В роботі наведені схеми гідрооб'ємно-механічних трансмісій, що найбільш часто використовуються та працюють за схемою "диференціал на вході", складені спрощені кінематичні та структурні схеми гідрооб'ємно-механічних трансмісій з різним з'єднанням механічної та гідравлічної гілки з ланками планетарного механізму, визначені основні параметри розглянутих трансмісій

D

-

Ключові слова: гідрооб'ємно-механічна трансмісія, гідрооб'ємна передача, схема "диференціал на вході"

В работе приведены наиболее часто используемые схемы гидрообъемно-механических трансмиссий, работающих по схеме "дифференциал на входе", составлены упрощенные кинематические и структурные схемы гидрообъемно-механических трансмиссий с различным соединением механической и гидравлической ветви со звеньями планетарного механизма, определены основные параметры рассмотренных трансмиссий

Ключевые слова: гидрообъемно-механическая трансмиссия, гидрообъемная передача, схема "дифференциал на входе"

The transition to the dimensionless mathematical model of discrete hydraulic drive is carried out, resulting in a form of the equations become more simple, and the number of independent dimensionless complexes (dynamic similarity criteria) - the minimum. This approach - the basis of an engineering calculation method Keywords: discrete hydraulic drives, dynamic similarity, mathematical model

Введение

Из года в год увеличивается количество транспортных средств (TC), оборудованных гидрообъемно-механическими трансмиссиями (ГОМТ). Каждая фирма-производитель, а их более 10 в мире («Fendt», «Claas», «Case», «Massey Ferguson» и т.д.), предпочитает использовать свои оригинальные конструктивные решения.

Несмотря на огромное разнообразие ГОМТ ТС, на данный момент мало изучено влияние места расположения планетарного механизма (ПМ), соединения механической и гидравлической ветви со звеньями ПМ на основные параметры ГОМТ (рабочие объемы гидромашин, угловые скорости их валов, значения давлений, объемный, механический и общий коэффициент полезного действия (КПД)).

Анализ последних достижений и публикаций

Одним из примеров ГОМТ со схемой "дифференциал на входе", является трансмиссия Fendt Vario (рис. 1), которая устанавливается на тракторах фирмы Fendt [1, 2].

УДК 621.83.062.1

ОСНОВНЫЕ ПАРАМЕТРЫ ГИДРООБЪЕМНО-МЕХАНИЧЕСКИХ ТРАНСМИССИЙ, РАБОТАЮЩИХ ПО СХЕМЕ "ДИФФЕРЕНЦИАЛ НА ВХОДЕ"

В.Б. Самородов

Доктор технических наук, профессор, заведующий кафедрой* Контактный тел.: (057) 707-64-64

А.И. Бондаренко

Кандидат технических наук* Контактный тел.: (057) 707-64-64, 095-867-44-78 E-mail: anatoliybon@rambler.ru *Кафедра "Автомобиле- и тракторостроения" Национальный технический университет "Харьковский политехнический институт" ул. Фрунзе, 21, г. Харьков, Украина, 61002

Эксклюзивностью рассматриваемой ГОМТ является использование одного регулируемого гидронасоса и двух регулируемых гидромоторов с максимальным отклонением блока цилиндров до 450. Рабочий и транспортный диапазоны являются двухпоточными, однако при трогании трансмиссия работает как полнопоточная – через гидравлическую ветвь передается 100% мощности двигателя.

При дальнейшем увеличении скорости доля мощности, проходящая через гидравлическую ветвь ГОМТ, уменьшается, а через механическую, соответственно, увеличивается. При максимальной скорости (до 60 км/час) ГОМТ работает как цепь механических редукторов, пропускающая 100% мощности двигателя.

В целом трансмиссия Fendt Vario отличается простотой, использует только один планетарный ряд, отлично компонуется. Высокое качество трансмиссии обеспечивает микропроцессорное управление параметрами регулирования одновременно гидронасоса и гидромоторов. Благодаря расширению кинематического диапазона за счет двухмашинного регулирования в ГОМТ исключены режимы циркуляции мощности [2].

б)

Рис. 1. Функциональная схема трансмиссии Fendt Vario: а — мощность двигателя 51 — 92 кВт (70 — 125 л.с.); б — мощность двигателя 162 — 287 кВт (220 — 390 л.с.); в — мощность двигателя 85 — 176 кВт (115 — 240 л.с.); 1 — двигатель внутреннего сгорания; 2 — демпфер крутильных колебаний; 3 — коронная шестерня; 4 — солнечная шестерня; 5 — водило; 6 — гидронасос; 7 — планетарная передача; 8 — муфта включения вала отбора мощности; 9 — вал отбора мощности; 10 — суммирующий вал; 11 — гидромотор; 12 — муфта переключения диапазонов движения; 13 — привод на задний мост; 14 — муфта включения привода переднего моста; 15 — привод на передний мост; 16 — трансмиссионный тормозной механизм

Схемы "дифференциал на входе" нашли также применение в ГОМТ с переменной структурой (рис. 2 – 3).

Такая структура обозначает, что в каждом поддиапазоне, на которые разбивается весь диапазон изменения передаточного отношения ГОМТ, может использоваться одна из следующих схем: с дифференциалом на входе; с дифференциалом на выходе; с двумя дифференциалами [3].

ГОМТ переменной структуры Auto Powr (рис. 2) применяется на тракторе John Deere 8345 R (мощность 254

Рис. 2. Кинематическая схема трансмиссии John Deere Auto Powr 8345 R

кВт (345 л.с.), максимальная эксплуатационная масса 18 т, скорость 50 км/ч) и имеет четыре скоростных поддиапазона, для создания которых используются схемы с дифференциалом на входе и с двумя дифференциалами [3].

ГОМТ переменной структуры WSG 500 предназначена для тракторов и других ТС мощностью 380 кВт (516 л.с.) и позволяет достигать скорости 62 км/ч. Трансмиссия WSG 500 (рис. 3) имеет три скоростных поддиапазона, для создания которых используются все три схемы: с дифференциалом на входе; с дифференциалом на выходе; с двумя дифференциалами [3].

Рис. 3. Кинематическая схема трансмиссии MALI WSG 500

Цель и постановка задачи

Целью данной работы является определение основных параметров ГОМТ, работающих по схеме "дифференциал на входе":

 – составление кинематических и структурных схем ГОМТ с различным соединением механической и гидравлической ветви со звеньями ПМ (с солнечной шестерней, коронной шестерней, водилом);

 – определение кинематических, силовых и энергетических параметров рассматриваемых трансмиссий, КПД гидрообъемной передачи (ГОП) и трансмиссии в целом;

– анализ полученных результатов.

Основные параметры гидрообъемно-механических трансмиссий, работающих по схеме "дифференциал на входе"

Схема "дифференциал на входе" редко применяется в ГОМТ, более часто в составе ГОМТ с переменной структурой. Особенностью данной схемы является то,

> что она может самостоятельно покрывать весь диапазон регулирования (трансмиссия Fendt-Vario) при сохранении достаточно высокого КПД ГОМТ (до 0,82) за счет увеличения объемов гидромашин.

> Кроме этого схема "дифференциал на входе" используется в ГОМТ, где весь диапазон регулирования разбивают на поддиапазоны (ГОМТ John Deere Auto Powr 8345 R, MALI WSG 500), в каждом из которых, или в части из них, используется схема "дифференциал на входе".

В ГОМТ ТС, работающих

по схеме "дифференциал на входе", возможны 6 вариантов соединения механической и гидравлической ветви со звеньями ПМ (рис. 4).

Определим основные параметры ГОМТ с замкнутыми контурами, представленными на рис. 4. Упрощенные кинематические и структурные схемы рассматриваемых ГОМТ приведены на рис. 5, 6.

Рис. 4. Кинематические схемы замкнутых контуров ГОМТ TC с дифференциалом на входе при различных соединениях механической и гидравлической ветви со звеньями ПМ

Рис. 5. Упрощенные кинематические схемы ГОМТ с дифференциалом на входе при различных соединениях механической и гидравлической ветви со звеньями ПМ (* — регулируемый гидромотор)

В качестве исходных данных выбраны следующие параметры: максимальная угловая скорость двигателя 2250 об/мин; радиус колес г = 0,85 м; масса трактора 9000 кг; реализуемые скорости на тяговом диапазоне при f = 0,5 – от 0 до 10 км/ч; рабочий объем гидронасоса – 130 см³, рабочий объем гидромотора – 130 см³ (1-й случай – регулируемый гидромотор, 2-й случай – нерегулируемый гидромотор); гидромашины производства "Sauer-Danfoss".

Кинематика ГОМТ, приведенных на рис. 5, 6, описывается системой следующих уравнений:

где ω_i – угловая скорость звена;

 $\omega_{\rm d}-$ угловая скорость коленчатого вала двигателя;

 ω_{i^*} , ω_{2^*} , ω_{3^*} – угловая скорость звена, связанного с солнечной шестерней – "1", коронной шестерней – "2", водилом – "3";

k – внутреннее передаточное отношение планетарного ряда [4];

S₁ – характерный параметр сателлитов [4];

ω_s – относительная угловая скорость сателлита;

i_i – передаточное отношение редуктора;

е₁,е₂ – относительный параметр регулирования ГОП;

q₁,q₂ – максимальная производительность гидромашин;

ω_{e1*}, ω_{e2*} – угловая скорость звена, связанного с валом гидронасоса и гидромотора;

 γ – коэффициент, характеризующий направление потока мощности (γ =1 – прямой поток мощности; γ =-1 – обратный поток мощности);

ΔQ – потери рабочей жидкости во всех гидромашинах, которые вычисляются с учетом знака перепада давления в ГОП [5 – 8];

X,Y,Z – коэффициенты, характеризующие способ соединения механической и гидравлической ветви со звеньями ПМ (X=0 – для схемы № 2, X=1 – для остальных; Y=0 – для схемы № 5, Y=1 – для остальных; Z=1 – для схемы № 2, Z=0 – для остальных).

Суммарные потери рабочей жидкости в гидронасосе и гидромоторе [5]:

$$\Delta \mathbf{Q} = (\lambda_1 + \lambda_2) \cdot \Delta \mathbf{p} = \frac{\mathbf{K}_{1y}}{\mu} \cdot (1 + \mathbf{C}_{1y} \cdot |\boldsymbol{\omega}_{e1^*}|) + \frac{\mathbf{K}_{2y}}{\mu} \cdot (1 + \mathbf{C}_{2y} \cdot |\boldsymbol{\omega}_{e2^*}|)$$
(2)

где λ_1, λ_2 — коэффициент объемных потерь, пропорциональный перепаду давления для гидронасоса и гидромотора; Δр – перепад рабочего давления в ГОП; К_{iy},C_{iy} – коэффициенты потерь для гидронасоса (i=1) и для гидромотора (i=2);

µ – коэффициент динамической вязкости.

Силовые параметры трансмиссии описываются системой следующих уравнений:

$$\begin{cases} M_{0b} + M_{1a} = 0; \quad M_{1x^*} \cdot \eta_{13}^{\Theta \operatorname{sign}(N_{1x^*})} + M_{2x^*} \cdot \eta_{23}^{\Theta \operatorname{sign}(N_{2x^*})} + M_{3x^*} = 0; \\ M_{1x^*} \cdot k \cdot \eta_{13}^{\Theta \operatorname{sign}(N_{1x^*})} + M_{2x^*} \cdot \eta_{23}^{\Theta \operatorname{sign}(N_{2x^*})} = 0; \\ (M_{2b} \cdot \eta_1^{\Theta \operatorname{sign}(N_{2b})} + i_1 \cdot M_{3a}) \cdot X = 0; \quad M_{e1x^*} - e_1 \cdot q_1 \cdot \Delta p = -\Delta M_1 \cdot \operatorname{sign}(\omega_{e1^*}); \\ M_{e2x^*} + e_2 \cdot q_2 \cdot \Delta p = -\Delta M_2 \cdot \operatorname{sign}(\omega_{e2^*}); \quad (M_{3b} \cdot \eta_2^{\Theta \operatorname{sign}(N_{3b})} + i_2 \cdot M_{5a}) \cdot Z = 0; \\ (M_{4b} \cdot \eta_1^{\Theta \operatorname{sign}(N_{4b})} + i_1 \cdot M_{5b}) \cdot Z = 0; \quad (M_{4b} \cdot \eta_2^{\Theta \operatorname{sign}(N_{4b})} + i_2 \cdot M_{5a}) \cdot Y = 0; \\ (M_{4b} \cdot \eta_2^{\Theta \operatorname{sign}(N_{4b})} + i_2 \cdot M_{5b}) \cdot I = 0; \quad M_{5c} \cdot \eta_3^{\Theta \operatorname{sign}(N_{5c})} + i_3 \cdot M_{6a} = 0; \\ (M_{6b} \cdot \eta_4^{\Theta \operatorname{sign}(N_{6b})} + i_4 \cdot M_{7a}) \cdot Y = 0; \quad M_{0a} + M_{0b} = 0; \\ M_{1a} + M_{1b} = 0; \quad M_{2a} + M_{2b} = 0; \quad M_{3a} + M_{3b} = 0; \\ (M_{6b} - G \cdot f \cdot r) \cdot \Psi = 0; \quad (M_{7a} + M_{7b}) \cdot Y = 0; \quad (M_{7b} - G \cdot f \cdot r) \cdot Y = 0, \end{cases}$$

где M_{nm} – моменты на звеньях ГОМТ; m-индексчисло совпадает с номером угловой скорости звеньев; n-индексы-буквы – соответствуют моментам на концах звеньев (рис. 6);

 $M_{1X^{\ast}}\,,M_{2X^{\ast}}\,\,M_{3X^{\ast}}\,\,-$ моменты на солнечной, коронной шестернях и водиле;

 η_i – КПД редуктора;

 Θ – коэффициент учета потерь в зубчатых зацеплениях ($\Theta = 0$ – без учета потерь, $\Theta = -1$ с учетом потерь в зубчатых зацеплениях);

 N_{nm} — мощность, передаваемая звеньями ГОМТ (произведение угловых скоростей на соответствующие моменты с учетом знака дают величину и направление потоков мощности на конкретных звеньях и элементах ГОМТ);

 $M_{\rm e1X^{*}}$, $\,M_{\rm e2X^{*}}\,$ – моменты на валу гидронасоса и гидромотора;

η₁₃, η₂₃ – КПД в зубчатых зацеплениях солнце - сателлит и эпицикл - сателлит при остановленном водиле, определяющие потери моментов;

 $\Delta M_1, \Delta M_2$ – потери момента в гидромашинах, вычисляемые, например, согласно математической модели потерь К.И. Городецкого [6 – 8], как функции параметров регулирования e_1, e_2 , угловой скорости валов гидромашин $\omega_{el^*}, \omega_{e2^*}$, рабочих объемов q_1, q_2 и перепада давления Δp ;

G – вес трактора;

r – радиус колес;

f – коэффициент сопротивления движению;

 Ψ, Υ, I – коэффициенты, характеризующие способ соединения механической и гидравлической ветви со звеньями ПМ (Ψ=1 – для схемы № 5, Ψ=0 – для остальных; Υ=1 – для схем № 1, 3, 6, Υ=0 – для остальных; I=1 – для схемы № 4, 5, I=0 – для осталь-ных).

Момент потерь в гидромашинах определяется из следующего выражения [5 – 7]:

$$\Delta \mathbf{M}_{i} = \mathbf{q}_{i} \cdot \left[\overline{\mathbf{K}}_{1} \cdot \left| \boldsymbol{\omega}_{i} \right| \cdot (1 + \overline{\mathbf{K}}_{2} \cdot \overline{\mathbf{e}}_{i}^{2}) + \frac{\overline{\mathbf{K}}_{5} \cdot (1 + \overline{\mathbf{K}}_{4} \cdot \left| \overline{\mathbf{e}}_{i} \right|)}{(1 + \overline{\mathbf{K}}_{3} \cdot \left| \boldsymbol{\omega}_{i} \right| \cdot \mathbf{D}_{qi})} \cdot \Delta \mathbf{p} + \frac{\overline{\mathbf{K}}_{8} \cdot (1 + \overline{\mathbf{K}}_{7} \cdot \left| \overline{\mathbf{e}}_{i} \right|)}{(1 + \overline{\mathbf{K}}_{6} \cdot \left| \boldsymbol{\omega}_{i} \right| \cdot \mathbf{D}_{qi})} \right],$$

где $\bar{K}_1, \bar{K}_2, ..., \bar{K}_8$ – коэффициенты гидромеханических потерь [6 – 8];

D_{qi} – характерный размер гидромашины,

$$D_{ai} = \sqrt[3]{2 \cdot \pi \cdot q_i}$$
.

(3)

Системы кинематических (1) и силовых (3) уравнений нелинейны за счет потерь в ГОП и зубчатых зацеплениях, решаются совместно итерационным методом при заданных моменте сопротивления на ведущих колесах, угловой скорости вала двигателя ω_d и параметре регулирования $e=e_1/e_2$.

Совместное решение систем (1) и (3) дает моменты на всех звеньях ГОМТ, включая момент нагрузки на двигателе – M_d .

Результаты статического анализа рассматриваемых ГОМТ с нерегулируемым гидромотором приведены на рис. 7 – 12, с регулируемым гидромотором

 на рис. 13 – 18 (ранее не использованные обозначения:

η₀ – общий объемный КПД ГОП;

 η – общий КПД ГОП; $\eta_{\mbox{\tiny TP}}$ – КПД трансмиссии;

N_d – мощность двигателя, кВт;

N₂ – мощность, выходящая с ГОП, кВт;

N_{gid} – отношение мощностей в процентах, передаваемых через гидравлическую ветвь к выходной мощности из замкнутого контура).

Обобщенные результаты расчетов сведены в табл. 1.

Особенностью схемы № 2 (рис. 5, 6) является то, что она работоспособна лишь при повышенных объемах гидромашин ГОП: рабочий объем гидронасоса для данной схемы принят 390 см³, рабочий объем гидромотора – 390 см³.

Следует обратить внимание на распределения потоков мощности в рассматриваемых ГОМТ (табл. 2, рис. 19).

Значения и направления потоков мощности, передаваемых звеньями двухпоточной трансмиссии, определяются только круговым передаточным отношением замкнутого контура [9]:

– для схем № 1, 3, 6:

$$\dot{\mathbf{i}}_{xkbx} = -\frac{\mathbf{N}_{2a}}{\mathbf{N}_{5b}} = -\frac{\mathbf{M}_{2a} \cdot \boldsymbol{\omega}_2}{\mathbf{M}_{5b} \cdot \boldsymbol{\omega}_5}.$$
 (5)

– для схем № 2, 4, 5:

(4)

$$\mathbf{i}_{xkbx} = -\frac{\mathbf{N}_{2a}}{\mathbf{N}_{4a}} = -\frac{\mathbf{M}_{2a} \cdot \boldsymbol{\omega}_2}{\mathbf{M}_{4a} \cdot \boldsymbol{\omega}_4}.$$
 (6)

При - ∞
- i_{xkbx} <0 направления потоков мощности по параллельным ветвям двухпоточной трансмиссии одинаковы, а при 0
- i_{xkbx}
< ∞ мощность по ветвям двух-

поточной трансмиссии передается в противоположенных направлениях, т.е. в замкнутом контуре возникает циркулирующая мощность.

Рис. 6. Структурные схемы рассматриваемых ГОМТ

Рис. 8. Результаты статического анализа ГОМТ № 2 с нерегулируемым гидромотором

Рис. 14. Результаты статического анализа ГОМТ № 2 с регулируемым гидромотором

Рис. 16. Результаты статического анализа ГОМТ № 4 с регулируемым гидромотором

Рис. 17. Результаты статического анализа ГОМТ № 5 с регулируемым гидромотором

Рис. 18. Результаты статического анализа ГОМТ № 6 с регулируемым гидромотором

Таблица 1

Обобщенные результаты статического анализа

Схема	Δр , МПа	η_{TPmax}	$\omega_{_{ m S}}$, рад/с	N_{dmax} , кВт	N _{gidmin}	₩ _{е1*} , рад/с	ω _{е2*} , рад∕с	k	
ГОМТ с нерегулируемым гидромотором									
1	36,23 - 17,09	0,822	-235,4204,5	150,9	0,403	375,0 - 177,7	-0,6162,3	3,0	
2	54,61 - 42,53	0,765	-176,8188,7	165,2	0,760	58,8-46,8	-0,340,8	3,0	
3	46,07 - 16,66	0,857	600,0 - 268,0	144,0	0,260	369,2 - 118,0	-0,2106,6	-4,5	
4	-40,2018,12	0,859	180,8 -498,8	143,4	0,366	-360,0141,9	0,8 - 128,0	3,0	
5	43,06 - 25,09	0,814	234,6157,9	150,7	0,522	-264,7154,3	-0,1134,1	3,0	
6	30,90 - 21,44	0,771	-600,0398,6	159,4	0,662	-322,1233,4	-2,0209,9	-4,5	
ГОМТ с регулируемым гидромотором									
1	13,04 - 28,39	0,841	-235,4195,4	145,8	0,245	375,0 - 119,6	-0,6209,9	3,0	
2	25,83 - 41,80	0,791	-176,8196,1	163,3	0,608	58,8 - 39,4	-0,365,8	3,0	
3	14,16 -40,33	0,874	600,0 - 208,1	141,8	0,145	369,2 -73,2	-0,2125,5	-4,5	
4	-14,6933,57	0,862	180,8 -572,1	142,5	0,225	-360,091,8	0,8 - 157,1	3,0	
5	18,71 -33,02	0,823	234,6 304,5	150,0	0,347	-264,7113,1	-0,1184,1	3,0	
6	14,55 -22,11	0,773	-600,0291,2	163,4	0,486	-322,1186,4	-2,0319,0	-4,5	

Значения кругового передаточного отношения замкнутых контуров рассматриваемых ГОМТ

0	Схема	i_{xkbx}	Схема	i _{xkbx}	
ГОМТ с нерегулируемым			ГОМТ с регулируемым		
гидромотором			гидромотором		
	1	-585,160,87	1	-505,000,45	
	2	-756,853,95	2	-412,702,06	
	3	-811,230,46	3	-1025,030,24	
	4	-127,970,65	4	-265,10,35	
	5	-1001,651,39	5	-767,000,74	
	6	-364,782,58	6	-187,011,35	

 а)
 Б)
 Рис. 19. Распределения потоков мощности в замкнутых контурах рассматриваемых ГОМТ: а
 – ГОМТ с нерегулируемым гидромотором; б – ГОМТ с регулируемым гидромотором

Выводы

Для различных соединений механической и гидравлической ветви со звеньями ПМ были составлены кинематические и структурные схемы ГОМТ с дифференциалом на входе, а также уравнения описывающие кинематику и силовые параметры.

В результате анализа было установлено:

 – рассмотренные ГОМТ с нерегулируемым гидромотором по всем параметрам (КПД трансмиссии, мощности двигателя, перепаду давления) уступают аналогичным

Таблица 2

ГОМТ с регулируемым гидромотором, поэтому дальнейший анализ будет касаться только последних схем;

– особенностью схемы № 2 является то, что она работоспособна лишь при повышенных объемах гидромашин ГОП. При рабочем объеме гидронасоса – 130 см³, рабочем объеме гидромотора – 130 см³ схема не пригодна к использованию;

– внутреннее передаточное отношение планетарного ряда схем № 3, 6 в расчетах принято k = -4,5, в связи с тем, что угловые скорости сателлитов при k = -3 достигают 1000 рад/с при трогании (допустимо не более 600 рад/с), поэтому данные схемы не рекомендуются к использованию;

– максимальное значение КПД трансмиссии среди
 схем № 1, 4, 5 у ГОМТ № 4 – 0,862 при скоростях 8,2
 – 10,0 км/ч, на втором месте схемы № 1, 5;

мощность двигателя, необходимая для выполнении технологического режима вспашки со скоростью 10 км/час является минимальной у ГОМТ № 4 – 142,5 кВт, на втором месте схема № 1 – 145,8 кВт, на третьем № 5 - 150,0 кВт.

В рассматриваемых ГОМТ при движении передним ходом со скоростью до 10 км/ч в замкнутом контуре трансмиссии циркуляция мощности отсутствует – мощность передается по параллельным ветвям двухпоточной трансмиссии.

Наилучшей из рассмотренных ГОМТ с дифференциалом на входе (рис. 5) при заданных исходных данных (максимальная угловая скорость двигателя 2250 об/мин; радиус колес г = 0,85 м; масса трактора 9000 кг; реализуемые скорости на тяговом диапазоне при f = 0,5 – от 0 до 10 км/ч; рабочий объем гидронасоса – 130 см³, рабочий объем гидромотора – 130 см³) является схема № 4, на втором месте № 1, на третьем – схема № 5. Схемы № 3, 6 использовать не рекомендуется, № 2 – не работоспособна.

Окончательный вывод о целесообразности применения той или иной схемы ГОМТ на ТС можно сделать лишь после полного анализа всех диапазонов трансмиссии как на переднем, так и на заднем ходу.

Литература

- 1. Официальный сайт компании Fendt. Режим доступа к сайту: www.fendt.com (http://fendt.co.uk/downloadcenter_brochurespdf.asp).
- Самородов В.Б. Критический обзор работ в области тракторных гидрообъемно-механических трансмиссий / В.Б. Самородов, А.В. Рогов, М.Б. Бурлыга, Б.В. Самородов // Вестник НТУ "ХПИ": сб. научн. трудов. Тематический выпуск "Автомобиле- и тракторостроение". – 2003. – №4. – С. 3 – 19.
- 3. Щельцын Н.А. Современные бесступенчатые трансмиссии с.-х. тракторов / Н.А. Щельцын, Л.А. Фрумкин, И.В. Иванов // Тракторы и сельхозмашины. 2011. №11. С. 18 26.
- Самородов В.Б. Вывод кинематических базисных матриц и системный анализ кинематики ступенчатых механических и гидрообъемно-механических трансмиссий / В.Б. Самородов // Сборник научных трудов ХГПУ. – 1999. – №.7 – Ч. 2. – С. 363 – 370.
- 5. Рогов А.В. Развитие методов расчета систем «двигатель трансмиссия» автомобилей и тракторов: дис. на здобуття наук. ступеня канд. техн. наук: спец. 05.22.02 "Автомобілі та трактори" / Рогов Андрей Владимирович. – Харків: Харківський національний автомобільно-дорожній університет, 2006. – 168 с.
- 6. Городецкий К.И. КПД объемных гидропередач / К.И. Городецкий, А.А. Михайлин // Тракторы и сельскохозяйственные машины. – 1979. – №9. – С.9-14.
- Городецкий К.И. Математическая модель объемных гидромашин / К.И. Городецкий, А.А. Михайлин // Вестник машиностроения. – 1981.– №9.– С.14-17.
- Аврамов В.П. Гидрообъемные передачи в гидрообъемно-механических трансмиссиях транспортных машин / В.П. Аврамов, В.Б. Самородов. – Харьков: ХПИ, 1986. – 76 с.
- Красненьков В.И. Проектирование планетарных механизмов транспортных машин / В.И. Красненьков, А.Д. Вашец. М: Машиностроение, 1986. – 272 с.