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This paper explores change detection in repeat-track side-
scan sonar imagery through feature matching. It addresses 
insufficient matching accuracy and stability in low-contrast, 
noisy, and geometrically distorted side-scan sonar imagery typ-
ically collected from surface vehicles. The experiment included  
a comparison of classical, convolutional, and transformer- 
based feature matching methods (SIFT, DISK, SuperPoint, 
LoFTR, and LightGlue) on two real-world datasets, Atlantic 
and Baltic. The results were evaluated quantitatively and qual-
itatively. Quantitative evaluation used displacement, angular 
stability, and reprojection error metrics, as well as resource 
consumption metrics like execution time and memory usage. 
In addition, matching maps and change maps for pairs of 
images were generated and analyzed qualitatively. All meth-
ods produced interpretable change maps for the low-noise 
Baltic dataset, whereas the wave-affected Atlantic dataset with 
stripe- and speckle noise only occasionally produced consis-
tent maps. The SuperPoint + LightGlue method demonstrated 
the highest ratio of inlier correspondences after RANSAC fil-
tering  (43.4% and 65.6%) and the lowest mean reprojection 
error (36.0 and 3.9 px), while LoFTR provided the densest cov-
erage (up to 97%) consuming up to 15× more computational 
resources. These results confirm the advantage of transformer- 
based matching methods under challenging conditions due to 
their global receptive field. In contrast, CNN-based methods 
performed better in low-noise, well-aligned images. Overall, the 
findings indicate that deep feature matchers can improve the 
applicability and reliability of change detection in tasks such as 
humanitarian demining, autonomous underwater navigation, 
image mosaicking, and related applications
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1. Introduction

Side-scan sonar (SSS) is extensively used for wide range of 
underwater applications. Detecting changes between same-
track missions is crucial for mine counter-measures (MCM), 
rescue operations, underwater and coastal inspection, port 
security, marine environment studies, pipeline inspection, 
underwater archeology and other use cases of side-scan so­
nar imagery.

However, analysis of SSS images over long missions is 
significantly more challenging than optical images. This com­
plexity is caused by low contrast, a small number of visible ob­
jects, speckle noise, geometric distortions caused by platform 
motion, and the presence of prominent acoustic shadows and 
highlights. These factors make it difficult to extract and reli­
ably match keypoints between different missions, which is es­
sential for change detection tasks, mosaicking and simultane­
ous localization and mapping (SLAM). The number of images 
obtained during a single survey can reach thousands. Manual 
processing of such information volumes requires significant 
human resources and time, and makes it impossible to make 
timely decisions in military, rescue, or engineering operations.

The key area of modern research in this field is the appli­
cation of deep learning and computer vision methods to im­

prove the accuracy and reliability of image matching, change 
detection, and object localization. Neural networks consider 
complex patterns of intensity, texture and geometry of the 
seabed, inaccessible to classical algorithms. However, most 
existing studies of SSS images matching use either classical 
methods, such as SIFT, SURF, and ORB, or convolutional neu­
ral networks (CNNs), transferred from the optical domain [1]. 
Classical methods are not effective enough in cases of low 
contrast, strong speckle noise, and lack of distinctive features, 
while CNN-based approaches rely on local receptive fields 
and are therefore limited in capturing global context. The lack 
of open data for training and fine-tuning also limits the use 
of convolutional approaches, while the active development 
and success of transformer-based models make it possible to 
solve the problems of image matching and change detection 
assuming the image global context under complex conditions.

The evolution of deep learning methods will help move 
to automated processing of SSS data. This will enable oper­
ator-free work of autonomous systems in real time. From  
a practical point of view, the research will help in mine counter­
measures, environmental monitoring, inspection of marine 
structures, and the development of autonomous navigation.

For Ukraine, these tasks are of particular importance: the 
consequences of the war create a need for new approaches to 
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humanitarian demining and the safe use of coastal waters. 
Thus, research aimed at applying modern deep learning 
methods to SSS images matching and change detection is 
relevant for both science and practical usage.

2. Literature review and problem statement

A detailed comparison of keypoint detection methods 
performed on sonar images from autonomous underwater 
vehicles was carried out in [1]. Ten methods (nine classical 
AKAZE, BRISK, FAST, Harris, ORB, Shi-Tomasi, SIFT, SURF, 
SAR-SIFT, and the KeyNet deep detector) were compared on 
a dataset of sixteen SSS and forward-looking sonar (FLS) im­
ages pre-processed by filters. The methods were evaluated by 
the number of points found, coverage density, time spent, and 
other metrics. However, the dataset was quite limited, and the 
images contained strong features, which facilitated the iden­
tification of keypoints. In addition, the images were collected 
from underwater vehicles, which are much less affected by 
noise and waves than surface ones.

The classification of methods for detecting changes in re­
mote sensing images divides them into two main types, as noted 
in review [2]: pixel-based (PBCD) and object-based (OBCD). 
The former implements image comparison at the pixel level, 
which requires precise alignment. The latter aims to compare 
objects previously detected by other methods. The basis of the 
PBCD approach is the process of image co-registration, that 
aligns two or more images using navigation information or 
matching features within them with subpixel accuracy. The pa­
per confirms the relevance of deep learning methods for match­
ing (in particular, RPC, SIFT, DTM, CACO, and RANSAC) and 
detecting changes in (radar) remote sensing images but not for 
SSS images, which have their own specificity. It also does not 
mention the transformer-based models that have gained popu­
larity in recent years.

After aligning the images by keypoints, a change map suit­
able for manual or automated analysis can be created by simple 
subtraction as, for example, in study [3]. It used a convolutional 
neural network (CNN) to classify potential changes into "object" 
and "non-object" and reduce the percentage of false classifica­
tions. The matching was performed using a third-party library 
without specifying the algorithm. However, due to the lack of 
open SSS datasets, the study was mainly based on a synthetic 
dataset and several real-world SSS images from underwater ve­
hicles. It is known that synthetic data cannot always reproduce 
the actual environment in sufficient detail. Thus, the problem 
of matching points using deep methods on sufficiently large 
real-world datasets remains unsolved, partially due to the lack 
of large public datasets. 

In work [4], it was proposed to use deep segmentation 
models (Segment Anything Model) to detect changes in syn­
thetic aperture sonar (SAS) images. The model showed better 
results than traditional log-ratio based change detection. Point 
detection and matching were performed using classical SIFT 
and RANSAC methods. SAS images, although similar to SSS 
ones, are generally of much better quality, so the question of 
applicability of the methods to SSS remained open.

Image matching can also be performed for simultane­
ous localization and mapping (SLAM). For example, in [5], 
the classical A-KAZE point detection method [6] is used for 
matching images obtained from forward-looking sonar (FLS). 
However, the application of these methods to SSS images has 
not been considered.

A comparative study [7] of matching methods’ effective­
ness on images obtained in same-track SAS missions was con­
ducted. The SIFT algorithm was used for feature matching, 
and the RANSAC method or its modifications, in particular 
M-estimator Sample Consensus (MSAC), were used to re­
fine the results by filtering out incorrect matching. Another 
work [8] also used SIFT and SURF as the main methods for 
feature matching, along with other approaches. However, 
deep feature detection and matching methods were not con­
sidered in these studies.

Feature matching is also a key element in mosaicking and 
automatic target recognition (ATR). In [9], the sonar-to-op­
tical style transfer was used to increase the proportion of 
correct matches and TFeat, a local feature descriptor based 
on the VGG-19 convolutional neural network was proposed, 
which exceeded the classical descriptors in quality. However, 
the experiment was performed on a limited set of six images 
from an AUV that contained prominent features and no trans­
former matchers were used.

In [10], SIFT was chosen to detect corner points on the 
SSS image from an underwater vehicle due to its high match­
ing accuracy. However, there were numerous noticeable lines 
on the flat seafloor left by anchors, which significantly helped 
in detecting keypoints in these high-quality images.

In the experimental results published in [11], the SURF 
algorithm was used as a keypoint detector for SAS image 
matching. Also, in [12], SIFT was used to match SAS images 
in a multi-stage registration system using canonical correla­
tion analysis. However, their application to SSS images was 
not investigated.

In [13], a SONIC convolutional matching model was 
proposed for FLS images, and an experimental comparison 
was made with AKAZE and the LightGlue transformer 
model [14]. However, their application to SSS images was not 
investigated.

Therefore, it can be concluded that for the tasks of change 
detection and feature matching in remote sensing images, in 
particular sonar images, methods based on classical feature de­
tectors, such as SIFT, SURF, A-KAZE, or PatchMatch [15, 16], 
in combination with descriptor matching and geometric re­
finement via RANSAC, are widely used. At the same time, 
there are numerous studies of deep learning methods includ­
ing CNNs for the above-mentioned tasks. They demonstrate 
increased robustness to noise, intensity variations and image 
distortions, and show advantages over classical algorithms 
in low contrast conditions. However, convolutional methods 
mostly work with local perception fields and consequently do 
not always take into account the wider context of the scene, 
which is a significant drawback for sonar images with a small 
number of prominent texture features.

New transformer-based approaches offer promising ways 
to overcome these limitations. Instead of the traditional 
"detect-describe-match" sequence, modern algorithms such 
as LoFTR [17] use an attention mechanism that allows for 
global analysis of correspondences between images. LoFTR 
generates dense pixel-wise matches without the need for an 
external detector, while LightGlue dynamically adapts the 
matching process using descriptors obtained from deep de­
tectors such as SuperPoint [18], DISK [19], or classical SIFT. 
These methods may be particularly promising for SSS images, 
where local textures are weakly expressed, but global struc
tural features of the seabed morphology remain stable.

Therefore, the unsolved part of the problem is the lack of  
a comparative assessment of modern feature matching methods 
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of different architectures (classical, convolutional and trans­
former-based) specifically for real-world SSS images, including 
noisy ones. Existing works are mostly focused on processing 
optical or SAS images from underwater vehicles with distinct 
high contrast features, which significantly simplifies the task of 
keypoint detection and matching, while real-world sonar images 
collected from surface vehicles have low contrast, a small num­
ber of noticeable high contrast objects, shadows, high speckle 
and stripe noise. The question of methods’ effectiveness by the 
"accuracy-resource consumption" criteria still remains open, 
which is critically important for their use in autonomous systems 
with limited computing resources.

In other words, it is advisable to conduct a study to sys­
tematically compare the effectiveness and resource utilization 
of modern classical, convolutional, and transformer-based 
methods for the tasks of features matching and changes de­
tection. The datasets for the study should be large enough 
and contain real-world side-scan sonar images collected from 
a surface vehicle.

3. The aim and objectives of the study

The aim of the study is to determine the suitability of 
modern deep neural feature matching networks for the task of 
change detection in side-scan sonar images under real-world 
conditions. This will help define the influence of network 
architecture on the accuracy and stability of feature match­
ing, and outline the directions of further adaptation of deep 
models to the sonar images domain.

To achieve the goal, the following research tasks were 
defined:

– to generate two real-world SSS data sets obtained from 
same-track missions of uncrewed surface vessels (USV);

– to experimentally compare and quantitatively evaluate 
the effectiveness of classical, convolutional, and transformer- 
based feature matchers (SIFT, DISK, SuperPoint, LoFTR, 
LightGlue) on the generated data;

– to determine the computational efficiency of the selected 
methods (execution time, memory usage);

– to conduct a qualitative analysis of matching maps and 
change maps.

4. The study materials and methods

The object of the study is the process of feature matching 
between side-scan sonar images with the purpose of change 
detection in the underwater environment.

The hypothesis of the study can be formulated as follows. 
Modern deep learning algorithms based on convolutional 
networks and transformers can provide higher density and 
geometric accuracy of feature matching on real-world sonar 
images compared to classical methods. This should allow to 
improve the quality of change detection even in noisy and 
distorted images from real SSS missions. At the same time, it 
is known that transformer-based architectures require much 
more computational resources, which should be confirmed by 
research results.

In the process of research, the following assumptions and 
simplifications were adopted, to focus on the main task of the 
study without complicating the model and introducing addi­
tional restrictions and corrections, such as variations in equip­
ment parameters or changes in environmental conditions.

Assumptions accepted:
1. Image pairs (reference and matching) were obtained 

with the same SSS parameters – slant range, viewing angle, etc.
2. Changes on the seabed between missions are local and 

do not affect its overall geometry.
3. The influence of waves and deviations of the carrier 

vehicle track is insignificant and does not require additional 
correction.

Simplifications adopted:
1. When detecting keypoints, the water column was ex­

cluded (masked), which allowed to avoid unnecessary false 
matches and skip areas without useful information.

2. Additional intensity equalization after time-value gain 
(TVG) correction was not applied to evaluate the algorithms 
on real distorted signal.

3. Homographic image warping was applied, which is 
assumed to be close to the true three-dimensional geometry 
of the seabed surface.

Simplified seabed geometry model and exclusion of water 
column area increases the calculation stability and allows for 
a more accurate quality assessment of the comparison.

Data.
The experiment was based on field data from two real SSS 

operations, each consisting two "lawn mower" missions along 
the same track (reference and matching, respectively). The 
missions were performed using an EvoLogics Sonobot 5 USV 
equipped with SSS with carrier frequency of 500 kHz. Each 
point on the seabed within the area of each mission was cov­
ered at least twice. Several objects were placed on the seabed 
between passes to test the ability of the algorithms to detect 
changes. The first operation Atlantic was carried out off the 
coast of Portugal in September 2024. The matching mission 
was carried out under conditions of strong waves and wind, 
which led to the appearance of noise artifacts in the images – 
wave patterns and stripe noise. The second operation Baltic 
was carried out close to the pier near the city of Świnoujś­
cie  (Poland) in November 2024.

Hardware.
All calculations, including inference of deep learning mod­

els, were performed on a Lenovo Legion computer with Ge­
Force RTX4070 (8GB) graphics adapter, Intel Core i-7 CPU, and 
32 GB of RAM. The code and weights of the models were taken 
from the corresponding repositories listed in the references.

Method.
The first step in constructing a relevant seafloor change 

map was to identify keypoints for each pair of reference 
and matching images. In this paper, the terms keypoints and 
features are used interchangeably to denote local image cor­
respondences, with the terminology adapted to the specific 
matching approach (keypoint-based or dense)

k k kr1 2
2, , , ,�� ��  � � � �� ��k k km1 2

2, , , . 	 (1)

SIFT was chosen as the reference detector due to its pop­
ularity in optical and sonar imagery. DISK and SuperPoint 
methods were chosen for comparison as modern deep learn­
ing approaches, whose effectiveness needs to be verified on 
SSS data. The maximum number of keypoints was set to 4096 
to ensure maximum coverage, and the descriptor length was 
set to 256. All other parameters remained set by default.

In the second stage, the obtained keypoints were matched 
to form matching pairs

M k k i r j mi j� �� � ��� �� ��� ��� �, | , , , .1 1 	 (2)
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For testing purposes, a modern LightGlue matcher based 
on the attention mechanism was chosen. The dense LoFTR 
matcher does not have a separate detector since it forms both 
keypoints and matches in one pass. LoFTR with the ResNet­
FPN backbone was initialized with weights obtained on out­
door datasets; other parameters left standard.

After obtaining pairs of matched keypoints for each im­
age, the homography matrix H = homography(M) was calcu­
lated and the matching image was warped to geometrically 
aligned at the pixel level with reference one. The homography 
was calculated using the OpenCV implementation [20] with 
RANSAC filtering (threshold = 5).

Ultimately, a change map was constructed by absolute 
subtraction of images at the pixel level. The filtered change 
map was obtained after thresholding the result to highlight 
the most significant changes and suppress noise. The result­
ing change map was used for qualitative assessment of the 
accuracy and adequacy of matching.

Evaluation.
The evaluation was performed both quantitatively and 

qualitatively. For a balanced quantitative comparison of the 
selected feature detection and matching methods, two groups 
of metrics were considered:

1. Quality of keypoint matching.
2. Efficiency of resource usage.
The key metrics included the number of keypoints per 

image, the number of matches, spatial coverage (percentage 
of 64 × 64 pixel blocks containing at least one match), and 
the percentage of matches that passed the filtering (RANSAC 
Inlier %). These indicators directly reflect the method’s ability 
to detect and match reliable features in sonar images, noisy 
and heterogeneous by nature.

Since ground truth matches require laborious manual 
labeling, indirect quantitative metrics were used to assess the 
matching geometric quality. The image pairs are of the same 
size, geo-aligned, and acquired with the same hardware. This 
implies that true matches should have close coordinates within 
each image. Deviations of a few pixels are possible due to varia­
tions in roll, pitch, vehicle speed, or sea level due to turbulence, 
tides, or other factors.

Therefore, the following metrics were used to assess the 
quality of the matching:

1. Displacement – the difference between the coordinates 
of the corresponding keypoints in two images d k ki i i� � �� . For 
a perfect match, the expected value and standard deviation of 
the displacement should be within a few pixels.

2. Matching angle – the angle between the line connecting 
the matching points in the adjacent images and the "horizon"

�i i i i iy y x W x� � �� � � � �� �� �arctan / , 	 (3)

where (xi, yi) are the coordinates of the i-th point on the reference 
image; � �� �x yi i,  are the coordinates of the corresponding point 
on the matching image; W is the width of the image; θi is the 
angle of the line connecting the corresponding points. Ideally, 
the expected value of the angle should be close to zero, and the 
standard deviation should be within a few degrees. The num­
ber of outliers was then estimated from the angle distribution.

3. Reprojection error, defined as

e
N

x proj Hx
i

N
i i� � � � ���

1
1 2

, 	 (4)

where N is the number of matches; xi ∈ N2 is the keypoint of 
the reference image; H ∈ R3 × 3 is the calculated homography 

matrix; proj(.) – projection function converting homogeneous 
coordinates back to Cartesian; ′xi  is the corresponding key­
point in the matching image.

This indicator quantitatively estimated the distance be­
tween the projected position of the point and its pair in an­
other image. A smaller value of the standard deviation means 
higher quality of the match after alignment.

The study also used the resource efficiency indicators – the 
processing time per one image, the consumption of random 
access memory (RAM), as well as the amount of allocated 
and peak memory of the graphics processor (GPU). These in­
dicators are critical for assessing the methods implementation 
in real underwater missions, where computing resources are 
often limited. The evaluation of each indicator was carried out 
separately for each mission.

5. Results of the matching models’ comparative 
research

5. 1. Generated datasets
Based on the collected field data, two datasets were gener­

ated. When designating specific pairs of images (reference and 
matching), the notation Baltic 1, Atlantic 5, and so on was used. 
The main parameters of both datasets are given in Table 1.

Table 1

Dataset parameters

Dataset
Mission 
length, 

m

Time 
between 
missions

Alti­
tude, 

m

Slant 
range, 

m

Number 
of image 

pairs

Bottom 
type

Atlantic 2500 7 days 16–18 51 20 Sand

Baltic 700 1 hour 8–10 51 14
Sand 
and 
silt

No additional intensity correction was applied after stan­
dard TVG correction. The water column was masked to avoid 
false keypoint matching and skewed distribution. Typical 
images from Atlantic mission are shown on Fig. 1.

  
a b

Fig. 1. Sample reference and matching images 	
for Atlantic 4 pair: a – reference image; b – matching image

The matching mission images contained distortion and 
stripe noise (Fig. 1, b), which noticeably changed the visible 
structure of the seabed. Each track from both the reference 
and repeat missions was divided into relatively straight 
segments with a course deviation of no more than 12°, de­
termined by the GNSS coordinates of the vessel. The naviga­
tion information was converted into "North-East" coordinate 
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system relative to the initial point of the reference mission. 
Each matching segment was paired with the nearest reference 
segment using the cKDTree algorithm [21], where more than 
90% pings were within the half-meter threshold. In the ab­
sence of matches for a particular ping, the previous ping from 
the paired image was reused. After that, the sonar image data 
was sliced and converted into fragments of 1024 × 1024 pixels 
with an overlap of 128 pixels. End images of the segments were 
cropped vertically to approximately 1024 × 670 pixel  size.

5. 2. Experimental comparison and quantitative eval-
uation of efficiency

Table 2 summarizes the results of keypoint detection 
and matching efficiency for both datasets. SIFT, DISK, and 
SuperPoint generated an average of 3,000 to 4,000 keypoints 
per image; however, the number of matches remaining after 
LightGlue filtering was low, ranging from 24 (SIFT) to 66  (Su­
perPoint). At the same time, LoFTR formed a much denser set 
of points – an average of 472 points per image, almost com­
pletely covering the image. However, after RANSAC, the pro­
portion of inlier matches remained low (approximately 8%), 
indicating geometric inconsistency of a large fraction of the 
correspondences.

Table 3 further examines the geometric quality of matches. 
In the Atlantic set, traditional SIFT and DISK exhibited 
rather large displacement mean (≈ 130 pixels) and repro­
jection error mean (> 300 pixels), reflecting unstable corre­
spondences. At the same time, the combination of Super­
Point + LightGlue showed better metrics. The displacement 
mean (≈ 36 pixels) and reprojection error (mean 36 pixels, 
standard deviation 72) indicates better geometric stability of 
the matches. LoFTR, with a fairly dense coverage, showed 

large displacement standard deviation (182 pixels) and mod­
erate reprojection error mean (≈ 142 pixels). Although Su­
perPoint was the best in terms of metrics, it still failed to 
provide reliable enough matches comparing to Baltic dataset, 
which becomes obvious from qualitative analysis (see below).  
In the less noisy Baltic dataset containing contrast features of 
a pier, all methods showed significantly better metrics. SIFT, 
DISK and SuperPoint: reprojection error mean (< 5 pixels), 
displacement standard deviation (< 5 pixels), while LoFTR 
produced results with higher variance due to sporadic false 
matches. In general, classical and sparse methods (SIFT, 
DISK, SuperPoint) showed high quality, whereas dense trans­
former-based LoFTR was statistically times worse than its 
sparse counterparts.

Matching angle distributions for LoFTR and Super­
Point + LightGlue on Fig. 2 help understand the details be­
hind the collected metrics.

In the Baltic set, both LoFTR and SuperPoint + LightGlue 
produced a set of matching with angles concentrated near 
zero, as reflected in low angular standard deviations (ap­
proximately 1.3° for LoFTR and 0.3° for SuperPoint). LoFTR 
has a sharp peak with minimal spread, while SuperPoint has  
a well-centered but broader bell-shaped distribution. 

In the Atlantic set, however, LoFTR (c) retains a centered 
bell-shaped distribution but with "heavy tails" due to larger 
angular deviations (6–7°). This indicates a higher number 
of outliers and false matches under difficult conditions. At 
the same time, SuperPoint + LightGlue (d) generated very 
few matches with sparse and irregular angle distributions.  
This explains its relatively small standard deviation (≈ 1.9°) 
but indicates the instability of the method with a small num­
ber of matches.

Table 2
Keypoints and matches

Dataset Method Keypoints per image Matches per image pair Spatial coverage, % RANSAC inliers, %

Atlantic

SIFT + LightGlue 3199 24 48 27.1

DISK + LightGlue 4096 42 57 18.6

SuperPoint + LightGlue 3351 66 34 43.4

LoFTR 472 472 96 8.0

Baltic

SIFT + LightGlue 3252 1088 86 61.3

DISK + LightGlue 4096 1772 77 57.3

SuperPoint + LightGlue 3835 1394 83 65.6

LoFTR 4674 4674 97 64.3

Table 3
Geometric consistency of matching

Dataset Method Displacement 
mean, pixels

Matching angle 
standard deviation, 

degrees 

Displacement 
standard devia­

tion, pixels

Reprojection error 
mean, pixels

Reprojection error 
standard deviation, 

pixels

Atlantic

SIFT + LightGlue 131.0 5.71 96.2 506.6 1124.0

DISK + LightGlue 128.5 8.26 120.9 298.6 487.8

SuperPoint + LightGlue 35.9 1.91 26.2 36.0 71.8

LoFTR 135.5 6.78 182.4 141.7 184.2

Baltic

SIFT + LightGlue 6.1 0.35 4.2 4.3 3.3

DISK + LightGlue 5.9 0.35 4.0 4.8 3.6

SuperPoint + LightGlue 5.6 0.34 3.8 3.9 2.7

LoFTR 10.0 1.37 28.7 8.8 28.9
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Based on matching angles distribution analysis, it can 
be concluded that LoFTR provides denser, but less stable 
keypoint matches. SuperPoint + LightGlue generates fewer, 
but more accurate correspondences. The methods effec­
tiveness significantly depends on the data set properties. 
On noisy sets, classical and convolutional methods may 
lose their ability to generate coherent matches with good  
scene coverage.

5. 3. Estimating computational efficiency
Computational resources usage is analyzed in Table 4. 

On both datasets, the SIFT, DISK, and SuperPoint methods 
demonstrated similarly low memory requirements and high 

execution speed. RAM consumption was limited to 25 MB, 
allocated GPU did not exceed 70 MB, and peak – 532 MB 
per dataset. The average processing time of one image pair 
ranged from 34 ms to 66 ms, which makes these methods 
suitable for large-scale and high-load applications.

Transformer-based LoFTR, however, required signifi
cantly more resources: for the Atlantic set, the average pro­
cessing time for a pair of images was approximately 820 ms 
with a peak GPU memory consumption of about 4 GB per 
set and an allocated GPU memory of 649 MB per set. Similar 
results were observed for Baltic – about 856 ms per image 
pair and up to 3.4 GB of peak GPU memory per set, and up 
to 1009 MB allocated GPU memory per set.

Fig. 2. Histogram of matching angles for LoFTR and SuperPoint of sample image pairs from both datasets: 	
a – LoFTR for the Baltic 6 pair; b – SuperPoint + LightGlue for the Baltic 6 pair, c – LoFTR for the Atlantic 17 pair, 	

d – SuperPoint + LightGlue for the Atlantic 17 pair; in all images, the X axis is the matching angle in degrees, 	
the Y axis is the frequency of the angle in the sample

   
 
 

   

   
 
 

   

a
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Table 4
Resource usage efficiency

Dataset Method Time per image pair, ms RAM, MB Allocated GPU, MB Peak GPU, MB

Atlantic

SIFT + LightGlue 59 15 57 346

DISK + LightGlue 34 11 63 532

SuperPoint + LightGlue 55 9 65 298

LoFTR 820 541 1009 3995

Baltic

SIFT + LightGlue 57 25 82 319

DISK + LightGlue 62 18 81 498

SuperPoint + LightGlue 66 15 107 365

LoFTR 856 196 649 3348
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5. 4. Qualitative evaluation of matching and change 
maps

Quantitative metrics provide means of objective compar­
ison but do not sufficiently reflect the spatial distribution of 
matches or the visual quality of the resulting change maps, 
which is the ultimate methods goal. Therefore, an additional 
qualitative analysis of the keypoints distribution, the consis­
tency of matches, and the quality of the change maps was 
conducted on typical pairs of images from both datasets. Four 
main aspects were taken into account:

1. Overall number of mapped keypoints.
2. Distribution of keypoints across the image.
3. Visual quality of mappings, presence of false matches.
4. Quality of the resulting change maps.
The aim of the analysis was to identify the patterns and 

individual cases not covered by the metrics and to assess the 
suitability of the change map for operator’s review. The results, 
summarized in Table 5, demonstrate significant differences be­

tween methods and datasets, highlighting the trade-off between 
density, reliability, and interpretability of keypoint matching 
mapping in sonar images.

Fig. 3–8 show typical images from each experiment, illus­
trating the observations described above and demonstrating 
the methods performance.

Qualitative analysis confirmed that the matching effi­
ciency depends on the detector-matcher combination, as 
well as on the data set. In the Atlantic set, with a homoge­
neous seabed texture, low contrast and noise, SIFT + Light­
Glue and DISK + LightGlue generated only sparse, of­
ten false matches. SuperPoint + LightGlue provided more 
consistent matches, but still with insufficient and skewed 
coherence. LoFTR provided the highest density and uni­
formity of matches, which allowed for high-quality change 
maps to be obtained on some pairs, although numerous 
false matches prevented the calculation of a correct homo­
graphic transformation.

Table 5
Qualitative observations

Dataset Method
Number of 

matched key­
points

Spatial distribution of keypoints Matching quality Change map

Atlantic

SIFT + LightGlue Dozens of 
sparse points

Distributed evenly, closer to contrast 
areas. In some images grouped in one 

corner. Some images with very few 
points

Many false matches 
(angles), 100% for 

some images

Failed to produce 
interpretable change 

maps

DISK + LightGlue
Dozens of 

points, more 
than SIFT

More evenly than in SIFT, less bound 
to contrast areas. All on one side for 

two images

False matches 
present

Failed to produce 
interpretable change 

maps

SuperPoint + LightGlue
From several 

to hundreds of 
points

Big variations from very dense groups 
to even distribution. One image with­

out matched points

Highly coherent 
matches with few 

false ones

Interpretable change 
map in a few pairs

LoFTR
Hundreds of 

points, evenly 
distributed

Evenly distributed with occasion­
ally dense groups in nadir or high 

contrast areas

Visible minority of 
false matches; often 

grouped together

Interpretable change 
map in a few pairs, 

overall better quality

Baltic

SIFT + LightGlue Hundreds of 
points

Evenly distributed. Higher density 
in high contrast areas (pier, nadir, 

sandbars, bottom objects)

Almost no false 
matches

Good change map, 
minor distortion

DISK + LightGlue
Hundreds of 
points, more 

than SIFT

Grouped closer to nadir area. 
In some images left or right-most 

1/5 of images without keypoints. Very 
few points near nadir/contrast areas

Few or no false 
matches

Overall good, few pair 
with skewed warping 

SuperPoint + LightGlue Hundreds of 
points

Evenly distributed, high density in 
nadir/contrast areas/edges, pier Some 
well textured areas without matches

Few or no false 
matches

Overall good, few 
pairs with skewed 

warping

LoFTR
Times more 
than other 
methods

Evenly distributed, some small areas 
without keypoints. Higher density in 

nadir area

Few or no false 
matches

Overall good, few 
pairs with skewed 

warping

 
Fig. 3. SIFT + LightGlue matching result for Atlantic 4 pair – sparse keypoints with many false matches
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Fig. 4. DISK + LightGlue matching result for Atlantic 4 pair – tighter matching, but still with a large number of false matches

Fig. 5. SuperPoint + LightGlue matching result for Atlantic 4 pair – matches concentrated in one corner

 

Fig. 6. The result of the LoFTR matching for the Atlantic 4 pair – numerous evenly distributed points, 	
but with a significant number of false matches

 

Fig. 7. LoFTR matching result and change map for the Atlantic 5 pair: 	
a – matching map; b – change maps, original (left), and after thresholding (right)

 
 
 

 

a

b
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In the Baltic set, with better contrast and the presence of 
clear structures (pier, sandbars), all methods demonstrated 
much better results. SIFT + LightGlue and DISK + Light­
Glue gave high-quality coverage with a minimum of errors; 
SuperPoint + LightGlue achieved the best balance between 
density and stability; LoFTR, as in the first set, created the 
most matches, with few false ones. All methods allowed for 
the construction of high-quality informative change maps 
that clearly reflected changes at the bottom (for example,  
in Fig. 8), achieving the main goal.

6. Discussion of matching models research 

Our results (Tables 2–5, Fig. 2–8) confirm the different 
behavior of the methods by quantitative metrics, matching 
quality, and resource consumption. The patterns revealed in 
the study explain the effectiveness of each approach, consid­
ering their architectural features, input data and task type.

Combinations of classical (SIFT) and convolutional (DISK, 
SuperPoint) detectors in combination with LightGlue form 
sparse but stable matches, which provides small displacement 
and low reprojection error (Table 3). Such stability can be 
explained by the limited local perception fields of CNN archi­
tectures, where descriptors distinguish intense contrasts even in 
the presence of noise. However, due to the low density of match­
es, sparse methods fail to provide full-fledged image matching at 
the pixel level and create interpretable change maps (Fig. 3–5).

In contrast, the transformer-based LoFTR model provided 
the highest density of matches (Table 2), which allowed to 
achieve continuous coverage of the scene (Fig. 6–8). This is 
presumably the result of the global attention mechanism, 
which analyzes the dependences between all pixels simulta­
neously. However, the high number of false matches and large 

variance of reprojection error (Table 3) may be explained by 
the fact that the model was trained on optical data and is too 
sensitive to low-contrast sonar images of a different nature.

Unlike the approach in [3], where CNN is used to reduce 
false positives in the change map, this study directly applied 
deep learning models to feature matching, providing more 
detailed geometric assessment. Compared to the classical gra­
dient-based SIFT method, which provides accuracy under high 
contrast conditions, the combination of SuperPoint + Light­
Glue demonstrated better stability even on noisy images. The 
results of our study indicate the need for adaptation of deep 
models’ parameters to acoustic data, since without such adapta­
tion, the accuracy and quality of matching may be insufficient. 

Thus, this study addresses the lack of systematic com­
parison of detectors and matchers with different architec­
tures (classical, convolutional, and transformer-based) on real- 
world SSS images. For the first time, a comprehensive quan­
titative assessment (Tables 2–4) and qualitative analysis of 
matching and change maps (Fig. 7, 8) for two datasets were 
performed, which paves the way to practical recommenda­
tions. In particular, SuperPoint + LightGlue can be considered 
the best compromise for real-time tasks, while LoFTR is ap­
propriate for offline analysis with a priority on completeness 
of coverage and matching. Its resource intensity is explained 
by its transformer architecture, that performs matching over 
the entire image grid, not only over a limited set of keypoints.

Thus, our work reasonably achieves the initial objective: the 
suitability of modern deep learning models for sonar tasks has 
been assessed and their real limitations have been identified.

It is worth noting that the study was limited by the lack 
of ground-truth matches, hence the evaluation used indirect 
metrics. In addition, the test datasets had a relatively small 
volume (two missions), and did not cover the variety of bot­
tom types. Also, the use of pre-trained models without domain 

Fig. 8. LoFTR matching result and change map for the Baltic 9 pair: 	
a – highly coherent matches of evenly distributed numerous keypoints; b – change maps, original (left), and after 

thresholding (right); new object is marked with a white arrow

 
 
 

 

a

b
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adaptation to acoustic data reduced their ability to general­
ize, and the computational complexity of LoFTR (Table 4)  
limits its application in autonomous vehicles.

The research limitations also include the simplification 
of the seabed geometry model (homographic approximation), 
that ignores its three-dimensional structure. Besides, trans­
former-based LightGlue point matcher was not compared 
with classical matchers (BFMatcher, FLANN) that would 
make the analysis more objective.

Further research should cover the domain-specific fine-tun­
ing of the research deep models on actual sonar data, as well as 
the development of more advanced match filtering algorithms, 
that could incorporate a priori data (sonar position and orien­
tation, information about the bottom material, etc.). The design 
of hybrid convolutional-transformer architectures considering 
the physical properties of the acoustic signal seems promising. 
Also, it is necessary to compare matching methods on more 
heterogeneous data sets and bottom types (rocky bottom, veg­
etation, variable depth), and the use of the such methods and 
change maps in automatic object detection tasks.

7. Conclusions

1. Within the scope of the study, two real-world SSS image 
datasets were generated – Atlantic and Baltic, based on the 
data collected by the EvoLogics Sonobot 5 USV. Image pairs 
from the reference and matching missions were aligned with 
high accuracy: over 90% of ping pairs were within 0.5 m. The 
final ping mismatch did not exceed 2–3 pixels. The obtained 
data correspond to real conditions in a typical SSS search 
missions with significant speckle and stripe noise, homoge­
neous bottom, and a small number of prominent features. 
This favorably distinguishes them from synthetic data often 
used in modern studies and provides a qualitatively relevant 
assessment of the selected methods.

2. Comparative analysis on the generated datasets revealed 
significant differences in the behavior of the methods under 
noisy (Atlantic) and low-noise (Baltic) conditions. On the low-
noise dataset, all methods provided high stability and geo­
metric accuracy of the matches: the reprojection error mean 
was 3.9–8.8 pixels, and the percentage of inliers – from 57% to 
65.6% for all models. LoFTR showed a high result of matches 
(64.3% inliers) with the largest scene coverage (97%). Super­
Point + LightGlue achieved the lowest error mean (3.9 pixels 
with a standard deviation of 2.7 pixels) and the highest per­
centage of inliers (65.6%). On the other hand, on the high-
noise Atlantic dataset, a significant drop in the quality was ob­
served for all methods. Classical SIFT and convolutional DISK 
generated only several matches (18–66) on average per image 
pair, and a low percentage of inliers (18.6–27.1%), which led to 
unstable alignment. LoFTR produced the highest number of 
matches (472) and maximum coverage (96%), but the percent­
age of filtered matches was the lowest (8%), which led to high 
reprojection error (141.7 ± 184.2 pixels). The most balanced 
result on noisy data was shown by SuperPoint + LightGlue, 
with the smallest displacement mean (35.9 pixels), the lowest 
reprojection error mean (36.0 pixels), and the highest inlier 
percentage (43.4%). Therefore, SuperPoint + LightGlue was 
the best method according to the adopted metrics.

3. In terms of resource usage, the classical and convolu­
tional methods remained the most economical (< 0.06 s per 
image pair and up to 532 MB of peak memory per set). At the 
same time, DISK + LightGlue was the best on the Atlantic  

set (0.034 s per frame), and the worst in terms of peak mem­
ory on both sets (532 MB and 498 MB GPU, respectively). 
LoFTR turned out to be the most resource-greedy (up to 
0.86 s per frame, up to 4 GB of GPU memory per set). Thus, 
no fundamental difference between the classical and con­
volutional algorithms in resource consumption was found. 
Instead, as expected, the transformer-based LoFTR spends an 
order of magnitude more memory and time on the same tasks.

4. Qualitative analysis of the maps of matches and chang­
es confirmed that methods’ effectiveness depends on the level 
of image noise. Some edge cases of the methods were also 
found. On the Baltic set, all algorithms generated sufficiently 
stable matches and interpreted change maps. This allows to 
recommend the use of classical and convolutional approaches 
under simple conditions. On the noisy Atlantic, classical and 
convolutional methods detected relatively few points and cre­
ated low density of matches, making it impossible to generate 
high-quality change maps for most pairs. LoFTR, on the other 
hand, provided a high number of matches and dense cover­
age, but most of them were unstable. This can be explained 
by the high sensitivity of transformers to noise artifacts and 
the lack of additional filtering of matches for consistency.  
It can be concluded that for noisy underwater images, the use 
of LoFTR with adaptation to sonar data and additional filter­
ing of matches by coherence seems promising, and could make 
it possible to combine its coverage and stability of the results.
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