points out matched points false ones
Hundreds of Evenly distributed with occasion- Visible minority of | Interpretable change
LoFTR points, evenly ally dense groups in nadir or high | false matches; often | map in a few pairs,
distributed contrast areas grouped together | overall better quality
. Hundreds of ]_Evequ distributed. ngh?r dens1'ty Almost no false Good change map,
SIFT + LightGlue . in high contrast areas (pier, nadir, . . .
points . matches minor distortion
sandbars, bottom objects)
Grouped closer to nadir area.
Hundreds of - . .
. . In some images left or right-most Few or no false Overall good, few pair
DISK + LightGlue points, more - . . . .
than SIFT 1/5 of images without keypoints. Very matches with skewed warping
Baltic few points near nadir/contrast areas
. . Hundreds of Ev_enly distributed, high der.131ty in Few or no false O\./erall. good, few
SuperPoint + LightGlue . nadir/contrast areas/edges, pier Some pairs with skewed
points . matches .
well textured areas without matches warping
Times more Evenly distributed, some small areas Few or no false Overall good, few
LoFTR than other without keypoints. Higher density in pairs with skewed
- matches .
methods nadir area warping

Fig. 3. SIFT + LightGlue matching result for Atlantic 4 pair — sparse keypoints with many false matches




Fig. 4. DISK + LightGlue matching result for At/antic 4 pair — tighter matching, but still with a large number of false matches

Fig. 5. SuperPoint + LightGlue matching result for At/antic 4 pair — matches concentrated in one corner

Fig. 6. The result of the LoFTR matching for the Atlantic 4 pair — numerous evenly distributed points,
but with a significant number of false matches

b

Fig. 7. LoFTR matching result and change map for the At/antic 5 pair:
a — matching map; b — change maps, original (left), and after thresholding (right)



b

New object ::

Fig. 8. LoFTR matching result and change map for the Baltic 9 pair:
a — highly coherent matches of evenly distributed numerous keypoints; 6 — change maps, original (left), and after
thresholding (right); new object is marked with a white arrow

In the Baltic set, with better contrast and the presence of
clear structures (pier, sandbars), all methods demonstrated
much better results. SIFT + LightGlue and DISK + Light-
Glue gave high-quality coverage with a minimum of errors;
SuperPoint + LightGlue achieved the best balance between
density and stability; LoFTR, as in the first set, created the
most matches, with few false ones. All methods allowed for
the construction of high-quality informative change maps
that clearly reflected changes at the bottom (for example,
in Fig. 8), achieving the main goal.

6. Discussion of matching models research

Our results (Tables 2-5, Fig. 2-8) confirm the different
behavior of the methods by quantitative metrics, matching
quality, and resource consumption. The patterns revealed in
the study explain the effectiveness of each approach, consid-
ering their architectural features, input data and task type.

Combinations of classical (SIFT) and convolutional (DISK,
SuperPoint) detectors in combination with LightGlue form
sparse but stable matches, which provides small displacement
and low reprojection error (Table 3). Such stability can be
explained by the limited local perception fields of CNN archi-
tectures, where descriptors distinguish intense contrasts even in
the presence of noise. However, due to the low density of match-
es, sparse methods fail to provide full-fledged image matching at
the pixel level and create interpretable change maps (Fig. 3-5).

In contrast, the transformer-based LoFTR model provided
the highest density of matches (Table 2), which allowed to
achieve continuous coverage of the scene (Fig. 6-8). This is
presumably the result of the global attention mechanism,
which analyzes the dependences between all pixels simulta-
neously. However, the high number of false matches and large

variance of reprojection error (Table 3) may be explained by
the fact that the model was trained on optical data and is too
sensitive to low-contrast sonar images of a different nature.

Unlike the approach in [3], where CNN is used to reduce
false positives in the change map, this study directly applied
deep learning models to feature matching, providing more
detailed geometric assessment. Compared to the classical gra-
dient-based SIFT method, which provides accuracy under high
contrast conditions, the combination of SuperPoint + Light-
Glue demonstrated better stability even on noisy images. The
results of our study indicate the need for adaptation of deep
models’ parameters to acoustic data, since without such adapta-
tion, the accuracy and quality of matching may be insufficient.

Thus, this study addresses the lack of systematic com-
parison of detectors and matchers with different architec-
tures (classical, convolutional, and transformer-based) on real-
world SSS images. For the first time, a comprehensive quan-
titative assessment (Tables 2-4) and qualitative analysis of
matching and change maps (Fig. 7, 8) for two datasets were
performed, which paves the way to practical recommenda-
tions. In particular, SuperPoint + LightGlue can be considered
the best compromise for real-time tasks, while LoFTR is ap-
propriate for offline analysis with a priority on completeness
of coverage and matching. Its resource intensity is explained
by its transformer architecture, that performs matching over
the entire image grid, not only over a limited set of keypoints.

Thus, our work reasonably achieves the initial objective: the
suitability of modern deep learning models for sonar tasks has
been assessed and their real limitations have been identified.

It is worth noting that the study was limited by the lack
of ground-truth matches, hence the evaluation used indirect
metrics. In addition, the test datasets had a relatively small
volume (two missions), and did not cover the variety of bot-
tom types. Also, the use of pre-trained models without domain



adaptation to acoustic data reduced their ability to general-
ize, and the computational complexity of LoFTR (Table 4)
limits its application in autonomous vehicles.

The research limitations also include the simplification
of the seabed geometry model (homographic approximation),
that ignores its three-dimensional structure. Besides, trans-
former-based LightGlue point matcher was not compared
with classical matchers (BFMatcher, FLANN) that would
make the analysis more objective.

Further research should cover the domain-specific fine-tun-
ing of the research deep models on actual sonar data, as well as
the development of more advanced match filtering algorithms,
that could incorporate a priori data (sonar position and orien-
tation, information about the bottom material, etc.). The design
of hybrid convolutional-transformer architectures considering
the physical properties of the acoustic signal seems promising.
Also, it is necessary to compare matching methods on more
heterogeneous data sets and bottom types (rocky bottom, veg-
etation, variable depth), and the use of the such methods and
change maps in automatic object detection tasks.

7. Conclusions

1. Within the scope of the study, two real-world SSS image
datasets were generated — Atlantic and Baltic, based on the
data collected by the EvoLogics Sonobot 5 USV. Image pairs
from the reference and matching missions were aligned with
high accuracy: over 90% of ping pairs were within 0.5 m. The
final ping mismatch did not exceed 2-3 pixels. The obtained
data correspond to real conditions in a typical SSS search
missions with significant speckle and stripe noise, homoge-
neous bottom, and a small number of prominent features.
This favorably distinguishes them from synthetic data often
used in modern studies and provides a qualitatively relevant
assessment of the selected methods.

2. Comparative analysis on the generated datasets revealed
significant differences in the behavior of the methods under
noisy (Atlantic) and low-noise (Baltic) conditions. On the low-
noise dataset, all methods provided high stability and geo-
metric accuracy of the matches: the reprojection error mean
was 3.9-8.8 pixels, and the percentage of inliers - from 57% to
65.6% for all models. LoFTR showed a high result of matches
(64.3% inliers) with the largest scene coverage (97%). Super-
Point + LightGlue achieved the lowest error mean (3.9 pixels
with a standard deviation of 2.7 pixels) and the highest per-
centage of inliers (65.6%). On the other hand, on the high-
noise Atlantic dataset, a significant drop in the quality was ob-
served for all methods. Classical SIFT and convolutional DISK
generated only several matches (18-66) on average per image
pair, and a low percentage of inliers (18.6-27.1%), which led to
unstable alignment. LoFTR produced the highest number of
matches (472) and maximum coverage (96%), but the percent-
age of filtered matches was the lowest (8%), which led to high
reprojection error (141.7 £ 184.2 pixels). The most balanced
result on noisy data was shown by SuperPoint + LightGlue,
with the smallest displacement mean (35.9 pixels), the lowest
reprojection error mean (36.0 pixels), and the highest inlier
percentage (43.4%). Therefore, SuperPoint + LightGlue was
the best method according to the adopted metrics.

3.In terms of resource usage, the classical and convolu-
tional methods remained the most economical (< 0.06 s per
image pair and up to 532 MB of peak memory per set). At the
same time, DISK + LightGlue was the best on the Atlantic

set (0.034 s per frame), and the worst in terms of peak mem-
ory on both sets (532 MB and 498 MB GPU, respectively).
LoFTR turned out to be the most resource-greedy (up to
0.86 s per frame, up to 4 GB of GPU memory per set). Thus,
no fundamental difference between the classical and con-
volutional algorithms in resource consumption was found.
Instead, as expected, the transformer-based LoFTR spends an
order of magnitude more memory and time on the same tasks.

4. Qualitative analysis of the maps of matches and chang-
es confirmed that methods’ effectiveness depends on the level
of image noise. Some edge cases of the methods were also
found. On the Baltic set, all algorithms generated sufficiently
stable matches and interpreted change maps. This allows to
recommend the use of classical and convolutional approaches
under simple conditions. On the noisy Atlantic, classical and
convolutional methods detected relatively few points and cre-
ated low density of matches, making it impossible to generate
high-quality change maps for most pairs. LoFTR, on the other
hand, provided a high number of matches and dense cover-
age, but most of them were unstable. This can be explained
by the high sensitivity of transformers to noise artifacts and
the lack of additional filtering of matches for consistency.
It can be concluded that for noisy underwater images, the use
of LoFTR with adaptation to sonar data and additional filter-
ing of matches by coherence seems promising, and could make
it possible to combine its coverage and stability of the results.
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