┏-Стаття присвячена розробці методичних основ проектування аеродинамічних систем відведення космічних апаратів з орбіт. Запропонована методика проектування аеродинамічних систем, в якій реалізовано ітераційний підхід оцінювання їх ефективності на різних етапах їх проектування. Розроблена методика дозволяє оцінювати ефективність аеродинамічної системи в залежності від заданого терміну балістичного існування космічного апарату

0

Ключові слова: космічне сміття, космічний апарат, відведення з орбіти, проектування систем, аеродинамічна система

Статья посвящена разработке методических основ проектирования аэродинамических систем увода космических аппаратов с орбит. Предложена методика проектирования аэродинамических систем, в которой реализован итерационный подход оценивания их эффективности на различных этапах их проектирования. Разработанная методика позволяет оценивать эффективность использования аэродинамической системы в зависимости от заданного срока баллистического существования космического аппарата

Ключевые слова: космический мусор, космический аппарат, увод с орбиты, проектирование систем, аэродинамическая система

1. Введение

По данным национального управления по аэронавтике и исследованиям космического пространства США (NASA) на октябрь 2014 г. на околоземных орбитах находилось около 13 000 объектов техногенного происхождения, так называемого космического мусора [1]. Главными источниками космического мусора являются последние ступени ракет-носителей (PH) и космические аппараты (КА), которые окончили свой срок активного существования и остались на орбите.

Проведенные в [3] исследования ученых участников Межагентского комитета по космическому мусору показали, что даже при выполнении 90 % рекомендаций по предотвращению роста фрагментов космического мусора (КМ) его популяция на низких околоземных орбитах (HOO) за 200 лет вырастет на 30 %. Прогнозируется, что без осуществления активных мер направленных на стабилизацию популяции КМ катастрофические столкновения действующих КА с фрагментами КМ будут происходить каждые 5-9 лет. Одной из основных рекомендаций для стабилизации популяции КМ на НОО является увод КА с орбиты по окончании его срока активного существования. Межагентсткий комитет по космическому мусору рекомендует в [2] ограничить пребывание на НОО космических аппаратов (КА), отработавших свой ресурс, периодом в 25 лет.

УДК 629.78 DOI: 10.15587/1729-4061.2015.36662

РАЗРАБОТКА **МЕТОДИКИ ПРОЕКТИРОВАНИЯ** АЭРОДИНАМИЧЕСКИХ СИСТЕМ УВОДА КОСМИЧЕСКИХ ΑΠΠΑΡΑΤΟΒ C ОКОЛОЗЕМНЫХ ОРБИТ

А.С.Палий

Младший научный сотрудник Отдела системного анализа и проблем управления Институт технической механики Национальной академии наук Украины и Государственного космического агентства Украины ул. Лешко-Попеля, 15, г. Днепропетровск, Украина, 49005 E-mail: jerr_5@ukr.net

Согласно [4, 5], на высотах до ≈ 900 км предпочтительным является использование для увода с орбиты КА силы аэродинамического взаимодействия поверхности АСУ и окружающей среды. АСУ просты в изготовлении и эксплуатации, не требуют ориентации космического аппарата, имеют относительно небольшую массу, но имеют и недостатки, а именно, снижение эффективности под воздействием факторов космического пространства: космического вакуума, солнечной радиации, атомарного кислорода и фрагментов космического мусора.

Конструктивно АСУ состоит из системы хранения оболочки и системы наддува. Существует несколько способов наддува оболочки:

– использование остаточного давления, обеспеченного при установке АСУ на борт КА;

 использование вещества, которое под воздействием глубокого вакуума сублимируется и превращается в газ, необходимый для наддува оболочки;

– использование системы наддува, имеющей в своем составе емкость для хранения газа и систему подачи его в оболочку.

Конструктивно АСУ можно разделить на две группы:

- АСУ на основе одиночных или сгруппированных оболочек:

- развертываемые пленочные каркасные и бескаркасные конструкции оболочки.

2. Анализ литературных данных и постановка проблемы

При разработке данной методики использованы определенные в работе [4] типовые конфигурации АСУ, а именно:

- АСУ в форме плоского круглого щита;
- АСУ в форме четырехгранной пирамиды;
- АСУ в форме трехгранной пирамиды;
- АСУ в форме сферы;
- АСУ в форме двух двугранных панелей.

Так, в [5, 6] предлагается использовать АСУ для увода отработавших КА на примере орбитальной станции "Мир". Автор предлагает уводить орбитальную станцию массой 140 тонн, с орбиты высотой ≈350 км, с помощью АСУ сферической формы диаметром 182 м. Масса такой системы составила бы ≈893 кг.

Конфигурация АСУ в форме плоского круглого щита [7] состоит из 4-х надувных элементов (3-х надувных строп и торовой оболочки) и одного развертываемого элемента (плоского круглого щита). Торовая оболочка и надувные стропы выполнены из одного материала полиимида ПМ-А.

Конфигурация АСУ в форме четырехгранной пирамиды [8] состоит из 8-ми надувных элементов (4-х надувных мачт – ребер пирамиды и 4-х надувных мачт – сторон основания пирамиды) и 4-х развертываемых элементов (4-х граней пирамиды).

АСУ в форме трехгранной пирамиды [9, 10] состоит из 6-ти надувных элементов (3-х надувных мачт-ребер пирамиды и 3-х надувных мачт-сторон основания пирамиды) и 3-х развертываемых элементов (3-х граней пирамиды).

АСУ в форме двух двугранных панелей [11, 12] состоит из 2-х надувных элементов (надувных мачт) и 4-х развертываемых элементов (4-х полотен пленочного материала).

Рассмотренные публикации, в которых описываются различные конфигурации ACУ, в основном посвящены описанию конкретных технических решений ACУ и предварительному оцениванию их эффективности. Недостатком данных работ является то, что в них отсутствуют обобщенные методические основы проектирования аэродинамических систем увода космических аппаратов с орбит.

Следует отметить, что данные конфигурации были определены на момент разработки данной методики, в случае появления новых конфигураций данная методика может быть модернизирована.

3. Цель и задачи исследования

Целью данной статьи является разработка методики проектирования ACV, которая позволит на различных этапах разработки технического предложения получать информацию о параметрах системы, в которой учитываются ограничения на размеры ACV и воздействие факторов космического пространства.

Для достижения указанной цели были поставлены следующие задачи:

1. Определить границы применимости АСУ.

2. Разработать математическую модель определения параметров системы.

3. Выбрать критерии оценивания эффективности системы.

4. Методы и модели выбора параметров аэродинамической системы увода

В данной методике используется итерационный метод последовательных приближений. В первом приближении проводится предварительное оценивание э

эффективности использования ACУ и определяются границы ее применимости. Во втором приближении учитываются массы систем хранения, наддува и развертывания ACУ и проводится уточнение ее параметров. В третьем приближении учитывается воздействие факторов космического пространства, и выбирается наиболее эффективная конфигурация ACУ.

АСУ состоит из: аэродинамического элемента (АЭ), системы наддува (СН) и системы хранения (СХ).

Масса АСУ m_{АСУ} определяется выражением:

$$\mathbf{m}_{\mathrm{ACY}} = \mathbf{m}_{\mathrm{A}\mathfrak{Z}} + \mathbf{m}_{\mathrm{CX}} + \mathbf{m}_{\mathrm{CH}}, \qquad (1)$$

где т_{лэ} – масса АЭ; т_{сх} – масса СХ; т_{сн} – масса СН. В первом приближении определяются границы

применения АСУ. При этом используются допущения: – форма АСУ принимается сферической;

– форма АСУ принимается сферической,

 – масса АСУ определяется массой аэродинамического элемента (АЭ), масса систем наддува, развертывания и хранения не учитывается;

 – масса АСУ должна быть меньше или равняться массе необходимого рабочего вещества для совершения маневра по уводу КА с орбиты, которая не должна превышать 3,5 % массы КА;

 воздействие факторов космического пространства не учитывается.

Математическая постановка выбора параметров АСУ при этом будет иметь вид:

$$\mathbf{m}_{\mathrm{ACV}} = \mathbf{f}\left(\mathbf{t}_{\mathrm{L}}, \mathbf{m}_{\mathrm{KA}}, \mathbf{S}_{\mathrm{M}}, \mathbf{m}_{\mathrm{A} \ni}\right) \rightarrow \min \left|\mathbf{k}_{2} \le \mathbf{k}_{1}\right|, \tag{2}$$

где t_L – срок баллистического существования КА с ACУ; m_{KA} – масса КА; S_M – площадь среднего сечения ACУ, которая определяется согласно [13] по соотношениям:

$$S_{\rm M} = \frac{2m_{\rm KA}\sqrt{\frac{a}{\mu}} \cdot X(e,z)}{t_{\rm L} 3\rho_{\rm pe}C_{\rm X}},$$
(3)

$$X(e,z) = \frac{3 \cdot e \cdot \exp(z)}{4I_0(z) + 8eI_1(z)} \times \left\{ 1 + \frac{7e}{6} + \frac{5e^2}{16} + \frac{1}{2z} \cdot \left(1 + \frac{11e}{12} + \frac{3}{4z} + \frac{3}{4z^2} \right) \right\},$$
(4)

 $C_{\rm X}$ – коэффициент аэродинамического сопротивления, в данной методике рассматривается неориентированное движение КА, таким образом, согласно [14] принимаем $C_{\rm X}$ = 2,2; $\rho_{\rm pe}$ - плотность атмосферы в перигее орбиты; $I_{\rm k}(z)$ – функции Бесселя порядка k=0 и 1 и аргумента z = ae/H_{\rm p,pe}; е – эксцентриситет орбиты; μ – гравитационная параметр Земли; m – масса KA;

а – большая полуось орбиты; $H_{_{\rho,pe}}$ – высота плотной атмосферы; $k_{_1}$ – критерий оценивания эффективности двигательных систем

$$\mathbf{k}_1 = \frac{\mathbf{m}_{\mathrm{T}}}{\mathbf{m}_{\mathrm{KA}}},\tag{5}$$

 $m_{_{\rm T}}\,$ – масса рабочего вещества необходимого для совершения маневра по уводу КА с орбиты

$$\mathbf{m}_{\mathrm{T}} = \mathbf{m}_{\mathrm{KA}} \left(1 - \mathrm{e}^{\left(\frac{\Delta V}{\mathbf{w}_{\mathrm{w}}}\right)} \right), \tag{6}$$

 ΔV – необходимое приращение скорости для совершения маневра по уводу КА с орбиты, определяется по формуле [15]:

$$\Delta V = \sqrt{\frac{2\mu}{r_{a}}} \left(\sqrt{\frac{r_{n} + \Delta r_{n}}{r_{a} + r_{n} + \Delta r_{n}}} - \sqrt{\frac{r_{n}}{r_{a} + r_{n}}} \right), \tag{7}$$

 ${\bf r}_{\rm a}$ – радиус-вектор КА в апогее орбиты; ${\bf r}_{\rm n}$ – радиус-вектор КА в перигее орбиты; $\Delta {\bf r}_{\rm n}$ –высота, на которую требуется понизить перигей; ${\bf w}_{\rm u}$ – скорость истечения рабочего вещества; ${\bf k}_2$ – критерий оценивания эффективности аэродинамических систем увода

$$k_2 = \frac{m_{ACV}}{m_{KA}},$$
(8)

m_{ACV} – масса АСУ, на данной стадии определяется массой аэродинамического АЭ, которая определяется по формулам:

$$\label{eq:macy} m_{_{ACY}} = 1,27 \sqrt{S_{_M}} \cdot \delta_{_{MH\Im}} \cdot \rho_{_{MH\Im}} \; ,$$

 $\delta_{_{MH\Im}}~-$ толщина материала надувного элемента; $\rho_{_{MH\Im}}~-$ плотность материала надувного элемента.

Во втором приближении рассчитываются параметры ACУ, с учетом масс систем хранения и наддува ACУ и проводится анализ возможности ее использования. Конфигурация ACУ на данном этапе принимается сферической, и должна удовлетворять ограничениям наложенных на размер конструктивных элементов ACУ, при этом иметь минимальную массу m_{ACY} .

В этом случае на конфигурацию ACУ накладываются следующие ограничения:

– диаметр аэродинамического элемента (АЭ) d_{АЭ}
 должен быть меньшим или равняться допустимому
 диаметру оболочки d^{доп}_{АЭ}, в данном случае под аэро динамическим элементом понимается сферический
 элемент конструкции АСУ;

– длина надувной мачты (HM) $l_{\rm HM}$ должна быть меньшей или равняться допустимой длине развертываемого элемента $l_{\rm HM}^{\rm aon}$;

Наибольшая оболочка, которую можно было изготовить в наземных условиях, вывести на орбиту и успешно развернуть, была 36 м в диаметре (спутники Эхо-1 и Эхо-2 [16]), на основании этого принимаем, что $d_{A3}^{A01} = 36$ м. Наибольшая надувная мачта, развернутая в космосе, была длиной 28 м (эксперимент по развертыванию надувной антенны в космосе [17]) На данном этапе выбора параметров ACУ воздействие факторов космического пространства не учитывается. Математическая постановка задачи выбора параметров ACУ при этом будет иметь вид:

$$\mathbf{m}_{\mathrm{ACY}} = \mathbf{f}\left(\mathbf{m}_{\mathrm{A}\partial}, \mathbf{m}_{\mathrm{CX}}, \mathbf{m}_{\mathrm{CH}}\right) \rightarrow \min \left| \mathbf{d}_{\mathrm{A}\partial} \leq \mathbf{d}_{\mathrm{A}\partial}^{\mathrm{min}} \right|, \tag{9}$$

где m_{cx} – масса системы хранения АСУ, принимаем, что система хранения АСУ на борту КА выполнена в форме куба и m_{cx} определяется по формуле

$$m_{CX} = 6 \left(\sqrt[3]{V_{MH\partial} + V_{CH}} \right)^2 \cdot \delta_{MCX} \cdot \rho_{MCX} , \qquad (10)$$

 $\delta_{\rm MCX}$ — толщина материала системы хранения, принимаем $\delta_{\rm MCX} = 5 \cdot 10^{-4}$ м; $\rho_{\rm MCX}$ — плотность материала системы хранения, принимаем, что система хранения выполнена из алюминиевого сплава марки ТД-33, плотностью $\rho_{\rm MCX} = 2700~{\rm kr/m^3}$ [18]; $V_{\rm MH9}$ — объем материала надувных элементов; $V_{\rm CH}$ — объем системы наддува; $m_{\rm CH}$ — масса системы наддува

$$\mathbf{m}_{\rm CH} = \mathbf{m}_{\Gamma} + \mathbf{m}_{\rm CXII\Gamma} \,, \tag{11}$$

m_г – масса газа для наддува оболочки, определяется из уравнения [19]:

$$m_{\Gamma} = \frac{P_{HJ} V_{H\Im} \mu_{\Gamma}}{R_0 T_A}, \qquad (12)$$

 $P_{\rm HZ}$ — избыточное внутреннее давление принимаем равным атмосферному давлению на высоте 120 км границы плотных слоев атмосферы $P_{\rm HZ}$ =0,069 Па; $V_{\rm HS}$ — объем надувных элементов; μ_{Γ} — молекулярная масса газа для наддува оболочки; R_0 — универсальная

газовая постоянная,
$$R_0 = 8,31 \frac{\mu}{M} m_{CXIII} - Macca$$

системы хранения и подачи газа к оболочке

$$\mathbf{n}_{\mathrm{CXIIF}} = \mathbf{S}_{\mathrm{F}\mathrm{E}} \cdot \boldsymbol{\delta}_{\mathrm{MCXIIF}} \cdot \boldsymbol{\rho}_{\mathrm{MCXIIF}}, \qquad (13)$$

 $S_{\Gamma b}$ – площадь поверхности газового баллона, в котором хранится газ для наддува АСУ, принимаем, что он выполнен сферической формы из полиэтилентерефталата, тогда $S_{\Gamma b}$ определяется по формуле

$$S_{\Gamma B} = 4,836\sqrt[3]{V_{\Gamma}^2}$$

 V_{Γ} – объем газа в системе хранения и подачи газа к оболочке, принимаем, что газ на борту КА хранится в резервуаре под внутренним давлением $P_{Bg} = 1,013 \cdot 10^5 \, \Pi a$, тогда V_{Γ} и рассчитывается по формуле:

$$V_{\Gamma} = \frac{m_{\Gamma} R_0 T_0}{P_{B \Pi} \mu_{\Gamma}} ,$$

Т₀ – температура на борту КА, принимаем.

В третьем приближении проводится расчет параметров ACУ различных конфигурация, с учетом ограничений на размеры. На данном этапе определяется срок активного существования t_{сас} ACУ под воздействием факторов космического пространства (кос-

Таблица 3

мического вакуума, солнечной радиации, атомарного кислорода и фрагментов космического мусора). Срок активного существования должен быть не меньше времени баллистического существования КА, то есть, $t_{CAC} \ge t_L$. Математическая постановка задачи выбора параметров АСУ при этом будет иметь вид:

$$m_{ACY} = f(m_{A\partial}, y_1, y_2, y_3, m_{CX}, m_{CP}, m_{CH}, y_4) \rightarrow \min \begin{vmatrix} d_{A\partial} \leq d_{A\partial}^{AOI} \\ l_{HM} \leq l_{HM}^{AOI} \\ l_{CAC} \geq t_L \end{vmatrix}$$
(14)

где у₁, у₂, у₃, у₄ – коэффициенты, учитывающие воздействие факторов космического пространства.

5. Результаты расчета параметров аэродинамической системы увода

Использование методики проектирования АСУ, предлагаемой в данной статье, рассмотрим на примере выбора проектных параметров АСУ для увода типового КА со следующими характеристиками:

- масса КА 600 кг;

– время баллистического существования КА – 25 лет;

 высота начальной орбиты КА 600 км, 700 км, 800 км, 900 км;

– площадь миделева сечения КА $S_M = 2,16 \text{ м}^2$.

Для расчета критерия эффективности использования двигательного устройства для перевода КА на орбиту, на которой срок его баллистического существования составит 25 лет, рассчитаем необходимое приращение скорости ΔV . Результаты расчета ΔV приведены в табл. 1.

Таблица 1 Результаты расчета приращения скорости для выполнения маневра

Высота орбиты КА, км	600	700	800	900
Приращение скорости ΔV , м/с	18,329	59,073	91,216	118,77

Далее рассчитаем критерий эффективности k₁. Результаты расчета приведены в табл. 2.

Таблица 2

Результаты оценки эффективности использования ДУ для увода с орбит КА

Высота орбиты КА, км	600	700	800	900
Критерий эффективности k ₁	0,006	0,02	0,03	0,038

Как видно из табл. 2 использование двигательного устройства для увода КА с орбиты высотой 900 км является неэффективным.

В данной работе расчет параметров ACУ проводится для первых двух итераций.

На первой итерации рассчитываем площадь миделева сечения S_M АСУ для обеспечения заданного срока баллистического существования. Результаты приведены в табл. 3.

Результаты расчета площади миделевого сечения АСУ для обеспечения заданного срока баллистического существования

Существования Высота орбиты КА, км 600 700 800 900

рысота оронты ил, км	000	100	000	000
Площадь миделя АСУ $S_{\rm \scriptscriptstyle M},{\rm M}^2$	3,6576	14,4	47,964	132

Далее рассчитываем критерий эффективности использования АСУ. Результаты расчетов приведены в табл. 4.

Таблица 4

Результаты оценки эффективности использования АСУ для увода с орбит КА без учета массы систем наддува и хранения

Высота орбиты КА, км	600	700	800	900
Критерий эффективности k_2	0,0008	0,0031	0,01	0,029

На второй итерации рассчитывается критерий эффективности ACУ k_2 с учетом масс системы наддува и системы хранения и подачи газа к оболочке. Результаты расчета приведены в табл. 5.

Таблица 5

Результаты оценки эффективности использования АСУ для увода с орбит КА с учетом массы систем наддува и хранения и ограничений

Высота орбиты КА, км	600	700	800	900
Критерий эффективности k ₂	0,001	0,004	0,012	0,032

Далее сравним критерий k_2 с критерием k_1 , приведенным в табл. 2, в результате получаем, что АСУ эффективно использовать для увода КА с орбит высотой до 900 км.

Для определения возможности использования АСУ определим диаметр ее АЭ. Результаты приведены в табл. 6.

Таблица 6

Результаты расчета диаметра аэродинамического элемента АСУ

Высота орбиты КА, км	Диаметр АЭ d _{АЭ} , м
600	2,16
700	4,3
800	7,8
900	13

На основании результатов, приведенных в табл. 6, можно судить о возможности использования АСУ для увода средних КА (массой до 600 кг) с орбит высотой 600–900, так как $d_{\rm A9}\!<\!d_{\rm A9}^{\rm non}$.

6. Выводы

Разработана методика проектирования аэродинамических систем увода космических аппаратов (КА) с орбит, которая основана на методе последовательных приближений. В первом приближении проводится определение границ применимости и предварительное оценивание эффективности использования аэродинамических систем для увода КА с орбит. Для оценивания эффективности данных систем выбраны соответствующие критерии. Во втором приближении рассчитываются параметры системы с учетом массы систем наддува и хранения аэродинамической системы на борту КА, для этих целей в данной статье разработана математическая модель выбора ее параметров. В третьем приближении рассчитывается срок активного существования аэродинамической системы под воздействием факторов космического пространства и оптимизируются ее параметры. Для учета воздействия факторов космического пространства необходимо разработать модель функционирования аэродинамической системы, что будет являться предметом дальнейших исследований.

Литература

- 1. Satellite Box Score [Text] / The Orbital Debris Quarterly News. 2014. Vol. 18, Issue 3. P. 8.
- 2. IADC Space debris mitigation guidelines [Electronic resource] / IADC-2002-01. Revision 1/Prepared by the IADC Steering Group and WG4 members, 2003. 10 p. Available at: http://www.iadc-online.org/index.cgi?item=docs_pub
- Liou, J.-C. Stability of the future LEO environment an IADC comparison study [Text] / J.-C. Liou, A. K. Anlikumar, B. Bastida Virgili, T. Hananada et. al. // In abstract books of sixth European conference on space debris, ESOC, Darmstadt, Germany, 2013. – 38 p.
- 4. Палий, А. С. Методы и средства увода космических аппаратов с рабочих орбит (состояние проблемы) [Текст] / А. С. Палий // Техническая механика. – 2012. – № 1. – С. 94–102.
- Nock, K. T. Gossamer orbit lowering device (GOLD) for safe and efficient de-orbit [Text] / K. T. Nock, K. L. Gates, K. M. Aaron , A. D. McRonald // AIAA/AAS Astrodynamics specialist conference, 2010. – P. 1. doi: 10.2514/6.2010-7824
- Patent 6830222 USA: MIIK7 B 64 G 1/62Balloon device for lowering space object orbits [Text] / Nock K. T., McRonald A. D., Aaron K. M. – 10/394477; claimed: 21.03.03; published: 14.12.04.
- Roberts, P. C. E. MUSTANG : A technology demonstrator for formation flying and distributed systems technologies in space [Electronic resource] / P. C. E. Roberts, T. S. Bowling, S. E. Hobbs // Proceedings of 5th conference Dynamics and control of systems and structures in space, Kings College, Cambridge, July 2002. – Available at: https://dspace.lib.cranfield.ac.uk/ bitstream/1826/881/1/MUSTANG-formation%20flying%20in%20space-2002.pdf
- iDod : Development of a generic inflatable de-orbit device for cubesats : technical report [Electronic resource] / Delft University of technology. – Delft, 2007. – 381 p. – Available at: http://repository.tudelft.nl/assets/uuid:49d86db1-8909-4464-af1bfe1655c9c376/ae_maessen_2007.pdf
- 9. Harkness, P. G. An aerostable drag-sail devise for the deorbit and disposal sub-tonne low Earth orbit spacecraft [Text] : PhD. thesis : appr. 06.10.06 / P. G. Harkness. Cranfield, 2006. 258 p.
- Maesen, D. S. Development of a generic inflatable de-orbit device for cubesats [Text] / D. S. Maesen, E. D. van Breukelen, B. T. C Zandbergen, O. K. Bergsma // 58th International astronautic congress, 2007.
- Патент 2435711 Рос. Федерация : МПК7 B64G1/62/ Развертываемая аэродинамическая поверхность аэроторможения спутника [Текст] / Пейпуда В., Ле Куль О. – 2008138539/11; заявл. 14.02.2007; опубл. 10.12.2011.
- 12. Dupuy, C. Gossamer technology to deorbit LEO non-propulsion fitted satellite [Text] / C. Dupuy, O. Le Couls // 40th Aerospace mechanisms symposium, NASA Kennedy space center, 2010.
- Палий, А. С. Об эффективности устройства аэродинамического торможения для увода космических аппаратов [Текст] / А. С. Палий // Техническая механика. – 2012. – № 4. – С. 82–90.
- 14. Handbook for limiting space debris [Text] : NASA handbook / NASA. Washington, DC, 2008. 174 p.
- 15. Klinkrad, H. Space debris: Models and risk analysis [Text] / H. Klinkrad. Praxis Publishing Ltd., Chichester, UK, 2006. 172 p.
- Jenkins, C. H. M. Gossamer spacecraft : membrane and inflatable structures and technology for space Applications [Текст] / C. H. M. Jenkins. – AIAA, Reston (USA), 2001. – 586 p.
- Inflatable antenna technology with preliminary shuttle experiment results and potential applications [Electronic resource] / R. Freeland, S. Bard, G. Veal and other // In proceedings of 6th Annual Meeting and Symposium of the Antenna Measurement Techniques Association. – Seattle, Washington, 1996. – Available at: http://www.lgarde.com/assets/content/files/publications/ aiaa-98-2104.pdf
- ГОСТ 4787-97. Алюминий и сплавы алюминиевые деформируемые [Текст] / Введ. 01.07.2000. Минск: Межгосударственный совет по стандартизации, метрологии и сертификации, 2000. – 20 с.
- Яворский, Б. М. Справочник по физике для инженеров и студентов вузов [Текст] / Б. М. Яворский, А. А. Детлаф, А. К. Лебедев; 8-е изд., перераб. и испр. – М.: ООО «Издательство Оникс» : ООО «Издательство «Мир и Образование», 2006. – 1056 с.