мум. До максимума наблюдаются значительные пульсации температуры в зоне нагрева. После достижения максимальной скорости паровой фазы пульсации значительно снижаются и практически прекращаются вплоть до возникновения кризиса теплообмена.

3. Отмечено, что с уменьшением внутреннего диа-

метра термосифона капиллярные силы оказывают влияние на его теплопередающие характеристики.

4. Неоднозначность влияния различных факторов на теплопередающие характеристики двухфазных термосифонов требует дополнительных исследований.

Литература

- 1. Безродный М.К. Двухфазные термосифоны в промышленной теплотехнике/ М.К. Безродный, С.С. Волков, В.Ф.Мокляк. К: Вища школа, 1991. 75 с.
- 2. Безродный М.К. Процессы переноса в двухфазных термосифонных системах. Теория и практика / М.К.Безродный, И.Л. Пиоро, Т.О. Костюк. – К: Факт, 2005. – 704 с.
- 3. 3. *Khazaee I.* Experimental investigation of effective parameters and correlation of geyser boiling in a two-phase closed thermosy-phon/ I.Khazaee, R.Hosseini, S.H. Noie// Applied Thermal Engineering. 2010. V. 30. № 5. P. 406 412.
- 4. 4. *Кравец В.Ю.* Пульсационные явления в закрытых двухфазных термосифонах/ В.Ю.Кравец, Е.Н.Письменный, В.И.Коньшин// Збірник наук. праць СНУЯЕ та П, Севастополь 2009.- Випуск 4(32) с. 39 46.
- 5. Кравец В.Ю. Влияние режимных факторов на теплопередающие характеристики двухфазных термосифонов / В.Ю.Кравец, Е.Н.Письменный, В.И.Коньшин, Бехмард Голамреза// Збірник наук. праць СНУЯЕ та П, Севастополь 2010.- Випуск 4(36) - с. 41 – 49.
- 6. Nisgoski A.R. Theoretical and experimental study of two-phase vertical and loop thermosyphons/ A.R.Nisgoski, A.S.Kupka, M.B.H.Mantelli, H.G.Landa // 12th Int. Heat Pipe Conf., May 19–24, 2002, Moscow-Kostroma- Moscow. – P. 279–284.
- 7. *Hong S.E.* An experimental study on the heat transfer characteristics of a FC-72 thermosyphon/ S.E.Hong, C.J.Kim, Y.J.Park, H.K.Kang// 12th Int. Heat Pipe Conf., May 19–24, 2002, Moscow-Kostroma- Moscow. – P. 308–314.

УДК 621.22

Наведено результати моделювання роботи турбіни гідродинамічного пристрою «Каскад-М». Знайдені оптимальні режими роботи пристрою, вказані рекомендації щодо вибору електрогенератора

D-

Ключові слова: гідродинаміка, турбіна, моделювання

Приведены результаты моделирования работы турбины гидродинамического устройства «Каскад-М». Найдены оптимальные режимы работы устройства, указаны рекомендации относительно выбора электрогенератора

Ключевые слова: гидродинамика, турбина, моделирование

The results of hydrodynamic modeling of the turbine device "Cascade-M." are presented. The optimum modes of the device was found , specified guidelines on choosing a generator

Keywords: hydrodynamics, turbine, modeling

-0

МОДЕЛИРОВАНИЕ РАБОТЫ ТУРБИНЫ ГИДРОДИНАМИЧЕСКОГО УСТРОЙСТВА «КАСКАД-М»

П.П. Ремизов

Инженер

Кафедра оборудования химических производств и предприятий строительных материалов* E-mail: remizov.pavel@gmail.com

С.А. Русанов

Кандидат технических наук, доцент Кафедра оборудования химических производств и предприятий строительных материалов* Контактный тел.: (0552) 32-69-24 E-mail: ohvpbm@i.ua

Д.А. Дмитриев

Кандидат технических наук, доцент Кафедра основ конструирования *Херсонский национальный технический университет Бериславское шоссе, 28, г.Херсон, Украина, 73000 Контактный тел.: (0552) 32-69-39

64

Введение

Как известно, реализация в малых и микро ГЭС возможности децентрализованной подачи электроэнергии в сочетании с преимуществами больших ГЭС нивелирует их некоторые недостатки, такие как значительный удельный вес капитальных затрат на единицу выработанной мощности [1]. Кроме того такие ГЭС имеют минимальное воздействие на окружающую среду, их развитие может быть полностью основано на местных ресурсах, рабочей силе, стройматериалах и т.д., что в комплексе обуславливает их особое значение для стран с развивающейся экономикой, способствует развитию региона. Полученная электроэнергия передается относительно небольшому количеству потребителей в достаточной близости от ГЭС. Таким образом, выработка энергии с помощью малых гидроэлектростанций - одно из наиболее эффективных направлений развития альтернативной энергетики.

Многие технические решения для микро ГЭС основываются на использовании кинетической энергии потока, в отличие от использования потенциальной энергии большими ГЭС [2]. Это обуславливает применение свободнопоточных осевых лопастных турбин [2], часто с поворотными лопастями. Применение тех или иных конструктивных решений часто может быть неоправданным для конкретных условий, а проведение предварительных натурных испытаний экономически нецелесообразно для гидроагрегатов малых и микро ГЭС. В этом случае может быть особенно полезным проведение предварительных численных расчетов в современных CFD-системах для наперед заданных уср ловий эксплуатации конкретного гидроагрегата.

Цель работы

В данной работе проводится моделирование и анализ работы турбины гидродинамического устройства «Каскад-М» работающего в условиях свободнопоточного течения от сброса турбин малой ГЭС.

Изложение основного материала

Гидродинамическое устройство «Каскад-М» включает погружной рабочий элемент (рис.1, а) в виде лопастной турбины 1 в гидродинамической трубе 2 со статично закрепленным в центре водообтекателем 3. На рабочей площадке (рис. 1, б) размещается подъемный механизм, с помощью которого совершается спуск и подъем рабочего элемента под воду и из воды, и электрогенератор, соединенный с турбиной погружного рабочего элемента. Рабочая площадка «Каскад-М» размещается на плавучем средстве (рис. 2, б), либо на фермовой конструкции, в связи с чем устройство не требует постройки дополнительных гидросооружений и может быть мобильным.

Для условий расчета принят равноскоростной сброс со средней скоростью 3 м/с. В качестве расчетной была выбрана модификация «Каскада», в которой гидродинамическая труба имеет входное отверстие в виде эллипса с высотой 2,0 метра и шириной 2,5 метра, турбина имела 8 лопаток (Рис.2).

б)

Рис.2. Геометрия свободной камеры и рабочего колеса в SolidWorks (a) и основные размеры турбины (б)

Расчетное исследование было выполнено с помощью пакета CFX-5.7 [3]. Контрольный расчет был произведен в системе Fluent-6.3. Расчетная область с расчетной сеткой представлены на рис. 3. Расчетная область состояла из 2 подобластей: свободной камеры гидродинамической трубы и рабочего колеса гидротурбины. Построение расчетной сетки выполнялось с помощью модуля CFX-Mesh. Расчетная сетка насчитывала ≈400 тыс. ячеек, сеточная независимость была проверена путем выполнения расчетов для одного из режимов на более густой и более разряженной сетках.

На входе в гидродинамическую трубу во всех случаях задавался расход соответствующий скорости потока 3 м/с, на выходе – статическое давление. Для моделирования турбулентности была использована стандартная к-є модель [4]. Расчет течения выполе нялся в стационарной постановке. На поверхности стыка между рабочим колесом и свободной камерой задавалось условие "Frozen Rotor" («Замороженный ротор») [5].

Рис.3. Расчетная поверхностная сетка (а) и рабочий элемент в целом (б)

Предварительным подсчетом был выбран диапазон чисел оборотов, в котором будут производиться численные расчеты. В качестве верхнего предела была выбрана величина, равная числу оборотов без проскальзывания для винтовой линии с углом подъема, соответствующему среднему углу наклона лопасти и движением по ней со скоростью, равной скорости жидкости поступающей на лопатки, что в результате дало – 69 об/мин. Нижний предел – принудительное заклинивание – 0 об/мин.

Последовательно были проведены расчеты для разных чисел оборотов в указанном диапазоне. На некоторых шагах расчеты в CFX дублировались расчетами в Fluent – наибольшее расхождение (для поля скоростей и давлений) не превышало 5,6 %. Характерный вид полученного поля скоростей для *n*=30 об/мин представлен на рис. 4.

Необходимо уточнить, что значение частоты вращения для холостого хода получается при расчетном моменте на валу M=0. Цепочка расчетов для n = 0, 15, 30, 45, 60 об/мин показала, что для n = 60 об/мин происходит изменение знака момента (т.е. момент на участке 45 < n < 60 принимает нулевое значение). Интерполяция и последующий численный расчет дали значение частоты холостого хода $n_{x.x.} = 54$ об/мин. Результаты с шагом по n = 15 об/мин сведены в таблицу 1 (для некоторых значений n указаны результаты, полученные в Fluent).

Рис. 4. Характерный вид поля скоростей для *n*=30 об/мин

Таблица 2

Расчетные моменты при разных частотах вращения

п, об/мин	0	15	30	45	60	54
<i>М, Н×м,</i> CFX	-26177	-19503	-13073	-4687	2861	≈0
<i>M, Н×м,</i> Fluent	-28830		-12966	-4937		

На рис. 5 показана характеристика турбины – график зависимости «Момент – частота вращения» и соответствующий график для мощностей.

Полученные результаты показывают, что оптимальным режимом работы гидродинамического устройства «Каскад-М» работающего в условиях свободнопоточного течения от сброса турбин малой ГЭС следует считать такой, при котором система турбинапривод-гидрогенератор выйдут на режим $n\approx30$ об/мин, с получаемой от турбины мощностью (без учета к.п.д. привода) 40 кВт. Принимая к.п.д. привода $\eta\approx0.8$ [6] получим ожидаемое значение вырабатываемой мощности N=32 кВт.

Рис.5. Зависимость между моментом на валу и частотой вращения ротора (а) и передаваемой мощностью и частотой вращения ротора (б)

В работе получена информация о картине течения жидкости в рабочем элементе гидроагрегата «Каскад-М». Спрогнозированы ожидаемые режимы работы, приведена методика предварительных численных расчетов в современных CFD-системах для наперед заданных условий эксплуатации конкретного гидроагрегата с получением характеристик устройства. После окончательного выбора типа гидрогенератора и привода, желательно производить уточненный расчет на более сгущенной сетке и, возможно, более точной модели турбулентности. Указанная методика может быть применена дл широкого спектра подобных расчетов.

Литература

- Васильев Ю.С. Экологические аспекты гидроэнергетики. /Ю.С. Васильев, Н.И. Хрисанов – Л.: изд-во ЛГУ, 1984. – 247 с.
- Кривченко Г.И. Гидроэлектрические станции./Г.И. Кривченко, В.Я. Карелина. – 3-е изд., перераб. и доп. – Энергоатомиздат, 1987. – 464 с.
- Кочевский А.Н. Современный подход к моделированию и расчету течений жидкости в лопастных турбомашинах /А.Н. Кочевский, В.Г. Неня Вісник СумДУ. – Суми, 2003. – №13(59). – С. 195 -210.
- Черный С.Г. Численное моделирование пространственных турбулентных течений несжимаемой жидкости на основе k-е моделей // Черный С.Г., Грязин Ю.А., Шашкин П.А. – Вычислительные технологии. – 1999. – Т. 4. № 2. – С. 74-94.
- 5. CFX-5 Solver Theory, 2004, 261 p.
- Муха Т. И. Приводы машин. Справочник. / Муха Т. И., Януш Б. В., Цупиков А. П. – Под ред. В. В. Длоугого. – Л.: «Машиностроение» (Ленингр. отд-ние), 1975. – 344 с.