В роботі проаналізовано існуючі підходи щодо визначення фракційного складу матеріалу, що завантажиється на паллети. Запропоновано методику, що дозволяє в неперервному режимі реального часу оцінювати фракційний склад шихти по горизонтам шару підготовленого до спікання. Перевірено адекватність розробленої методики для умов аглофабрик різних підприємств

Ключові слова: сегрегація, агломерація, адекватність моделі, тепловий режим, горизонт шару, шихта

В работе проанализированы существующие подходы по определению фракционного состава загружаемого на паллеты материла. Предложена методика, позволяющая в непрерывном режиме реального времени оценивать фракционный состав шихты по горизонтам слоя подготовленного к спеканию. Проверена адекватность разработанной методики для условий аглофабрик различных предприятий

Ключевые слова: сегрегация, агломерация, адекватность модели, тепловой режим, горизонт слоя,

DOI: 10.15587/1729-4061.2015.37829

ОПРЕДЕЛЕНИЕ СЕГРЕГАЦИИ ФРАКЦИЙ АГЛОШИХТЫ, ТРЕБУЕМОЙ ДЛЯ СТАБИЛИЗАЦИИ ТЕПЛОВОГО РЕЖИМА СПЕКАНИЯ

А. С. Мных

Кандидат технических наук, доцент Кафедра электротехники и энергетического менеджмента*

А. О. Ерёмин

E-mail: mnikh.a@yandex.ua

Доктор технических наук, доцент, заведующий кафедрой Кафедра теплотехники и экологии металлургических печей Национальная металлургическая академия Украины, пр. Гагарина, 4, г. Днепропетровск, Украина, 49600 E-mail: aoeremin@gmail.com

И. Н. Мных

Кандидат технических наук Кафедра теплоенергетики* E-mail: irinamnih@yandex.ua

*Запорожская государственная инженерная академия пр. Ленина, 226, г. Запорожье, Украина, 69007

1. Введение

Производительность и энергоэффективность агломерационного процесса в значительной мере зависят от теплового режима спекания, который обусловлен характером распределения твердого топлива по высоте слоя. Последнее зависит от особенностей загрузки и сегрегации фракций материала по горизонтам шихты, подготовленной к спеканию.

Гранулометрический состав промсырья характеризуется распределением частиц материала по классам крупности - фракциям, то есть по размеру, который оценивают по эквивалентному диаметру. Оценка фракционного состава шихты осуществляется с помощью ситового анализа и является процессом крайне затруднительным и растянутым во времени. Последнее исключает возможность в динамике идентифицировать фракционный состав материала, загруженного на паллеты агломашины.

2. Анализ литературных данных и постановка проблемы

В настоящий момент существует большое количество работ, посвященных вопросу определения крупности и фракционного состава материалов. В работах [1-3] масса сыпучего материала представлена как совокупность частиц, близких к сферической форме, движущихся по поверхности загрузочного лотка и откосу слоя под действием гравитационных сил. Согласно приведенной схеме загрузки шихты на паллеты, происходит ее разделение по фракциям, в результате концентрации мелких частиц в верхних горизонтах и скатыванию крупных фракций к основанию слоя. Авторами приведены зависимости, характеризующие распределение частиц сыпучего материала по высоте формирующегося слоя при их свободном качении.

Модели разделения полидисперсного материала, построенные на основе распределения Вейбула [4, 5], позволяют оценивать изменение среднего диаметра по откосу слоя материала при известном его составе. Неоднозначность связи среднего диаметра частиц материала с его фракционным составом, необходимость экспериментального определения ряда коэффициентов, затрудняет использование приведенных моделей для реальных условий производства.

Численную оценку сегрегации аглошихты по высоте слоя при известном распределении фракций можно реализовать с помощью коэффициента сегрегации [6-8]. Предложенный в работах показатель сегрегации полидисперсного материала по высоте слоя не отражает физических основ механизма его формирования, и не может быть использован для моделирования процесса.

Представленные в работах [9, 10] решения, позволяют контролировать гранулометрический состав материала в потоке шихты и не дают возможности анализа распределения фракций по высоте слоя после загрузки материала.

Таким образом, разработка методики, позволяющей в динамике рассчитывать фракционный состав шихты на основе некоторой имеющейся информации, является актуальной научной задачей. Последнее создает предпосылки к управлению формированием оптимальной структуры слоя шихты подготовленной к спеканию, обеспечивающей стабилизацию теплового режима в заданном диапазоне, и как следствие улучшение качественных показателей агломерата.

3. Цель и задачи исследования

Целью данной работы является определение требуемого распределения фракционного состава полидисперсной агломерационной шихты для обеспечения стабилизации температуры зоны горения в заданном диапазоне.

Для достижения поставленной цели необходимо:

- разработать методику расчета фракционного со-
- провести проверку адекватности предложенной методики для условий аглофабрик различных предприятий;
- рассчитать требуемое распределение фракций материала по высоте слоя, для обеспечения условия стабилизации температуры зоны горения.

4. Методика определения фракционного состава полидисперсной шихты по горизонтам загружаемого материала

Исследование теплового режима процесса спекания агломерируемого материала на тепловой математической модели агломерации, позволило установить оптимальное распределение твердого топлива и рассчитать необходимое изменение среднего диаметра частиц шихты по высоте паллеты [11]. Однако, полученное значение среднего диаметра частиц материала на указанном горизонте, может быть получено комбинацией различных концентраций отдельных фракций составляющих сыпучую массу загружаемой шихты.

Учитывая, что в производственных условиях обычно контролируют средний диаметр частиц сыпучего материала, а общее содержание материала и средний диаметр частиц каждой фракции известен, можно решить задачу идентификации фракционного состава полидисперсной шихты по результатам измерения среднего диаметра частиц, составляющих ее массу.

Описание фракционного состава полидисперсного материала представим в виде системы уравнений:

$$\Phi_{1} + \Phi_{2} + \Phi_{3} + \Phi_{4} + \Phi_{5} = \Phi_{\Sigma},
d_{1}\Phi_{1} + d_{2}\Phi_{2} + d_{3}\Phi_{3} + d_{4}\Phi_{4} + d_{5}\Phi_{5} = d_{cp}\Phi_{\Sigma},$$
(1)

диаметр частиц i-й фракции, мм; $d_{\rm cp}$ – средний диаметр частиц материала, мм.

$$d_{cp} = \frac{\sum_{i=1}^{n} d_{i} \Phi}{\sum_{i=1}^{n} \Phi_{i}}.$$
 (2)

Для решения (1) осуществим переход к системе уравнений с двумя неизвестными, путем группировки фракций:

$$\Phi_{25} = \Phi_2 + \Phi_3 + \Phi_4 + \Phi_5. \tag{3}$$

Таким образом, d_{co} группы частиц фракции Φ_{25} равен

$$d_{25} = \frac{d_2 \Phi_2 + d_3 \Phi_3 + d_4 \Phi_4 + d_5 \Phi_5}{\Phi_2 + \Phi_3 + \Phi_4 + \Phi_5}.$$
 (4)

В результате система (1) примет вид:

$$\Phi_{1} + \Phi_{25} = \Phi_{\Sigma},
d_{1}\Phi_{1} + d_{25}\Phi_{25} = d_{cp}\Phi_{\Sigma}.$$
(5)

Решим эту систему относительно Φ_1 :

$$\Phi_1 = \Phi_{\Sigma} \frac{d_{cp} - d_{25}}{d_1 - d_{25}}.$$
 (6)

Определив содержание Φ_1 в материале, найдем значение Φ_2 , путем осуществления замены:

$$\Phi_{35} = \Phi_3 + \Phi_4 + \Phi_5. \tag{7}$$

Средний диаметр группы частиц фракций $\Phi_{_{35}}$

$$d_{35} = \frac{d_3 \Phi_3 + d_4 \Phi_4 + d_5 \Phi_5}{\Phi_3 + \Phi_4 + \Phi_5} \ . \tag{8}$$

Система уравнений (1) примет вид:

$$\Phi_{1} + \Phi_{2} + \Phi_{35} = \Phi_{\Sigma},
d_{1}\Phi_{1} + d_{2}\Phi_{2} + d_{35}\Phi_{35} = d_{cp}\Phi_{\Sigma},$$
(9)

отсюда Φ_{2} будет равно:

$$\Phi_2 = \frac{\Phi_{\Sigma}(d_{cp} - d_{35}) - \Phi_1(d_1 - d_{35})}{d_2 - d_{35}}.$$
 (10)

Зная содержание фракций Φ_1 и Φ_2 , аналогично найдем значения Φ_3 , Φ_4 :

$$\Phi_{3} = \frac{\Phi_{\Sigma}(d_{cp} - d_{45}) - \Phi_{1}(d_{1} - d_{45}) - \Phi_{2}(d_{2} - d_{45})}{d_{3} - d_{45}}, \quad (11)$$

$$\begin{array}{ll} \text{где} & \Phi_{_{i}} & -\text{ содержание } \emph{i-} \ddot{\textbf{u}} \text{ фракции в материале, } \%; \\ \Phi_{\Sigma} & -\text{ общее содержание материала, } \%; \\ & d_{_{i}} - \text{ средний} \end{array}$$

Содержание фракции $\Phi_{\scriptscriptstyle 5}$ составит:

$$\Phi_{\scriptscriptstyle 5} = \Phi_{\scriptscriptstyle \Sigma} - \sum_{\scriptscriptstyle i=1}^{\scriptscriptstyle n} \Phi \ . \tag{13}$$

При числе фракций n содержание искомой фракции $i \in [1, n-1]$ может быть получено из выражения:

$$\Phi_{i} = \frac{\Phi_{\Sigma}(d_{cp} - d_{(i+1)n}) - \sum_{m=1}^{i-1} \Phi_{m}(d_{1} - d_{35})}{d_{i} - d_{(i+1)n}}.$$
(14)

Представленная методика позволяет рассчитать фракционный состав полидисперсной шихты при наличии информации об общем количестве материала, среднем диаметре частиц фракций, среднем диаметре частиц всех фракций и среднем диаметре групп фракций.

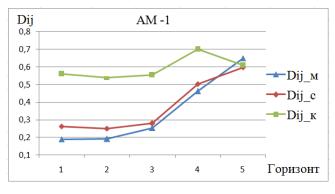
Определение средних диаметров групп фракций обусловливает необходимость наличия информации о закономерностях распределения сыпучего материала по размерам составляющих его частиц. В результате анализа работ [4, 6, 7] установлено, что не существует общих закономерностей данного распределения, т.е. для каждого конкретного предприятия эта закономерность будет индивидуальной и определяться свойствами сыпучих материалов, условиями их подготовки и загрузки на паллеты.

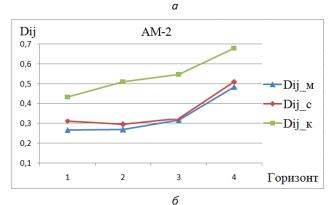
Тем не менее, следует отметить, что закономерности распределения сыпучих материалов по фракциям для конкретного производства достаточно стабильны.

Для определения средних диаметров групп фракций используем коэффициент D_{ij} , характеризующий распределение среднего диаметра группы фракций по высоте загружаемого слоя.

$$D_{ij} = \frac{d_{ij} - d_i}{d_i - d_i}, \tag{15}$$

где d_{ij} — средний диаметр группы фракций, мм; d_i — средний диаметр фракции Φ_{i-1} , мм; d_j — средний диаметр самой крупной фракции сыпучего материала, мм.


Диапазон возможных значений D_{ij} в общем случае будет составлять $D_{ij} \in [0;1]$. Значение среднего диаметра групп фракций d_{ij} , находящегося в диапазоне $d_i \leq d_{ij} \leq d_j$ при известном D_{ij} можно рассчитать по формуле:


$$d_{ij} = d_{i} + D_{ij}(d_{i} - d_{i}). (16)$$

С целью определения коэффициента D_{ij} по высоте загружаемого материала, был проведен анализ фракционного состава агломерационной шихты для условий аглофабрики МК «Запорожсталь». Были произведены три серии отбора проб по трем зонам аглоленты, ее левой, центральной и правой частям, для агломашин N 1.2.4.

Зная средний диаметр частиц каждой из фракций, и рассчитав по результатам рассева средний диаметр

групп фракций, были получены значения коэффициента D_{ij} для мелких $\Phi(-3)$, средних $\Phi(3-5, 5-8)$ и крупных $\Phi(8-10, +10)$, мм фракций D_{ij_M} , D_{ij_c} , D_{ij_c} соответственно. Зависимости, характеризующие изменение коэффициента D_{ij} по горизонтам загружаемого материала, для агломашин №1, 2, 4 представлены на рис. 1, a-e.

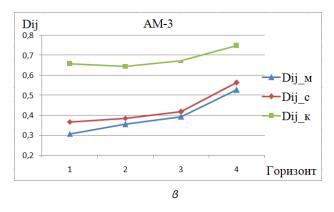


Рис. 1. Изменение коэффициента D_{ij} по горизонтам загружаемого материала: a — агломашина N 1; δ — агломашина N 2; δ — агломашин N 4 MK «Запорожсталь»

Таким образом, зная средние диаметры частиц i-х фракций d_i , и суммарное содержание материала Φ_Σ , получив изменение коэффициента характеризующего распределение среднего диаметра групп фракций по высоте слоя, можно рассчитать фракционный состав подготовленной к спеканию шихты. Некоторые результаты расчетов содержания фракций для условий комбината «Запорожсталь» приведены в табл. 1—3.

Таблица 1 Фракционный состав шихты правая сторона агломашины №1

	Фракция, мм							
АМ1 пра- вая ст.	Ф1(-3)	Ф2(3-5)	Ф3(8-5)	Ф4(10-8)	Ф5(+10)			
Горизонт/ di, мм	2	4 6,5		9	12			
	Эксперимент, %							
1	62,685	21,26	9,86	2,9285	3,2675			
2	60,145	24,275	8,9875	2,865	3,7275			
3	52,35	25,32	14,195	3,15	4,985			
4	36,255	20,665	18,97	7,46	16,65			
5	15,28	7,24	19,085	24,32	34,03			
	Расчет, %							
1	60,05884	24,66281	10,01354	2,323867	2,940949			
2	58,35819	25,37161	10,83674	2,506465	2,926993			
3	53,67374	23,07059	14,68907	3,83018	4,736426			
4	39,32153	18,07964	17,02247	7,703025	17,87334			
5	15,08308	8,552701	18,41945	22,75435	35,19042			
F табл.	F расч.							
230,2	54,80566	6,03221	8,76728	74,01165	143,625			

Таблица 2 Фракционный состав шихты середина агломашины №2

	Фракция, мм							
АМ2 середина	Ф1(-3)	Ф2(3-5)	Ф3(8-5)	Ф4(10-8)	Ф5(+10)			
Горизонт/ di, мм	2	4	6,5	9	12			
	Эксперимент, %							
1	45,59485	27,19757	11,76706	12,69376	2,746758			
2	41,60445	32,2157	16,7411	4,542728	4,896014			
3	37,69874	28,35239	20,18599	6,573114	7,18976			
4	30,62667	20,27	19,68333	9,326667	20,09333			
	Расчет, %							
1	45,81916	26,8099	15,03992	6,979605	5,35141			
2	46,7527	25,5602	16,57352	5,437126	5,676446			
3	41,51478	23,80486	19,76609	6,74957	8,164705			
4	32,65539	18,23182	18,74441	9,720745	20,64763			
F табл.	F расч.							
224,6	1,899458	0,842609	3,154852	0,798504	15,661			

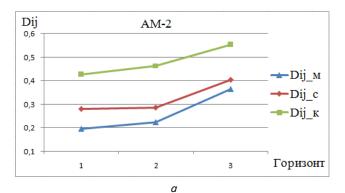
Таблица 3 Фракционный состав шихты левая сторона агломашины №4

	Фракция, мм							
АМ4 левая ст.	Ф1(-3)	Ф2(3-5)	Ф3(8-5)	Ф4(10-8)	Ф5(+10)			
Горизонт/ di, мм	2	4	6,5	9	12			
	Эксперимент, %							
1	48,7878	27,67417	15,26575	3,809778	4,462502			
2	42,56525	23,64921	15,84281	5,903137	12,0396			
3	38,81925	20,12134	19,87799	7,170478	14,01093			
4	33,98553	18,40939	18,12606	8,179727	21,29929			
	Расчет, %							
1	56,14789	20,03173	13,06583	3,689171	7,065379			
2	42,13104	22,2278	18,63118	6,028922	10,98106			
3	37,71782	21,54199	20,04232	6,752258	13,94561			
4	37,46806	15,45068	16,34281	7,730503	23,00795			
Гтабл.	Грасч.							
224,6	1,15731	0,479312	0,670997	18,44839	8,892604			

С целью определения адекватности предложенной методики для расчета фракционного состава матери-

ала воспользуемся критерием для проверки гипотезы об адекватности моделей (F-критерий Фишера), определяемый формулой

$$F = \frac{\sigma_1^2}{\sigma_2^2} \le F_{kp};$$


где σ_1^2 — остаточная дисперсия или дисперсия адекватности; σ_2^2 — дисперсия воспроизводимости:

$$\sigma_{1}^{2} = \frac{\sum_{i=1}^{n} (\Phi_{i} - \overline{\Phi_{i}})^{2}}{n-1};$$

$$\sigma_{2}^{2} = \frac{\sum_{i=1}^{n} (\Phi_{i} - \widehat{\Phi}_{i})^{2}}{n-2}.$$

Значения табличного и расчетного критерия Фишера представлены в табл. 1–3 и свидетельствуют о хорошей сходимости результатов рассевов и расчетов фракционного состава шихты.

Исходя из данных лабораторных исследований фракционного состава агломерационной шихты в условиях Алчевского металлургического комбината [12], рассчитаем значения коэффициента D_{ij} и фракционный состав материала. Изменение значения коэффициента характеризующего распределение среднего диаметра групп фракций по высоте слоя D_{ij} для условий АМ 2,3, работающих на высоте слоя 0,33 и 0,35 м соответственно, представлено на рис. 2, a, δ .

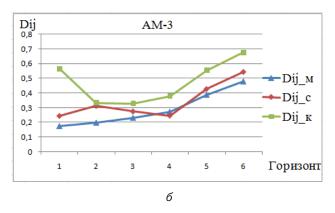


Рис. 2. Изменение коэффициента D_{ij} по горизонтам загружаемого материала: a — агломашина № 2; b — агломашина № 3 Алчевского МК

Распределение фракционного состава шихты, полученное в лабораторных условиях путем рассева проб и расчетным путем, представлено в табл. 4.

Как видно из результатов расчетов, разработанную методику идентификации фракционного состава материала можно считать универсальной, пригодной для использования в условиях аглофабрик различных предприятий.

Таким образом, на основе исследования теплового режима процесса спекания агломерата, и полученной зависимости требуемого изменения $\mathbf{d}_{\rm cp}$ шихты по горизонтам [11], представленной на рис. 3, можно рассчитать необходимое распре-

деление фракционного состава аглошихты, которое обеспечит равномерный тепловой режим процесса спекания. Последнее обусловлено оптимальным распределением твердого топлива и химических компонентов по высоте сыпучей массы на паллетах.

Таблица 4 Фракционный состав для условий агломашины №2 Алчевского МК

AM -2									
Горизонт	Фракции, %								
_	Ф6(10)	Ф5(10-7)	Ф4(7-5)	Ф3(5-3)	Ф2(3-1)	Ф1(1-0)			
	Эксперимент								
верх	1,4	2,4	8,4	12,6	58,6	16,8			
середина	3,6	5,8	16,9	17,2	43	13,5			
низ	14	11	18,8	16,4	32,7	7,1			
	Расчет								
	Ф6(10)	Ф5(10-7)	Ф4(7-5)	Ф3(5-3)	Ф2(3-1)	Ф1(1-0)			
верх	1,3	2,2	8,2	17,1	50,5	20,7			
середина	3,6	5,3	15,5	21,3	41,1	13,2			
низ	12,9	10,5	18,6	21,2	31,7	5,1			

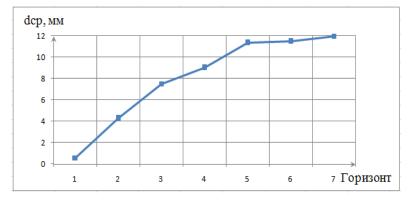


Рис. 3. Расчетное значение требуемого среднего диаметра частиц шихты по горизонтам слоя

Результаты расчета требуемого распределения фракционного состава шихты подготовленной к спеканию для условий АМ №1 МК «Запорожсталь» представлено в табл. 5.

Таблица 5 Требуемое распределение фракционного состава шихты для условий АМ №1 МК «Запорожсталь»

Горизонт	1	2	3	4	5	6	7
Ф1(-1), %	88,9958	72,2801	41,1725	16,3300	3,69352	1,39184	0,18503
Ф2(1-3, %	5,97108	15,1510	29,0470	33,3138	27,0558	15,8555	4,93589
Ф3(3-5), %	2,14718	5,41466	11,9766	17,5003	19,2465	16,8736	12,6078
Ф4(5-7), %	1,83712	4,63353	11,0750	18,4511	23,3890	22,5216	15,2250
Ф5(7-9), %	0,31494	0,71698	1,81371	3,68147	6,45329	9,97999	14,6613
Ф6(9-11), %	0,33893	0,79885	2,08706	4,36544	7,86914	12,4905	18,7995
Ф7(+11), %	0,39485	1,00480	2,82781	6,35764	12,2926	20,8867	33,5852

Процентное содержание каждой фракции по горизонтам представлено на рис. 4.

Таким образом, представленная в работе методика идентификации гранулометрического состава подготовленной к спеканию шихты, позволила установить зависимости необходимого распределения фракций сыпучего материала по горизонтам слоя.

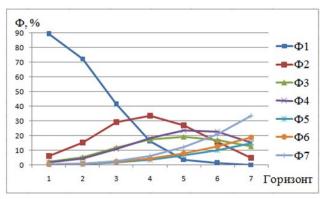


Рис. 4. Требуемое распределение фракционного состава шихты для условий АМ №1 МК «Запорожсталь»

5. Выводы

Полученные зависимости характеризуют требуемую сегрегацию фракций сыпучего полидисперсного материала, в результате чего, в верхней части слоя будет сосредоточено требуемое количество мелких фракций, являющихся основным носителем твердого топлива, тем самым устраняя недостаток тепла в этих горизонтах. В свою очередь снижение топлива в нижних слоях, за счет концентрации там крупных фракций, устранит переоплавление агломерата.

Полученные результаты создают предпосылки к выбору типа и расчету характеристик загрузочного устройства агломашины, с целью обеспечения максимально

близкого к расчетному распределению фракций подготовленной к спеканию шихты.

Последнее позволит решить задачу стабилизации теплового режима спекания агломерата и повысить

энергоэффективность процесса, что подтверждено результатами математического моделирования [11] и

лабораторными спеканиями на опытной установке аглофабрики МК «Запорожсталь».

Литература

- 1. Пазюк, М. Ю. Контроль гранулометрического состава окомкованной шихты [Текст] / М. Ю. Пазюк, А. Н. Николаенко, В. И. Гранковский // Изв. вузов. Черная металлургия. 1981. № 12. С. 4–6
- 2. Овчинникова, И. А. Автоматизированное управление процессом формирования слоя шихты на агломерационной ленте [Текст] / И. А. Овчинникова // Восточно-Европейский журнал передовых технологий. 2012. Т. 5, № 3(59). С. 35–38. Режим досутпа: http://journals.uran.ua/eejet/article/view/4509/4192
- 3. Рахуба, В. О. Оптимізація управління формуванням гранулометричних характеристик агломераційної шихти при підготовці до спікання [Текст]: автореф. дис. ... квнд. тех. наук: 05.13.07 / В. О. Рахуба. Київ, 2010. 21 с.
- 4. Русаков, П. Г. Исследование закономерностей распределения неоднородного сыпучего материала по откосу [Текст] / П. Г. Русаков, Н. Ф. Русаков, В. Г. Морозов // Изв. вузов. Черная металлургия. 1985. № 6. С. 15–19.
- 5. Ищенко, А. Д. Математическая модель гранулометрического состава железорудных окатышей [Текст] / А. Д. Ищенко // Бюл. ин-та Черметинформация. 1992. Вып. 3. С. 15–17.
- 6. Готовцев, А. А. Формирование слоя агломерационной шихты перед спеканием [Текст] / А. А. Готовцев, В. И. Тихонов, И. М. Сальников, С. А. Вакуленко // Сталь. 1981. № 12. С. 11–15.
- 7. Коршиков, Г. В. Формирование структуры слоя шихты и спека на агломашинах АКМ−312 при различных способах загрузки [Текст] / Г. В. Коршиков, М. А. Хайков, А. С. Кузнецов // Сталь. 1996. № 11. С. 3–8.
- 8. Сальников, И. М. Анализ методов оценки неоднородностей структуры слоя шихты [Текст] / И. М. Сальников, В. И. Тихонов, М. Ю. Пазюк // Изв. вузов. Черная металлургия. -1991. -№ 10. C. 13-15.
- 9. Maki, T. Study for evaluation and optimization of iron ore granulation with consideration of dynamics and particle conditions [Text] / T. Maki, T. Sekiguchi // ISIJ International. 2009. Vol. 49, Issue 5. P. 631–636. doi: 10.2355/isijinternational.49.631
- 10. Евстюгин, С. Н. Применение системы «Гранулометр» для непрерывного бесконтактного определения гранулометрического состава кусковых материалов [Текст] / С. Н. Евстюгин. А. В. Стародумов, В. Н. Круглов // Сталь. − 2003. − № 1. − С. 36−38.
- 11. Мных, А. С. Определение оптимального распределения твердого топлива в слое загружаемой шихты для выравнивания теплового режима агломерационного процесса [Текст] / А. С. Мных // Технічна теплофізика та промислова теплоенергетика. 2014. № 6. С. 47–51.
- 12. Петрушов, С. Н. Формирование структуры агломерационного слоя шихты [Текст] / С. Н. Петрушов, А. М. Новохатский и др. // Изв. вузов. Черная металургія. 1998. № 8. С. 21–24.